ON ALMOST M-PROJECTIVES AND ALMOST M-INJECTIVES

Dedicated to Professor Tuyosi Oyama on his 60th birthday

By

Yoshitomo Baba and Manabu Harada

We have defined aconcept of almost M-projectives and almost M-injectives in [4] and [9], respectively. In the first section of this paper we give some relations among lifting modules, mutually almost relative projectivity and locally semi- T-nilpotency. After giving a criterion of mutually almost relative projectivity between two hollow modules in the second section, we give a characterization of lifting modules over a right artinian ring. Further we show a difference between M-projectives and almost M-projectives. Those dual properties are gives in the third and fourth sections with sketch of proofs.

We shall give several characterizations of right Nakayama (resp. right coNakayama) rings in terms of almost relative projectives (resp. almost relative injectives) in forthcoming papers (cf. [9]).

1. Almost projectives.

Throughout this paper R is an associative ring with identity. Every module M is a unitary right R-module. Let M be an R-module and K a submodule of M. If $M \neq M^{\prime}+K$ for any proper submodule M^{\prime} of M, then K is called a small submodule in M. If $K \cap K^{\prime} \neq 0$ for every non-zero submodule K^{\prime} of M, we say that K is an essential submodule of M. If every proper submodule of M is always small in M, M is called a hollow module and we dually call M a uniform module, provided every non-zero submodule is essential in M. If $\operatorname{End}_{R}(M)$, the ring of endomorphisms of M, is a local ring, M is called an le module. By $J(M)$ and $\operatorname{Soc}(M)$ we denote the Jacobson radical and the socle of M, respectively and $|M|$ is the length of M.

Following K. Oshiro [15] and [16] we define a lifting (resp. extending) module. If for any submodule N of M, there exists a direct decomposition $M=$ $M_{1} \oplus M_{2}$ such that
(D_{1}) $N \supset M_{1}$ and $N \cap M_{2}$ is small in M_{2} (and hence in M)
(resp. $\left(C_{1}\right) M_{1} \supset N$ and N is essential in M_{1}),
then M is called a lifting (resp. extending) module. If M is a lifting (resp. extending) module with $|M|<\infty, M$ is a direct sum of le hollow (resp. uniform) modules from the definition. Hence we shall study, in this paper, a lifting (resp. extending) module which is a direct sum of le and hollow (resp. uniform) modules.

We shall recall notations given in [9]. Let there be given a direct decomposition $M=M_{1} \oplus M_{2}$, and let $\pi_{1}: M \rightarrow M_{1}$ and $\pi_{2}: M \rightarrow M_{2}$ be the projectives. We shall use the following facts:
(i) Let $f: M_{1} \rightarrow M_{2}$ be a homomorphism. Define $M_{1}(f)=\left\{x+f(x) \mid x \in M_{1}\right\}$. Then $M_{1}(f)$ is a submodule of M isomorphic to M_{1} and $M=M_{1}(f) \oplus M_{2}$.
(ii) Let N_{1}, N^{1}, N_{2} and N^{2} be submodules of M such that $N_{i} \subset N^{i} \subset M_{i}$ for $i=1,2$ and let there exist an isomorphism $h: N^{1} / N_{1} \rightarrow N^{2} / N_{2}$. We shall often consider h as a homomorphism $N^{1} \rightarrow N^{2} / N_{2}$ in the natural manner, so that N_{1} is the kernel of h. Let $N=\left\{x+y \mid x \in N^{1}, y \in N^{2}\right.$ and $\left.y+N_{2}=h(x)\right\}$. Then, as is easily seen, N is a submodule of M and $\pi_{1}(N)=N^{1}, \pi_{2}(N)=N^{2}$. Further $N \cap M_{i}=N_{i}$ for $i=1,2$. We shall denote this N by

$$
\begin{equation*}
N^{1}(h) N^{2} . \tag{1}
\end{equation*}
$$

(iii) Let N be any submodule of M. Put $N_{(i)}=M_{i} \cap N$ and $\pi_{i}(N)=N^{i}$ for $i=1,2$. Then clearly $N_{(i)} \subset N^{i} \subset M_{i}$ for $i=1,2$. Let $x \in N^{1}$. Then there is a $y \in N^{2}$ such that $x+y \in N$. Such a y is not necessarily unique, but is unique modulo N_{2}. By associating $x+N_{(1)}$ with $y+N_{(2)}$, we have an isomorphism $h: N^{1} / N_{(1)} \rightarrow N^{2} / N_{(2)}$. It is obvious that $N=N^{1}(h) N^{2}$ in the sense in (ii).

First we shall decompose a proof of Azumaya's theorem [3] (see [2], Proposition 16.12) for an application to almost projectives, which is the dual observation of [4], Lemma 1 .

Let M_{1}, M_{2} and N be R-modules. For a submodule K of $M=M_{1} \oplus M_{2}$, take a diagram:

Let $\pi_{i}: M \rightarrow M_{i}$ be the projection for $i=1,2$. Put $K^{i}=\pi_{i}(K), K_{(i)}=K \cap M_{i}$ and $K=K^{1}(f) K^{2}$ from (1), where $f: K^{1} / K_{(1)} \rightarrow K^{2} / K_{(2)}$. Since $K \subset K^{1} \oplus K^{2}$, there exists the natural epimorphism $\nu^{\prime}: M / K \rightarrow M /\left(K^{1} \oplus K^{2}\right) \approx M_{1} / K^{1} \oplus M_{2} / K^{2}$. By $\bar{\pi}_{i}$
we denote the projection onto M_{i} / K^{i} in the last decomposition of $M /\left(K^{1} \oplus K^{2}\right)$ and we put $\nu_{i}^{\prime}=\bar{\pi}_{i} \nu^{\prime}$ for $l=1,2$. We note that $\nu^{\prime}=\nu_{1}^{\prime}+\nu_{2}^{\prime}$ and $\nu_{i}^{\prime} \nu \mid M_{i}$ is nothing but the natural epimorphism ν_{i} of M_{i} onto M_{i} / K^{i}. Further ker $\nu^{\prime}=\left(K^{1} \oplus K^{2}\right) / K$ $\approx\left(\left(K^{1} \oplus K^{2}\right) /\left(K_{(1)} \oplus K_{(2)}\right)\right) /\left(K /\left(K_{(1)} \oplus K_{(2)}\right)\right)$. While $\left(K^{1} \oplus K^{2}\right) /\left(K_{(1)} \oplus K_{(2)}\right) \approx K^{1} / K_{(1)}$ $\oplus K^{2} / K_{(2)}$ and $K /\left(K_{(1)} \oplus K_{(2)}\right)=\left(K^{1}(f) K^{2}\right) /\left(K_{(1)} \oplus K_{(2)}\right)=K^{1} / K_{(1)}(f)=K^{2} / K_{(2)}\left(f^{-1}\right)$, (which is a graph in $\left.\left(K^{1} \oplus K^{2}\right) /\left(K_{(1)} \oplus K_{(2)}\right) \subset M_{1} / K_{(1)} \oplus M_{2} / K_{(2)}\right)$. Hence ker $\nu^{\prime} \approx$ $\approx K^{1} / K_{(1)} \approx K^{2} / K_{(2)}$. Let g be the canonical monomorphism of $M_{1} / K_{(1)}$ into M / K. Then g gives the above isomorphism: $K^{1} / K_{(1)} \rightarrow \operatorname{ker} \nu^{\prime}$, and we obtain the commutative diagram:

where i and i^{\prime} are inclusions.
From those observations we obtain two diagrams:

$$
\begin{gather*}
M_{1} \xrightarrow{\nu_{1}^{\prime} \nu \mid M_{1}} M_{1} / K^{1} \longrightarrow 0 \tag{3}\\
\uparrow \nu_{1}^{\prime} h \\
N,
\end{gather*}
$$

and

$$
\begin{align*}
& M_{2} \xrightarrow{\nu_{2} \nu \mid M_{2}} M_{2} / K^{2} \longrightarrow 0 \\
& \uparrow \nu_{2}^{\prime} h \\
& N .
\end{align*}
$$

