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SPECIAL ALGEBRAIC PROPERTIES OF
K\"AHLER ALGEBRAS

By

J. DORFMEISTER

Homogeneous K\"ahler manifolds $M$ are frequently investigated via K\"ahler

algebras $(g, k, j, \rho)$ , where $g$ denotes a Lie algebra of infinitesimal automor-
phisms of $M$ and $k$ the isotropy subalgebra of some point in $M$ . Moreover, $j$

corresponds to the complex structure tensor and $\rho$ to the K\"ahler form. In
particular, K\"ahler algebras have been used intensively in the proof of the geo-
metric Fundamental Conjecture for homogeneous K\"ahler manifolds: Every
homogeneous K\"ahler manifold is a holomorphic fiber bundle over a homogeneous
bounded domain in which the fiber is (with the induced K\"ahler metric) the pro-
duct of a flat homogeneous K\"ahler manifold and a compact simply connected
homogeneous K\"ahler manifold.

Two additional properties of K\"ahler algebras have proven to be particularly
useful. One is that $g$ or ad $g$ is an algebraic Lie algebra. The second one is
the assumption that $\rho$ is the differential of a leftinvariant l-form, $\rho=d\omega$ . This
is the case of “j-algebras”. It has been investigated intensively by Gindikin,
Piatetskii-Shapiro, Vinberg and others. The proof of the Fundamental Conjec-
ture for homogenous K\"ahler manifolds is much shorter for j-algebras than for
general K\"ahler algebras. This is due to some extent to the fact that one can
embed a j-algebra into an algebraic j-algebra.

The purpose of this note is threefold. First we want to prove that for the
Lie algebra $g_{M}$ of all infinitesimal automorphisms of an arbitrary homogeneous
K\"ahler manifold $M$, the Lie algebra ad $g_{M}$ is algebraic. Secondly, we decom-
pose $g_{M}$ into the orthogonal sum of j-invariant subalgebras. This decomposition
will be of importance for a forthcoming publication in which we give a detailed
description of $k_{M}$ and the K\"ahler form $\rho$ . The orthogonal decomposition in
question has a simple geometric interpretation. It is essentially induced by a
representation of the base domain (occuring in the Fundamental Conjecture) as
a Siegel domain of type three.
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The first step in the orthogonal decomposition mentioned above is a gener-
alization of [7; Theorem 2.5]. We show $g_{M}=a_{M}+h_{M}$ , where $a_{M}$ is an abelian
j-invariant ideal of $g_{M}$ and $h_{M}$ is a j-invariant subalgebra such that $k_{M}\subset h_{M}$

and $h_{M}$ carries the structure of a j-algebra. More precisely, there exists some
linear form $\omega$ on $h_{M}$ such that $(h_{M}, k_{M}, j, d\omega)$ is a j-algebra. The third goal
of this paper is to show that one can choose actually $\omega$ so that $\rho|h_{M}=d\omega$ holds.
This has several geometric consequences.

\S 1. Basic Definitions and Reductions.

1.1. Let $g$ be a finite dimensional Lie algebra over $R,$ $k$ a subalgebra of
$g,$ $j$ a linear endomorphism of $g$ and $\rho:g\times g\rightarrow R$ a skew form. Then $(g, k,j, \rho)$

is called a K\"ahler algebra if

$jk\subset k$ , $j^{2}x=-x(mod k)$ for all $x\in g$ , (1.1.1)

$[k, jx]=j[k, x]$ for all $kc\equiv k,$ $x\in g$ , (1.1.2)

$[jx, j\gamma]=][jx, y]+j[x, jy]+[x, y](mod k)$ for all $x,$ $y\in g$ , (1.1.3)

$\rho(k, g)=0$ , (1.1.4)

$\rho(jx, jy)=\rho(x, y)$ for all $x,$ $y\in g$ , (1.1.5)

$\rho(jx, x)>0$ for all $x\in g,$ $x\not\in k$ , (1.1.6)

$\rho([x, y], z)+\rho([y, z], x)+\rho([z, x], y)=0$ for all $x,$ $y,$ $z\in g$ . (1.1.7)

It was shown in [7; Proposition 1.1] that each K\"ahler algebra corresponds
in a natural way to a transitive group of automorphisms of a K\"ahler manifold.

