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We have defined aconcept of almost M-projectives and almost M-injectives

in [4] and [9], respectively. In the first section of this paper we give some
relations among lifting modules, mutually almost relative projectivity and locally

semi-T-nilpotency. After giving a criterion of mutually almost relative projec-
tivity between two hollow modules in the second section, we give a characteri-
zation of lifting modules over a right artinian ring. Further we show a dif-

ference between M-projectives and almost M-projectives. Those dual properties

are gives in the third and fourth sections with sketch of proofs.
We shall give several characterizations of right Nakayama (resp. right co-

Nakayama) rings in terms of almost relative projectives (resp. almost relative
injectives) in forthcoming papers (cf. [9]).

1. Almost projectives.

Throughout this paper $R$ is an associative ring with identity. Every module
$M$ is a unitary right R-module. Let $M$ be an R-module and $K$ a submodule of
$M$. If $M\neq M^{\prime}+K$ for any proper submodule $M^{\prime}$ of $M$, then $K$ is called a small
submodule in $M$. If $K\cap K^{\prime}\neq 0$ for every non-zero submodule $K^{\prime}$ of $M$, we say

that $K$ is an essential submodule of $M$. If every proper submodule of $M$ is
always small in $M,$ $M$ is called a hollow module and we dually call $M$ a uniform
module, provided every non-zero submodule is essential in $M$. If $End_{R}(M)$ , the
ring of endomorphisms of $M$, is a local ring, $M$ is called an le module. By

$J(M)$ and Soc $(M)$ we denote the Jacobson radical and the socle of $M$, respec-
tively and $|M|$ is the length of $M$.

Following K. Oshiro [15] and [16] we define a lifting (resp. extending)

module. If for any submodule $N$ of $M$, there exists a direct decomposition $M=$

$M_{1}\oplus M_{2}$ such that
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$(D_{1})$ $N\supset M_{1}$ and $N\cap M_{2}$ is small in $M_{2}$ (and hence in $M$ )

(resp. $(C_{1})M_{1}\supset N$ and $N$ is essential in $M_{1}$ ),

then $M$ is called a lifting (resp. extending) module. If $M$ is a lifting (resp. ex-
tending) module with $|M|<\infty,$ $M$ is a direct sum of le hollow (resp. uniform)

modules from the definition. Hence we shall study, in this paper, a lifting
(resp. extending) module which is a direct sum of le and hollow (resp. uniform)

modules.
We shall recall notations given in [9]. Let there be given a direct decom-

position $M=M_{1}\oplus M_{2}$ , and let $\pi_{1}$ : $M\rightarrow M_{1}$ and $\pi_{2}$ : $M\rightarrow M_{2}$ be the projectives. We
shall use the following facts:

(i) Let $f$ : $M_{1}\rightarrow M_{2}$ be a homomorphism. Define $M_{1}(f)=\{x+f(x)|x\in M_{1}\}$ .
Then $M_{1}(f)$ is a submodule of $M$ isomorphic to $M_{1}$ and $M=M_{1}(f)\oplus M_{2}$ .

(ii) Let $N_{1},$ $N$ ‘, $N_{2}$ and $N^{2}$ be submodules of $M$ such that $N_{i}\subset N^{i}\subset M_{i}$ for
$i=1,2$ and let there exist an isomorphism $h:N^{1}/N_{1}\rightarrow N^{2}/N_{2}$ . We shall often
consider $h$ as a homomorphism $N^{1}\rightarrow N^{2}/N_{2}$ in the natural manner, so that $N_{1}$

is the kernel of $h$ . Let $N=$ { $x+y|x\in N^{1},$ $y\in N^{2}$ and $y+N_{2}=h(x)$}. Then, as
is easily seen, $N$ is a submodule of $M$ and $\pi_{1}(N)=N^{1},$ $\pi_{2}(N)=N^{2}$ . Further
$N\cap M_{i}=N_{i}$ for $i=1,2$ . We shall denote this $N$ by

(1) $N^{1}(h)N^{2}$ .
(iii) Let $N$ be any submodule of $M$. Put $N_{(i)}=M_{t}\cap N$ and $\pi_{i}(N)=N^{i}$ for

$i=1,2$ . Then clearly $N_{(i)}\subset N^{i}\subset M_{i}$ for $i=1,2$ . Let $x\in N^{1}$ . Then there is a
$y\in N^{2}$ such that $x+y\in N$. Such a $y$ is not necessarily unique, but is unique
modulo $N_{2}$ . By associating $x+N_{(1)}$ with $y+N_{(2)}$ , we have an isomorphism
$h:N^{1}/N_{(1)}\rightarrow N^{2}/N_{(2)}$ . It is obvious that $N=N^{1}(h)N^{2}$ in the sense in (ii).

First we shall decompose a proof of Azumaya’s theorem [3] (see [2], Pro-
position 16.12) for an application to almost projectives, which is the dual ob-
servation of [4], Lemma 1.

Let $M_{1},$ $M_{2}$ and $N$ be R-modules. For a submodule $K$ of $M=M_{1}\oplus M_{2}$ , take
a diagram:

(2) $M=M_{1}\oplus M_{2}\underline{\nu}(M_{1}\oplus M_{2})/K-0$

$\uparrow h$

$N$

Let $\pi_{i}$ ; $M\rightarrow M_{i}$ be the projection for $i=1,2$ . Put $K^{i}=\pi_{i}(K),$ $K_{(i)}=K\cap M_{i}$ and
$K=K^{1}(f)K^{2}$ from (1), where $f:K$ $‘/K_{(1)}\rightarrow K^{2}/K_{(2)}$ . Since $K\subset K^{1}\oplus K^{2}$ , there
exists the natural epimorphism $\nu^{\prime}$ ; $M/K\rightarrow M/(K^{1}\oplus K^{2})\approx M_{1}/K^{1}\oplus M_{2}/K^{2}$ . By $\overline{\pi}_{i}$
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we denote the projection onto $M_{i}/K^{i}$ in the last decomposition of $M/(K^{1}\oplus K^{2})$

and we put $\nu_{i}^{\prime}=\overline{\pi}_{i}\nu^{\prime}$ for $l=1,2$ . We note that $\nu^{\prime}=\nu_{1}^{\prime}+\nu_{2}^{\prime}$ and $\nu_{i}^{\prime}\nu|M_{i}$ is nothing
but the natural epimorphism $\nu_{i}$ of $M_{i}$ onto $M_{i}/K^{i}$ . Further $ker\nu^{\prime}=(K^{1}\oplus K^{2})/K$

$\approx((K^{1}\oplus K^{2})/(K_{(1)}\oplus K_{(2)}))/(K/(K_{(1)}\oplus K_{(2)}))$ . While $(K^{1}\oplus K^{2})/(K_{(1)}\oplus K_{(2)})\approx K^{1}/K_{(1)}$

$\oplus K^{2}/K_{(2)}$ and $K/(K_{(1)}\oplus K_{(2)})=(K^{1}(f)K^{2})/(K_{(1)}\oplus K_{(2)})=K^{1}/K_{(1)}(f)=K^{2}/K_{(2)}(f^{-1})$ ,
(which is a graph in $(K^{1}\oplus K^{2})/(K_{(1)}\oplus K_{(2)})\subset M_{1}/K_{(1)}\oplus M_{2}/K_{(2)}$ ). Hence $ker\nu^{\prime}\approx$

$\approx K^{1}/K_{(1)}\approx K^{2}/K_{(2)}$ . Let $g$ be the canonical monomorphism of $M_{1}/K_{(1)}$ into
$M/K$. Then $g$ gives the above isomorphism: $K^{1}/K_{(1)}\rightarrow ker\nu^{\prime}$ , and we obtain
the commutative diagram:

$g|K^{1}/K_{(1)}$

$K^{1}/K_{(1)}-ker\nu^{\prime}$

$\downarrow i$ $\downarrow i^{\prime}$

$M_{1}/K_{(1)}\rightarrow^{g}M/K$ ,

where $i$ and $i^{\prime}$ are inclusions.
From those observations we obtain two diagrams:

(3)
$M_{1}\rightarrow M_{1}/K^{1},\nu_{1}^{\prime}\nu|M_{1}\uparrow\nu_{1}h\rightarrow 0$

$N$ ,

and

(3)
$M_{2}M_{2}/K^{2}\underline{\nu_{g}\nu|M_{2}}\rightarrow 0$

$\uparrow\nu_{2}^{\prime}h$

$N$ .
Here we assume that there exists $\tilde{h}_{j}$ : $N\rightarrow M_{j}$ such that $(\nu_{j}^{\prime}\nu|M_{j})\tilde{h}_{j}=\nu_{j}^{\prime}h$ for $j=1,2$ .
Put $t=\nu(\tilde{h}_{1}+\tilde{h}_{2})-h:N\rightarrow M/K$. Then $\nu^{\prime}t=\nu^{\prime}\nu(\tilde{h}_{1}+\tilde{h}_{2})-\nu^{\prime}h=\nu_{1}h+\nu_{2}^{\prime}h-\nu^{\prime}h=$

$(\nu^{\prime}-\nu^{\prime})h=0$ . Hence $t(N)\subset ker\nu^{\prime}$ . Put $g^{\prime}=(g|(K^{1}/K_{(1)}))^{-1}$ : $ker\nu^{\prime}\rightarrow K^{1}/K_{(1)}\subset$

$M_{1}/K_{(1)}$ . Since $\nu(M_{1})=g(M_{1}/K_{(1)}),$ $g^{-1}$ exists on $\nu(M_{1})$ . Thus we obtain a new
diagram:

$g^{-1}\nu|M_{1}$

(4) $M_{1}\rightarrow M_{1}/K_{1}\rightarrow 0$

$\uparrow g^{\prime}t$

$N$ .
Finally we assume in (4) that there exists $h_{1}^{*}$ : $N\rightarrow M_{1}$ such that $g^{-1}(\nu|M_{1})h^{\star_{1}}=g^{\prime}t$ ,
$i.e$ . $(\nu|M_{1})h_{1}^{*}=t$ by operating $g$ . Then
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$h=\nu(\tilde{h}_{1}+\tilde{h}_{2})-(\nu|M_{1})h^{*_{1}}=\nu((\tilde{h}_{1}-h_{1}^{*})+\hslash_{2})$ and
(5)

$(\tilde{h}_{1}-h_{1}^{*})+\tilde{h}_{2}$ : $N-M$ .
We recall the definition of almost M-projectives [9]. Let $M$ and $N$ be R-

modules. For any exact sequence with $K$ a submodule of $M$ :

$MM/K\underline{\nu}-0$

$\uparrow h$

$N$

if either there exists $\tilde{h}:N\rightarrow M$ with $\nu\tilde{h}=h$ or there exist a non-zero direct sum-
mand $M_{1}$ of $M$ and $\tilde{h}$ : $M_{1}\rightarrow N$ with $h\tilde{h}=\nu|M_{1},$ $N$ is called almost M-projective
(if we always obtain the first half, we say $N$ is M-projective [3]).

We note the following fact:

When $N$ is almost M-projective and $M$ is indecomposable,
$(\#)$ if the $h$ in the above diagram is not an epimorphism,

then there exists always an $\tilde{h}$ : $N\rightarrow M$ with $\nu\tilde{h}=h$ .
We frequently use this fact without any reference.

The following lemma is useful on almost projectives.

LEMMA 1. Let $M_{1},$ $M_{2},$
$\cdots,$

$M_{n}$ be hollow modules and $N$ an R-moddle. As-
sume that $N$ is almost $M_{i}$ -projective for all $i$ . Take a diagram with $K$ a sub-
module of $\sum\oplus M_{i}$ :

$\Sigma_{i=1}^{n}\oplus M_{i}(\sum\oplus M_{i})/K\underline{\nu}-0$

$\uparrow h$

$N$ .
If $h(N)$ is small in $(\sum\oplus M_{i})/K,$ $h$ is liftable to $\tilde{h}$ : $N\rightarrow\Sigma\oplus M_{i},$ $i$ . $e$ . $h=\nu\tilde{h}$ .

PROOF. We shall prove the lemma by induction on $n$ . If $n=1$ , it is clear
from the definition. We assume that the lemma holds true for $M^{*}=\Sigma_{j=2}^{n}\oplus M_{j}$

and put $M=M_{1}\oplus M*$ . Let $\pi_{i}$ be the projection of $M=\Sigma_{j=1}^{n}\oplus M_{j}$ onto $M_{i}$ . As-
sume first that $\pi_{1}(K)(=K^{1})=M_{1}$ . Put $\pi^{*}=\Sigma_{j\geq 2}\pi_{j}$ ; $M\rightarrow M^{*},$ $K^{*}=\pi^{*}(K),$ $K_{(1)}=$

$K\cap M_{1}$ and $K_{(*)}=K\cap M^{*}$ . Further set $\overline{M}=M/(K_{(1)}\oplus K_{(*)})\supset\overline{K}=K/(K_{(1)}\oplus K_{(*)})$ .
Since $K=K^{1}(h)K^{*}$ with $h:K^{1}/K_{(1)}\approx K^{*}/K_{(*)}$ from (1), we obtain $\overline{K}\subset M_{1}/K_{(1)}$

$\oplus M^{*}/K_{(*)}=(M_{1}/K_{(1)})(h)\oplus M^{*}/K_{(*)}=\overline{M}$ and $\overline{K}=(M_{1}/K_{(1)})(h)$ . Hence $ M^{*}/K_{(*)}\approx$

$\overline{M}/\overline{K}\approx M/K$, and by $\varphi$ we denote this isomorphism of $M^{*}/K_{(*)}$ onto $M/K$.
Accordingly we have a commutative diagram:
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$\nu^{*}$

$M^{*}\rightarrow M^{*}/K_{(*)}-0$

$\downarrow i$ $\downarrow\varphi$

$M$ – $M/K$ –0
$\uparrow h$

$N$ .

Since $\varphi$ is an isomorphism, by assumptions there exists $\tilde{h}^{*}:$ $N\rightarrow M^{*}$ such that
$\nu^{*}\tilde{h}^{*}=\varphi^{-1}h$ , and so $\nu(i\tilde{h}^{*})=\varphi\nu^{*}h^{*}=h$ . Hence $i\tilde{h}^{*}:$ $N\rightarrow M$ is the desired map.
Thus we can assume that $K^{1}\neq M_{1}$ . Since $h(N)is$ small in $M/K$, for $\nu_{i}^{\prime}h$ in the
diagrams (3) and (3), $\nu_{1}^{\prime}h(N)$ and $\nu_{2}^{\prime}h(N)$ are small in $M_{1}/K^{1}$ and $M^{*}/K^{*}$ ,

respectively. Hence by assumption and induction hypothesis, there exist
$\tilde{h}_{1}$ : $N\rightarrow M_{1}$ and $\tilde{h}^{*}:$ $N\rightarrow M^{*}$ , which make the diagrams (3) and (3’) commutative.
Let $t$ and $g^{\prime}$ be the mappings defined after (3’). Since $M_{1}$ is indecomposable,
$g^{\prime}t(N)\subset K^{1}/K_{(1)}$ and $K^{1}\neq M_{1}$ , there exists $\tilde{h}_{1}^{\prime}$ : $N\rightarrow M_{1}-$ which makes the diagram
(4) commutative. Therefore $h$ is liftable to $\tilde{h}$ : $N\rightarrow\sum\oplus M_{i}$ as is shown in (5).