Here we assume that there exists $\tilde{h}_{j}: N \rightarrow M_{j}$ such that $\left(\nu_{j}^{\prime} \nu \mid M_{j}\right) \tilde{h}_{j}=\nu_{j}^{\prime} h$ for $j=1,2$. Put $t=\nu\left(\tilde{h}_{1}+\tilde{h}_{2}\right)-h: N \rightarrow M / K$. Then $\nu^{\prime} t=\nu^{\prime} \nu\left(\tilde{h}_{1}+\tilde{h}_{2}\right)-\nu^{\prime} h=\nu_{1} h+\nu_{2}^{\prime} h-\nu^{\prime} h=$ $\left(\nu^{\prime}-\nu^{\prime}\right) h=0$. Hence $t(N) \subset$ ker ν^{\prime}. Put $g^{\prime}=\left(g \mid\left(K^{1} / K_{(1)}\right)\right)^{-1}: \operatorname{ker} \nu^{\prime} \rightarrow K^{1} / K_{(1)} \subset$ $M_{1} / K_{(1)}$. Since $\nu\left(M_{1}\right)=g\left(M_{1} / K_{(1)}\right), g^{-1}$ exists on $\nu\left(M_{1}\right)$. Thus we obtain a new diagram :

Finally we assume in (4) that there exists $h_{1}^{*}: N \rightarrow M_{1}$ such that $g^{-1}\left(\nu \mid M_{1}\right) h_{1}^{*}=g^{\prime} \mathrm{t}$, i. e. $\left(\nu \mid M_{1}\right) h_{1}^{*}=t$ by operating g. Then

$$
\begin{aligned}
& h=\nu\left(\tilde{h}_{1}+\tilde{h}_{2}\right)-\left(\nu \mid M_{1}\right) h_{1}^{*}=\nu\left(\left(\tilde{h}_{1}-h_{1}^{*}\right)+\tilde{h}_{2}\right) \text { and } \\
& \left(\tilde{h}_{1}-h_{1}^{*}\right)+\tilde{h}_{2}: N \longrightarrow M .
\end{aligned}
$$

We recall the definition of almost M-projectives [9]. Let M and N be R modules. For any exact sequence with K a submodule of M :

if either there exists $\tilde{h}: N \rightarrow M$ with $\nu \tilde{h}=h$ or there exist a non-zero direct summand M_{1} of M and $\tilde{h}: M_{1} \rightarrow N$ with $h \tilde{h}=\nu \mid M_{1}, N$ is called almost M-projective (if we always obtain the first half, we say N is M-projective [3]).

We note the following fact:
When N is almost M-projective and M is indecomposable,
(\#) if the h in the above diagram is not an epimorphism, then there exists always an $\tilde{h}: N \rightarrow M$ with $\nu \tilde{h}=h$.

We frequently use this fact without any reference.
The following lemma is useful on almost projectives.
Lemma 1. Let $M_{1}, M_{2}, \cdots, M_{n}$ be hollow modules and N an R-moddle. Assume that N is almost M_{i}-projective for all i. Take a diagram with K a submodule of $\Sigma \oplus M_{i}$:

If $h(N)$ is small in $\left(\Sigma \oplus M_{i}\right) / K$, h is liftable to $\tilde{h}: N \rightarrow \Sigma \oplus M_{i}$, i.e. $h=\nu \tilde{h}$.
Proof. We shall prove the lemma by induction on n. If $n=1$, it is clear from the definition. We assume that the lemma holds true for $M^{*}=\sum_{j=2}^{n} \oplus M_{j}$ and put $M=M_{1} \oplus M^{*}$. Let π_{i} be the projection of $M=\sum_{j=1}^{n} \oplus M_{j}$ onto M_{i}. Assume first that $\pi_{1}(K)\left(=K^{1}\right)=M_{1}$. Put $\pi^{*}=\sum_{j 22} \pi_{j}: M \rightarrow M^{*}, K^{*}=\pi^{*}(K), K_{(1)}=$ $K \cap M_{1}$ and $K_{(*)}=K \cap M^{*}$. Further set $\bar{M}=M /\left(K_{(1)} \oplus K_{(*)}\right) \supset \bar{K}=K /\left(K_{(1)} \oplus K_{(*)}\right)$. Since $K=K^{1}(h) K^{*}$ with $h: K^{1} / K_{(1)} \approx K^{*} / K_{(*)}$ from (1), we obtain $\bar{K} \subset M_{1} / K_{(1)}$ $\oplus M^{*} / K_{(*)}=\left(M_{1} / K_{(1)}\right)(h) \oplus M^{*} / K_{(*)}=\bar{M}$ and $\bar{K}=\left(M_{1} / K_{(1)}\right)(h)$. Hence $M^{*} / K_{(*)} \approx$ $\bar{M} / \bar{K} \approx M / K$, and by φ we denote this isomorphism of $M^{*} / K_{(*)}$ onto M / K. Accordingly we have a commutative diagram:

Since φ is an isomorphism, by assumptions there exists $\tilde{h}^{*}: N \rightarrow M^{*}$ such that $\nu^{*} \tilde{h}^{*}=\varphi^{-1} h$, and so $\nu\left(i \tilde{h}^{*}\right)=\varphi \nu^{*} h^{*}=h$. Hence $i \tilde{h}^{*}: N \rightarrow M$ is the desired map. Thus we can assume that $K^{1} \neq M_{1}$. Since $h(N)$ is small in M / K, for $\nu_{i}^{\prime} h$ in the diagrams (3) and (3'), $\nu_{1}^{\prime} h(N)$ and $\nu_{2}^{\prime} h(N)$ are small in M_{1} / K^{1} and M^{*} / K^{*}, respectively. Hence by assumption and induction hypothesis, there exist $\tilde{h}_{1}: N \rightarrow M_{1}$ and $\tilde{h}^{*}: N \rightarrow M^{*}$, which make the diagrams (3) and (3^{\prime}) commutative. Let t and g^{\prime} be the mappings defined after (3^{\prime}). Since M_{1} is indecomposable, $g^{\prime} t(N) \subset K^{1} / K_{(1)}$ and $K^{1} \neq M_{1}$, there exists $\tilde{h}_{1}^{\prime}: N \rightarrow M_{1}$ which makes the diagram (4) commutative. Therefore h is liftable to $\tilde{h}: N \rightarrow \Sigma \oplus M_{i}$ as is shown in (5).

By definition we have

Lemma 2. Let $\left\{M_{a}\right\}_{I}$ be a set of almost M-projectives for a fixed R-module M. Then $\Sigma_{r} \oplus M_{a}$ is almost M-projective.

We have given some relationships between lifting modules and almost projectives in [9]. We give here a simpler relation for a finite direct sum. This is dual to [14], Theorem 12, however the proof is not, because we used injective hulls in [14], but we can not take here projective covers.