Since we are only interested in effectively acting groups, we can–and will
–assume

$k$ does not contain any ideal of $g$ . (1.1.8)

Such K\"ahler algebras will be called effective.
Moreover, since the isotropy subgroup of the group of all automorphisms

of a homogeneous K\"ahler manifold is compact, we can–and will–assume

$k$ is the Lie algebra of a compact Lie subgroup $K\subset G$ , (1.1.9)

where $g=LieG$ .
We will call such subalgebras briefly compact.

1.2. If $\rho(x, y)=\omega([x, y])$ for some linear form $\omega:g\rightarrow R$ , then $(g, k, j, \omega)$

is called a j-algebra.
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By abuse of language we also say $(g, k, j)$ is a j-algebra, if there exists
some $\omega$ such that $(g, k, j, \omega)$ is a j-algebra.

1.3. Let $(g, k, j, \rho)$ be a K\"ahler algebra. Let $j:g\rightarrow g$ be a linear map
satisfying $jx=j^{\prime}x(mod k)$ , then $(g, k, j^{\prime}, \rho)$ is also a K\"ahler algebra (associated

with the same manifold as $(g, k, j, \rho)$ . Replacing $j$ by $j^{\prime}$ is called an inessential
change of $j$ . We will not distinguish between $(g, k, j, \rho)$ and $(g, k, j^{\prime}, \rho)$ .

1.4. For a homogeneous K\"ahler manifold $M$ we denote by Aut $(M)$ the
group of holomorphic isometries of $M$ . We also set $g_{M}=Lie$ Aut $(M)$ and denote
by $k_{M}$ the isotropy subalgebra of $g_{M}$ associated with some fixed base point $O_{M}$

in $M$ .

We recall from [7; 2.1] that a K\"ahler algebra $(g, k, j, \rho)$ is called quasi-
normal if ad $x$ has only real eigenvalues for all $x\in rad(g)$ . It was shown in [7;

Thorem 2.1] that to each homogeneous K\"ahler manifold there exists a quasi-

normal K\"ahler subalgebra. Analysing the proof of [7; Theorem 2.1] as given
in [7; 2.4] one notices that one can even find a quasi-normal subalgebra
$(g, k, j, \rho)$ of $(g_{M}, k_{M}, j, \rho)$ such that $k_{M}=k+k^{\prime}$ , where $k^{\prime}\subset rad(g_{M})$ . Then
rad $(g_{M})=rad(g)+k^{\prime}$ holds. Now let $\pi:M\rightarrow D$ be the locally trivial fibration of
the Fundamental Conjecture. Since Aut $(M)$ preserves the fibers of $\pi$ , the space
$a+u+k^{\prime}$ is a j-invariant subalgebra of $g_{M}=g+k^{\prime}$ (here $a$ and $u$ are as in [7;

Theorem 2.5]). But since $a+k^{\prime}\subset rad(g_{M})$ we even know that $a+k^{\prime}$ is a j-
invariant solvable subalgebra. Now it is easy to show $[a, k^{\prime}]\subset a$ . Therefore
the orthogonal complement $h+k^{\prime}$ of $a$ is a j-invariant subalgebra of $g_{M}$ .

Thus we have shown

THEOREM. Let $M$ be a homogeneous Kahler manifold and $(g_{M}, k_{M}, j, \rho)$ the
corresponding Kahler algebra. Then $g_{M}$ is decomposed as

$g_{M}=a_{M}+h_{M}$ , where $a_{M}\cap h_{M}=0$ and $\rho(a_{M}, h_{M})=0$ ,

where $k_{M}\subset h_{M}$ and $a_{M}$ is an abelian Kahler ideal of $g_{M}$ and $(h_{M}, k_{M}, j)$ is a j-
algebra. Moreover, there exists some reduclive Kahler subalgebra $u_{M}$ of $h_{M}$

satisfying a) and b) of [7; Theorem 2.5].

Finally, if $(g, k, j, \rho)$ is a quasi-normal subalgebra of $(g_{M}, k_{M}, j, \rho)$ and $g=$

$a+h$ the corresponding decomposition of [7; Theorem 2.5], then $a_{M}=a$ and $h_{M}=$

$h+k_{M}\cap rad(g_{M})$ .

1.5. In view of Theorem 1.4. we restrict our attention from now on to
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Kahler algebras $(g, k, j, \rho)$ for which $(g, k, j)$ is a j-algebra (except where ex-
plicitely stated otherwise).

