ON ALMOST *M*-PROJECTIVES AND ALMOST *M*-INJECTIVES

Dedicated to Professor Tuyosi Oyama on his 60th birthday

By

Yoshitomo BABA and Manabu HARADA

We have defined aconcept of almost M-projectives and almost M-injectives in [4] and [9], respectively. In the first section of this paper we give some relations among lifting modules, mutually almost relative projectivity and locally semi-T-nilpotency. After giving a criterion of mutually almost relative projectivity between two hollow modules in the second section, we give a characterization of lifting modules over a right artinian ring. Further we show a difference between M-projectives and almost M-projectives. Those dual properties are gives in the third and fourth sections with sketch of proofs.

We shall give several characterizations of right Nakayama (resp. right co-Nakayama) rings in terms of almost relative projectives (resp. almost relative injectives) in forthcoming papers (cf. [9]).

1. Almost projectives.

Throughout this paper R is an associative ring with identity. Every module M is a unitary right R-module. Let M be an R-module and K a submodule of M. If $M \neq M' + K$ for any proper submodule M' of M, then K is called a *small* submodule in M. If $K \cap K' \neq 0$ for every non-zero submodule K' of M, we say that K is an essential submodule of M. If every proper submodule of M is always small in M, M is called a hollow module and we dually call M a uniform module, provided every non-zero submodule is essential in M. If $End_R(M)$, the ring of endomorphisms of M, is a local ring, M is called an le module. By J(M) and Soc(M) we denote the Jacobson radical and the socle of M, respectively and |M| is the length of M.

Following K. Oshiro [15] and [16] we define a lifting (resp. extending) module. If for any submodule N of M, there exists a direct decomposition $M = M_1 \bigoplus M_2$ such that

Received October 18, 1988. Revised May 1st, 1989.

 (D_1) $N \supset M_1$ and $N \cap M_2$ is small in M_2 (and hence in M) (resp. (C_1) $M_1 \supset N$ and N is essential in M_1),

then M is called a *lifting* (resp. *extending*) module. If M is a lifting (resp. extending) module with $|M| < \infty$, M is a direct sum of le hollow (resp. uniform) modules from the definition. Hence we shall study, in this paper, a lifting (resp. extending) module which is a direct sum of le and hollow (resp. uniform) modules.

We shall recall notations given in [9]. Let there be given a direct decomposition $M = M_1 \bigoplus M_2$, and let $\pi_1 : M \to M_1$ and $\pi_2 : M \to M_2$ be the projectives. We shall use the following facts:

(i) Let $f: M_1 \to M_2$ be a homomorphism. Define $M_1(f) = \{x + f(x) | x \in M_1\}$. Then $M_1(f)$ is a submodule of M isomorphic to M_1 and $M = M_1(f) \bigoplus M_2$.

(ii) Let N_1 , N^1 , N_2 and N^2 be submodules of M such that $N_i \subset N^i \subset M_i$ for i=1, 2 and let there exist an isomorphism $h: N^1/N_1 \rightarrow N^2/N_2$. We shall often consider h as a homomorphism $N^1 \rightarrow N^2/N_2$ in the natural manner, so that N_1 is the kernel of h. Let $N = \{x+y \mid x \in N^1, y \in N^2 \text{ and } y+N_2=h(x)\}$. Then, as is easily seen, N is a submodule of M and $\pi_1(N)=N^1$, $\pi_2(N)=N^2$. Further $N \cap M_i = N_i$ for i=1, 2. We shall denote this N by

$$(1) N^{1}(h)N^{2}.$$

(iii) Let N be any submodule of M. Put $N_{(i)} = M_i \cap N$ and $\pi_i(N) = N^i$ for i=1, 2. Then clearly $N_{(i)} \subset N^i \subset M_i$ for i=1, 2. Let $x \in N^1$. Then there is a $y \in N^2$ such that $x + y \in N$. Such a y is not necessarily unique, but is unique modulo N_2 . By associating $x + N_{(1)}$ with $y + N_{(2)}$, we have an isomorphism $h: N^1/N_{(1)} \rightarrow N^2/N_{(2)}$. It is obvious that $N = N^1(h)N^2$ in the sense in (ii).

First we shall decompose a proof of Azumaya's theorem [3] (see [2], Proposition 16.12) for an application to almost projectives, which is the dual observation of [4], Lemma 1.

Let M_1 , M_2 and N be R-modules. For a submodule K of $M=M_1 \oplus M_2$, take a diagram:

(2)
$$M = M_1 \bigoplus M_2 \xrightarrow{\nu} (M_1 \bigoplus M_2) / K \longrightarrow 0$$
$$\bigwedge_N h$$

Let $\pi_i: M \to M_i$ be the projection for i=1, 2. Put $K^i = \pi_i(K), K_{(i)} = K \cap M_i$ and $K = K^1(f)K^2$ from (1), where $f: K^1/K_{(1)} \to K^2/K_{(2)}$. Since $K \subset K^1 \oplus K^2$, there exists the natural epimorphism $\nu': M/K \to M/(K^1 \oplus K^2) \approx M_1/K^1 \oplus M_2/K^2$. By $\bar{\pi}_i$

we denote the projection onto M_i/K^i in the last decomposition of $M/(K^1 \oplus K^2)$ and we put $\nu'_i = \bar{\pi}_i \nu'$ for l=1, 2. We note that $\nu' = \nu'_1 + \nu'_2$ and $\nu'_i \nu | M_i$ is nothing but the natural epimorphism ν_i of M_i onto M_i/K^i . Further ker $\nu' = (K^1 \oplus K^2)/K \approx ((K^1 \oplus K^2)/(K_{(1)} \oplus K_{(2)}))/(K/(K_{(1)} \oplus K_{(2)}))$. While $(K^1 \oplus K^2)/(K_{(1)} \oplus K_{(2)}) \approx K^1/K_{(1)} \oplus K^2/K_{(2)}$ and $K/(K_{(1)} \oplus K_{(2)}) = (K^1(f)K^2)/(K_{(1)} \oplus K_{(2)}) = K^1/K_{(1)}(f) = K^2/K_{(2)}(f^{-1})$, (which is a graph in $(K^1 \oplus K^2)/(K_{(1)} \oplus K_{(2)}) \subset M_1/K_{(1)} \oplus M_2/K_{(2)})$. Hence ker $\nu' \approx \kappa K^1/K_{(1)} \approx K^2/K_{(2)}$. Let g be the canonical monomorphism of $M_1/K_{(1)}$ into M/K. Then g gives the above isomorphism: $K^1/K_{(1)} \to \ker \nu'$, and we obtain the commutative diagram:

$$\begin{array}{ccc} K^{1}/K_{(1)} & \xrightarrow{g \mid K^{1}/K_{(1)}} & \ker \nu' \\ & & & \downarrow i' \\ M_{1}/K_{(1)} & \xrightarrow{g} & M/K, \end{array}$$

where i and i' are inclusions.