Theorem 1. Let $\left\{M_{i}\right\}_{i=1}^{n}$ be a set of le and hollow modules. Then the following are equivalent:

1) $M=\sum_{i=1}^{n} \oplus M_{i}$ is lifting.
2) M_{i} is almost M_{j}-projective for any $i \neq j$.
3) For any subset J in $I=\{1,2, \cdots, n\} \quad \Sigma_{j} \oplus M_{j}$ is almost $\Sigma_{I-J} \oplus M_{i}$-projective.

Proof. 1) $\rightarrow 3$) $\rightarrow 2$). This is clear from the definition of almost projectives, Lemma 2 and [9], Theorem 1".
$2) \rightarrow 1$). If we can show that every non small submodule N in M contains a non-zero direct summand of M (i.e., M satisfies ($1-D_{1}$) in [9]), then M is lifting by [9], Theorem 1". In order to get the above fact, we shall show
every non small submodule in M contained in $M_{1}^{\prime} \oplus M_{2}^{\prime} \oplus \cdots M_{k}^{\prime} \oplus T_{k+1} \oplus$
$\cdots \oplus T_{n}$ contains a non-zero direct summand of M, where $M=\sum_{i=1}^{n} \oplus M_{i}^{\prime}$
is any direct decomposition into indecomposable modules $M_{i}^{\prime}\left(\approx M_{i}\right)$, and the T_{i} are small in M_{i}^{\prime} for $i \geqq k+1$.

We may assume $M_{i}^{\prime}=M_{i}$ in (6). If (6) is true for all k, taking $k=n+1\left(M_{n+1}^{\prime}=\right.$ $T_{n+1}=0$), we are done. Consider (6) with $k=1$. Let N be a non-small submodule contained in $M_{1} \oplus \sum_{i=2}^{n} \oplus T_{i}$, and put $M^{*}=M_{2} \oplus M_{3} \oplus \cdots \oplus M_{n}$. Let $\pi_{1}: M \rightarrow M_{1}$ and $\pi^{*}: M \rightarrow M^{*}$ be the projections. Since N is not small in M and the T_{i} is small in M_{i} for all $i \geqq 2, \pi_{1}(N)=N^{1}=M_{1}$. Then from (1) $N=$ $M_{1}(h) N^{*}$, where $N^{*}=\pi^{*}(N), \quad N_{(1)}=N \cap M_{1}, \quad N_{(*)}=N \cap M^{*}$, and $h: M_{1} / N_{(1)} \approx$ $N^{*} / N_{(*)}$. Since $N^{*} \subset \sum_{i=2}^{n} \oplus T_{i}, N^{*}$ is small in M^{*} and hence $N^{*} / N_{(*)}$ is small in $M_{*} / N_{(*)}$. From those datas we obtain the diagram:

$$
\begin{gathered}
M^{*}=M_{2} \oplus M_{3} \oplus \cdots \oplus M_{n} \xrightarrow{\nu} M^{*} / N_{(*)} \longrightarrow 0 \\
\uparrow h \\
M_{1} / N_{(1)} \\
\uparrow \nu_{1} \\
M_{1}
\end{gathered}
$$

Since M_{1} is almost M_{j}-projective for all $j \geqq 2$ by assumption and $h\left(M_{1} / N_{(1)}\right)=$ $N^{*} / N_{(*)}$ is small in $M^{*} / N_{(*)}$, there exists $\tilde{h}: N \rightarrow M^{*}$ with $\nu \tilde{h}=h \nu_{1}$ by Lemma 1. Hence N contains $M_{1}(\tilde{h})$ a direct summand of M (consider $M /\left(N_{(1)} \oplus N_{(*)}\right) \supset$ $N /\left(N_{(1)} \oplus N_{(*)}\right)$, cf. the proof of [9], Theorem 1). Assume that (6) is true for all $k^{\prime} \leqq k$ and let $N \subset M_{1} \oplus \cdots \oplus M_{k+1} \oplus T_{k+2} \oplus \cdots \oplus T_{n}(k \geqq 1)$. We may assume $\pi_{1}(N)=M_{1}$. Let ρ be the projection of M onto $M^{* *}=M_{1} \oplus M_{2}$. Since $\pi_{1}(N)=$ $M_{1}, \rho(N)$ is not small in $M^{* *}$. Then $M^{* *}$ being lifting by [9], Theorem 1", $M^{* *}=L_{1} \oplus L_{2}$ and $\rho(N)=L_{1} \oplus\left(L_{2} \cap \rho(N)\right)$ with $L_{2} \cap \rho(N)$ small in $M^{* *}$. Since L_{i} is a direct sum of at most two direct summands, we put $L_{1}=M_{1}^{\prime \prime} \oplus M_{2}^{\prime \prime}$ $\left(M_{1}^{\prime \prime} \neq 0\right), \quad L_{2}=M_{3}^{\prime \prime}$, where $M_{k}^{\prime \prime} \approx$ one of $\left\{M_{1}, M_{2},(0)\right\}$. Then $M=M^{* *} \oplus M_{3} \oplus \cdots$ $\oplus M_{n} \supset M_{1}^{\prime \prime} \oplus M_{2}^{\prime \prime} \oplus M_{s}^{\prime \prime} \oplus M_{\mathrm{s}} \oplus \cdots \oplus M_{k+1} \oplus T_{k+2} \oplus \cdots \oplus T_{n} \supset N$. If $M_{2}^{\prime \prime}=0$, i. e., $L_{1}=$ $M_{1}^{\prime \prime}$ and $L_{2}=M_{3}^{\prime \prime}, N$ satisfies (6) by induction, since $\rho(N)=M_{1}^{\prime \prime} \oplus\left(M_{3}^{\prime \prime} \cap \rho(N)\right)$ and $M_{3}^{\prime \prime} \cap \rho(N)$ is small in $M_{3}^{\prime \prime}$. Assume $M_{2}^{\prime \prime} \neq 0$ (and hence $M_{3}^{\prime \prime}=0$) i. e., $\rho(N)=$ $M_{1}^{\prime \prime} \oplus M_{2}^{\prime \prime}=M^{* *}$. Let $\pi_{2}^{\prime \prime}$ be the projection of M onto $M_{2}^{\prime \prime}$. Since $\rho(N)=M^{* *}$, $N \cap \pi_{2}^{\prime \prime-1}(0)$ is not small in M and $N \cap \pi_{2}^{\prime \prime-1}(0) \subset M_{1}^{\prime \prime} \oplus 0 \oplus M_{3} \oplus \cdots \oplus M_{k+1} \oplus T_{k+2} \oplus$ $\cdots \oplus T_{n}$. Hence ($N \supset$) $N \cap \pi_{2}^{\prime \prime-1}(0)$ contains a non zero direct summand of M by assumption of induction. Therefore (6) is true for any k, and so N always contains a non-zero direct summand of M.

Theorem 1 is not true if $\left\{M_{a}\right\}_{I}$ is an infinite set, even though $\left\{M_{a}\right\}_{I}$ is locally semi T-nilpotent, which is given in [7], p. 174, and briefly 1 sTn (see example before Theorem 2 below). In [9], Theorem 1" the locally semi-Tnilpotency is important. Concerning this fact we have the following lemma. In the proof we make use of certain factor categories given in [7]. We do not know a module theoretical proof.

Lemma 3. Let $\left\{M_{a}\right\}_{I}$ be a set of le modules. lf $M=\Sigma_{I} \oplus M_{a}$ is lifting, then $\left\{M_{a}\right\}_{I}$ is lsTn.