We keep also the assumptions (1.1.8) and (1.1.9) intact.
From [10] we know that the group $G$ associated with $g$ acts transitively

on the homogeneous Siegel domain ( $\equiv homogeneous$ bounded domain) $D$ occur-
ing in the Fundamental Conjecture.

Denoting the isotropy algbra of the origin in $D$ by $u$ we show

LEMMA. a) $g=g^{\prime}+u^{\prime}$ orthogonal sum of j-invariant ideals.
b) $g^{\prime}\subset Lie$ Aut $D,$ $u^{\prime}\subset u$ .
c) $(g^{\prime}, k\cap g^{\prime}, j, \rho)$ is a Kahler algebra associated with $D$ and satisfles (1.1.8)

and (1.1.9).

PROOF. Let $u^{\prime}$ be the maximal ideal of $g$ contained in $u$ . Then $g=g^{\prime}+u^{\prime}$

for some ideal $g^{\prime}$ of $g$ . We know from [10; \S 3] that the center of $u$ is con-
tained in $k$ . Hence the group $U$ corresponding to $u$ is compact, whence also
$U^{\prime}$ corresponding to $u^{\prime}$ is compact. From [8] and [1] we obtain that $j$ leaves
the simple summands of $u$ and the center of $u$ invariant. Thus we can assume
that $u^{\prime}$ is j-invariant. Splitting $u^{\prime}$ into center and semisimple part and using
the closedness condition for $\rho$ one obtains $g^{\prime}+k=\{x\in g;\rho(x, u^{\prime})=0\}$ . There-
fore we can assume that also $g^{\prime}$ is j-invariant. This implies a), b) and all but
the last statement of c). But $G/U\cong(G/U^{\prime})/(U/U^{\prime})$ , whence $u\cap g^{\prime}=Lie(U/U^{\prime})$

is the Lie algebra of a compact group.

1.6. Since $u^{\prime}$ is a reductive summand of $g$ , it will suffice to study $g^{\prime}$ in
detail. Therefore, where not stated otherwise, we will assume in addition to
the assumptions of 1.5 that $g$ can be realized as subalgebra of $g(D)=Lie$ Aut $(D)$ .

Thus we can apply the results of [3] to the study of $g$ .

\S 2. Decompositions of j-algebras

2.1. In the sections 2.1 to 2.3 we consider K\"ahler algebras $(g, k, j, \rho)$

satisfying (1.1.8), (1.1.9) and which can be realized as subalgebras of $g(D)=$

Lie Aut $(D)$ for some homogeneous Siegel domain $D$ . More precisely, we assume
that $g$ generates a connected subgroup $G$ of Aut $(D)$ which acts transitively

on $D$ . Moreover, the isotropy subgroup $U\subset G$ of the base point $ie\in D$ contains
the isotropy subgroup $K$ of $M(g)=G/K$. We use as usual $u=LieU$ .

From the proof of Lemma 1.5 we know that $U$ is compact.
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2.2. It is not hard to see that $g$ contains a solvable subalgebra $t$ which is
invariant under $j^{\prime}$ , where $j^{\prime}x=jx(mod u)$ , and such that $(t, t\cap k, j^{\prime})$ is a j-
algebra associated with $D$ . We can, [9], –and will– assume that $t$ is asso-
ciated with affine transformations of $D$ . Let $e$ denote the principal idempotent
of $t$ and let $R={\rm Re}$ (ad $j^{\prime}e$ ) be defined as in [5; 4.9]. Then $g$ is invariant under
$R$ and $g=g_{1}+g_{1/2}+g_{0}+g_{-1/2}+g_{-1}$ , where the vector fields induced from $g_{\lambda}$ are
contained in $g(D)_{-\lambda}$ (as defined in [3; \S 1.5]). In particular, $g_{a}=g_{1}+g_{1/2}+g_{0}$

corresponds to the affine automorphisms contained in $G$ , and $g_{0}$ to the linear
automorphisms contained in $G$ . We have made sure that already the group $G_{a}$

associated with $g_{a}$ acts transitively on $D$ . Hence $g_{1}=g_{1}(D)\subset t$ and $g_{1/2}=g_{1/2}(D)$

$\subset t$ . Next we consider the algebraic hull $\tilde{g}_{0}$ of $g_{0}$ in $g_{0}(D)$ . We can apply [7;

Theorem 6.2] to $\tilde{g}_{0}$ . Since $[\tilde{g}_{0},\tilde{g}_{0}]\subset\tilde{g}_{0}$ , the subspaces $F_{ij},$ $i\neq j$ , and the semi-
simple parts of the $F_{ii}$ are already contained in $g_{0}$ . Thus the $d\iota$fference be-
tween $g_{0}$ and $\tilde{g}_{0}$ comes at one hand from the fact that the element in $g_{0}$ corre-
sponding to $f_{i}$ is in $g_{0}$ of the form $f_{i}+f_{i0}$ , where $f_{i0}\in center(F_{0})$ and on the
other hand that also center $(F_{0})\cap g_{0}$ is perhaps not the Lie algebra of a compact
Lie group.

