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Abstract The Jordan-Holder chain condition is characterized by

means of prime annihilators in finite lattices. The intersection
property of prime annihilators is considered.

1. Introduction and basic concepts

Ideals play a very important role in the analysis of lattices. Mandelker
introduced in [6] the notion of the (relative) annihilator: this concept generalizes
the notion of ideal as well as that of relative pseudocomplement. Mandelker
characterized the distributivity and modularity of a lattice by means of an-
nihilators, and later on, annihilators were used for obtaining other characteriza-
tions in lattices, see $e$ . $g$ . $[2]$ and [7]. All these characterizations used the
relative pseudocomplement aspect of annihilators, and the first paper, where
the ideal aspect of annihilators was used, was [3], where the modularity of
finite lattices is characterized by means of prime annihilators. This paper con-
tinues the line of [3], and shows how one can replace ideals by annihilatiors
in finite lattices in order to obtain new results on semimodularity and the
$Jordan- H\ddot{o}lder$ chain condition.

In this paper we consider finite lattices only. Let $L$ be a lattice. The set
$\langle a, b\rangle=\{x|x\wedge a\leqq b\}$ is an annihilator of $L$ , and its dual $\langle a, b\rangle_{d}=\{x|xa\geqq b\}$

is a dual annihilator. One can easily show [3] that $\langle a, b\rangle=\langle a, a\wedge b\rangle$ , and
dually, that $\langle c, f\rangle_{d}=\langle c, cVf\rangle_{d}$ . If $a\leqq b$ , then $x\wedge a\leqq b$ for every $x\in L$ , and
thus $\langle a, b\rangle=L$ . If 1 is the gratest element of $L$ , then $\langle 1, a\rangle=(a$ ] $=\{x|x\leqq a\}$ .
An annihilator $\langle a, b\rangle\neq L$ is called prime, if

$\langle a, b\rangle\cup\langle b, a\rangle_{d}=L$ and $\langle a, a\wedge b\rangle\cap\langle a\wedge b, a\rangle_{d}=\emptyset$ .

One can show that in a distributive lattice every prime annihilator is a prime
ideal and vice versa [3]. It should be emphasised that the primeness of $\langle a, b\rangle$

depends upon the elements $a$ and $b$ rather than the set $\langle a, b\rangle$ : in a three-
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element chain $0<a<1$ , we have $\langle 1, O\rangle=\{0\}=\langle a, 0\rangle$ while $\langle a, 0\rangle$ is prime but
$\langle 1, 0\rangle$ is not.

As usually, an element $a$ covers an element $b$ , in symbols $a\succ b$ , if $a>b$

and if $a\geqq c\geqq b$ implies either $a=c$ or $b=c$ . Note that if an annihilator $\langle a, b\rangle$

is prime in a lattice $L$ , then $a\succ b$ by [3].

2. The Jordan-Holder chain condition

Let $L$ be a finite lattice and $G_{L}$ the undirected Hasse diagram graph of $L$ .
The length of a shortest $a-b$ path in the graph $G_{L}$ is the distance $d(a, b)$

between the elements $a$ and $b$ in $L$ . In graph theory, a shortest path is
frequently called a geodesic. The set [ $a,$ $b\neg_{g}$ is called a geodetic annihilator,
briefly a g-annihilator, if [ $a,$ $b\neg_{g}=\{x|b$ is on an $x-a$ geodesic in $G_{L},$ $x\gg a$ if
$a>b$ , and $x\not\leq a$ if $a<b$ }. A g-annihilator $\lceil a,$ $b1_{g}$ is called prime if

[ $a,$ $b_{g}^{\urcorner}\cup\lceil b,$ $a\neg_{g}=L$ and $\lceil a,$ $b\neg_{g}\cap\lceil b,$ $ a^{\urcorner_{g}}=\emptyset$ .
In finite distributive lattices the two annihilator concepts have a connection as
shown in

THEOREM 1. Let $L$ be a finite distributive lattice. Then the equality $\Gamma a,$ $b\rceil_{g}$

$=\langle a, b\rangle\cap\langle a, b\rangle_{d}$ holds for every pair $a,$ $b\in L$ .