Proof. From the definition of $1 \mathrm{~T} T$, we way assume that I is an infinite set. Let $M_{0}=\sum_{i=1} \oplus M_{i}$ and $\left\{f_{i}: M_{i} \rightarrow M_{i+1}\right\}$ a set of non-isomorphisms and $M_{i}^{\prime}=M_{i}\left(f_{i}\right) \subset M_{i} \oplus M_{i+1}$. Since M_{0} is lifting, for $M_{*}=\sum_{i=1}^{\infty} \oplus M_{i}^{\prime}, M_{0}=T_{1} \oplus T_{2}$; $M_{*}=T_{1} \oplus M_{*} \cap T_{2}$ and $M_{*} \cap T_{2}$ is small in M_{*}. Here we shall apply some theorems on factor categories $\boldsymbol{A} / \boldsymbol{J}^{\prime}$ induced from le modules (see [7], Chapters 6 and 7), and use the same terminologies given there. First we note that M_{*} is also a direct sum of le modules, i.e., $M_{*} \in \boldsymbol{A}$. Let T_{i}^{*} and $\left(M_{*} \cap T_{2}\right)^{*}$ be full submodules in T_{i} and ($M_{*} \cap T_{2}$), respectively ([7], p. 169). Let $i_{M_{*}}, i_{T_{i}}$ and $i_{M * \cap T_{2}}$ be inclusions in M, Since $M_{*} \cap T_{2}$ is small in $M_{0}, i_{M * \cap T_{2}}=0$ by the definition of \boldsymbol{J}^{\prime} in [7], p. 148. Further $i_{M *}$ is an isomorphism by [7], Theorem 7.3.13, and $i_{M_{*}}=\bar{i}_{T_{1}}+\bar{i}_{M_{*} \cap T_{2}}=\bar{i}_{T_{1}}$. On the other hand, $i_{M_{0}}=\bar{i}_{T_{1}}+\bar{i}_{T_{2}}$. Hence $\bar{i}_{T_{2}}=0$, since $\bar{i}_{T_{1}}=\bar{i}_{M *}$ is an isomorphism and $\bar{i}_{T_{1}}, \bar{i}_{T_{2}}$ are mutually orthogonal idempotents, and so $T_{2}=0$ by [7], Theorem 7.1.2. According $M_{0}=M_{*}$. Therefore $\left\{M_{a}\right\}_{I}$ is lsTn by [7]. Theorem 7.2.7.

Theorem 2. Let $\left\{M_{a}\right\}_{I}$ be a set of le hollow and cyclic modules. Then the following are equivalent:

1) $M=\Sigma_{I} \oplus M_{a}$ is lifting.
2) M_{a} is almost M_{b}-projective for any $a \neq b$ and $\left\{M_{a}\right\}_{I}$ is ls Tn .
3) $\Sigma_{J} \oplus M_{a}$, is almost $\Sigma_{I-J} \oplus M_{b}$, -projective for any subset J in I and $\{M\}_{I}$ is 1 ln Tn . (cf. Theorem 4 below.)

Proof. This is clear from Theorem 1, Lemma 2 and 3 and [9], Theorem $1^{\prime \prime}$.

We prepare the following lemma for an example below.
Lemma 4. Let M be an le and hollow module. If any infinite direct sum of copies of M is always lifting, M is cyclic.

Proof. Assume that M is not cyclic. Then $x R$ is a small submodule in M for any x in M. Put $D=\Sigma_{x \in M} \oplus M_{x}\left(M_{x}=M\right)$ and $S=\Sigma_{x} \oplus x R$, Taking an epimorphism $f: D \rightarrow M$ such that $f \mid M_{x}=1_{M}$, we know that S is not small in M. Hence M is not lifting from [9], Corollary 2 .

Let Z be the ring of integers. Then $E(Z / p)$, injective hull of Z / p (p is prime) is almost $E(Z / p)$-projective (see [12]). However $\sum_{i=1}^{\infty} \oplus E_{i}\left(E_{i}=E(Z / p)\right)$ is not lifting by Lemma 4, even though $\left\{M_{i}=E(Z / p)\right\}$ is 1 sTn . On the other hand $\Sigma_{p} \oplus E(Z / p)$ is lifting.

2. Lifting property.

First we shall give a relationship between lifting module and lifting property.

Let $X \supset Y$ be R-modules and $\nu: X \rightarrow X / Y$ the natural epimorphism. If, for a direct summand T of X / Y, there exists a direct summand T_{0} of X such that $T=\nu\left(T_{0}\right)$, we say that T is lifted to T_{0}. If every direct summand of any factor module X / Y^{\prime} is lifted, we say that X has the lifting property of direct summands modulo submodules. If, for any submodule Y of X and for any direct decomposition $X / Y=\Sigma \oplus T_{i}$, there exists a direct decomposition $X=\Sigma \oplus T_{i}^{\prime}$ with $\nu\left(T_{i}^{\prime}\right)=T_{i}$ for all i, we say that X has the lifting property of direct sums modulo submodules.

We take a direct decomposition $M=\Sigma \oplus M_{i}$. For a submodule N_{i} of M_{i} we call $\Sigma \oplus N_{i}$ a standard submodule of M with respect to this decomposition $\Sigma \oplus M_{i}$. If we say a standard submodule in the following, that is a standard submodule with respect to decomposition into indecomposable modules. We note that $J(X)$ and $\operatorname{Soc}(X)$ are always standard submodules with respect to any decompositions.

Proposition 1. Let $\left\{M_{a}\right\}_{I}$ be a set of hollow and le modules and $M=$ $\Sigma_{I} \oplus M_{a}$. Assume that $\left\{M_{a}\right\}_{I}$ is 1 s Tn . Then the following are equivalent:

1) M is lifting.
2) M has the lifting property of direct summands modulo submodules (cf. [15], §4).

Proof. 1) $\rightarrow 2$) (The argument below is valid for any lifting module). Let N be a submodule of M and T a direct summand of M / N. Let $\nu: M \rightarrow M / N$ be the natural epimorphism of M. We apply $\left(D_{1}\right)$ to the inverse image T_{0} of T. Then there exists a decomposition $M=M^{\prime} \oplus M^{\prime \prime}$ such that $T_{0}=M^{\prime} \oplus T_{0} \cap M^{\prime \prime}$
and $T_{0} \cap M^{\prime \prime}$ is small in M. Then $T=\nu\left(T_{0}\right)=\nu\left(M^{\prime}\right)+\nu\left(T_{0} \cap M^{\prime \prime}\right)$. Since $T_{0} \cap M^{\prime \prime}$ is small in M and T is a direct summand of $M / N, \nu\left(T_{0} \cap M^{\prime \prime}\right)$ is small in T. Hence $T=\nu\left(M^{\prime}\right)$.
2) $\rightarrow 1$). Let T_{0} be a non-small submodule in M. Then there exists a submodule $X(\neq M)$ of M such that $M=T_{0}+X$. Now $M /\left(T_{0} \cap X\right)=T_{0} /\left(T_{0} \cap X\right) \oplus$ $X /\left(T_{0} \cap X\right)$ and $T_{0} /\left(T_{0} \cap X\right) \neq 0$. Since M has the lifting property, $M=M^{\prime} \oplus M^{\prime \prime}$ and $\left(M^{\prime}+T_{0} \cap X\right) /\left(T_{0} \cap X\right)=T_{0} /\left(T_{0} \cap X\right)$, and so $0 \neq M^{\prime} \subset T_{0}$. Therefore M is lifting by [9], Theorem 1] ${ }^{\prime \prime}$.

The following corollary shows us a difference between M-projectives and almost M-projectives.

Corollary. Assume $|I|=n<\infty$ and $\left|M_{i}\right|<\infty$ in the above. Then the following two conditions are equivalent:

1) M_{i} is almost M_{j}-projective for all $i \neq j$.
2) M has the lifting property of any indecomposable direct summands modulo standard submodules.