Since we know that $u$ corresponds to a compact Lie group, the latter can-
not happen.

2.3. In [3; \S 7] we have found a semisimple subalgebra of $g(D)=Lie$ Aut $(D)$

that corresponds naturally to the full algebra of infinitesimal automorphisms of
a symmetric Siegel domain in a subspace of the original complex vector space.

In [3] we had defined on $g_{1}=g_{1}(D)$ the structure of an algebra $\llcorner n$ and de-
composed the subspaces $g_{\lambda}(D)$ of $g(D)$ relative to idempotents $e_{ii}$ of (

$A$ . The
description of these decompositions can be found in [3; \S \S 3, 4, 5]. The des-
cription of $\tilde{g}_{0}$ in [7] yields Lie algebras $F_{kk}$ associated with self dual cones. It
is not hard to see that $f_{k}$ corresponds to some idempotent $f_{kk}\in_{c}A$ . More pre-
cisely, each $e_{ii}$ is a sum of certain $f_{kk}$ . Thus the family of $f_{kk}\prime s$ induces a
decomposition of the spaces $g_{\lambda}(D)$ just the same way as the $e_{ii}\prime s$ do. The de-
composition relative to $\{f_{kk}\}$ is a refinement of the decomposition relative to
$\{e_{ii}\}$ . For $g_{0}(D)$ we obtain $g_{0}(D)=\bigoplus_{i\leq j}F_{ij}+F_{0}$ , where $F_{0}\subset F_{0}(D)$ .

For the description of $g_{-1/2}(D)$ and $g_{-I}(D)$ we use the notation introduced
in [3; \S 6]. Thus $g_{-1}(D)$ is parametrized by a subspace $P_{1}\subset A_{1}$ . (Note that
here we use the Lie algebra which is opposite to the one considered in [3].)

We set

(2.3.1) $\hat{P}_{-1}=\{x\in P_{1} ; X_{-1}[x]\in g_{-1}\}$ .
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We know [3]:

(2.3.2) $\tau^{\sigma}F_{-1}\subset F_{-1}$ for all $(T, \tau)\in g_{0}$ .
Let $g_{1},$ $\cdots,$ $g_{r}$ denote the different $f_{k}\prime s$ contained in $m_{1}^{\varphi_{1}}([3;3.21])$ . Then
$d_{1}=\oplus \mathcal{L}_{ij}$ , where $\mathcal{L}_{ij}$ denote the Peirce spaces of $\mathcal{A}_{1}$ relative to $g_{1},$ $\cdots,$ $g_{r}$ .
From (2.3.2) we then obtain

(2.3.3) $F_{-1}=\oplus[F_{-1}\cap \mathcal{L}_{ij}]$ .
Since the cones corresponding to $f_{k}$ are irreducible,

(2.3.5) $F_{-1}\cap \mathcal{L}_{kk}=\mathcal{L}_{kk}$ if $F_{-1}\cap \mathcal{L}_{kk}\neq 0$ .
Moreover,

(2.3.5) If $i<j$ and $F_{-1}\cap \mathcal{L}_{ij}\neq 0$ , then

$\hat{P}_{-1}\cap \mathcal{L}_{ij}=\mathcal{L}_{ij}$ and $F_{-1}\cap \mathcal{L}_{ij}=\mathcal{L}_{ii}$ .

Therefore, if $j_{0}=\max\{j;F_{-1}\cap \mathcal{L}_{jj}\neq 0\}$ , then we set $g=\sum_{i\Rightarrow 1}^{Jo}g_{i}$ and obtain (with

the usual notation for Peirce decompositions)

(2.3.6) $F_{-1}=(d_{1})_{1}(g)+F_{-1}\cap(A_{1})_{1/2}(g)$ .
From (2.3.3) and (2.3.5) it is clear that the last summand in (2.3.6) is a sum of
certain $\mathcal{L}_{ij}\prime s$ .