PROOF. Let $x\in\lfloor a,$ $ b\rfloor$ $:=\langle a, b\rangle\cap\langle a, b\rangle_{d}=\{z|z\wedge a\leqq b\}\cap\{z|za\geqq b\}=\{z|z\wedge$

$a\leqq b\leqq za\}$ . Thus $a\wedge x\leqq b\leqq a\vee x$ . Because $L$ is distributive, one $u-v$ geodesic
goes through $u\wedge v$ and another through $u\vee v$ for any pair $u,$ $v\in L$ , and hence
some $x-a$ geodesic goes through $x\wedge a$ . The relation $x\wedge a\leqq b$ implies that
$x\wedge a\leqq x\wedge b\leqq x$ , and further that $x\wedge a\leqq a\wedge b\leqq b$ . Now, the part $x\wedge b-x\wedge a-$

$b\wedge a$ of an $x-a$ geodesic through $x\wedge a$ can be substituted by an $x\wedge b-b\wedge a$

geodesic through the element $(x\wedge b)(b\wedge a)=b\wedge$ ( $x$ Va) $=b$ . Thus an $x-a$

geodesic also goes through the element $b$ , and, consequently, $x\in[a,$ $b\rceil_{g}$ and
$\lfloor a,$ $b\rfloor\subset\lceil a,$ $b\rceil_{g}$ . Let $x\in\lceil a,$ $b\rceil_{g}$ , whence $b$ is on some $a-x$ geodesic in $G_{L}$ .
The well known results on medians in finite distributive lattices [1] imply now
that $x\wedge a\leqq b\leqq x\vee a$ , and thus $\lceil a,$ $b1_{g}\subset\lfloor a,$ $ b\rfloor$ . Accordingly, $\lceil a,$ $b1_{g}=\lfloor a,$ $ b\rfloor$ ,

and the theorem follows.
The following theorem characterizes the Jordan-Holder chain condition.

THEOREM 2. Let $L$ be a finite lattice. The lattice $L$ satisfies the Jordan-
Holder chain condition if and only if the condition (i) below holds:

(i) A g-annihilator $\Gamma a,$ $b\rceil_{g}$ is prime if and only if $a\succ b$ or $b\succ a$ .
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PROOF. Let $L$ satisfy the Jordan-Holder chain condition. The cycle
$\{a_{0}, a_{1}, \cdots, a_{n}\}$ of a graph $G$ is a collection of elements (points) of $G$ such
that $(a_{0}, a_{1}),$ $(a_{1}, a_{2}),$ $\cdots,$ $(a_{n-1}, a_{n})$ are edges in $G$ and $a_{i}\neq a_{j}$ for $i,$ $j=0,$ $\cdots$ ,

$n,$ $i\neq j$, with the exception $a_{0}=a_{n}$ . A cycle is even, if the number $n$ of edges

on the cycle is even. In the latter part of this proof we use the fact that the
cycles of a graph are ordered by set inclusion. One can show that all cycles

in the graph $G_{L}$ of a finite lattice $L$ satisfying the Jordan-Holder chain condi-
tion are even (the converse does not hold). Now let $a\succ b$ . If there is an
element $c$ such that $c\not\in\lceil a,$ $b1_{g}\cup\lceil b,$ $a\neg_{g}$ , then either 1) or 2) or 3) holds, where:
1) $d(a, c)=d(b, c);2)a<c$ and $b$ is on an $a-c$ geodesic; 3) $c<b$ and $a$ is on
a $b-c$ geodesic. If 1) holds, then the edge $(a, b)$ and the $c-a$ and $c-b$

geodesics constitute an odd cycle (or they contain an odd cycle as a proper
subset); a contradiction. In the case 2) there are two $b-c$ chains of unequal

lengths, which is absurd; a similar contradiction is obtained in the case 3).

Hence $\lceil a,$ $b\neg_{g}\cup\lceil b,$ $a1_{g}=L$ . If $c\in\lceil a,$ $b1_{g}\cap\Gamma b,$ $a1_{g}$ , then some $c-b$ geodesic
goes through $a$ and some $c-a$ geodesic through $b$ , and thus we have the
equations $d(c, b)=1+d(a, c)$ and $d(c, a)=1+d(b, c)$ . These two equations imply

that $2=0$ , which is absurd. Hence $\lceil a,$ $b\neg_{g}\cap\lceil b,$ $ a]_{g}=\emptyset$ , and thus the g-an-
nihilator $\lceil a,$ $b1_{g}$ is prime in $L$ .