Similarly the following two conditions are equivalent:
3) M_{i} is M_{j}-projective for all $i \neq j$.
4) M has the lifting property of direct sums modulo standard submodules, (cf. [15], § 4).

Proof. 1) $\rightarrow 2$). This is clear from Theorem 1 and Proposition 1.
$2) \rightarrow 1$). Put $M^{*}=M_{1} \oplus M_{2}$. We can show by routine work that M^{*} has the lifting property of indecomposable direct summands modulo standard submodules, since so does M. Let X be a non-small submodule of M^{*}. Then $\pi_{1} \mid X$ or $\pi_{2} \mid X$ is an epimorphism, where $\pi_{i}: M^{*} \rightarrow M_{i}$ is the projection, say $\pi_{1} \mid X$. Then $X /\left(X_{(1)} \oplus X_{(2)}\right)$ is a graph of $M_{1} / X_{(1)}$ in $M^{*} /\left(X_{(1)} \oplus X_{(2)}\right)$ provided $X_{(1)} \neq M_{1}$, where $X_{(i)}=X \cap M_{i}$, and hence a direct summand of $M^{*} /\left(X_{(1)} \oplus X_{(2)}\right)$. Further $X /\left(X_{(1)} \oplus X_{(2)}\right)$ is indecomposable, and $X /\left(X_{(1)} \oplus X_{(2)}\right)$ is lifted to a direct summand X^{\prime} of M^{*} by assumption. Hence $X^{\prime} \subset X$. If $X_{(1)}=M_{1}, M_{1} \subset X$. Accordingly M^{*} is lifting, and hence M_{1} and M_{2} are mutually almost relative projective by Theorem 1.
3) $\rightarrow 4$) First assume that M_{1}, M_{2} are mutually relative projective and $M=$ $M_{1} \oplus M_{2}$. Put $\tilde{M}=M /\left(N_{1} \oplus N_{2}\right)$. Let C be any submodule in M. We denote $\left(C+\left(N_{1} \oplus N_{2}\right)\right) /\left(N_{1} \oplus N_{2}\right)$ by $\tilde{C}(\subset \tilde{M})$. It is clear that $\tilde{M}=\tilde{M}_{1} \oplus \tilde{M}_{2}$ and $\tilde{M}_{i} \approx$ M_{i} / N_{i}. Let $\tilde{M}=A \oplus B$. We note that if an R-module L is a finite direct sum of le modules L_{i}, every non-zero indecomposable direct summand of L is given by a graph of some L_{i} (see [7], Proposition 6.3.3). Since M_{i} / N_{i} is an le
module by assumption, we can assume $A=\tilde{M}_{1}\left(\tilde{f}_{1}\right) ; \tilde{f}_{1}: \tilde{M}_{1} \rightarrow \tilde{M}_{2}$. Then there exists a decomposition $M=M_{1}\left(f_{1}\right) \oplus M_{2}$, where f_{1} is a lifted one of \tilde{f}_{1}. Clearly $\widetilde{M_{1}\left(f_{1}\right)}=A$. Since $\tilde{M}\left(=\tilde{M}_{1}\left(\tilde{f}_{1}\right) \oplus \tilde{M}_{2}\right)=A \oplus \tilde{M}_{2}=A \oplus B, \quad B=\tilde{M}_{2}\left(\tilde{f}_{2}\right) ; \tilde{f}_{2}: \tilde{M}_{2} \rightarrow A=$ $\widetilde{M_{1}\left(f_{1}\right)} \approx M_{1}\left(f_{1}\right) /\left(M_{1}\left(f_{1}\right) \cap\left(N_{1} \oplus N_{2}\right)\right)$, (take the projection of \tilde{M} onto $\left.\tilde{M}_{2}\right)$. Hence there exists $f_{2}: M_{2} \rightarrow M_{1}\left(f_{1}\right)$ and $\widetilde{M_{2}\left(f_{2}\right)}=B$. Therefore $M=M_{1}\left(f_{1}\right) \oplus M_{2}\left(f_{2}\right)$ is the desired decomposition. Finally we study in a general case. Let $\tilde{M}=\sum_{i=1}^{n}$ $\oplus M_{i} / N_{i}=\sum_{i=1}^{m} \oplus A_{i}$. Since M_{i} / N_{i} is an le module, the A_{i} is a direct sum of hollow modules by Krull-Schmidt's theorem. Hence we may assume that all A_{\imath} are hollow. Without loss of generality we can put $A_{1}=\tilde{M}_{1}\left(\tilde{f}_{1}\right) ; \tilde{f}_{1}: \tilde{M}_{1} \rightarrow \sum_{i \geq 2}$ $\oplus \tilde{M}_{i}$, and $\tilde{M}=A_{1} \oplus \Sigma_{i<2} \oplus \tilde{M}_{i}=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$. Let ρ be the projection of \tilde{M} onto $\Sigma_{i \geq 2} \oplus \tilde{M}_{i}$ on the first decomposition of the above. Since $\rho \mid\left(A_{2} \oplus \cdots \oplus A_{n}\right)$ is an isomorphism onto $\sum_{i \geq 2} \oplus \tilde{M}_{i}$, there exists, from the above remark, a projection $\theta_{j}: \sum_{i \geq 2} \oplus \tilde{M}_{i} \rightarrow \tilde{M}_{j}$ such that $\theta_{j} \rho \mid A_{2}$ is an isomorphism, say $j=2$, whence $A_{2}=\tilde{M}_{2}\left(\tilde{f}_{2}\right) ; \tilde{f}_{2}: \tilde{M}_{2} \rightarrow \tilde{M}_{1}\left(\tilde{f}_{1}\right) \oplus \tilde{M}_{3} \oplus \cdots \oplus \tilde{M}_{n}$. Similarly $A_{i}=\tilde{M}_{i}\left(\tilde{f}_{i}\right)$ with $\tilde{f}_{i}: \tilde{M}_{i} \rightarrow$ $\tilde{M}_{1}\left(\tilde{f}_{1}\right) \oplus \cdots \oplus \tilde{M}_{i-1}\left(\tilde{f}_{i-1}\right) \oplus \tilde{M}_{i} \oplus \cdots \oplus \tilde{M}_{n}$. By virtue of Azumaya's theorem [3] we can apply the initial argument to those decompositions and obtain finally a lifted direct decomposition $M=\Sigma \oplus M_{i}\left(f_{i}\right)$.
4) $\rightarrow 3$) It is clear that if $M=\sum_{i=1}^{n} \oplus M_{i}$ satisfies 4), then so does $M_{1} \oplus M_{2}$. Let $\tilde{f}: M_{1} \rightarrow M_{2} / N_{2}$ be a homomorphism $\left(N_{2} \subset M_{2}\right)$. Then $\tilde{M}=M_{1} \oplus M_{2} / N_{2}=M_{1}(\tilde{f})$ $\oplus M_{2} / N_{2}$ is lifted to $M=T_{1} \oplus T_{2}$ such that $\tilde{T}_{1}=M_{1}(\tilde{f})$ and $\tilde{T}_{2}=M_{2} / N_{2}$. Let $\rho: M \rightarrow T_{1}$ and $\pi_{2}: M \rightarrow M_{2}$ be the projections. Then $\pi_{2} \rho \mid M_{1}$ is a lifted one of \tilde{f} (see the proof of [8], Theorem 2). Hence M_{1} is M_{2}-projective.