By definition we have

LEMMA 2. Let $\{M_{a}\}_{I}$ be a set of almost M-projectives for a fixed R-module
M. Then $\sum_{I}\oplus M_{a}$ is almost M-projective.

We have given some relationships between lifting modules and almost pro-
jectives in [9]. We give here a simpler relation for a finite direct sum. This
is dual to [14], Theorem 12, however the proof is not, because we used injec-
tive hulls in [14], but we can not take here projective covers.

THEOREM 1. Let $\{M_{i}\}_{i1}^{n_{=}}$ be a set of le and hollow modules. Then the fol-
lowing are equivalent:

1) $M=\Sigma_{i=1}^{n}\oplus M_{i}$ is lifting.
2) $M_{i}$ is almost $M_{j}$-projective for any $i\neq j$ .
3) For any subset $J$ in $I=\{1,2, \cdots, n\}\Sigma_{j}\oplus M_{j}$ is almost $\sum_{I-J}\oplus M_{i^{-}}projec-$

tive.

PROOF. $1$ ) $\rightarrow 3$) $\rightarrow 2$ ). This is clear from the definition of almost projectives,
Lemma 2 and [9], Theorem 1”.

$2)\rightarrow 1)$ . If we can show that every non small submodule $N$ in $M$ contains
a non-zero direct summand of $M$ ( $i$ . $e.,$ $M$ satisfies $(1-D_{1})$ in [9]), then $M$ is
lifting by [9], Theorem 1”. In order to get the above fact, we shall show
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every non small submodule in $M$ contained in $ M_{1}^{\prime}\oplus M_{2}^{\prime}\oplus\cdots M_{k}^{\prime}\oplus T_{k+1}\oplus$

(6) $...\oplus T_{n}$ contains a non-zero direct summand of $M$, where $M=\sum_{i=1}^{n}\oplus M_{i}^{\prime}$

is any direct decomposition into indecomposable modules $M_{i}^{\prime}(\approx M_{i})$ ,

and the $T_{i}$ are small in $M_{i}^{\prime}$ for $i\geqq k+1$ .
We may assume $M_{i}^{\prime}=M_{i}$ in (6). If (6) is true for all $k$ , taking $k=n+1(M_{n+1}^{\prime}=$

$T_{n+1}=0)$ , we are done. Consider (6) with $k=1$ . Let $N$ be a non-small sub-
module contained in $M_{1}\oplus\sum_{i=2}^{n}\oplus T_{i}$ , and put $M^{*}=M_{2}\oplus M_{3}\oplus\cdots\oplus M_{n}$ . Let
$\pi_{1}$ : $M\rightarrow M_{1}$ and $\pi^{*};$ $M\rightarrow M^{*}$ be the projections. Since $N$ is not small in $M$

and the $T_{i}$ is small in $M_{i}$ for all $i\geqq 2$ , $\pi_{1}(N)=N^{1}=M_{1}$ . Then from (1) $N=$

$M_{1}(h)N^{*}$ , where $N^{*}=\pi^{*}(N)$ , $N_{(1)}=N\cap M_{1}$ , $N_{(*)}=N\cap M^{*}$ , and $ h:M_{1}/N_{(1)}\approx$

$N^{*}/N_{(*)}$ . Since $N^{*}\subset\sum_{i=2}^{n}\oplus T_{i},$ $N^{*}$ is small in $M^{*}$ and hence $N^{*}/N_{(*)}$ is small

in $M_{*}/N_{(*)}$ . From those datas we obtain the diagram:

$M^{*}=M_{2}\oplus M_{\theta}\oplus\cdots\oplus M_{n}M^{*}/N_{(*)}\underline{\nu}-0$

$\uparrow h$

$M_{1}/N_{(1)}$

$\uparrow\nu_{1}$

$M_{1}$

Since $M_{1}$ is almost $M_{j}$-projective for all $j\geqq 2$ by assumption and $h(M_{1}/N_{(1)})=$

$N^{*}/N_{(*)}$ is small in $M*/N_{(*)}$ , there exists $\tilde{h}$ : $N\rightarrow M^{*}$ with $\nu\tilde{h}=h\nu_{1}$ by Lemma

1. Hence $N$ contains $M_{1}(\tilde{h})$ a direct summand of $M$ (consider $ M/(N_{(1)}\oplus N_{(*)})\supset$

$N/(N_{(1)}\oplus N_{(*)})$ , cf. the proof of [9], Theorem 1). Assume that (6) is true for

all $k^{\prime}\leqq k$ and let $N\subset M_{1}\oplus\cdots\oplus M_{k+1}\oplus T_{k+2}\oplus\cdots\oplus T_{n}(k\geqq 1)$ . We may assume
$\pi_{1}(N)=M_{1}$ . Let $\rho$ be the projection of $M$ onto $M^{**}=M_{1}\oplus M_{2}$ . Since $\pi_{1}(N)=$

$M_{1},$ $\rho(N)$ is not small in $M^{**}$ . Then $M^{**}$ being lifting by [9], Theorem 1”,
$M^{**}=L_{1}\oplus L_{2}$ and $\rho(N)=L_{1}\oplus(L_{2}\cap\rho(N))$ with $L_{2}\cap\rho(N)$ small in $M^{**}$ . Since
$L_{i}$ is a direct sum of at most two direct summands, we put $L_{1}=M_{1}^{\prime\prime}\oplus M_{2}^{\prime\prime}$

$(M_{1}^{\prime\prime}\neq 0)$ , $L_{2}=M_{3}^{\prime\prime}$ , where $M_{k}^{\prime\prime}\approx one$ of $\{M_{1}, M_{2}, $(0) $\}$ . Then $ M=M^{**}\oplus M_{3}\oplus\cdots$

$\oplus M_{n}\supset M_{1}^{\prime\prime}\oplus M_{2}^{\prime\prime}\oplus M_{\$}^{\prime\prime}\oplus M_{s}\oplus\cdots\oplus M_{k+1}\oplus T_{k+2}\oplus\cdots\oplus T_{n}\supset N$. If $M_{2}^{\prime\prime}=0,$ $i$ . $e.,$ $L_{1}=$

$M_{1}^{\prime\prime}$ and $L_{2}=M_{3}^{\prime\prime},$ $N$ satisfies (6) by induction, since $\rho(N)=M_{1}^{\prime\prime}\oplus(M_{3}^{\prime\prime}\cap\rho(N))$ and
$M_{3}^{\prime\prime}\cap\rho(N)$ is small in $M_{3}^{\prime\prime}$ . Assume $M_{2}^{\prime\prime}\neq 0$ (and hence $M_{3}^{\prime\prime}=0$ ) $i$ . $e.,$ $\rho(N)=$

$M_{1}^{\prime\prime}\oplus M_{f}^{\prime\prime}=M^{**}$ . Let $\pi_{2}^{\prime\prime}$ be the projection of $M$ onto $M_{2}^{\prime\prime}$ . Since $\rho(N)=M^{**}$ ,

$N\cap\pi_{2}^{JJ-1}(0)$ is not small in $M$ and $ N\cap\pi_{2}^{;/- 1}(0)\subset M_{1}^{\prime\prime}\oplus 0\oplus M_{3}\oplus\cdots\oplus M_{k+1}\oplus T_{k+2}\oplus$

$...\oplus T_{n}$ . Hence $(N\supset)N\cap\pi_{2^{\prime-1}}^{\prime}(0)$ contains a non zero direct summand of $M$ by

assumption of induction. Therefore (6) is true for any $k$ , and so $N$ always

contains a non-zerO direct summand of $M$ .
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THEOREM 1 is not true if $\{M_{a}\}_{I}$ is an infinite set, even though $\{M_{a}\}_{I}$ is
locally semi T-nilpotent, which is given in [7], p. 174, and briefly $lsTn$ (see

example before Theorem 2 below). In [9], Theorem 1” the locally semi-T-
nilpotency is important. Concerning this fact we have the following lemma.
In the proof we make use of certain factor categories given in [7]. We do
not know a module theoretical proof.