From those observations we obtain two diagrams:

(3)

$$M_{1} \xrightarrow{\nu_{1}'\nu \mid M_{1}} M_{1}/K^{1} \longrightarrow 0$$

$$\uparrow \nu_{1}'h$$

$$N,$$

and

(3')

$$M_2 \xrightarrow{\nu_2 \nu \mid M_2} M_2 / K^2 \longrightarrow 0$$

$$\uparrow \nu'_2 h$$

$$N.$$

Here we assume that there exists $\tilde{h}_j: N \to M_j$ such that $(\nu'_j \nu | M_j) \tilde{h}_j = \nu'_j h$ for j=1, 2. Put $t = \nu(\tilde{h}_1 + \tilde{h}_2) - h: N \to M/K$. Then $\nu' t = \nu' \nu(\tilde{h}_1 + \tilde{h}_2) - \nu' h = \nu_1 h + \nu'_2 h - \nu' h = (\nu' - \nu')h = 0$. Hence $t(N) \subset \ker \nu'$. Put $g' = (g|(K^1/K_{(1)}))^{-1}: \ker \nu' \to K^1/K_{(1)} \subset M_1/K_{(1)}$. Since $\nu(M_1) = g(M_1/K_{(1)}), g^{-1}$ exists on $\nu(M_1)$. Thus we obtain a new diagram:

(4)
$$M_{1} \xrightarrow{g^{-1}\nu \mid M_{1}} M_{1}/K_{1} \longrightarrow 0$$

$$\uparrow g't$$

$$N.$$

Finally we assume in (4) that there exists $h_1^*: N \to M_1$ such that $g^{-1}(\nu | M_1)h_1^* = g't$, i.e. $(\nu | M_1)h_1^* = t$ by operating g. Then Yoshitomo BABA and Manabu HARADA

 $h = \nu(\tilde{h}_1 + \tilde{h}_2) - (\nu | M_1) h^* = \nu((\tilde{h}_1 - h^*) + \tilde{h}_2)$ and

(5)

 $(\tilde{h}_1 - h_1^*) + \tilde{h}_2 \colon N \longrightarrow M.$

We recall the definition of almost M-projectives [9]. Let M and N be R-modules. For any exact sequence with K a submodule of M:

$$M \xrightarrow{\nu} M/K \longrightarrow 0$$

$$\uparrow h$$

$$N$$

if either there exists $\tilde{h}: N \to M$ with $\nu \tilde{h} = h$ or there exist a non-zero direct summand M_1 of M and $\tilde{h}: M_1 \to N$ with $h\tilde{h} = \nu | M_1$, N is called *almost M-projective* (if we always obtain the first half, we say N is *M-projective* [3]).

We note the following fact:

When N is almost M-projective and M is indecomposable,

if the h in the above diagram is not an epimorphism, then there exists always an $\tilde{h}: N \rightarrow M$ with $\nu \tilde{h} = h$.

We frequently use this fact without any reference.

The following lemma is useful on almost projectives.

LEMMA 1. Let M_1, M_2, \dots, M_n be hollow modules and N an R-moddle. Assume that N is almost M_i -projective for all i. Take a diagram with K a submodule of $\Sigma \oplus M_i$:

$$\sum_{i=1}^{n} \bigoplus M_{i} \xrightarrow{\nu} (\Sigma \bigoplus M_{i})/K \longrightarrow 0$$
$$\uparrow h$$
$$N.$$

If h(N) is small in $(\Sigma \oplus M_i)/K$, h is liftable to $\tilde{h}: N \to \Sigma \oplus M_i$, i.e. $h = \nu \tilde{h}$.

PROOF. We shall prove the lemma by induction on *n*. If n=1, it is clear from the definition. We assume that the lemma holds true for $M^* = \sum_{j=2}^n \bigoplus M_j$ and put $M = M_1 \bigoplus M^*$. Let π_i be the projection of $M = \sum_{j=1}^n \bigoplus M_j$ onto M_i . Assume first that $\pi_1(K)$ $(=K^1) = M_1$. Put $\pi^* = \sum_{j\geq 2}\pi_j : M \to M^*$, $K^* = \pi^*(K)$, $K_{(1)} = K \cap M_1$ and $K_{(*)} = K \cap M^*$. Further set $\overline{M} = M/(K_{(1)} \oplus K_{(*)}) \supset \overline{K} = K/(K_{(1)} \oplus K_{(*)})$. Since $K = K^1(h)K^*$ with $h: K^1/K_{(1)} \approx K^*/K_{(*)}$ from (1), we obtain $\overline{K} \subset M_1/K_{(1)} \oplus M^*/K_{(*)} = \overline{M}$ and $\overline{K} = (M_1/K_{(1)})(h)$. Hence $M^*/K_{(*)} \approx \overline{M}/\overline{K} \approx M/K$, and by φ we denote this isomorphism of $M^*/K_{(*)}$ onto M/K. Accordingly we have a commutative diagram :

(#)

$$M^* \xrightarrow{\nu^*} M^*/K_{(*)} \longrightarrow 0$$

$$\downarrow i \qquad \qquad \downarrow \varphi$$

$$M \longrightarrow M/K \longrightarrow 0$$

$$\uparrow h$$

$$N.$$

Since φ is an isomorphism, by assumptions there exists $\tilde{h}^*: N \to M^*$ such that $\nu^* \tilde{h}^* = \varphi^{-1}h$, and so $\nu(i\tilde{h}^*) = \varphi \nu^* h^* = h$. Hence $i\tilde{h}^*: N \to M$ is the desired map. Thus we can assume that $K^1 \neq M_1$. Since h(N) is small in M/K, for $\nu'_i h$ in the diagrams (3) and (3'), $\nu'_1 h(N)$ and $\nu'_2 h(N)$ are small in M_1/K^1 and M^*/K^* , respectively. Hence by assumption and induction hypothesis, there exist $\tilde{h}_1: N \to M_1$ and $\tilde{h}^*: N \to M^*$, which make the diagrams (3) and (3') commutative. Let t and g' be the mappings defined after (3'). Since M_1 is indecomposable, $g't(N) \subset K^1/K_{(1)}$ and $K^1 \neq M_1$, there exists $\tilde{h}'_1: N \to M_1$ which makes the diagram (4) commutative. Therefore h is liftable to $\tilde{h}: N \to \Sigma \oplus M_i$ as is shown in (5).

By definition we have

LEMMA 2. Let $\{M_a\}_I$ be a set of almost M-projectives for a fixed R-module M. Then $\sum_I \bigoplus M_a$ is almost M-projective.