Next we shall give some criterion of almost relative projectivity for two hollow (local) modules. Let e be a local idempotent, i.e., $e R$ is hollow. Let A and B be R-submodules in $e R$. We note that any element in $\operatorname{Hom}_{R}(e R / A, e R / B)$ is given by $x_{l}(x \in e R e)$, the left-sided multiplication of x.

From the definition and a fact: $(e R / A) / J(e R / e A)) \approx e R / e J$ we have
Lemma 5. Assume that $e R / A$ is almost $e R / B$-projective. Then for any unit u in eRe there exists a unit x such that $x A \subset B$ and $x \equiv u(\bmod$ efe) or $x B \subset A$ and $u^{-1} \equiv x(\bmod e J e)$.

LEmma 6. Let M be an indecomposable R-module and assume that $e R / A$ is almost M-projective, and take a non-epic homomorphism f of eR to M. Then $f(A)$ $=0$ ([11]; [7], Theorem 5.4.11).

Proof. Consider a derived diagram from f :

Since \bar{f} is not epic, \tilde{h} is same. Hence there exists $h: e R / A \rightarrow M$ with $\nu \tilde{h}=\bar{f}$ by assumption. Let $\rho: e R \rightarrow e R / A$ be the natural epimorphism and put $h=\tilde{h} \rho: e R$ $\rightarrow M$. Since $\nu \tilde{h}=\bar{f}$,

$$
\nu f(e)=\bar{f}(e+A)=\nu \tilde{h}(e+A)=v \tilde{h} \rho(e)=\nu h(e),
$$

Hence

$$
\begin{equation*}
f(e)-h(e)=f(a) \quad \text { for some } a \text { in } A . \tag{7}
\end{equation*}
$$

Now $0=h(a)=h(e) a=f(a)-f(a) a=f(a)(1-a)$ from (7). Hence, $f(a)=0$ for $a \in A \subset e J$, and so $f(A)=f(e) A=h(e) A=h(A)=0$ from (7).

Proposition 2. Let e and e^{\prime} be local idempotents. Then

1) $e R / A$ is $e^{\prime} R / B$-projective if and only if $e^{\prime} R e A \subset B$. If $e \neq e^{\prime}, e R / A$ is $e^{\prime} R / B$-projective if and only if $e R / A$ is almost $e^{\prime} R / B$-projective.
2) If $e R / A$ is almost $e R / B$-projective, eJe $A \subset B$.
3) $e R / A$ and $e R / B$ are mutually almost relative projective if and only if $e J e A \subset B, e J e B \subset A$ and for any unit element u in $e R e, u A \subset B$ or $B \subset u A$. In particular $A \subset B$ or $B \subset A$.

Proof. 1) is clear from [1], p. 22, Exercise 4 and 2) is clear from Lemma 6.
3) (This is the same argument given in [10]). Assume that $e R / A$ and $e R / B$ are mutually almost relative projective. Then $e J e A \subset B$ and $e J B \subset A$ from 2). First assume that $e R / B$ is almost $e R / A$-projective. Let u be any unit in $e R e$. Then by Lemma 5 there exists j in $e J e$ (resp. j^{\prime}) such that
a) $(u+j) A \subset B \quad$ or
b) $\left(u^{-1}+j^{\prime}\right) B \subset A$.
a): $u A=((u+j)-j) A \subset(u+j) A+j A \subset B$ since $e J e A \subset B$. We obtain similarly $u^{-1} B \subset A$ in case b).

The converse is clear from definition and the initial remark before Lemma 5 .
Let R be a right artinian (basic) ring and $\left\{e_{i}\right\}_{i=1}^{n}$ a complete set of mutually orthogonal primitive idempotents. Then every hollow module is of a form $e_{i} R / A$. Take an R-module M which is a direct sum of hollow modules:

$$
\begin{align*}
& M=\sum_{i} \Sigma_{n(i j) \in I_{i}} \oplus\left(e_{i} R / A_{i j}\right)^{(n(i j))} ; e_{i} R / A_{i j} \not \not \not e_{i}, R / A_{i^{\prime} j^{\prime}} \text { if }(i, j) \tag{8}\\
& \neq\left(i^{\prime} j^{\prime}\right) \text { (and } n(i j) \neq 0, \text { which may be infinite, for all } i \text { and } j \text {), }
\end{align*}
$$

where $K^{(n(i j))}$ is the direct sum of $n(i j)$-copies of K.
If M is lifting, then from Theorem 2 and Proposition 2, we obtain,
i) $\left|I_{i}\right|=n_{i}<\infty$ for all i.

After changing induces
ii) If $n_{i} \geqq 2$

$$
\begin{align*}
& e_{i} R \supset A_{i 1} \supset R_{i} A_{i 2} \supset A_{i 2} \supset \cdots \supset R_{i} A_{i n_{i}} \supset A_{i n_{i}} \supset \tag{9}\\
& \sum_{k=1}^{n} e_{i} \int e_{k} A_{k 1}, \quad \text { where } R_{i}=e_{i} R e_{i} .
\end{align*}
$$

If $n_{i}=1, e_{i} R \supset A_{i 1} \supset \sum_{k \neq i} e_{i} J e_{k} A_{k 1}$.
iii) If $n(i j) \geqq 2, A_{i j}$ is characteristic.

Thus we obtain from Theorem 2 and [8], Corollary to Theorem 4
Theorem 3. Let R be a right artinian ring and M an R-module. Then the following are equivalent:

1) M is lifting.
2) M is a direct sum of hollow modules as in (8), which satisfy (9).

3. Almost injectives.

Following [4] we recall the definition of almost V-injectives and study some properties of them.

Let V and U be R-modules and $V \supset V^{\prime}$. Consider the following diagram with i the inclusion and two conditions 1) and 2):

1) There exists $\tilde{h}: V \rightarrow U$ such that $\tilde{h} i=h$ or
2) There exist a non-zero direct summand V_{0} of V and $\tilde{h}: U \rightarrow V_{0}$ such that $\tilde{h} h=\pi i$, where $\pi: V \rightarrow V_{0}$ is the projection of V onto $V_{0} . \quad U$ is called almost V-injective if the above 1) or 2) holds for any submodule V^{\prime} of V and any $h: V^{\prime} \rightarrow U$ (U is called M-iniective if we have only 1) [3]).

The following lemma is dual to a special case of Theorem 1.
Lemma 8. Let U_{1} and U_{2} be le and uniform modules and $U=U_{1} \oplus U_{2}$. Then the following are equivalent:

1) U is extending.
2) U_{1} and U_{2} are mutually almost relative injective.

Proof. 1) $\rightarrow 2$). Let V be a submodule in $U=U_{1} \oplus U_{2}$. We may assume that V is uniform. Let π_{i} be the projection of U onto U_{i}. Since V is uniform, $V=U_{i}^{\prime}\left(f_{i}\right)$ ($i=1$ or 2), where $U_{i}^{\prime}=\pi_{i}(V)$ and $f_{i}: U_{i}^{\prime} \rightarrow U_{j}^{\prime}(j \neq i)$. Assume $V=$ $U_{1}^{\prime}\left(f_{1}\right)$ and take a diagram

Then since the U_{i} are indecomposable, there exists $\tilde{f}_{1}: U_{1} \rightarrow U_{2}$ or $U_{2} \rightarrow U_{1}$ with $\tilde{f}_{1} f_{1}=i$ or $\tilde{f}_{1} i=f_{1}$ by 2). Hence $V=U_{1}^{\prime}\left(f_{1}\right) \subset U_{1}\left(\tilde{f}_{1}\right)$ or $V \subset U_{2}\left(\tilde{f}_{1}\right)$, which is a direct summand of U.
$1) \rightarrow 2$). Consider the above diagram and define $U^{\prime}=U_{1}^{\prime}\left(f_{1}\right)$ in $U_{1} \oplus U_{2}$. Since U^{\prime} is uniform, there exists a decomposition $U=V_{1} \oplus V_{2}$ and $V_{1} \supset U^{\prime}$. Since V_{1} has the exchange property, $U=V_{1} \oplus U_{1}$ or $=V_{1} \oplus U_{2}$. If the latter case occurs, $\tilde{h}=\pi_{2}^{\prime} \mid U_{1}$ is a desired homomorphism, where $\pi_{2}^{\prime}: U \rightarrow U_{2}$. We obtain a similar result for the former (note, in this case, that f_{1} is a monomorphism).