Let $\lceil a,$ $b\rceil_{g}$ be a prime g-annihilator. If neither $a$ covers $b$ nor $b$ covers $a$ ,

there is at least one element $c$ on a $b-a$ geodesic, $c\neq a,$ $b$ . Clearly $c\not\in\lceil a,$ $b\rceil_{g}$

and $c\not\in\lceil b,$ $a\rceil_{g}$ , whence $[a, b]_{g}$ cannot be prime; a contradiction. Thus $a\succ b$

or $b\succ a$ , and the first part of the proof follows.
Let, conversely, $\lceil a,$ $b\rceil_{g}$ be prime if and only if $a\succ b$ or $b\succ a$ . If there is

an odd cycle in $G_{L}$ , there is also an odd minimal cycle, and let us consider it.
Select $a$ and $b$ from this cycle $(a\succ b)$, and because it is odd and minimal, there

is an element $c$ such that $d(c, a)=d(c, b)$ . This implies $c\not\in\lceil a,$ $b\rceil_{g}$ and $ c\not\in$

$\lceil b,$ $a]_{g}$ , whence the g-annihilator $\lceil a,$ $b]_{g}$ is not prime although $a\succ b$ ; a con-
tradiction. Hence every cycle in $G_{L}$ is even. Assume now that $p$ and $q,$ $p>q$ ,

are two elements of $L$ with two maximal $p-q$ chains $C(p, q)$ and $C^{\prime}(p, q)$ of
unequal lengths. We may certainly choose the pair $p,$ $q$ minimal such that for
all other pairs $u,$ $v$ with $u>v$ and $d(u, v)<d(p, q)$, any two maximal $u-v$

chains are of equal lengths. Let $C(p, q)$ be the longer chain, and choose the

elements $a$ and $b$ from $C(p, q)$ such that $a=q$ and $b\succ a$ . Now, $p$ should belong

to $\lceil b,$ $a\rceil_{g}$ by the distance condition, but because $p>b,$ $p\not\in\lceil b,$ $a\rceil_{g}$ . The mini-
mality of $p$ and $q$ and the distance condition imply now that $p\not\in\lceil a,$ $b\rceil_{g}$ , and

thus [ $b,$ $a1_{g}$ is not prime although $b\succ a$ ; a contradiction. Hence every pair of

maximal $p-q$ chains are of the same length, and the validity of the Jordan-
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Holder chain condition in $L$ follows.
The end of the first part of the proof shows that the condition $a\succ b$ or

$b\succ a$ is necessary for the primeness of $\lceil a,$ $b\rceil_{g}$ in a finite lattice.
The Jordan-Holder chain condition implies an interesting intersection property

given in

THEOREM 3. In a finite lattice $L$ satisfying the Jordan-Holder chain condi-
tion, every g-annihilator is an intersection of prime g-annihilators.

PROOF. Let $L$ be a finite lattice satisfying the Jordan-Holder chain condi-
tion, $\lceil b,$ $a1_{g}$ a given g-annihilator and $c$ an element, $c\not\in\lceil b,$ $a\rceil_{g}$ . If we can
show the existence of a prime g-annihilator $\lceil e,$ $f\rceil_{g}$ such that $\lceil b,$ $a\rceil_{g}\subset\lceil e,$ $f1_{g}$

and $c\not\in\lceil e,$ $f\rceil_{g}$ , then the asserted intersection property follows. Note that the
intersection of any two g-annihilators in $L$ need not be an g-annihilator. If
$a\succ b$ or $b\succ a$ holds, then $\lceil b,$ $a\neg_{g}$ is the desired prime g-annihilator by Theorem
2. Hence we assume now that every $a-b$ geodesic of $G_{L}$ contains elements
distinct from $a$ and $b$ , and let one $a-b$ geodesic be $a=a_{0},$ $a_{1},$ $a_{2},$ $\cdots,$ $a_{n}=b$ ,