We have given some relationships between lifting modules and almost projectives in [9]. We give here a simpler relation for a finite direct sum. This is dual to [14], Theorem 12, however the proof is not, because we used injective hulls in [14], but we can not take here projective covers.

THEOREM 1. Let $\{M_i\}_{i=1}^n$ be a set of le and hollow modules. Then the following are equivalent:

1) $M = \sum_{i=1}^{n} \bigoplus M_i$ is lifting.

2) M_i is almost M_j -projective for any $i \neq j$.

3) For any subset J in $I = \{1, 2, \dots, n\} \sum_{j \oplus M_j} M_j$ is almost $\sum_{I-J} \oplus M_i$ -projective.

PROOF. 1) \rightarrow 3) \rightarrow 2). This is clear from the definition of almost projectives, Lemma 2 and [9], Theorem 1".

2) \rightarrow 1). If we can show that every non small submodule N in M contains a non-zero direct summand of M (i.e., M satisfies $(1-D_1)$ in [9]), then M is lifting by [9], Theorem 1". In order to get the above fact, we shall show every non small submodule in M contained in $M'_1 \oplus M'_2 \oplus \cdots M'_k \oplus T_{k+1} \oplus$

(6) $\dots \oplus T_n$ contains a non-zero direct summand of M, where $M = \sum_{i=1}^n \oplus M'_i$ is any direct decomposition into indecomposable modules M'_i ($\approx M_i$), and the T_i are small in M'_i for $i \ge k+1$.

We may assume $M'_i = M_i$ in (6). If (6) is true for all k, taking k = n+1 ($M'_{n+1} = T_{n+1} = 0$), we are done. Consider (6) with k = 1. Let N be a non-small submodule contained in $M_1 \oplus \sum_{i=2}^n \oplus T_i$, and put $M^* = M_2 \oplus M_3 \oplus \cdots \oplus M_n$. Let $\pi_1 \colon M \to M_1$ and $\pi^* \colon M \to M^*$ be the projections. Since N is not small in M and the T_i is small in M_i for all $i \ge 2$, $\pi_1(N) = N^1 = M_1$. Then from (1) $N = M_1(h)N^*$, where $N^* = \pi^*(N)$, $N_{(1)} = N \cap M_1$, $N_{(*)} = N \cap M^*$, and $h \colon M_1/N_{(1)} \approx N^*/N_{(*)}$. Since $N^* \subset \sum_{i=2}^n \oplus T_i$, N^* is small in M^* and hence $N^*/N_{(*)}$ is small in $M_*/N_{(*)}$. From those datas we obtain the diagram:

$$M^* = M_2 \oplus M_3 \oplus \cdots \oplus M_n \xrightarrow{\nu} M^* / N_{(*)} \longrightarrow 0$$

$$\uparrow h$$

$$M_1 / N_{(1)}$$

$$\uparrow \nu_1$$

$$M_1$$

Since M_1 is almost M_j -projective for all $j \ge 2$ by assumption and $h(M_1/N_{(1)}) =$ $N^*/N_{(*)}$ is small in $M^*/N_{(*)}$, there exists $\tilde{h}: N \to M^*$ with $\nu \tilde{h} = h\nu_1$ by Lemma 1. Hence N contains $M_1(\tilde{h})$ a direct summand of M (consider $M/(N_{(1)} \oplus N_{(*)}) \supset$ $N/(N_{(1)} \oplus N_{(*)})$, cf. the proof of [9], Theorem 1). Assume that (6) is true for all $k' \leq k$ and let $N \subset M_1 \oplus \cdots \oplus M_{k+1} \oplus T_{k+2} \oplus \cdots \oplus T_n$ $(k \geq 1)$. We may assume $\pi_1(N) = M_1$. Let ρ be the projection of M onto $M^{**} = M_1 \oplus M_2$. Since $\pi_1(N) =$ M_1 , $\rho(N)$ is not small in M^{**} . Then M^{**} being lifting by [9], Theorem 1", $M^{**} = L_1 \bigoplus L_2$ and $\rho(N) = L_1 \bigoplus (L_2 \cap \rho(N))$ with $L_2 \cap \rho(N)$ small in M^{**} . Since L_i is a direct sum of at most two direct summands, we put $L_1 = M''_1 \oplus M''_2$ $(M_1'' \neq 0), L_2 = M_3'', \text{ where } M_k'' \approx \text{ one of } \{M_1, M_2, (0)\}.$ Then $M = M^{**} \oplus M_3 \oplus \cdots$ $\oplus M_n \supset M_1'' \oplus M_2'' \oplus M_3' \oplus M_3 \oplus \cdots \oplus M_{k+1} \oplus T_{k+2} \oplus \cdots \oplus T_n \supset N. \quad \text{If } M_2'' = 0, \text{ i.e., } L_1 =$ M''_1 and $L_2 = M''_3$, N satisfies (6) by induction, since $\rho(N) = M''_1 \oplus (M''_3 \cap \rho(N))$ and $M''_{3} \cap \rho(N)$ is small in M''_{3} . Assume $M''_{2} \neq 0$ (and hence $M''_{3}=0$) i.e., $\rho(N)=$ $M''_1 \oplus M''_2 = M^{**}$. Let π''_2 be the projection of M onto M''_2 . Since $\rho(N) = M^{**}$, $N \cap \pi_2^{\prime\prime-1}(0)$ is not small in M and $N \cap \pi_2^{\prime\prime-1}(0) \subset M_1^{\prime\prime} \oplus 0 \oplus M_3 \oplus \cdots \oplus M_{k+1} \oplus T_{k+2} \oplus$ $\dots \oplus T_n$. Hence $(N \supseteq) \ N \cap \pi_2^{\prime \prime -1}(0)$ contains a non zero direct summand of M by assumption of induction. Therefore (6) is true for any k, and so N always contains a non-zero direct summand of M.

THEOREM 1 is not true if $\{M_a\}_I$ is an infinite set, even though $\{M_a\}_I$ is locally semi *T*-nilpotent, which is given in [7], p. 174, and briefly 1sTn (see example before Theorem 2 below). In [9], Theorem 1" the locally semi-*T*nilpotency is important. Concerning this fact we have the following lemma. In the proof we make use of certain factor categories given in [7]. We do not know a module theoretical proof.

LEMMA 3. Let $\{M_a\}_I$ be a set of le modules. If $M = \sum_I \bigoplus M_a$ is lifting, then $\{M_a\}_I$ is ls Tn.