We claim

PROPOSITION. $F_{-1}=\bigoplus_{k\in I}\mathcal{L}_{kk}$ for some subset $I\subset\{1, \cdots, r\}$ .

PROOF. Let $0\neq b_{ij}\in F_{-1},$ $i<j$ . Then [3; 6.6] shows $[X_{1}[g_{i}], X_{-1}[b_{ij}]]=$

$(T, X)\in g_{0}$ , where $T=2A_{b_{ij}}(g_{i})=2(A_{gi}(b_{ij}))^{\sigma}$ . But since $i<j$ , we also know
$(A_{gi}(b_{ij}), \tau*)\in g_{0}$ for some $\tau*$ . Hence, by the definition of the $f_{k}\prime s,$ $i=j$ , a
contradiction.

In view of (2.3.2) the proposition implies.

COROLLARY 1. Assume $\mathcal{L}_{kk},$ $\mathcal{L}_{ss}\subset P_{-1}$ , then $\mathcal{L}_{kk}=0$ .

As a consequence of this corollary we obtain

COROLLARY 2. One can assume $g_{k}=f_{k}$ for $k=1,$ $\cdots,$ $r$ .

2.4. We keep the notation of the last section. We will also use the set $U$

naturally associated with $D$ . We set
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(2.4.1) $g_{-1k}=X_{-1}[\mathcal{L}_{kk}]$

(2.4.2) $g_{-(1/2)k}=X_{-1/2}[f_{k}U]$ .
Now we can take over, mutatis mutandis, the proof of [3; Theorem 7.5] and
obtain

THEOREM. There exists some subalgebra $F_{0k}$ of $g_{0}$ such that

$q_{k}=X_{1}[\mathcal{L}_{kk}]+X_{1/2}[f_{k}U]+(F_{kk}+F_{0k})+X_{-1/2}[f_{k}U]+X_{-1}[\mathcal{L}_{kk}]$

is a semisiple subalgebra of $g$ .

Actually it is not hard to see that $q_{k}$ is simple. We set $q=\oplus q_{k}$ . Then
it is easy to obtain

COROLLARY 1. (a) $q$ is a semisimple Lie subalgebra of $g$ with simple ideals $q_{k}$

(b) $q_{-1/2}=g_{-1/2},$ $q_{-1}=g_{-1}$ .

COROLLARY 2. If $f_{k}$ occurs in $q$ , then $f_{k}\in g$ .

2.5. From Theorem 2.4 it is easy to derive that the algebras $q_{k}$ consist of
full weight spaces relative to $\{f_{k}\}$ for nonzero weights. The zero weight in
$q_{k}$ is $F_{kk}+F_{0k}$ . As in [3; \S 7] one can show that $F_{0k}$ is an ideal of $F_{0}\cap g_{0}$ .
Hence there exists some $F_{0}^{\prime}\subset g_{0}$ so that $F_{0}\cap g_{0}=\oplus F_{0k}+F_{0}^{\prime}$ as a sum of ideals.

Now we denote by $p$ the “complement of $q$ in $g^{\prime\prime}$ ; $i$ . $e$ . we sum up all
weight spaces relative to $\{f_{k}\}$ for nonzero weights that do not occur in $q$ , the
space $g_{0}\cap(\oplus F_{kk})$ for $F_{kk}\cap q=0$ and $F_{0}^{\prime}$ . Since the latter two types of algebras
actually commute with $q$ , we obtain

THEOREM. There exists an ideal $p$ of $g$ such that
(a) $g=q+p$ (direct sum of vector spaces)

(b) $p$ is a sum of weight spaces relative to $\{f_{k}\}$ for nonzero weights, of the
space $g_{0}\cap(\oplus F_{kk})$ for $F_{kk}\cap q=0$ and of an ideal $F_{0}^{\prime}$ of $F_{0}\cap g_{0}$ .

(c) $p$ corresponds to affine transformations of $D$ .

REMARK. If $g$ is algebraic, then $F_{kk}\cap q=0$ implies $F_{kk}\subset p$ . Moreover, $F_{0}^{\prime}$

corresponds to a compact Lie group.

2.6. The main purpose of this section is to prove

THEOREM. Let $(g, k, j, \rho)$ be a Kahler algebra satisfying (1.1.8) and (1.1.9).