LEMMA 3. Let $\{M_{a}\}_{I}$ be a set of le modules. $lfM=\Sigma_{I}\oplus M_{a}$ is lifting,
then $\{M_{a}\}_{I}$ is ls Tn.

PROOF. From the definition of ls Tn, we way assume that $I$ is an infinite
set. Let $M_{0}=\Sigma_{i=1}\oplus M_{i}$ and $\{f_{i} : M_{i}\rightarrow M_{i+1}\}$ a set of non-isomorphisms and
$M_{i}^{\prime}=M_{i}(f_{i})\subset M_{i}\oplus M_{i+1}$ . Since $M_{0}$ is lifting, for $M_{*}=\Sigma_{i=1}^{\infty}\oplus M_{i}^{\prime},$ $M_{0}=T_{1}\oplus T_{2}$ ;
$M_{*}=T_{1}\oplus M_{*}\cap T_{2}$ and $M_{*}\cap T_{2}$ is small in $M_{*}$ . Here we shall apply some theo-
rems on factor categories $A/J^{\prime}$ induced from le modules (see [7], Chapters 6
and 7), and use the same terminologies given there. First we note that $M_{*}$ is
also a direct sum of le modules, $i$ . $e.,$ $M_{*}\in A$ . Let $T_{i}^{*}$ and $(M_{*}\cap T_{2})^{*}$ be full
submodules in $T_{i}$ and $(M_{*}\cap T_{2})$ , respectively ([7], p. 169). Let $i_{M*},$ $i_{\tau_{i}}$ and
$i_{M*\cap T_{2}}$ be inclusions in $M$ , Since $M_{*}\cap T_{2}$ is small in $M_{0},\overline{i}_{M*\cap T_{2}}=0$ by the de-
finition of $J^{\prime}$ in [7], p. 148. Further $\overline{i}_{M*}$ is an isomorphism by [7], Theorem
7.3.13, and $\overline{i}_{M*}=\tilde{i}_{T_{1}}+i_{M*\cap T_{2}}=\overline{i}_{T_{1}}*$ . On the other hand, $\overline{i}_{M_{0}}=\overline{i}_{T_{1}}+\overline{i}_{T_{2}}$ . Hence $\overline{i}_{T_{2}}=0$ ,

since $\overline{i}_{T_{1}}=\overline{i}_{M*}$ is an isomorphism and $\overline{i}_{T_{1}},\overline{i}_{T_{2}}$ are mutually orthogonal idempot-
ents, and so $T_{2}=0$ by [7], Theorem 7.1.2. According $M_{0}=M_{*}$ . Therefore
$\{M_{a}\}_{I}$ is $lsTn$ by [7]. Theorem 7.2.7.

THEOREM 2. Let $\{M_{a}\}_{I}$ be a set of le hollow and cyclic modules. Then the
following are equivalent:

1) $M=\Sigma_{I}\oplus M_{a}$ is lifting.
2) $M_{a}$ is almost $M_{b}$-projective for any $a\neq b$ and $\{M_{a}\}_{I}$ is ls Tn.
3) $\sum_{J}\oplus M_{a}$ , is almost $\sum_{I-J}\oplus M_{b},- p_{\gamma 0]}$ ective for any subset $J$ in I and $\{M\}_{I}$

$is$ ls Tn. (cf. Theorem 4 below.)

PROOF. This is clear from Theorem 1, Lemma 2 and 3 and [9], Theo-
rem 1”.

We prepare the following lemma for an example below.

LEMMA 4. Let $M$ be an le and hollow module. If any infinite direct sum
of copies of $M$ is always lifting, $M$ is cyclic.
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PROOF. Assume that $M$ is not cyclic. Then $xR$ is a small submodule in
$M$ for any $x$ in $M$ . Put $D=\sum_{x\in M}\oplus M_{x}(M_{x}=M)$ and $S=\sum_{x}\oplus xR$ , Taking an
epimorphism $f:D\rightarrow M$ such that $f|M_{x}=1_{M}$ , we know that $S$ is not small in
$M$ . Hence $M$ is not lifting from [9], Corollary 2.

Let $Z$ be the ring of integers. Then $E(Z/p)$ , injective hull of $Z/p(p$ is
prime) is almost $E(Z/p)$-projective (see [12]). However $\Sigma_{i=1}^{\infty}\oplus E_{i}(E_{i}=E(Z/p))$

is not lifting by Lemma 4, even though $\{M_{i}=E(Z/p)\}$ is $lsTn$ . On the other
hand $\sum_{p}\oplus E(Z/p)$ is lifting.

2. Lifting property.

First we shall give a relationship between lifting module and lifting pro-
perty.

Let $X\supset Y$ be R-modules and $\nu;X\rightarrow X/Y$ the natural epimorphism. If, for
a direct summand $T$ of $X/Y$, there exists a direct summand $T_{0}$ of $X$ such that
$T=\nu(T_{0})$ , we say that $T$ is lifted to $T_{0}$ . If every direct summand of any factor
module $X/Y^{\prime}$ is lifted, we say that $X$ has the lifting property of direct sum-
mands modulo submodules. If, for any submodule $Y$ of $X$ and for any direct
decomposition $X/Y=\sum\oplus T_{i}$ , there exists a direct decomposition $X=\sum\oplus T_{i}^{\prime}$ with
$\nu(T_{i}^{\prime})=T_{i}$ for all $i$ , we say that $X$ has the lifting property of direct sums modulo
submodules.

We take a direct decomposition $M=\sum\oplus M_{i}$ . For a submodule $N_{i}$ of $M_{i}$ we
call $\sum\oplus N_{i}$ a standard submodule of $M$ with respect to this decomposition
$\sum\oplus M_{i}$ . If we say a standard submodule in the following, that is a standard
submodule with respect to decomposition into indecomposable modules. We
note that $J(X)$ and Soc (X) are always standard submodules with respect to any
decompositions.

PROPOSITION 1. Let $\{M_{a}\}_{I}$ be a set of hollow and le modules and $M=$

$\Sigma_{I}\oplus M_{a}$ . Assume that $\{M_{a}\}_{I}$ is ls Tn. Then the following are equivalent:
1) $M$ is lifting.
2) $M$ has the lifting property of direct summands modulo submodules (cf.

[15], \S 4).

PROOF. $1$ ) $\rightarrow 2$) (The argument below is valid for any lifting module). Let
$N$ be a submodule of $M$ and $T$ a direct summand of $M/N$. Let $\nu;M\rightarrow M/N$

be the natural epimorphism of $M$ . We apply $(D_{1})$ to the inverse image $T_{0}$ of
$T$. Then there exists a decomposition $M=M^{\prime}\oplus M^{\prime\prime}$ such that $T_{0}=M^{\prime}\oplus T_{0}\cap M^{\prime\prime}$
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and $T_{0}\cap M^{\prime\prime}$ is small in $M$ . Then $T=\nu(T_{0})=\nu(M^{\prime})+\nu(T_{0}\cap M^{\prime\prime})$ . Since $T_{0}\cap M^{\prime\prime}$

is small in $M$ and $T$ is a direct summand of $M/N,$ $\nu(T_{0}\cap M^{\prime\prime})$ is small in $T$.
Hence $T=\nu(M^{\prime})$ .