PROOF. From the definition of ls Tn, we way assume that I is an infinite set. Let $M_0 = \sum_{i=1} \oplus M_i$ and $\{f_i: M_i \to M_{i+1}\}$ a set of non-isomorphisms and $M'_i = M_i(f_i) \subset M_i \oplus M_{i+1}$. Since M_0 is lifting, for $M_* = \sum_{i=1}^{\infty} \oplus M'_i$, $M_0 = T_1 \oplus T_2$; $M_* = T_1 \oplus M_* \cap T_2$ and $M_* \cap T_2$ is small in M_* . Here we shall apply some theorems on factor categories A/J' induced from le modules (see [7], Chapters 6 and 7), and use the same terminologies given there. First we note that M_* is also a direct sum of le modules, i.e., $M_* \in A$. Let T_i^* and $(M_* \cap T_2)^*$ be full submodules in T_i and $(M_* \cap T_2)$, respectively ([7], p. 169). Let i_{M_*} , i_{T_i} and $i_{M_* \cap T_2}$ be inclusions in M, Since $M_* \cap T_2$ is small in M_0 , $\tilde{i}_{M_* \cap T_2} = 0$ by the definition of J' in [7], p. 148. Further \tilde{i}_{M_*} is an isomorphism by [7], Theorem 7.3.13, and $\tilde{i}_{M_*} = \tilde{i}_{T_1} + \tilde{i}_{M_* \cap T_2} = \tilde{i}_{T_1}$. On the other hand, $\tilde{i}_{M_0} = \tilde{i}_{T_1} + \tilde{i}_{T_2}$. Hence $\tilde{i}_{T_2} = 0$, since $\tilde{i}_{T_1} = \tilde{i}_{M_*}$ is an isomorphism and \tilde{i}_{T_1} , \tilde{i}_{T_2} are mutually orthogonal idempotents, and so $T_2 = 0$ by [7], Theorem 7.1.2. According $M_0 = M_*$. Therefore $\{M_a\}_I$ is lsTn by [7]. Theorem 7.2.7.

THEOREM 2. Let $\{M_a\}_I$ be a set of le hollow and cyclic modules. Then the following are equivalent:

1) $M = \sum_{I} \bigoplus M_a$ is lifting.

2) M_a is almost M_b -projective for any $a \neq b$ and $\{M_a\}_I$ is ls Tn.

3) $\sum_{J} \bigoplus M_{a}$, is almost $\sum_{I-J} \bigoplus M_{b}$, -projective for any subset J in I and $\{M\}_{I}$ is ls Tn. (cf. Theorem 4 below.)

PROOF. This is clear from Theorem 1, Lemma 2 and 3 and [9], Theorem 1".

We prepare the following lemma for an example below.

LEMMA 4. Let M be an le and hollow module. If any infinite direct sum of copies of M is always lifting, M is cyclic.

PROOF. Assume that M is not cyclic. Then xR is a small submodule in M for any x in M. Put $D = \sum_{x \in M} \bigoplus M_x (M_x = M)$ and $S = \sum_x \bigoplus xR$, Taking an epimorphism $f: D \to M$ such that $f \mid M_x = 1_M$, we know that S is not small in M. Hence M is not lifting from [9], Corollary 2.

Let Z be the ring of integers. Then E(Z/p), injective hull of Z/p (p is prime) is almost E(Z/p)-projective (see [12]). However $\sum_{i=1}^{\infty} \bigoplus E_i (E_i = E(Z/p))$ is not lifting by Lemma 4, even though $\{M_i = E(Z/p)\}$ is 1sTn. On the other hand $\sum_p \bigoplus E(Z/p)$ is lifting.

2. Lifting property.

First we shall give a relationship between lifting module and lifting property.

Let $X \supset Y$ be *R*-modules and $\nu: X \rightarrow X/Y$ the natural epimorphism. If, for a direct summand *T* of X/Y, there exists a direct summand T_0 of *X* such that $T = \nu(T_0)$, we say that *T* is lifted to T_0 . If every direct summand of any factor module X/Y' is lifted, we say that *X* has the *lifting property of direct summands modulo submodules*. If, for any submodule *Y* of *X* and for any direct decomposition $X/Y = \Sigma \oplus T_i$, there exists a direct decomposition $X = \Sigma \oplus T'_i$ with $\nu(T'_i) = T_i$ for all *i*, we say that *X* has the *lifting property of direct sums modulo submodules*.

We take a direct decomposition $M = \Sigma \bigoplus M_i$. For a submodule N_i of M_i we call $\Sigma \bigoplus N_i$ a standard submodule of M with respect to this decomposition $\Sigma \bigoplus M_i$. If we say a standard submodule in the following, that is a standard submodule with respect to decomposition into indecomposable modules. We note that J(X) and Soc(X) are always standard submodules with respect to any decompositions.

PROPOSITION 1. Let $\{M_a\}_I$ be a set of hollow and le modules and $M = \sum_I \bigoplus M_a$. Assume that $\{M_a\}_I$ is Is Tn. Then the following are equivalent:

1) M is lifting.

2) M has the lifting property of direct summands modulo submodules (cf. $[15], \S4$).

PROOF. 1) \rightarrow 2) (The argument below is valid for any lifting module). Let N be a submodule of M and T a direct summand of M/N. Let $\nu: M \rightarrow M/N$ be the natural epimorphism of M. We apply (D_1) to the inverse image T_0 of T. Then there exists a decomposition $M=M'\oplus M''$ such that $T_0=M'\oplus T_0 \cap M''$

and $T_0 \cap M''$ is small in M. Then $T = \nu(T_0) = \nu(M') + \nu(T_0 \cap M'')$. Since $T_0 \cap M''$ is small in M and T is a direct summand of M/N, $\nu(T_0 \cap M'')$ is small in T. Hence $T = \nu(M')$.

2) \rightarrow 1). Let T_0 be a non-small submodule in M. Then there exists a submodule $X \ (\neq M)$ of M such that $M = T_0 + X$. Now $M/(T_0 \cap X) = T_0/(T_0 \cap X) \oplus X/(T_0 \cap X)$ and $T_0/(T_0 \cap X) \neq 0$. Since M has the lifting property, $M = M' \oplus M''$ and $(M' + T_0 \cap X)/(T_0 \cap X) = T_0/(T_0 \cap X)$, and so $0 \neq M' \subset T_0$. Therefore M is lifting by [9], Theorem 1".

The following corollary shows us a difference between M-projectives and almost M-projectives.

COROLLARY. Assume $|I| = n < \infty$ and $|M_i| < \infty$ in the above. Then the following two conditions are equivalent:

1) M_i is almost M_j -projective for all $i \neq j$.

2) M has the lifting property of any indecomposable direct summands modulo standard submodules.

Similarly the following two conditions are equivalent:

3) M_i is M_j -projective for all $i \neq j$.

4) M has the lifting property of direct sums modulo standard submodules, (cf. [15], \S 4).

PROOF. 1) \rightarrow 2). This is clear from Theorem 1 and Proposition 1.