where $a_{i}\succ a_{i+1}$ or $a_{i+1}\succ a_{i}$ for $i=0,1,$ $\cdots,$ $n-1$ . Assume that $c\not\in\lceil a_{i+1},$ $a_{t}\rceil_{g}$ for
some $i,$ $0\leqq i\leqq n-1$ . If $t\in\lceil b,$ $a\rceil_{g}$ , then $a$ lies on a $t-b$ geodesic which also
goes through $a_{i}$ and $a_{i+1}$ . Then some $t-a_{i+1}$ geodesic goes through $a_{i}$ , and
thus $t\in\lceil a_{i+1},$ $a_{i}1_{g}$ . Accordingly, $\lceil b,$ $a1_{g}\subset\lceil a_{i+1},$ $a_{i}1_{g}$ , and so $\lceil a_{i+1},$ $ a_{i}\rceil$ is the
desired prime g-annihilator. Assume now that $c\in\lceil a_{i+1},$ $a_{i}\rceil_{g}$ for all $i,$ $ 0\leqq i\leqq$

$n-1$ , and let $d(c, b)=d(c, a_{n})$ . Because $c\in\lceil a_{n},$ $a_{n-1}1_{g}$ , the point $a_{n- 1}$ is on a
$c-a_{n}$ geodesic, and thus $d(c, a_{n})\geqq d(c, a_{n-1})+1$ . Similarly we see that
$d(c, a_{n-1})\geqq d(c, a_{n- 2})+1,$ $d(c, a_{n-2})\geqq d(c, a_{n-3})+1,$ $\cdots,$ $d(c, a_{1})\geqq d(c, a_{0})+1$ . By
combining these results we obtain $d(c, b)=d(c, a_{n})\geqq d(c, a_{0})+n=d(c, a)+n$ ,

which implies that $c\in\lceil b,$ $a\rceil_{g}$ . This is absurd, and hence $c\not\in\lceil a_{i+1},$ $ a_{i}\rceil$ for some
$i,$ $0\leqq i\leqq n-1$ , and the theorem follows.

3. Weak semimodularity

In the following we examine the effect of substituting annihilators by g-
annihilators: The set of ideals which are g-annihilators is not sufficiently dense
in a finite lattice satisfying the Jordan-Holder chain condition, but it is dense
enough in finite semimordular lattices and the condition of semimodularity can
be weakened, as will be shown.

We first show a connection between ideals and g-annihilators.

THEOREM 4. In a finite lattice $L$ satisfying the Jordan-Holder chain condition,
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every ideal is a g-annihilator.

PROOF. Let $I$ be an ideal, and because $L$ is finite, $I=(a$ ] for some $a\in L$ .
We prove that $\lceil 1,$ $a1_{g}=(a$ ]. If $x\leqq a$ , then $x\in\lceil 1,$ $a\rceil_{g}$ because of the Jordan-
Holder chain condition. Thus ( $a$ ] $\subset\lceil 1,$ $a\rceil_{g}$ . Assume now that $\lceil 1,$ $a\rceil_{g}$ contains
an element $x\not\in(a$ ]. Then the $x-1$ geodesic through $a$ consists of the follow-
ing pieces of chains: $x=s_{0}\searrow s_{1}\nearrow s_{2}\searrow\cdots\nearrow s_{n-1}\searrow s_{n}$ (or $x=s_{0}\nearrow s_{1}\searrow s_{2}\nearrow\cdots\nearrow s_{n-1}\searrow s_{n}$ ),

where $s_{n}\leqq a$ . Let $t$ be an element such that $s_{n-1}\geqq t\succ s_{n}$ . Now, $t\not\leq a$ , because
if $t\leqq a$ , a minimum length $t-1$ path is the chain from $t$ to 1, and then the
point $s_{n}$ is not on the $x-1$ geodesic, which is absurd. There are now two
$s_{n}-1$ chains: one through $t$ and another through $a$ , both of which are of the
same length because of the Jordan-Holder chain condition. But this contradicts
the assumption that a $t-1$ geodesic goes through the elements $s_{n}$ and $a$ , and
hence $[1, a]_{g}\subset(a$ ]. Accordingly, $\lceil 1,$ $a\rceil_{g}=(a$ ], and the theorem follows.