$2)\rightarrow 1)$ . Let $T_{0}$ be a non-small submodule in $M$ . Then there exists a sub-
module $X(\neq M)$ of $M$ such that $M=T_{0}+X$. Now $ M/(T_{0}\cap X)=T_{0}/(T_{0}\cap X)\oplus$

$X/(T_{0}\cap X)$ and $T_{0}/(T_{0}\cap X)\neq 0$ . Since $M$ has the lifting property, $M=M^{\prime}\oplus M^{\prime\prime}$

and $(M^{\prime}+T_{0}\cap X)/(T_{0}\cap X)=T_{0}/(T_{0}\cap X)$ , and so $0\neq M^{\prime}\subset T_{0}$ . Therefore $M$ is lift-
ing by [9], Theorem 1”.

The following corollary shows us a difference between M-projectives and
almost M-projectives,

COROLLARY. Assume $|I|=n<\infty$ and $|M_{i}|<\infty$ in the above. Then the fol-
lowing two conditions are equivalent:

1) $M_{i}$ is almost $M_{j}$-projective for all $i\neq j$ .
2) $M$ has the lifting property of any indecomposable direct summands modulo

standard submodules.
Similarly the following two conditions are equivalent:
3) $M_{i}$ is $M_{j}$-projective for all $i\neq j$ .
4) $M$ has the lifting property of direct sums modulo standard submodules,

(cf. [15], \S 4).

PROOF. $1$ ) $\rightarrow 2$ ). This is clear from Theorem 1 and Proposition 1.
$2)\rightarrow 1)$ . Put $M^{*}=M_{1}\oplus M_{2}$ . We can show by routine work that $M*$ has the

lifting property of indecomposable direct summands modulo standard submodules,

since so does $M$ . Let $X$ be a non-small submodule of $M^{*}$ . Then $\pi_{1}|X$ or $\pi_{2}|X$

is an epimorphism, where $\pi_{i}$ ; $M^{*}\rightarrow M_{i}$ is the projection, say $\pi_{1}|X$. Then
$X/(X_{(1)}\oplus X_{(2)})$ is a graph of $M_{1}/X_{(1)}$ in $M^{*}/(X_{(1)}\oplus X_{(2)})$ provided $X_{(1)}\neq M_{1}$ ,

where $X_{(i)}=X\cap M_{i}$ , and hence a direct summand of $M^{*}/(X_{(1)}\oplus X_{(2)})$ . Further
$X/(X_{(1)}\oplus X_{(2)})$ is indecomposable, and $X/(X_{(1)}\oplus X_{(2)})$ is lifted to a direct sum-
mand $X^{\prime}$ of $M^{*}$ by assumption. Hence $X^{\prime}\subset X$ . If $X_{(1)}=M_{1},$ $M_{1}\subset X$ . Accord-
ingly $M^{*}$ is lifting, and hence $M_{1}$ and $M_{2}$ are mutually almost relative projec-
tive by Theorem 1.

$3)\rightarrow 4)$ First assume that $M_{1},$ $M_{l}$ are mutually relative projective and $M=$

$M_{1}\oplus M_{2}$ . Put $\tilde{M}=M/(N_{1}\oplus N_{2})$ . Let $C$ be any submodule in $M$ . We denote
$(C+(N_{1}\oplus N_{2}))/(N_{1}\oplus N_{2})$ by $\tilde{C}(\subset\tilde{M})$ . It is clear that $\tilde{M}=\tilde{M}_{1}\oplus\tilde{M}_{2}$ and $\tilde{M}_{i}\approx$

$M_{i}/N_{i}$ . Let $\tilde{M}=A\oplus B$ . We note that if an R-module $L$ is a finite direct sum
of le modules $L_{i}$ , every non-zero indecomposable direct summand of $L$ is given
by a graph of some $L_{i}$ (see [7], Proposition 6.3.3). Since $M_{i}/N_{i}$ is an le
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module by assumption, we can assume $A=\tilde{M}_{1}(f_{1});f_{1}$ : $\tilde{M}_{1}\rightarrow\tilde{M}_{2}$ . Then there
exists a decomposition $M=M_{1}(f_{1})\oplus M_{2}$ , where $f_{1}$ is a lifted one of $\tilde{f}_{1}$ . Clearly
$\overline{M_{1}(f_{1})}=A$ . Since $\tilde{M}(=\tilde{M}_{1}(;_{1})\oplus\tilde{M}_{2})=A\oplus\tilde{M}_{2}=A\oplus B,$ $B=\tilde{M}_{2}(f_{2});f_{2}:\tilde{M}_{2}\rightarrow A=$

$\overline{M_{1}(f_{1})}\approx M_{1}(f_{1})/(M_{1}(f_{1})\cap(N_{1}\oplus N_{2}))$ , (take the projection of $\tilde{M}$ onto $\tilde{M}_{l}$ ). Hence
there exists $f_{2}$ : $M_{2}\rightarrow M_{1}(f_{1})$ and $\overline{M_{2}(f_{2})}=B$ . Therefore $M=M_{1}(f_{1})\oplus M_{2}(f_{2})$ is
the desired decomposition. Finally we study in a general case. Let $\tilde{M}=\sum_{i1}^{n_{=}}$

$\oplus M_{i}/N_{i}=\sum_{i\approx 1}^{m}\oplus A_{i}$ . Since $M_{i}/N_{i}$ is an le module, the $A_{i}$ is a direct sum of
hollow modules by Krull-Schmidt’s theorem. Hence we may assume that all $A_{\iota}$

are hollow. Without loss of generality we can put $A_{1}=\tilde{M}_{1}(\tilde{f}_{1});\tilde{f}_{1}$ : $\tilde{M}_{1}\rightarrow\Sigma_{i\geq 2}$

$\oplus\tilde{M}_{i}$ , and $\tilde{M}=A_{1}\oplus\Sigma_{i\geq 2}\oplus\tilde{M}_{i}=A_{1}\oplus A_{2}\oplus\cdots\oplus A_{n}$ . Let $\rho$ be the projection of $\tilde{M}$

onto $\Sigma_{i\geq 2}\oplus\tilde{M}_{i}$ on the first decomposition of the above. Since $\rho|(A_{2}\oplus\cdots\oplus A_{n})$

is an isomorphism onto $\sum_{i\geq 2}\oplus\tilde{M}_{i}$ , there exists, from the above remark, a pro-
jection $\theta_{j}$ : $\Sigma_{i\geq 2}\oplus\tilde{M}_{i}\rightarrow\tilde{M}_{j}$ such that $\theta_{j}\rho|A_{2}$ is an isomorphism, say $j=2$ , whence
$A_{2}=\tilde{M}_{2}(;_{2});\tilde{f}_{2}$ : $\tilde{M}_{2}\rightarrow\tilde{M}_{1}(f_{1})\oplus\tilde{M}_{3}\oplus\cdots\oplus\tilde{M}_{n}$ . Similarly $A_{i}=\tilde{M}_{i}(\tilde{f}_{i})$ with $\tilde{f}_{i}$ : $\tilde{M}_{i}\rightarrow$

$\tilde{M}_{1}(\tilde{f}_{1})\oplus\cdots\oplus\tilde{M}_{i-1}(f_{i-1})\oplus\tilde{M}_{i}\oplus\cdots\oplus\tilde{M}_{n}$ . By virtue of Azumaya’s theorem [3]

we can apply the initial argument to those decompositions and obtain finally a
lifted direct decomposition $M=\sum\oplus M_{i}(f_{i})$ .