2) \rightarrow 1). Put $M^*=M_1\oplus M_2$. We can show by routine work that M^* has the lifting property of indecomposable direct summands modulo standard submodules, since so does M. Let X be a non-small submodule of M^* . Then $\pi_1 | X$ or $\pi_2 | X$ is an epimorphism, where $\pi_i \colon M^* \rightarrow M_i$ is the projection, say $\pi_1 | X$. Then $X/(X_{(1)} \oplus X_{(2)})$ is a graph of $M_1/X_{(1)}$ in $M^*/(X_{(1)} \oplus X_{(2)})$ provided $X_{(1)} \neq M_1$, where $X_{(i)} = X \cap M_i$, and hence a direct summand of $M^*/(X_{(1)} \oplus X_{(2)})$. Further $X/(X_{(1)} \oplus X_{(2)})$ is indecomposable, and $X/(X_{(1)} \oplus X_{(2)})$ is lifted to a direct summand X' of M^* by assumption. Hence $X' \subset X$. If $X_{(1)} = M_1$, $M_1 \subset X$. Accordingly M^* is lifting, and hence M_1 and M_2 are mutually almost relative projective by Theorem 1.

3) \rightarrow 4) First assume that M_1 , M_2 are mutually relative projective and $M = M_1 \oplus M_2$. Put $\tilde{M} = M/(N_1 \oplus N_2)$. Let C be any submodule in M. We denote $(C + (N_1 \oplus N_2))/(N_1 \oplus N_2)$ by \tilde{C} ($\subset \tilde{M}$). It is clear that $\tilde{M} = \tilde{M}_1 \oplus \tilde{M}_2$ and $\tilde{M}_i \approx M_i/N_i$. Let $\tilde{M} = A \oplus B$. We note that if an R-module L is a finite direct sum of le modules L_i , every non-zero indecomposable direct summand of L is given by a graph of some L_i (see [7], Proposition 6.3.3). Since M_i/N_i is an le

module by assumption, we can assume $A = \widetilde{M}_1(\widetilde{f}_1); \ \widetilde{f}_1 : \widetilde{M}_1 \to \widetilde{M}_2$. Then there exists a decomposition $M = M_1(f_1) \oplus M_2$, where f_1 is a lifted one of \tilde{f}_1 . Clearly $\widetilde{M_1(f_1)} = A$. Since \widetilde{M} $(=\widetilde{M_1}(\widetilde{f_1}) \oplus \widetilde{M_2}) = A \oplus \widetilde{M_2} = A \oplus B$, $B = \widetilde{M_2}(\widetilde{f_2})$; $\widetilde{f_2} : \widetilde{M_2} \to A =$ $\widetilde{M_1(f_1)} \approx M_1(f_1)/(M_1(f_1) \cap (N_1 \oplus N_2))$, (take the projection of \widetilde{M} onto $\widetilde{M_2}$). Hence there exists $f_2: M_2 \rightarrow M_1(f_1)$ and $\widetilde{M_2(f_2)} = B$. Therefore $M = M_1(f_1) \oplus M_2(f_2)$ is the desired decomposition. Finally we study in a general case. Let $\widetilde{M} = \sum_{t=1}^{n}$ $\bigoplus M_i/N_i = \sum_{i=1}^m \bigoplus A_i$. Since M_i/N_i is an le module, the A_i is a direct sum of hollow modules by Krull-Schmidt's theorem. Hence we may assume that all A_i are hollow. Without loss of generality we can put $A_1 = \widetilde{M}_1(\widetilde{f}_1); \ \widetilde{f}_1 : \widetilde{M}_1 \to \sum_{i \ge 2} \widetilde{M}_i$ $\oplus \widetilde{M}_i$, and $\widetilde{M} = A_1 \oplus \sum_{i \ge 2} \oplus \widetilde{M}_i = A_1 \oplus A_2 \oplus \cdots \oplus A_n$. Let ρ be the projection of \widetilde{M} onto $\sum_{i\geq 2} \bigoplus \widetilde{M}_i$ on the first decomposition of the above. Since $\rho \mid (A_2 \bigoplus \cdots \bigoplus A_n)$ is an isomorphism onto $\sum_{i\geq 2} \oplus \widetilde{M}_i$, there exists, from the above remark, a projection $\theta_j: \sum_{i \ge 2} \bigoplus \widetilde{M}_i \to \widetilde{M}_j$ such that $\theta_j \rho | A_2$ is an isomorphism, say j=2, whence $A_2 = \widetilde{M}_2(\widetilde{f}_2); \ \widetilde{f}_2 : \widetilde{M}_2 \to \widetilde{M}_1(\widetilde{f}_1) \oplus \widetilde{M}_3 \oplus \cdots \oplus \widetilde{M}_n. \ \text{Similarly} \ A_i = \widetilde{M}_i(\widetilde{f}_i) \ \text{with} \ \widetilde{f}_i : \widetilde{M}_i \to \widetilde{M}_i \oplus \widetilde{M}_i$ $\widetilde{M}_{1}(\widetilde{f}_{1}) \oplus \cdots \oplus \widetilde{M}_{i-1}(\widetilde{f}_{i-1}) \oplus \widetilde{M}_{i} \oplus \cdots \oplus \widetilde{M}_{n}$. By virtue of Azumaya's theorem [3] we can apply the initial argument to those decompositions and obtain finally a lifted direct decomposition $M = \sum \bigoplus M_i(f_i)$.

4) \rightarrow 3) It is clear that if $M = \sum_{i=1}^{n} \bigoplus M_i$ satisfies 4), then so does $M_1 \bigoplus M_2$. Let $\tilde{f}: M_1 \rightarrow M_2/N_2$ be a homomorphism $(N_2 \subset M_2)$. Then $\tilde{M} = M_1 \bigoplus M_2/N_2 = M_1(\tilde{f})$ $\bigoplus M_2/N_2$ is lifted to $M = T_1 \bigoplus T_2$ such that $\tilde{T}_1 = M_1(\tilde{f})$ and $\tilde{T}_2 = M_2/N_2$. Let $\rho: M \rightarrow T_1$ and $\pi_2: M \rightarrow M_2$ be the projections. Then $\pi_2 \rho \mid M_1$ is a lifted one of \tilde{f} (see the proof of [8], Theorem 2). Hence M_1 is M_2 -projective.

Next we shall give some criterion of almost relative projectivity for two hollow (local) modules. Let e be a local idempotent, i.e., eR is hollow. Let A and B be R-submodules in eR. We note that any element in Hom_R(eR/A, eR/B) is given by x_1 ($x \in eRe$), the left-sided multiplication of x.

From the definition and a fact: $(eR/A)/J(eR/eA)) \approx eR/eJ$ we have

LEMMA 5. Assume that eR/A is almost eR/B-projective. Then for any unit u in eRe there exists a unit x such that $xA \subset B$ and $x \equiv u \pmod{eJe}$ or $xB \subset A$ and $u^{-1} \equiv x \pmod{eJe}$.