The following theorem is the dual to Theorem 1, which is essentially given in [14].

Theorem 4. Let $\left\{U_{a}\right\}_{I}$ be a set of le uniform modules and $U=\Sigma_{I} \oplus U_{a}$. Assume that $\left\{U_{a}\right\}_{I}$ is 1sTn. Then the following are equivalent:

1) U is extending.
2) U_{a} is almost U_{b}-injective for all $a \neq b$.

Proof. 1) $\rightarrow 2$). It is clear from Lemma 8,
$2) \rightarrow 1$). (Essentially due to [14]) $U=\Sigma_{I} \oplus U_{a}$ satisfies ($1-C_{1}$) (i. e., N is uniform in C_{1}) by Lemma 8 and [14], Lemma 11, and so every closed submodule A in U contains a non-zero indecomposable direct summand X of U by [14], Proposition 6. Hence we can define a non-empty set \boldsymbol{F} of direct sums of uniform modules in U as follows: $\boldsymbol{F}=\left\{\Sigma_{c^{\prime}} \oplus X_{c^{\prime}} \mid \subset A, X_{c^{\prime}}\right.$ is uniform and $\Sigma_{c^{\prime}} \oplus X_{c^{\prime}}$ is a locally direct summand of $\left.U\right\}$. We can find a maximal member $\Sigma_{c} \oplus X_{c}$ in \boldsymbol{F} by Zorn's lemma. Since $\left\{U_{a}\right\}$ is is $\mathrm{Tn}, \Sigma_{c} \oplus X_{c}$ is a direct summand of U by [7], Theorem 7.3.15, say $U=\left(\Sigma_{c} \oplus X_{c}\right) \oplus U^{\prime}$ and $A=\left(\Sigma_{c} \oplus X_{c}\right)$ $\oplus U^{\prime} \cap A$. It is clear that $U^{\prime} \cap A$ is also closed in U. Hence $U^{\prime} \cap A=0$ by the maximality of $\Sigma_{c} \oplus X_{c}$. Therefore U is extending.

We consider a result similar to Lemma 3 for extending modules.
Proposition 3. Let $U=\Sigma \oplus U_{a}$ be as above. Assume that U is extending. Then there do not exist any infinite sets $\left\{U_{1} \xrightarrow{f_{1}} U_{2} \xrightarrow{f_{2}} U_{n} \xrightarrow{f_{n}} \cdots\right.$; the f_{i} are monomorphisms but not isomorphisms\}.

Proof. Let $\left\{f_{i}: U_{i} \rightarrow U_{i+1}\right\}$ be a set of non-isomorphisms and put $U^{*}=$ $\Sigma \oplus U_{i}\left(f_{i}\right) \subset \Sigma \oplus U_{i}$. Then we obtain a decomposition $U^{\prime}\left(=\Sigma \oplus U_{i}\right)=X \oplus Y$ and $U^{*} \subset^{\prime} X$, i. e. U^{*} is essential in X. Since $\bar{i}_{*}: U^{*} \rightarrow U^{\prime}$ is an isomorphism in $\boldsymbol{A} / \boldsymbol{J}^{\prime}$, $Y=0$ (see the proof of Lemma 3). Hence $U^{*} \subset^{\prime} U^{\prime}$, and so $U_{1} \cap U^{*} \neq 0$. If we use this argument for the case where all f_{i} are monomorphisms, we know that $\left\{f_{i}\right\}$ must be finite.

Example. R_{1} (resp. R_{2}) is the ring of upper (lower) triangular matrices over a field K with infinite degree. Let $e_{i}=e_{i i}$ be matrix units. Then $e_{k} R_{i}$ is almost $e_{s} R_{i}$-projective and almost $e_{s} R_{i}$-injective for any k, s and a fixed $i=1$ or 2 , and further $\sum_{k} \bigoplus e_{k} R_{1}$ is lifting and extending by Theorems 2 and 4. On the other hand $e_{k} R_{2}$ is almost $\Sigma_{j \neq k} \oplus e_{j} R_{2}$-projective and almost $\Sigma_{j \neq k} \oplus e_{j} R_{2}$ injective (cf. [4], Theorem) for all k, however $\sum_{i} \oplus e_{i} R_{2}$ is neither lifting nor extending by Lemma 3 and Proposition 3, since we have an infinite chain of submodules; $e_{1} R_{2} \subset e_{2} R_{2} \subset \cdots \subset e_{n} R_{2} \subset \cdots$. Further $e_{1} R_{2}$ is always almost $\sum_{i z 2} \oplus$ $e_{i} R_{2}$-injective for any n, but $e_{1} R_{2}$ is not almost $\sum_{i z 2} \oplus e_{i} R_{2}$-injective. Because, we assume that $e_{1} R$ were almost $\sum_{i i_{2}} \oplus e_{i} R$-injective, where $R=R_{2}$. Put $U=$ $\sum_{i z 2} \oplus e_{i} R$. Then $\operatorname{Soc}(U)=\sum_{i \geqq 2} \oplus e_{i} R e_{1}$ and $e_{i} R e_{1} \approx e_{1} R_{1}=e_{1} R$ as R-modules. Take a diagram:

where f is given by the above isomorphisms. Since $\operatorname{Hom}_{R}\left(e_{i} R, e_{1} R\right)=0$ for $i \geqq 2$, we should have a decomposition $U=A \oplus B$ and $\tilde{h}: e_{1} R \rightarrow A$ such that $\tilde{h} f=\pi_{A} i$ with $\pi_{A}: U \rightarrow A$. Further $\operatorname{Soc}(U)=\operatorname{Soc}(A) \oplus \operatorname{Soc}(B)$ and $\pi_{A} \mid \operatorname{Soc}(A)=1_{\operatorname{Soc}(A)}$. Hence $\tilde{h} f=\pi_{A}{ }^{i}$ implies that $\operatorname{Soc}(A)$ is simple, and so A is indecomposable and B is a direct sum of indecomposable modules $B_{j}(j \geqq 2)$ by [7], Theorem 8.3.3. Accordingly we may assume that $A=e_{n_{1}} R\left(f_{1}\right) ; f_{1}: e_{n_{1}} R \rightarrow \Sigma_{k \neq n_{1}} \oplus e_{k} R$ and $B_{j}=$ $e_{n_{j}} R\left(f_{j}\right) ; f_{j}: e_{n_{j}} R \rightarrow \sum_{k \neq n_{j}} \oplus e_{k} R$. Since $e_{i} R \not \not \not e_{j} R$ if $i \neq j, n_{i} \neq n_{j}$ by Krull-Remark-Schmidt-Azumaya's theorem. Hence we can assume that $A=e_{n} R\left(f_{n}\right)$ for some n and $B_{j}=e_{j} R\left(f_{j}\right)\left(j \neq n\right.$ and $\left.B_{n}=e_{2} R\left(f_{2}\right)\right) ; n$ may be 2. Since $\operatorname{Hom}_{R}\left(e_{i} R, e_{j} R\right)$
$=0$ for $i>j$, we know $e_{n+1} R \subset \Sigma_{j \geqq n+1} \oplus B_{j} \subset B$ from the structure of B_{j}. $\tilde{h} f\left(e_{n+1} R e_{1}\right)=\tilde{h}\left(e_{1} R e_{1}\right) \neq 0$ since $e_{1} R=e_{1} R e_{1}$ is simple and $\operatorname{Soc}(A) \subset \operatorname{Soc}(U)=\sum_{i \gtrless 2}$ $\oplus e_{i} R e_{1}$, while $\tilde{h} f\left(e_{n+1} R e_{1}\right)=\pi_{A}\left(e_{n+1} R e_{1}\right) \subset \pi_{A}(B)=0$, a contradiction.