$4)\rightarrow 3)$ It is clear that if $M=\sum_{i=1}^{n}\oplus M_{i}$ satisfies 4), then so does $M_{1}\oplus M_{2}$ .
Let $f;M_{1}\rightarrow M_{2}/N_{2}$ be a homomorphism $(N_{2}\subset M_{2})$ . Then $\tilde{M}=M_{1}\oplus M_{2}/N_{2}=M_{1}(f)$

$\oplus M_{2}/N_{2}$ is lifted to $M=T_{1}\oplus T_{2}$ such that $T_{1}=M_{1}(;)$ and $\mathcal{T}_{2}=M_{2}/N_{2}$ . Let
$\rho$ : $M\rightarrow T_{1}$ and $\pi_{2}$ : $M\rightarrow M_{2}$ be the projections. Then $\pi_{2}\rho|M_{1}$ is a lifted one of $f$

(see the proof of [8], Theorem 2). Hence $M_{1}$ is $M_{2}$-projective.

Next we shall give some criterion of almost relative projectivity for two

hollow (local) modules. Let $e$ be a local idempotent, $i$ . $e.,$ $eR$ is hollow. Let $A$

and $B$ be R-submodules in $eR$ . We note that any element in $Hom_{R}(eR/A, eR/B)$

is given by $x_{\iota}(x\in eRe)$ , the left-sided multiplication of $x$ .

From the definition and a fact: $(eR/A)/J(eR/eA))\approx eR/eJ$ we have

LEMMA 5. Assume that $eR/A$ is almost $eR/B$-projective. Then for any
unit $u$ in $eRe$ there exists a unit $x$ such that $xA\subset B$ and $x\equiv u(mod eJe)$ or $xB\subset A$

and $u^{-1}\equiv x(mod eJe)$ .

LEMMA 6. Let $M$ be an indecomposable R-module and assume lhat $eR/A$ is
almost M-projective, and take a non-epic homomorphism $f$ of $eR$ to M. Then $f(A)$

$=0$ ([11]; [7], Theorem 5.4.11).

PROOF. Consider a derived diagram from $f$ :
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$M\rightarrow M/f(A)-0$

$\uparrow\overline{f}$

$eR/A$ .
Since $\overline{f}$ is not epic, $\tilde{h}$ is same. Hence there exists $h:eR/A\rightarrow M$ with $\nu\tilde{h}=\overline{f}$ by

assumption. Let $p:eR\rightarrow eR/A$ be the natural epimorphism and put $ h=\tilde{h}\rho$ : $eR$

$\rightarrow M$ . Since $\nu\tilde{h}=f$ ,

$\nu f(e)=\overline{f}(e+A)=\nu\tilde{h}(e+A)=v\tilde{h}\rho(e)=\nu h(e)$ ,

Hence

(7) $f(e)-h(e)=f(a)$ for some $a$ in $A$ .
Now $0=h(a)=h(e)a=f(a)-f(a)a=f(a)(1-a)$ from (7). Hence, $f(a)=0$ for
$a\in A\subset eJ$, and so $f(A)=f(e)A=h(e)A=h(A)=0$ from (7).

PROPOSITION 2. Let $e$ and $e^{\prime}$ be local idempotents. Then
1) $eR/A$ is $e^{\prime}R/B$-projective if and only if $e^{\prime}ReA\subset B$ . $Jfe\# e^{\prime},$ $eR/A$ is

$e^{\prime}R/B$ -projective if and only if $eR/A$ is almost $e^{\prime}R/B$ -projective.
2) If $eR/A$ is almost $eR/B$-projective, $eJeA\subset B$ .
3) $eR/A$ and $eR/B$ are mutually almost relative projective if and only if

$eJeA\subset B,$ $eJeB\subset A$ and for any unit element $u$ in $eRe,$ $uA\subset B$ or $B\subset uA$ . In
particular $A\subset B$ or $B\subset A$ .

PROOF. 1) is clear from [1], p. 22, Exercise 4 and 2) is clear from Lemma 6.
3) (This is the same argument given in [10]). Assume that $eR/A$ and

$eR/B$ are mutually almost relative projective. Then $eJeA\subset B$ and $eJB\subset A$ from
2). First assume that $eR/B$ is almost $eR/A$ -projective. Let $u$ be any unit in
$eRe$ . Then by Lemma 5 there exists $j$ in $eJe$ (resp. $j^{\prime}$ ) such that

a) $(u+j)A\subset B$ or b) $(u^{-1}+j^{\prime})B\subset A$ .

a): $uA=((u+j)-j)A\subset(u+j)A+jA\subset B$ since $eJeA\subset B$ . We obtain similarly
$u^{-1}B\subset A$ in case b).

The converse is clear from definition and the initial remark before Lemma 5.

Let $R$ be a right artinian (basic)ring and $\{e_{i}\}_{i=1}^{n}$ a complete set of mutually

orthogonal primitive idempotents. Then every hollow module is of a form
$e_{i}R/A$ . Take an R-module $M$ which is a direct sum of hollow modules:

$M=\Sigma_{i}\Sigma_{n(ij)\in I_{i}}\oplus(e_{i}R/A_{ij})^{(n(ij))}$ ; $e_{i}R/A_{ij}\neq e_{i^{\prime}}R/A_{i^{\prime}j^{\prime}}$ if $(i, j)$

(8)
$\neq(i^{\prime}j^{\prime})$ (and $n(ij)\neq 0$ , which may be infinite, for all $i$ and $j$),
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where $K^{(tl(ij))}$ is the direct sum of $n(ij)$-copies of $K$ .
If $M$ is lifting, then from Theorem 2 and Proposition 2, we obtain,

i) $|I_{i}|=n_{i}<\infty$ for all $i$ .
After changing induces

ii) If $n_{i}\geqq 2$

$ e_{i}R\supset A_{i1}\supset R_{i}A_{i2}\supset A_{i2}\supset\cdots\supset R_{i}A_{in_{i}}\supset A_{in_{i}}\supset$

(9)
$\Sigma_{k1}^{n_{=}}e_{i}Je_{k}A_{k1}$ , where $R_{i}=e_{i}Re_{i}$ .

If $n_{i}=1,$ $e_{i}R\supset A_{i1}\supset\Sigma_{k\neq i}e_{i}Je_{k}A_{k1}$ .
iii) If $n(ij)\geqq 2,$ $A_{ij}$ is characteristic.

Thus we obtain from Theorem 2 and [8], Corollary to Theorem 4

THEOREM 3. Let $R$ be a right artinian ring and $M$ an R-module. Then the
following are equivalent:

1) $M$ is lifting.
2) $M$ is a direct sum of hollow modules as in (8), which satisfy (9).

3. Almost injectives.

Following [4] we recall the definition of almost V-injectives and study some
properties of them.

Let $V$ and $U$ be R-modules and $V\supset V^{\prime}$ . Consider the following diagram
with $i$ the inclusion and two conditions 1) and 2):

$i$

$0-V^{\prime}-V$

$\downarrow h$

$U$

1) There exists $\tilde{h}$ : $V\rightarrow U$ such that $\tilde{h}i=h$ or
2) There exist a non-zero direct summand $V_{0}$ of $V$ and $\tilde{h}$ : $U\rightarrow V_{0}$ such

that $\tilde{h}h=\pi i$ , where $\pi$ : $V\rightarrow V_{0}$ is the projection of $V$ onto $V_{0}$ . $U$ is called almost

V-inJ $ ecti\iota$) $e$ if the above 1) or 2) holds for any submodule $V^{\prime}$ of $V$ and any
$h:V^{\prime}\rightarrow U$ ( $U$ is called M-iniective if we have only 1) [3]).