LEMMA 6. Let M be an indecomposable R-module and assume that eR/A is almost M-projective, and take a non-epic homomorphism f of eR to M. Then f(A) = 0 ([11]; [7], Theorem 5.4.11).

PROOF. Consider a derived diagram from f:

On almost M-projectives and almost M-injectives

$$\begin{array}{ccc} M \longrightarrow M/f(A) \longrightarrow 0 \\ & & \uparrow \bar{f} \\ & eR/A \ . \end{array}$$

Since \bar{f} is not epic, \tilde{h} is same. Hence there exists $h:eR/A \to M$ with $\nu \tilde{h} = \bar{f}$ by assumption. Let $\rho:eR \to eR/A$ be the natural epimorphism and put $h = \tilde{h}\rho:eR \to M$. Since $\nu \tilde{h} = \bar{f}$,

$$\nu f(e) = \overline{f}(e+A) = \nu \widetilde{h}(e+A) = \nu \widetilde{h} \rho(e) = \nu h(e)$$
,

Hence

(7) f(e)-h(e)=f(a) for some a in A.

Now 0=h(a)=h(e)a=f(a)-f(a)a=f(a)(1-a) from (7). Hence, f(a)=0 for $a \in A \subset eJ$, and so f(A)=f(e)A=h(e)A=h(A)=0 from (7).

PROPOSITION 2. Let e and e' be local idempotents. Then

1) eR/A is e'R/B-projective if and only if $e'ReA \subset B$. If $e \neq e'$, eR/A is e'R/B-projective if and only if eR/A is almost e'R/B-projective.

2) If eR/A is almost eR/B-projective, $eJeA \subset B$.

3) eR/A and eR/B are mutually almost relative projective if and only if $eJeA \subset B$, $eJeB \subset A$ and for any unit element u in eRe, $uA \subset B$ or $B \subset uA$. In particular $A \subset B$ or $B \subset A$.

PROOF. 1) is clear from [1], p. 22, Exercise 4 and 2) is clear from Lemma 6.

3) (This is the same argument given in [10]). Assume that eR/A and eR/B are mutually almost relative projective. Then $eJeA \subset B$ and $eJB \subset A$ from 2). First assume that eR/B is almost eR/A-projective. Let u be any unit in eRe. Then by Lemma 5 there exists j in eJe (resp. j') such that

a) $(u+j)A \subset B$ or b) $(u^{-1}+j')B \subset A$.

a): $uA = ((u+j)-j)A \subset (u+j)A + jA \subset B$ since $eJeA \subset B$. We obtain similarly $u^{-1}B \subset A$ in case b).

The converse is clear from definition and the initial remark before Lemma 5.

Let R be a right artinian (basic) ring and $\{e_i\}_{i=1}^n$ a complete set of mutually orthogonal primitive idempotents. Then every hollow module is of a form $e_i R/A$. Take an R-module M which is a direct sum of hollow modules:

(8)
$$M = \sum_{i} \sum_{n(ij) \in I_i} \bigoplus (e_i R/A_{ij})^{(n(ij))}; e_i R/A_{ij} \neq e_i, R/A_{i'j'} \text{ if } (i, j)$$
$$\neq (i'j') \text{ (and } n(ij) \neq 0, \text{ which may be infinite, for all } i \text{ and } j),$$

where $K^{(n(ij))}$ is the direct sum of n(ij)-copies of K.

If M is lifting, then from Theorem 2 and Proposition 2, we obtain,

i) $|I_i| = n_i < \infty$ for all *i*.

After changing induces

ii) If $n_i \ge 2$

$$e_i R \supset A_{i_1} \supset R_i A_{i_2} \supset A_{i_2} \supset \cdots \supset R_i A_{i_n} \supset A_{i_n} \supset$$

(9)

 $\sum_{k=1}^{n} e_i J e_k A_{k1}, \quad \text{where } R_i = e_i R e_i.$

If $n_i=1$, $e_i R \supset A_{i_1} \supset \sum_{k\neq i} e_i J e_k A_{k_1}$.

iii) If $n(ij) \ge 2$, A_{ij} is characteristic.

Thus we obtain from Theorem 2 and [8], Corollary to Theorem 4

THEOREM 3. Let R be a right artinian ring and M an R-module. Then the following are equivalent:

1) M is lifting.

2) M is a direct sum of hollow modules as in (8), which satisfy (9).

3. Almost injectives.

Following [4] we recall the definition of almost V-injectives and study some properties of them.

Let V and U be R-modules and $V \supset V'$. Consider the following diagram with *i* the inclusion and two conditions 1) and 2):

$$0 \longrightarrow V' \stackrel{i}{\longrightarrow} V \\ \downarrow h \\ U$$

1) There exists $\tilde{h}: V \rightarrow U$ such that $\tilde{h}i=h$ or

2) There exist a non-zero direct summand V_0 of V and $\tilde{h}: U \to V_0$ such that $\tilde{h}h=\pi i$, where $\pi: V \to V_0$ is the projection of V onto V_0 . U is called *almost V-injective* if the above 1) or 2) holds for any submodule V' of V and any $h: V' \to U$ (U is called *M-injective* if we have only 1) [3]).

The following lemma is dual to a special case of Theorem 1.

LEMMA 8. Let U_1 and U_2 be le and uniform modules and $U=U_1\oplus U_2$. Then the following are equivalent:

1) U is extending.

2) U_1 and U_2 are mutually almost relative injective.

PROOF. 1) \rightarrow 2). Let V be a submodule in $U=U_1 \oplus U_2$. We may assume that V is uniform. Let π_i be the projection of U onto U_i . Since V is uniform, $V=U'_i(f_i)$ (i=1 or 2), where $U'_i=\pi_i(V)$ and $f_i:U'_i\rightarrow U'_j$ $(j\neq i)$. Assume $V=U'_i(f_1)$ and take a diagram

$$0 \longrightarrow U_1' \xrightarrow{i} U_1$$
$$\downarrow f_1$$
$$U_2$$

Then since the U_i are indecomposable, there exists $\tilde{f}_1: U_1 \rightarrow U_2$ or $U_2 \rightarrow U_1$ with $\tilde{f}_1 f_1 = i$ or $\tilde{f}_1 i = f_1$ by 2). Hence $V = U'_1(f_1) \subset U_1(\tilde{f}_1)$ or $V \subset U_2(\tilde{f}_1)$, which is a direct summand of U.