4. Extending property.

We shall consider a dual concept to §2 (cf. [6] and [16]). Let $U \supset V$ be R-modules. Take a direct summand V_{1} of V, i.e., $V=V_{1} \oplus V_{2}$. If U has a decomposition $U=U_{1} \oplus U_{2}$ such that $U_{1} \cap V=V_{1}$, we say that V_{1} is extendible to U_{1}. If, for any submodule V, every direct summand of V is extendible to a direct summand of U, we say that U has the extending property of direct summands. If U has a decomposition $U=U_{1} \oplus U_{2}$ such that $V_{i}=V \cap U_{i}(i=1,2)$ for all V and V_{i}, we say that U has the extending property of direct sums.

The following results are dual to ones in $\S 2$. Hence we shall skip proofs except Lemma 9 below.

In order to show a difference between U-injectives and almost U-injectives, we shall give the dual to corollary to Proposition 1.

Proposition 4. Let $\left\{U_{i}\right\}_{i \in 1}$ be a set of le and uniform modules and $U=$ $\sum_{i=1}^{n} \oplus U_{i}$. Then the following are equivalent:

1) U_{i} is almost U_{j}-injective for all $i \neq j$.
2) U has the extending property of direct summands.

Further the following are equivalent:
3) U_{i} is U_{j}-injective for all $i \neq j$.
4) U has the extending property of direct sums.

Let E be an indecomposable and injective module and $T=\operatorname{End}_{R}(E)$. Then T is a local ring with radical $=\left\{f \mid \in T\right.$, $\left.\operatorname{ker} f \subset^{\prime} E\right\}$ (see, [12] and [7], Proposition 5.4.9). Let U_{1} and U_{2} be uniform modules and $E_{i}=E\left(U_{i}\right)$. It is clear from the definition that if $E_{1} \not \neq E_{2}, U_{1}$ is almost U_{2}-injective if and only if U_{1} is U_{2} injective.

Dually to Lemma 6 we have
Lemma 9 ([12]; [7], Theorem 5.4.2). Let U_{1} and U_{2} be uniform modules and E_{i} an injective hull of U_{i} for $i=1,2$. Assume that U_{1} is almost U_{2}-injective. Let f be not a monomorphism of E_{2} to E_{1}. Then $f\left(U_{2}\right) \subset U_{1}$.

Proof. Put $U=f^{-1}\left(U_{1}\right) \cap U_{2}$, and take a diagram:

Since $f^{-1}(0) \cap U \neq 0$, there exists $g: U_{2} \rightarrow U_{1}$ such that $g|U=f| U$ by assumption. We may assume that g is an element in $\operatorname{Hom}_{R}\left(E_{2}, E_{1}\right)$. If $(f-g)\left(U_{2}\right) \neq 0$, then since $E_{1}^{\prime} \supset U$, there exist $u_{1} \neq 0 \in U_{1}, u_{2} \in U_{2}$ such that $(f-g)\left(u_{2}\right)=u_{1}$. However $g\left(u_{2}\right) \in U_{1}$, and so $u_{2} \in U_{2} \cap f^{-1}\left(U_{1}\right)=U$. Therefore $(f-g)\left(u_{2}\right)=0$, a contradiction. Hence $f\left(U_{2}\right)=g\left(U_{2}\right) \subset U_{1}$.

Finally we exhibit the following proposition dual to Proposition 2.
Proposition 5. Let E be an indecomposable and injective module and U_{1}, U_{2} submodules of E. Then

1) If U_{1} is almost U_{2}-injective, $J(T) U_{2} \subset U_{1}$.
2) U_{1} and U_{2} are mutually almost injective if and only if $J(T) U_{1} \subset U_{2}$, $J(T) U_{2} \subset U_{1}$ and for any unit f in $T, f\left(U_{1}\right) \subset U_{2}$ or $U_{2} \subset f\left(U_{1}\right)$, where $T=\operatorname{End}_{R}(E)$.

Proof. We can prove the proposition by virtue of Lemma 9 and its proof.
If either U_{1} or U_{2} has finite length, for every unit f we have only a fixed side of $f\left(U_{1}\right) \subset U_{2}$ and $U_{2} \subset f\left(U_{1}\right)$ in 2). While let Z_{p} be a local ring over the ring of integers Z, where p is prime. Then $\left(p^{n}\right)$ and Z_{p} are mutually almost injective. For units 1 and $p^{-(n+1)}$ in $Q=\operatorname{End}_{z_{p}}(Q), Z_{p} \subset p^{-(n+1)}\left(p^{n}\right)$ and $\left(p^{n}\right) \subset$ $1 \cdot Z_{p}$.

References

[1] Albu T. and Nastasescu, C., Relative finiteness in module theory, Monographs Textbooks Pure Appl. Math. 84, Marcel Dekker, Inc. New York and Basel.
[2] Anderson, F.W. and Fuller, K. R., Rings and categories of modules, Graduate Texts in Math. 13, Springer-Verlag, New York and Heidelberg, Berlin.
[3] Azumaya, G. Mbuntum, F. and Varadarajan, K., On M-projective and M-injective modules, Pacific J. Math. 59 (1975), 9-16.
[4] Baba, Y., Note on almost M-injectives, Osaka J. Math. 26 (1989), 685-698.
[5] Harada, M., Uniserial rings and lifting properties, Osaka J. Math. 19 (1982), 217229.
[6] -, Modules with extending properties, Osaka J. Math. 19 (1982), 203-215.
[7] -, Factor categories with applications to direct decomposition of modules, Lecture Note on Pure and Appl. Math. 88 (1983). Marcel Dekker inc., New York and Basel.
[8] ——, Modules with lifting properties, Osaka J. Math. 19 (1982), 189-201.
[9] and Tozaki, A., Almost M-projectives and Nakayama rings, J. Algebra

122 (1989), 447-474.
[10] _- and Mabuchi, T., On almost M-projectives, Osaka J. Math. 26 (1989), 837848.
[11] Jans, J.P. and Wu, L. E., Quasi-projectives, Illinois J. Math. 11 (1967), 439-448.
[12] Johnson, R.E. and Wong, E. T., Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268.
[13] Mueller B. J. and Mohamed, S., D-continuous modules over commutative noetherian rings, to appear.
[14] and Kamal, M. A., The structure of extending modules over noetherian rings, Osaka J. Math. 25 (1988), 539-551.
[15] Oshiro, K., Semiperfect modules and quasi-semiperfect modules, Osaka J. Math. 20 (1983), 33-372.
[16] -, Continuous modules and quasi-continuous modules, Osaka J. Math. 20 (1983), 681-694.

Department of Mathematics
Yamaguchi University
Yamaguchi, Japan
and
Department of Mathematics
Osaka City University
Osaka, Japan