The following lemma is dual to a special case of Theorem 1.

LEMMA 8. Let $U_{1}$ and $U_{2}$ be le and uniform modules and $U=U_{1}\oplus U_{2}$ . Then
the following are equivalent:

1) $U$ is extending.
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2) $U_{1}$ and $U_{2}$ are mutually almost relative injective.

PROOF. $1$ ) $\rightarrow 2$ ). Let $V$ be a submodule in $U=U_{1}\oplus U_{2}$ . We may assume
that $V$ is uniform. Let $\pi_{i}$ be the projection of $U$ onto $U_{i}$ . Since $V$ is uniform,
$V=U_{i}^{\prime}(f_{i})$ ($i=1$ or 2), where $U_{i}^{\prime}=\pi_{i}(V)$ and $f_{i}$ : $U_{i}^{\prime}\rightarrow U_{j}^{\prime}(j\neq i)$ . Assume $V=$

$U_{1}^{\prime}(f_{1})$ and take a diagram
$i$

$0-U_{1}^{\prime}-U_{1}$

$\downarrow f_{1}$

$U_{2}$

Then since the $U_{i}$ are indecomposable, there exists $f_{1}$ : $U_{1}\rightarrow U_{2}$ or $U_{2}\rightarrow U_{1}$ with
$\tilde{f}_{1}f_{1}=i$ or $f_{1}i=f_{1}$ by 2). Hence $V=U_{1}^{\prime}(f_{1})\subset U_{1}(f_{1})$ or $V\subset U_{2}(\tilde{f}_{1})$ , which is a
direct summand of $U$ .

$1)\rightarrow 2)$ . Consider the above diagram and define $U^{\prime}=U_{1}^{\prime}(f_{1})$ in $U_{1}\oplus U_{2}$ . Since
$U^{\prime}$ is uniform, there exists a decomposition $U=V_{1}\oplus V_{2}$ and $V_{1}\supset U^{\prime}$ . Since $V_{1}$

has the exchange property, $U=V_{1}\oplus U_{1}$ or $=V_{1}\oplus U_{2}$ . If the latter case occurs,
$\tilde{h}=\pi_{2}^{\prime}U_{1}$ is a desired homomorphism, where $\pi_{2}^{\prime}$ : $U\rightarrow U_{2}$ . We obtain a similar
result for the former (note, in this case, that $f_{1}$ is a monomorphism).

The following theorem is the dual to Theorem 1, which is essentially given
in [14].

THEOREM 4. Let $\{U_{a}\}_{I}$ be a set of le uniform modules and $U=\Sigma_{I}\oplus U_{a}$ .
Assume that $\{U_{a}\}_{I}$ is $lsTn$ . Then the following are equivalent:

1) $U$ is extending.
2) $U_{a}$ is almost $U_{b}$-injective for all $a\neq b$ .

PROOF. $1$ ) $\rightarrow 2$ ). It is clear from Lemma 8.
$2)\rightarrow 1)$ . (Essentially due to [14]) $U=\sum_{I}\oplus U_{a}$ satisfies $(1-C_{1})(i$ . $e.,$ $N$ is

uniform in $C_{1}$ ) by Lemma 8 and [14], Lemma 11, and so every closed sub-
module $A$ in $U$ contains a non-zero indecomposable direct summand $X$ of $U$ by

[14], Proposition 6. Hence we can define a non-empty set $F$ of direct sums of
uniform modules in $U$ as follows: $F=\{\sum_{c^{\prime}}\oplus X_{c^{\prime}}|\subset A,$ $X_{c^{\prime}}$ is uniform and
$\Sigma_{c^{\prime}}\oplus X_{c^{\prime}}$ is a locally direct summand of $U$ }. We can find a maximal member
$\sum_{c}\oplus X_{c}$ in $F$ by Zorn’s lemma. Since $\{U_{a}\}$ is ls Tn, $\Sigma_{c}\oplus X_{c}$ is a direct sum-
mand of $U$ by [7], Theorem 7.3.15, say $U=(\sum_{c}\oplus X_{c})\oplus U^{\prime}$ and $A=(\Sigma_{c}\oplus X_{c})$

$\oplus U^{\prime}\cap A$ . It is clear that $U^{\prime}\cap A$ is also closed in $U$ . Hence $U^{\prime}\cap A=0$ by the
maximality of $\sum_{c}\oplus X_{c}$ . Therefore $U$ is extending.
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We consider a result similar to Lemma 3 for extending modules.

PROPOSITION 3. Let $U=\Sigma\oplus U_{a}$ be as above. Assume that $U$ is extending.
$f_{1}$ $f_{2}$ $f_{n}$

Then there do not exist any infinite sets { $ U_{1}-U_{2}-U_{n}-\cdots$ ; the $f_{i}$ are
monomorphisms but not isomorphisms}.

PROOF. Let $\{f_{i} : U_{i}\rightarrow U_{i+1}\}$ be a set of non-isomorphisms and put $U^{*}=$

$\sum\oplus U_{i}(f_{i})\subset\sum\oplus U_{i}$ . Then we obtain a decomposition $U^{\prime}(=\sum\oplus U_{i})=X\oplus Y$ and
$U^{*}\subset\prime X,$ $i$ . $e$ . $U^{*}$ is essential in $X$ . Since $\overline{i}_{*}:$ $U^{*}\rightarrow U^{\prime}$ is an isomorphism in $A/J^{\prime}$ ,
$Y=0$ (see the proof of Lemma 3). Hence $U^{*}\subset\prime U^{\prime}$ , and so $U_{1}\cap U^{*}\neq 0$ . If we
use this argument for the case where all $f_{i}$ are monomorphisms, we know
that $\{f_{i}\}$ must be finite.

EXAMPLE. $R_{1}$ (resp. $R_{2}$ ) is the ring of upper (lower) triangular matrices
over a field $K$ with infinite degree. Let $e_{i}=e_{ii}$ be matrix units. Then $e_{k}R_{i}$

is almost $e_{s}R_{i}$ -projective and almost $e_{s}R_{i}$ -injective for any $k,$ $s$ and a fixed $i=1$

or 2, and further $\sum_{k}\oplus e_{k}R_{1}$ is lifting and extending by Theorems 2 and 4. On
the other hand $e_{h}R_{2}$ is almost $\sum_{j\neq k}\oplus e_{j}R_{2}$-projective and almost $\Sigma_{j\neq k}\oplus e_{j}R_{2^{-}}$

injective (cf. [4], Theorem) for all $k$ , however $\Sigma_{i}\oplus e_{i}R_{2}$ is neither lifting nor
extending by Lemma 3 and Proposition 3, since we have an infinite chain of
submodules; $ e_{1}R_{2}\subset e_{2}R_{2}\subset\cdots\subset e_{n}R_{2}\subset\cdots$ . Further $e_{1}R_{2}$ is always almost $\sum_{i\geq 2}\oplus$

$e_{i}R_{2}$-injective for any $n$ , but $e_{1}R_{2}$ is not almost $\sum_{i\geq 2}\oplus e_{i}R_{2}$-injective. Because,
we assume that $e_{1}R$ were almost $\Sigma_{i\geq 2}\oplus e_{i}R$-injective, where $R=R_{2}$ . Put $U=$