1) \rightarrow 2). Consider the above diagram and define $U'=U'_1(f_1)$ in $U_1\oplus U_2$. Since U' is uniform, there exists a decomposition $U=V_1\oplus V_2$ and $V_1\supset U'$. Since V_1 has the exchange property, $U=V_1\oplus U_1$ or $=V_1\oplus U_2$. If the latter case occurs, $\tilde{h}=\pi'_2|U_1$ is a desired homomorphism, where $\pi'_2:U\rightarrow U_2$. We obtain a similar result for the former (note, in this case, that f_1 is a monomorphism).

The following theorem is the dual to Theorem 1, which is essentially given in [14].

THEOREM 4. Let $\{U_a\}_I$ be a set of le uniform modules and $U = \sum_I \bigoplus U_a$. Assume that $\{U_a\}_I$ is IsTn. Then the following are equivalent:

2) U_a is almost U_b -injective for all $a \neq b$.

PROOF. 1) \rightarrow 2). It is clear from Lemma 8.

2) \rightarrow 1). (Essentially due to [14]) $U=\sum_{I} \oplus U_{a}$ satisfies $(1-C_{1})$ (i.e., N is uniform in C_{1}) by Lemma 8 and [14], Lemma 11, and so every closed submodule A in U contains a non-zero indecomposable direct summand X of U by [14], Proposition 6. Hence we can define a non-empty set F of direct sums of uniform modules in U as follows: $F=\{\sum_{c'} \oplus X_{c'} \mid \subset A, X_{c'} \text{ is uniform and} \sum_{c'} \oplus X_{c'} \text{ is a locally direct summand of } U\}$. We can find a maximal member $\sum_{c} \oplus X_{c}$ in F by Zorn's lemma. Since $\{U_{a}\}$ is $ls \operatorname{Tn}, \sum_{c} \oplus X_{c}$ is a direct summand of U by [7], Theorem 7.3.15, say $U=(\sum_{c} \oplus X_{c}) \oplus U'$ and $A=(\sum_{c} \oplus X_{c})$ $\oplus U' \cap A$. It is clear that $U' \cap A$ is also closed in U. Hence $U' \cap A=0$ by the maximality of $\sum_{c} \oplus X_{c}$. Therefore U is extending.

¹⁾ U is extending.

We consider a result similar to Lemma 3 for extending modules.

PROPOSITION 3. Let $U = \sum \bigoplus U_a$ be as above. Assume that U is extending. Then there do not exist any infinite sets $\{U_1 \xrightarrow{f_1} U_2 \xrightarrow{f_2} U_n \xrightarrow{f_n} \cdots; the f_i are monomorphisms but not isomorphisms\}.$

PROOF. Let $\{f_i: U_i \rightarrow U_{i+1}\}$ be a set of non-isomorphisms and put $U^* = \sum \bigoplus U_i(f_i) \subset \sum \bigoplus U_i$. Then we obtain a decomposition $U' (= \sum \bigoplus U_i) = X \oplus Y$ and $U^* \subset X$, i.e. U^* is essential in X. Since $i_*: U^* \rightarrow U'$ is an isomorphism in A/J', Y=0 (see the proof of Lemma 3). Hence $U^* \subset U'$, and so $U_1 \cap U^* \neq 0$. If we use this argument for the case where all f_i are monomorphisms, we know that $\{f_i\}$ must be finite.

EXAMPLE. R_1 (resp. R_2) is the ring of upper (lower) triangular matrices over a field K with infinite degree. Let $e_i = e_{ii}$ be matrix units. Then $e_k R_i$ is almost $e_s R_i$ -projective and almost $e_s R_i$ -injective for any k, s and a fixed i=1or 2, and further $\sum_k \bigoplus e_k R_1$ is lifting and extending by Theorems 2 and 4. On the other hand $e_k R_2$ is almost $\sum_{j \neq k} \bigoplus e_j R_2$ -projective and almost $\sum_{j \neq k} \bigoplus e_j R_2$ injective (cf. [4], Theorem) for all k, however $\sum_i \bigoplus e_i R_2$ is neither lifting nor extending by Lemma 3 and Proposition 3, since we have an infinite chain of submodules; $e_1 R_2 \subset e_2 R_2 \subset \cdots \subset e_n R_2 \subset \cdots$. Further $e_1 R_2$ is always almost $\sum_{i \geq 2} \bigoplus e_i R_2$ injective for any n, but $e_1 R_2$ is not almost $\sum_{i \geq 2} \bigoplus e_i R_2$ -injective. Because, we assume that $e_1 R$ were almost $\sum_{i \geq 2} \bigoplus e_i R$ -injective, where $R = R_2$. Put U = $\sum_{i \geq 2} \bigoplus e_i R$. Then Soc $(U) = \sum_{i \geq 2} \bigoplus e_i Re_1$ and $e_i Re_1 \approx e_1 R_1 = e_1 R$ as R-modules. Take a diagram:

$$0 \longrightarrow \Sigma \bigoplus e_i R e_1 \stackrel{i}{\longrightarrow} U$$
$$\downarrow f$$
$$e_1 R,$$

where f is given by the above isomorphisms. Since $\operatorname{Hom}_{R}(e_{i}R, e_{1}R)=0$ for $i\geq 2$, we should have a decomposition $U=A\oplus B$ and $\tilde{h}:e_{1}R\to A$ such that $\tilde{h}f=\pi_{A}i$ with $\pi_{A}: U\to A$. Further $\operatorname{Soc}(U)=\operatorname{Soc}(A)\oplus\operatorname{Soc}(B)$ and $\pi_{A}|\operatorname{Soc}(A)=1_{\operatorname{Soc}(A)}$. Hence $\tilde{h}f=\pi_{A}i$ implies that $\operatorname{Soc}(A)$ is simple, and so A is indecomposable and B is a direct sum of indecomposable modules B_{j} $(j\geq 2)$ by [7], Theorem 8.3.3. Accordingly we may assume that $A=e_{n_{1}}R(f_{1})$; $f_{1}:e_{n_{1}}R\to \sum_{k\neq n_{1}}\oplus e_{k}R$ and $B_{j}=e_{n_{j}}R(f_{j})$; $f_{j}:e_{n_{j}}R\to \sum_{k\neq n_{j}}\oplus e_{k}R$. Since $e_{i}R\neq e_{j}R$ if $i\neq j$, $n_{i}\neq n_{j}$ by Krull-Remark-Schmidt-Azumaya's theorem. Hence we can assume that $A=e_{n}R(f_{n})$ for some n and $B_{j}=e_{j}R(f_{j})$ $(j\neq n$ and $B_{n}=e_{2}R(f_{2})$; n may be 2. Since $\operatorname{Hom}_{R}(e_{i}R, e_{j}R)$

=0 for i > j, we know $e_{n+1}R \subset \sum_{j \ge n+1} \bigoplus B_j \subset B$ from the structure of B_j . $\tilde{h}f(e_{n+1}Re_1) = \tilde{h}(e_1Re_1) \neq 0$ since $e_1R = e_1Re_1$ is simple and $\operatorname{Soc}(A) \subset \operatorname{Soc}(U) = \sum_{i \ge 2} \bigoplus e_iRe_i$, while $\tilde{h}f(e_{n+1}Re_1) = \pi_A(e_{n+1}Re_1) \subset \pi_A(B) = 0$, a contradiction.