A finite lattice $L$ is weakly semimodular if, when $a\wedge b\prec a,$ $b$ then either
$a,$ $b\prec ab$ or the conditions (1)$-(3)$ below hold:

(1) all maximal $a\wedge b-ab$ chains are of the same length;
(2) if $a\wedge b<c<ab$ and $a\wedge b\prec c$ , then every $e\succ c$ satisfies the relation

$a\wedge b<e\leqq ab$ ;
(3) if $a\wedge b<c\prec e<ab$, then there are at least two elements $h,$ $k,$ $a\wedge b<$

$h,$ $k<ab$ , covering $c$ .
The definiton of the weak semimodularity shows that every semimodular

lattice is weakly semimodular. A lattice $L$ with the chains $O\prec a\prec g\prec 1;0\prec$

$a\prec h\prec 1;O\prec b\prec i\prec 1$ and $O\prec b\prec j\prec 1$ is weakly semimodular but not semimodular.
The next theorem gives a connection between weak semimodularity and the
Jordan-Holder chain condition.

THFOREM 5. $A$ finite weakly semimodular lattice $L$ satisfies the Jordan-Holder
chain condition.

PROOF. Let $C=\{a_{0}, \cdots, a_{n}\},$ $0=a_{0}\prec a_{1}\prec a_{2}\prec\cdots\prec a_{n}=1$ , be a maximal chain
of length $n$ in $L$ . We prove that any other 0–1 chain is also of length $n$ by
induction on $n$ (cf. the proof of [4, Theorem IV. 2.1]). If $n=1$ , then the
theorem holds obviously, and so we assume that the theorem holds for all
lengths $l<n$ . Let $C’=\{b_{0}, b_{1}, \cdots , b_{m}\},$ $0=b_{0}\prec b_{1}\prec\cdots\prec b_{m}=1$ , be another maximal
0–1 chain in $L$ . If $a_{1}=b_{1}$ , then the induction assumption implies the equality
$n=m$ . If $a_{1}\neq b_{1}$ , then let $C^{\prime\prime}$ be a maximal chain in [ $a_{1}b_{1}$ ) of length $k$ .
Because of the weak semimodularity $(0=a_{1}\wedge b_{1}\prec a_{1}, b_{1})$ , the length of the $a_{1}-$

$a_{1}b_{1}$ chain is $t\geqq 1$ as well as the length of the $b_{1}-a_{1}b_{1}$ chain. The lengths
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of the maximal chains in [ $a_{1}$ ) are equal by the induction assumption, and thus
$n-1=k+t$ . Similarly we see that $m-1=k+t$ , and accordingly, $n=m$ . This
completes the proof.

If $L$ is a lattice of two disjoint 0–1 chains $0\prec a_{1}\prec a_{2}\prec\cdots\prec a_{n}\prec 1$ and $ 0\prec$

$b_{1}\prec b_{2}\prec\cdots\prec b_{n}\prec 1,$ $n\geqq 3$ , there is no ideal $J$ , which is prime as a g-annihilator,
separating the ideal $I=(a_{1}$] and the point $a_{2}$ . Clearly, this lattice $L$ satisfies
the Jordan-Holder chain condition, and thus a stronger structural condition is
needed for this kind of separation. The next theorem shows that weak semi-
modularity is sufficient.

THEOREM 6. In a finite weakly seminodular lattice $L$ , there is for any ideal
I and any element $u\not\in I$ an ideal $J$, which is prime as a g-annihilator, separating
I and $u$ .

PROOF. Let $I$ be an ideal in the weakly semimodular lattice $L$ not con-
taining the element $u$ , and let ( $b$] be an ideal containing $I$ and maximal with
respect to not containing $u$ . The maximality of ( $b$] implies that $b\prec ub$ , and
further, that $ub$ is the only element covering $b$ . Indeed, if there is an element
$c\neq ub,$ $b\prec c$ , then $c$ and $ub$ have two disjoint maximal lower bounds, namely
$b$ and $q\geqq u$ , which is absurd. Because weak semimodularity implies the Jordan-
Holder chain condition and because $b\prec ub$ , the g-annihilator $\lceil ub,$ $b\neg_{g}$ is prime
by Theorem 2. 0bviously, ( $b$] $\subset\lceil ub,$ $b\rceil_{g}$ , and thus it remains to show that
$\lceil ub,$ $b\rceil_{g}\subset(b$]. Assume that $\lceil ub,$ $b\rceil_{g}$ contains an element $x\not\in(b$]. Then the
$x-bu$ geodesic through $b$ consists of the following pieces of chains: $ x=s_{0}\searrow$