Assume moreover that there exists a homogeneous Siegel domain $D$ such that $ g\subset$
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Lie Aut $(D)$ . Assume also that there exist a quasi-normal Kahler subalgebra
$(g^{\prime}, k^{\prime}, i, \rho)$ of $(g, k, j, \rho)$ which is associated with the same manifold as $(g, k, j, \rho)$ .
Then $g$ is an algebraic Lie algebra.

PROOF. Clearly, $g=g^{\prime}+k$ . Moreover, since $g^{\prime}$ is quasi-normal, we can
assume $f_{i}\in g^{\prime}$ for all $i$ . From 2.5 we know that we have $g=q+p$ , where $q$

is semisimple and $p$ corresponds to affine transformations. It suffices to show
$F_{kk}\subset g_{0}$ for all $k$ and $F_{0}\subset g_{0}$ . But $F_{kk}=Rf_{k}+[F_{kk}, F_{kk}]$ and $f_{k}\in g^{\prime}$ , whence
$F_{kk}\subset g_{0}$ . Moreover, 1.1.9 implies $F_{0}\subset g_{0}$ .

COROLLARY. Let $(g, k, j, \rho)$ be a Kahler algebra satisfying (1.1.8) and
(1.1.9). Assume moreover, that there exists a homogeneous Siegel domain $D$ such
that $g\subset Lie$ Aut $(D)$ . Assume also that $g$ contains a real split solvable subalgebra
$s$ which generates a transitive subgroup of D. Then $g$ is an algebraic Lie algebra.

2.7. In the last section we considered K\"ahler algebras which can be realized
as subalgebras of the infinitesimal automorphisms of some homogeneous Siegel
domain. Using the reductions of \S 1 we can derive from this

THEOREM. Let $M$ be a homogeneous Kahler manifold and $(g_{M}, k_{M}, j, \rho)a$

Kahler algebra associated with M. Then ad $g_{M}$ is an algebraic Lie algebra.

PROOF. From Theorem 1.4 we know $g_{M}=a_{M}+h_{M}$ , where $a_{M}$ is an abelian
ideal of $g_{M}$ . Since ad $a_{M}$ consists of nilpotent endomorphisms, it is algebraic
by [2; chap V, \S 3, 4.]. Hence it suffices to show that ad $h_{M}\subset gl(g_{M})$ is alge-
braic. From 1.5 we know $h_{M}=h_{M}^{\prime}+u^{\prime}$ , where $u^{\prime}$ is the Lie algebra of a com-
pact group. Hence it suffices to show that ad $h_{M}^{\prime}\subset gl(g_{M})$ is algebraic by [2;

chap II, \S 14]. Algebras of type $h_{M}^{\prime}$ have been investigated in 2.5 and 2.6.
They are of type $h_{M}^{\prime}=q_{M}+p^{\prime}+F_{0}$ , where $g_{M}$ is semisimple, $F_{0}$ is compact and
$p^{\prime}=ni1(p^{\prime})+v+e$ , where $v$ is semisimple and $c$ is abelian with only real eigen-

values. Thus by [2; chap II, \S 14] it suffices to show that ad $c\subset gl(g_{M})$ is
algebraic. But ad $c$ is spanned by the ad $f_{k}\prime s$ and each ad $f_{k}$ has only the
eigenvalues $0$ , $\pm 1/2$ , $\pm 1$ in $g_{M}$ . Hence $R$ ad $f_{k}$ is algebraic by [2; p. 169].

This finishes the proof of the theorem.

2.8. Recall, in 1.4 we have seen that $g_{M}$ is the orthogonal sum of the j-
invariant subalgebras $a_{M}$ and $h_{M}$ (of course, $a_{M}$ is even an abelian ideal). In
1.5 we have shown that $h_{M}$ is the orthogonal and j-invariant sum of ideals $h_{M}^{\prime}$

and $u_{M}^{\prime}$ , where $h_{M}^{\prime}$ can be realized as subalgebra of $g(D)=Lie$ Aut $(D)$ for some
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homogeneous Siegel domain $D$ . From Theorem 2.6 we also know that $h_{M}^{\prime}$ is
an algebraic subalgebra of $g(D)$ . Moreover, in view of Theorem 2.5 we have
$h_{M}^{\prime}=q+p$ , where $q$ is semisimple and described in Theorem 2.5 and $p$ is the
sum of the remaining root spaces and part of $F_{0}$ (where the roots are computed
relative to the $f_{r}$ ).

In the following two sections we will show that $q$ and $p$ can be assumed
to be j-invariant.