$\sum_{i\geq 2}\oplus e_{i}R$ . Then Soc $(U)=\Sigma_{i\geq 2}\oplus e_{i}Re_{1}$ and $e_{i}Re_{1}\approx e_{1}R_{1}=e_{1}R$ as R-modules.
Take a diagram:

$i$

$0\rightarrow\sum\oplus e_{i}Re_{1}-U$

$\downarrow f$

$e_{1}R$ ,

where $f$ is given by the above isomorphisms. Since $Hom_{R}(e_{i}R, e_{1}R)=0$ for $i\geqq 2$ ,

we should have a decomposition $U=A\oplus B$ and $\tilde{h}$ : $e_{1}R\rightarrow A$ such that $\tilde{h}f=\pi_{\Lambda}i$

with $\pi_{A}$ ; $U\rightarrow A$ . Further Soc $(U)=Soc(A)\oplus Soc(B)$ and $\pi_{A}|Soc(A)=1_{Soc(4)}$ .
Hence $\tilde{h}f=\pi_{\Lambda^{i}}$ implies that Soc $(A)$ is simple, and so $A$ is indecomposable and
$B$ is a direct sum of indecomposable modules $B_{j}(]\geqq 2)$ by [7], Theorem 8.3.3.
Accordingly we may assume that $A=e_{n_{1}}R(f_{1});f_{1}$ : $e_{n_{1}}R\rightarrow\Sigma_{k\neq n_{1}}\oplus e_{i}R$ and $B_{j}=$

$e_{n_{j}}R(f_{j});f_{j}$ : $e_{n_{j}}R\rightarrow\Sigma_{k\neq n_{j}}\oplus e_{k}R$ . Since $e_{i}R\neq e_{j}R$ if $i\neq j,$ $n_{i}\neq n_{j}$ by Krull-Remark-
Schmidt-Azumaya’s theorem. Hence we can assume that $A=e_{n}R(f_{n})$ for some
$n$ and $B_{j}=e_{j}R(f_{j})$ ( $j\neq n$ and $B_{n}=e_{2}R(f_{2})$ ) $;n$ may be 2. Since $Hom_{R}(e_{i}R, e_{j}R)$
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$=0$ for $i>j$ , we know $e_{n+1}R\subset\sum_{j\geqq n+1}\oplus B_{j}\subset B$ from the structure of $B_{j}$ .
$\tilde{h}f(e_{n+1}Re_{1})=\tilde{h}(e_{1}Re_{1})\neq 0$ since $e_{1}R=e_{1}Re_{1}$ is simple and Soc $(A)\subset Soc(U)=\sum_{i\geqq 2}$

$\oplus e_{i}Re_{1}$ , while $\tilde{h}f(e_{n+1}Re_{1})=\pi_{A}(e_{n+1}Re_{1})\subset\pi_{A}(B)=0$ , a contradiction.

4. Extending property.

We shall consider a dual concept to \S 2 (cf. [6] and [16]). Let $U\supset V$ be
R-modules. Take a direct summand $V_{1}$ of $V$ , $i.e.$ , $V=V_{1}\oplus V_{2}$ . If $U$ has a
decomposition $U=U_{1}\oplus U_{2}$ such that $U_{1}\cap V=V_{1}$ , we say that $V_{1}$ is extendible
to $U_{1}$ . If, for any submodule $V$ , every direct summand of $V$ is extendible to a
direct summand of $U$, we say that $U$ has the extending property of direct sum-
mands. If $U$ has a decomposition $U=U_{1}\oplus U_{2}$ such that $V_{i}=V\cap U_{i}(i=1,2)$ for
all $V$ and $V_{i}$ , we say that $U$ has the extending property of direct sums.

The following results are dual to ones in \S 2. Hence we shall skip proofs
except Lemma 9 below.

In order to show a difference between U-injectives and almost U-injectives,
we shall give the dual to corollary to Proposition 1.

PROPOSITION 4. Let $\{U_{i}\}_{i\in 1}$ be a set of le and uniform modules and $U=$

$\sum_{i1}^{n_{=}}\oplus U_{i}$ . Then the following are equivalent:
1) $U_{i}$ is almost $U_{j}$-injective for all $i\neq j$ .
2) $U$ has the extending property of direct summands.

Further the following are equivalent:
3) $U_{i}$ is $U_{j}$-injective for all $i\neq j$ .
4) $U$ has the extending property of direct sums.

Let $E$ be an indecomposable and injective module and $T=End_{R}(E)$ . Then
$T$ is a local ring with radical $=\{f|\in T, kerf\subset\prime E\}$ (see, [12] and [7], Proposi-
tion 5.4.9). Let $U_{1}$ and $U_{2}$ be uniform modules and $E_{i}=E(U_{i})$ . It is clear from
the definition that if $E_{1}\neq E_{2},$ $U_{1}$ is almost $U_{2}$-injective if and only if $U_{1}$ is $U_{2^{-}}$

injective.
Dually to Lemma 6 we have

LEMMA 9 ([12]; [7], Theorem 5.4.2). Let $U_{1}$ and $U_{2}$ be uniform modules
and $E_{i}$ an injective hull of $U_{i}$ for $i=1,2$ . Assume that $U_{1}$ is almost $U_{2}$-injective.
Let $f$ be not a monomorphism of $E_{2}$ to $E_{1}$ . Then $f(U_{2})\subset U_{1}$ .

PROOF. Put $U=f^{-1}(U_{1})\cap U_{2}$ , and take a diagram:
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$0-U-U_{2}$

$\downarrow f|U$

$U_{1}$ ,

Since $f^{-1}(0)\cap U\neq 0$ , there exists $g:U_{2}\rightarrow U_{1}$ such that $g|U=f|U$ by assumption.
We may assume that $g$ is an element in $Hom_{R}(E_{2}, E_{1})$ . If $(f-g)(U_{2})\neq 0$ , then
since $E_{1}^{\prime}\supset U$ , there exist $u_{1}\neq 0\in U_{1},$ $u_{2}\in U_{2}$ such that $(f-g)(u_{2})=u_{1}$ . However
$g(u_{2})\in U_{1}$ , and so $u_{2}\in U_{2}\cap f^{-1}(U_{1})=U$ . Therefore $(f-g)(u_{2})=0$ , a contradiction.
Hence $f(U_{2})=g(U_{2})\subset U_{1}$ .

Finally we exhibit the following proposition dual to Proposition 2.

PROPOSITION 5. Let $E$ be an indecomposable and injective module and $U_{1},$ $U_{2}$

submodules of E. Then
1) If $U_{1}$ is almost $U_{2}$-injective, $J(T)U_{2}\subset U_{1}$ .
2) $U_{1}$ and $U_{2}$ are mutually almost injective if and only if $J(T)U_{1}\subset U_{2}$ ,

$J(T)U_{2}\subset U_{1}$ and for any unit $f$ in $T,$ $f(U_{1})\subset U_{2}$ or $U_{2}\subset f(U_{1})$, where $T=End_{R}(E)$ .

PROOF. We can prove the proposition by virtue of Lemma 9 and its proof.

If either $U_{1}$ or $U_{2}$ has finite length, for every unit $f$ we have only a fixed
side of $f(U_{1})\subset U_{2}$ and $U_{2}\subset f(U_{1})$ in 2). While let $Z_{p}$ be a local ring over the
ring of integers $Z$ , where $p$ is prime. Then $(p^{n})$ and $Z_{p}$ are mutually almost
injective. For units 1 and $p^{-(n+1)}$ in $Q=End_{z_{p}}(Q),$ $Z_{p}\subset p^{-(n+1)}(p^{n})$ and $(p^{n})\subset$

$1\cdot Z_{p}$ .
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