4. Extending property.

We shall consider a dual concept to §2 (cf. [6] and [16]). Let $U \supset V$ be *R*-modules. Take a direct summand V_1 of V, i.e., $V = V_1 \oplus V_2$. If U has a decomposition $U = U_1 \oplus U_2$ such that $U_1 \cap V = V_1$, we say that V_1 is extendible to U_1 . If, for any submodule V, every direct summand of V is extendible to a direct summand of U, we say that U has the *extending property of direct summands*. If U has a decomposition $U = U_1 \oplus U_2$ such that $V_i = V \cap U_i$ (i = 1, 2) for all V and V_i , we say that U has the *extending property of direct sums*.

The following results are dual to ones in §2. Hence we shall skip proofs except Lemma 9 below.

In order to show a difference between U-injectives and almost U-injectives, we shall give the dual to corollary to Proposition 1.

PROPOSITION 4. Let $\{U_i\}_{i \in I}$ be a set of le and uniform modules and $U = \sum_{i=1}^{n} \bigoplus U_i$. Then the following are equivalent:

1) U_i is almost U_j -injective for all $i \neq j$.

2) U has the extending property of direct summands.

Further the following are equivalent:

3) U_i is U_j -injective for all $i \neq j$.

4) U has the extending property of direct sums.

Let E be an indecomposable and injective module and $T=\operatorname{End}_{\mathbb{R}}(E)$. Then T is a local ring with radical $=\{f \mid \in T, \ker f \subset E\}$ (see, [12] and [7], Proposition 5.4.9). Let U_1 and U_2 be uniform modules and $E_i = E(U_i)$. It is clear from the definition that if $E_1 \neq E_2$, U_1 is almost U_2 -injective if and only if U_1 is U_2 -injective.

Dually to Lemma 6 we have

LEMMA 9 ([12]; [7], Theorem 5.4.2). Let U_1 and U_2 be uniform modules and E_i an injective hull of U_i for i=1, 2. Assume that U_1 is almost U_2 -injective. Let f be not a monomorphism of E_2 to E_1 . Then $f(U_2) \subset U_1$.

PROOF. Put $U=f^{-1}(U_1)\cap U_2$, and take a diagram:

$$0 \longrightarrow U \longrightarrow U_{2}$$

$$\downarrow f \mid U$$

$$U_{1},$$

Since $f^{-1}(0) \cap U \neq 0$, there exists $g: U_2 \to U_1$ such that $g \mid U = f \mid U$ by assumption. We may assume that g is an element in $\operatorname{Hom}_{\mathbb{R}}(E_2, E_1)$. If $(f-g)(U_2) \neq 0$, then since $E'_1 \supset U$, there exist $u_1 \neq 0 \in U_1$, $u_2 \in U_2$ such that $(f-g)(u_2) = u_1$. However $g(u_2) \in U_1$, and so $u_2 \in U_2 \cap f^{-1}(U_1) = U$. Therefore $(f-g)(u_2) = 0$, a contradiction. Hence $f(U_2) = g(U_2) \subset U_1$.

Finally we exhibit the following proposition dual to Proposition 2.

PROPOSITION 5. Let E be an indecomposable and injective module and U_1, U_2 submodules of E. Then

1) If U_1 is almost U_2 -injective, $J(T)U_2 \subset U_1$.

2) U_1 and U_2 are mutually almost injective if and only if $J(T)U_1 \subset U_2$, $J(T)U_2 \subset U_1$ and for any unit f in T, $f(U_1) \subset U_2$ or $U_2 \subset f(U_1)$, where $T = \operatorname{End}_{\mathbb{R}}(E)$.

PROOF. We can prove the proposition by virtue of Lemma 9 and its proof.

If either U_1 or U_2 has finite length, for every unit f we have only a fixed side of $f(U_1) \subset U_2$ and $U_2 \subset f(U_1)$ in 2). While let Z_p be a local ring over the ring of integers Z, where p is prime. Then (p^n) and Z_p are mutually almost injective. For units 1 and $p^{-(n+1)}$ in $Q = \operatorname{End}_{Z_p}(Q)$, $Z_p \subset p^{-(n+1)}(p^n)$ and $(p^n) \subset$ $1 \cdot Z_p$.

References

- [1] Albu T. and Nastasescu, C., Relative finiteness in module theory, Monographs Textbooks Pure Appl. Math. 84, Marcel Dekker, Inc. New York and Basel.
- [2] Anderson, F. W. and Fuller, K. R., Rings and categories of modules, Graduate Texts in Math. 13, Springer-Verlag, New York and Heidelberg, Berlin.
- [3] Azumaya, G. Mbuntum, F. and Varadarajan, K., On *M*-projective and *M*-injective modules, Pacific J. Math. 59 (1975), 9-16.
- [4] Baba, Y., Note on almost *M*-injectives, Osaka J. Math. 26 (1989), 685-698.
- [5] Harada, M., Uniserial rings and lifting properties, Osaka J. Math. 19 (1982), 217-229.
- [6] -----, Modules with extending properties, Osaka J. Math. 19 (1982), 203-215.
- [7] ——, Factor categories with applications to direct decomposition of modules, Lecture Note on Pure and Appl. Math. 88 (1983). Marcel Dekker inc., New York and Basel.
- [8] -----, Modules with lifting properties, Osaka J. Math. 19 (1982), 189-201.
- [9] and Tozaki, A., Almost M-projectives and Nakayama rings, J. Algebra

122 (1989), 447-474.

- [10] ——— and Mabuchi, T., On almost *M*-projectives, Osaka J. Math. **26** (1989), 837-848.
- [11] Jans, J.P. and Wu, L.E., Quasi-projectives, Illinois J. Math. 11 (1967), 439-448.
- [12] Johnson, R.E. and Wong, E.T., Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268.
- [13] Mueller B. J. and Mohamed, S., *D*-continuous modules over commutative noetherian rings, to appear.
- [14] —— and Kamal, M.A., The structure of extending modules over noetherian rings, Osaka J. Math. 25 (1988), 539-551.
- [15] Oshiro, K., Semiperfect modules and quasi-semiperfect modules, Osaka J. Math. 20 (1983), 33-372.
- [16] —, Continuous modules and quasi-continuous modules, Osaka J. Math. 20 (1983), 681-694.

Department of Mathematics Yamaguchi University Yamaguchi, Japan and Department of Mathematics Osaka City University

Osaka, Japan