2.9. We want to show that $q$ is (modulo k) the orthogonal complement of
$p$ . To see this we note that $[q, p]\subset ni1(h_{M}^{\prime})\subset ni1(p)$ has no component in $Rjf_{k}$

as follows from [3; \S 6]. Hence, in particular, $\rho(f_{k}, [q, p])=0$ for all $k$ . But
then in the formula $(d/dt)\rho(e^{tadf_{k}}q, e^{tadf_{k}}p)=\rho(f_{k}, e^{tadf_{k}}[q, p])$ the right side
vanishes, whence $\rho(q, e^{tadf_{k}}p)$ is constant in $t$ for all $k$ such that $f_{k}$ does not
occur in $q$ . Thus $q$ is perpendicular to all root spaces in $p$ of the abelian
family (ad $f_{k}$ ) for which the root is not zero. Therefore we have only to con-
sider $\rho$ ( $q$ , fie k) and $\rho(q, F_{0}^{\prime\prime})$ , where $F_{0}^{\prime\prime}=F_{0}\cap p$ and $F_{kk}\subset p$ . Here we can con-
sider $A=\rho([q_{1}, q_{2}], f)$ where $q_{1},$ $q_{2}\in q,$ $f\in F_{kk}+F_{0}$ . The closedness condition
of $\rho$ shows that $A$ vanishes, since $[q, F_{kk}+F_{0}^{\prime\prime}]=0$ if $F_{kk}\subset p$ . Thus we have
shown

PROPOSITION. The spaces $q$ and $p$ are perpendicular.

2.10. Let $v$ be the radical of $h_{M}^{\prime}$ . Then, by the Radical Conjecture [6], we
can assume that $jv$ is a solvable subalgebra of $h_{M}^{\prime}$ . Therefore, we can assume
that $v+jv$ is a solvable, j-invariant subalgebra of $h_{M}^{\prime}$ . We claim

THEOREM. (a) The algebras $p$ and $q$ are perpendicular and j-invariant
(b) $p=v+jv+u\cap p$ .

PROOF. Since $u$ is j-invariant and center $(u)\subset k$ , we can assume that $u\cap q$

and $u\cap p$ are j-invariant. Now let $v\in v$ and $jv=q+p$ , where $q\in q,$ $p\in p$ . We
know that $h_{M}^{\prime}$ generates a transitive group on $D$ . The complex structure in-
duces on $h_{M}^{\prime}$ a map $j^{\prime}$ for which $j^{\prime}x=$] $xmod (u)$ holds. Moreover, from [3;

\S 7] we know that $j^{\prime}q\subset q,$ $j^{\prime}p\subset p$ holds. Therefore $q\in u\cap q$ . But then, in
view of Proposition 2.9 we obtain $\rho(]q, q)=\rho(]q, jv-p)=\rho(q, v)-\rho(jq, p)=0$ .
Hence we can assume $jv\subset p$ . Now the remaining claims follow easily.

2.11. Before proving one of the main results of this paper we mention one
more reduction.
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Note that we can assume that $P_{0}=F_{0}\cap p$ is j-invariant. Hence as in the
very last part of the proof in 2.9 we see $p=\tilde{p}+fl_{0}$ where $\tilde{p}$ and $F_{0}$ are j-
invariant and perpendicular subalgebras.

2.12. We have seen in Theorem 1.4 that $(h_{M}, k_{M}, j)$ is a j-algebra. This
means that there exists some linear form $\omega$ on $h_{M}$ such that $(h_{M}, k_{M}, j, d\omega)$ is
a K\"ahler algebra. We would like to know, however, whether we can choose
$\omega$ so that actually $\delta|h_{M}=d\omega$ , holds. This will follow from the following:

THEOREM. Let $(g, k, j, \rho)$ be an effective Kahler algebra such that $(g, k, j)$

is a j-algebra. Then there exists some linear form $\omega;g\rightarrow R$ such that $\rho(x, y)=$

$\omega([x, y])$ for all $x,$ $y\in g$ .