$s_{1}\nearrow s_{2}\searrow\cdots\nearrow s_{n-1}\searrow s_{n}$ (or $x=s_{0}\nearrow s_{1^{\backslash }}\searrow s_{2}\nearrow\cdots\nearrow s_{n-1}\searrow s_{n}$ ), where $s_{n}\leqq b$ . Let $t$ be an
element such that $s_{n-1}\geqq t\prec s_{n}$ . Obviously, $t\not\leq b$ , and because $t$ is on the $x-bu$
geodesic, $t\in\lceil bu,$ $b\rceil_{g}$ . Let $s_{n}=c_{0}\prec c_{1}\prec c_{2}\prec\cdots\prec c_{m}=b$ be a $b-s_{n}$ chain. Now,
$c_{0}\prec c_{1},$ $t$ . If $c_{1},$ $t\prec c_{1}t$ , we continue by considering the elements $c_{2},$ $c_{1}t\succ c_{1}$ .
If $c_{1},$ $t\prec c_{1}t$ , then by weak semimodularity there is an integer $p$ such that
$c_{p}\prec c_{1}t=c_{2}t=\cdots=c_{p}\vee t$ . Moreover, there are elements $t_{1},$ $t_{2},$

$\cdots,$ $t_{p}$ such that
$t=t_{1}\prec t_{2}\prec\cdots\prec t_{p}\prec c_{p}t=c_{1}t$ . In this case we continue by considering the
elements $c_{p}t,$ $c_{p+1}\succ c_{p}$ . In both cases, the essential thing is that the $c_{0}-c_{1}t$

chains (one through $c_{1}$ and another through t) are of the same length. When
$c_{1}\prec c_{2},$ $t\vee c_{1}$ , we have two cases: $c_{2},$ $tc_{1}\prec tc_{1}\vee c_{2}=t^{\backslash }\sqrt c_{2}$ or $c_{2},$ $t\vee c_{1}\prec t\vee c_{2}$ ,

where the latter case needs the same special rules of weak semimodularity as
the case of $c_{1},$ $t\prec c_{1}\vee t$ above. Similarly, when $c_{p}\prec c_{p+1},$ $t\vee c_{p}$ , we have two

cases: $c_{p+1},$ $tc_{p}\prec tc_{p}c_{p+1}=tc_{p+1}$ or $c_{p+1},$ $t\vee c_{p}\not\leq tc_{p+1}$ , where the latter
case needs the special rules of weak semimodularity. We can continue the
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process of joining $t$ to the elements of the chain $c_{0},$ $c_{1},$ $\cdots,$ $c_{m}$ and obtain another
chain $t,$ $t^{\prime}c_{1},$ $t\vee c_{2},$ $\cdots$ , $t\vee c_{m}$ , where two consecutive elements may coincide but
where the lengths of the $c_{0}-c_{m}$ and $t-tc_{m}$ chains are equal. Because $t\not\leq b=$

$c_{m}$ , we have $tc_{m}>b$ .
If $t\vee c_{m}=bu$ , then the $t-bu$ geodesic does not contain $b$ , whence $ t\not\in$

$\lceil ub,$ $b\rceil_{g}$ ; a contradiction. Thus $\lceil bu,$ $b\rceil_{g}\subset(b$] in this case, and we are
done. The another possible case is $t\vee c_{m}>bu$ . Let $tc_{r}$ be an element such
that $t\vee c_{r}\succ c_{r}$ and $tc_{r}=\cdots t^{\backslash }\sqrt c_{m-1}=t\vee c_{m}$ . By the assumption, $bu<t\vee c_{m}$ ,

and thus $r\leqq m-1$ . Because $c_{r}\prec c_{r+1},$ $tc_{r}$ , the element $tc_{m}$ is reached from
$c_{r+1}$ and $t\vee c_{r}$ by the special rules of weak semimodularity. Now, $c_{r}<b\prec b$

$u<i\sqrt c_{r}$ , and then, by (3), $b$ has at least two covering elements, which is
absurd, because $b$ Vu was the only element covering $b$ . Hence the case $bu<$
$t\vee c_{m}$ is impossible, and the theorem follows.

There are two interesting open problems we have not been able to solve:
1) Does the intersection property of Theorem 3 imply the Jordan-Holder

chain condition? and
2) does the separation property of Theorem 6 imply weak semimodularity?
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