PROOF. Let $M$ denote the simply connected homogeneous K\"ahler manifold
associated with $(g, k, j, \rho)$ . It is not hard to verify that it suffices to prove
the theorem for $(g_{M}, k_{M}, j, \rho)$ . Using the orthogonal decompositions listed in
2.5 and 2.8 (note $a_{M}=0$ under our assumptions) we see that we have only to
consider the case $g_{M}=p,$ $F_{0}=0$ . In this case $g_{M}=g_{1}+g_{1/2}+g_{0}$ where the decom-
position is relative to ad je, $e$ the maximal idempotent of $g_{M}$ . One shows as
usual $\rho(]e, g_{1/2})=0,$ $\rho(F_{ij}, F_{kk})=0$ for $i<j,$ $\rho(f_{i}, F_{ii})=0$ and $(n+m)\rho(x_{n}, x_{m})=$

$\rho(]e, [x_{n}, x_{m}])$ for $x_{r}\in g_{r}$ and $n,$ $m\in\{0,1/2,1\}$ . Generalizing slightly a proof
of Gindikin and Vinberg we define a linear map $\omega:g\rightarrow R$ by

(2.9.1) $\omega(x)=\rho(je, x)$ for $x\in g_{1}$

(2.9.1) $\omega(x)=0$ for $x\in g_{1/2}$

(2.9.1) $\omega(x)=\omega_{0}(x)$ for $x\in g_{0}$

where $\omega_{0}(\sum_{t\leq j}x_{ij})=\omega_{0}(\sum x_{ii})$ and $\omega_{0}|F_{ii}$ is defined so that $\rho(A, B)=\omega_{0}([A, B])$

for the reductive algebra $F_{ii}$ (such an $\omega_{0}$ exists since $\rho$ is closed and $\rho(f_{i}, F_{ii})$

$=0$ holds). Now the claim follows by an easy calculation.

REMARK. The result above has been proved independently in a different
way by K. Nakajima [11].

2.13. The last Theorem has several immediate algebraic and geometric
consequences. The algebraic result is

COROLLARY 1. For a homogeneous Kahler manifold $M$ and the corresponding

Kahler algebra $(g_{M}, k_{M}, j, \rho)$ the following are equivalent
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(1) $(g_{M}, k_{M}, j, \rho)$ is a j-algebra,

(2) $a_{M}=0$ ,

(3) $(g_{M}, k_{M}, j)$ is a j-algebra

(4) $g_{M}$ does not contain any abelian j-invariant subalgebra.

REMARK. In [11] it was shown that this is also equivalent to

(5) the canonical hermitian form is nondegenerate

Though in the context of this paper the proof of this last equivalence is fairly

straightforward we postpone it to a forthcoming publication where we will
investigate a more general situation.

Geometrically one obtains

COROLLARY 2. For a homogeneous Kahler manifold $M$ the follhwing are
equivalent

(1) The Kahler form of $M$ is the differential of an Aut $(M)$-invariant 1-
form.

(2) $M$ does not contain any locally flat homogeneous complex submanifold,
(3) $M$ is analytically the product of a bounded domain and a simply connected

compact manifold.
(4) There exists some Aut $(M)$-invariant Kahler form on $M$ which is the

differential of an Aut $(M)$-invariant l-form.
(5) The Ricci curvature of $M$ is nondegenerate.

PROOF. With $M$ we associate the K\"ahler algebra $(g_{M}, k_{M}, j, \rho)$ .
(1) $\Rightarrow(2)$ . Since the K\"ahler form is the differential of an Aut $(U)$-invariant

l-form, we know $\rho=d\omega$ , for some linear form $\omega$ . Let $N\subset M$ be a locally flat
homogeneous complex submanifold. Then there exists $X\in g_{M},$ $X\not\in k_{M}$ , such that
$[jx, x]\in k_{M}$ . Therefore $\rho(] x, x)=d\omega([jx, x])=0$ , whence $X\in k_{M}$ , a contradic-
tion.

(2) $\Rightarrow(3)$ . From the Fundamental Conjecture for homogeneous K\"ahler mani-
folds we know that $M$ is analytically the product of a flat homogeneous K\"ahler

manifold, a simply connected compact homogeneous K\"ahler manifold and a
homogeneous bounded domain. By the assumption (2) the flat factor does not
exist here.

(3) $\Rightarrow(4)$ . In view of (3), Theorem 1.4 implies $a_{M}=0$ . But then $(g_{M}, k_{M}, j)$

is a j-algebra, $i$ . $e$ . there exIsts some $\hat{\rho}=d\hat{\omega}$ such that $(g_{M}, k_{M}, j,\hat{\rho})$ is a K\"ahler

algebra. This implies (4).
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(4) $\Rightarrow(1)$ . This follows from Theorem 2.12. The fact that (5) is equivalent
with the above four statements follows from (5) in Corollary 1 above.
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