TSUKUBA J. MATH.
Vol. 13 No. 2 (1989), 363—386

ON THE CAUCHY PROBLEM FOR QUASILINEAR
~ HYPERBOLIC-PARABOLIC COUPLED SYSTEMS
IN HIGHER DIMENSIONAL SPACES

By

Tojrohiko MukoYAMA

0. Introduction

In this paper, we consider the Cauchy problem for quasilinear hyperbolic-
parabolic coupled systems of second order.

(0.1) Ba—d,A'¢, x, 0+T,, Va)y=1(t, x, 0+T, @, Vi, 8,4),
(0.2) (0+T 03N, x, 0+T,, Vit)—d,Q%(t, x, V0, V)

—g(t, x, 0-+To, V6, @, Vi, 9.ii), |
(0.3) 0, x)=1io(x), 3,30, x)=d(x), 60, x)=04(%),

where x&R™ and t=[0, T]. Here and hereafter 9="%vy, -+, vs) (*M means
the transpose M); # and 6@ are unknown functions; T, is a positive constant.
8,=0/0x; and 9,=0/0t; ¥ denotes the gradient in x, the summation -convention
is understood such as sub and superscripts ¢ and j‘ take all values 1 to m;
At=t(AS, -, AL), F=%F1, -, fa), N, Q° and g are given nonlinear functions.

[0.1) and [0.2) can be easily extended to the certain kind of hyperbolic and
parabolic equations respectively and arise from the thermoelastodynamics theory
(cf [9]. On this kind of coupled systems with hyperbolic systems of second
order and parabolic systems of second order, Slemrod studied in the 1-
dimensional case. We will show the local and unique solvability of [0.1),
and with certain assumptions. :

Our approach is the following: apply the existence theorems of solutions
to linear coupled systems of 2nd order hyperbolic system and' parabolic equations
and estimations obtained by the energy method. Another approach is the
following ; reduce [(0.1), (0.2) and [0.3) to the coupled systems of lst order
hyperbolic systems and 2nd order parabolic equations, and apply the theory due
to Kawashima or Zheng [17]. But it seems that our approach is the best
regarding the minimal order of Sobolev spaces in which solutions exist. Another
advantage of our approach is that we can handle the complicated nonlinear
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boundary conditions (e.g. Neumann type) in a similar fashion.

This paper is divided into six sections. Section 1 explains notations, main
theorem and a theorem of linear hyperbolic-parabolic coupled systems, Section
2 presents some lemmas, Section 3 presents an energy inequality, Section 4
presents a result and a proof of linear hyperbolic-parabolic coupled systems
with smooth coefficients and data, Section 5 presents a proof of linear theorem,
and Section 6 presents a proof of main theorem.

1. Notations, assumptions and main results

1.1. Notations

First, we explain basic notations used throughout this paper. We always
assume that functions are real-valued. Let [ - ] be Gauss’ symbol. For each
integer s=0, H*(R™) denotes the space of all us L% R™) such that all distri-
bution derivatives 0°u with |a|<s belong to L} R™), and we denote its inner
product and norms by

(u) v)szlgs(aau’ aav)O:

Nulls=C(u, u)'®,

respectively. Here (-, -), means the L% R™) inner product.
For any spaces S equipped with norm | - |, we denote the product space
SX .-+ XS and its norm by S and | - | simply. For ¥ and #=H*(R™), put

m
(@, 9)s= 2 (4o, Va)s; |%]s=(2, an't.

For simplicity, we write L? and H?® instead of L R™) and H* R™).

#- 9 denotes the usual inner product in R, Put A*=(AY%,) where subscripts
a and b denote the row and column, respectively.

Let B* be the set of all bounded continuous functions whose derivatives up
to s are also bounded continuous. We denote its norm by |- z*.

What fB(R™)+H? means that f is expressed as f=g-+h with some
geB(R™) and he H®, and we define its norms by

| fle=inf {lglz*+lhls; f=g+h, g B(R™), he H’}.

For I=[0, T], what feB(IXR™+L=(; H*) is defined similarly, and we
define their norms by

1 f1lls=inf { sup g, -)Ilss+es§é§up lA@®lls;

f=g+h, geBUIXR™, he L=(I; H*)}.
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1.2. Assumptions and main results.
Let ujq, @, u, and u,, be independent variables corresponding to 9,u,, 9,0,
u, and 0,u,, respectively. Put

C=(um oty Ujas 00 s umn); 77=(u1: e, Un);

7' =(so1, =+, Uon); §=(01, -+, Om).
Let L be a positive constant and put
D,=[0, =)XR™x{(8,0); 101 <L, I{I<L},
D,=[0, o)X R™X{(§, ); |§I<L, ISI<L},
D,=[0, o)X R™X{(0, 9,8, 7); |10I1<L, Il <L, I§I<L, |9'|<L},
D,=[0, o)X R™X{(0, &, 1,8, 9); 101<L, I§I<L, I9I<L, ITI<L, 9’| <L}

(A.1) Let T, be a positive constant. Assume that
Afz(t: x; 0+TO: C) and N(t’ x’ 0+T0) C)EBM{DI); Q}(ti x; E’ C)EBOO(D2);
fa.(t’ x’ 0+T0’ ﬂ: C’ v’)EBm(DS); g(t.v xr 8+T01 E: ﬂs c, n,)EBw(DA)'

Here the A%, N, Q% f. and g are nonliear functions appearing in [(0.I) and [0.2).
Let us define the notations to represent some derivatives of functions above.

DEFINITION 1.1,

Bit, %, 0+To, =oAL, %, 04T, 0);

A?J,jb(t) X, 0+T0: C)"‘ Aa(t X, 0+T0; C))

3§

P(t, x, 04 To, O=(8-+T -2 NG, ) 0+T0, O);

o)_aa"

a N(t) X, 0+T0) C);

N{)(t’ X, 0+T0, C)=(0+T0)'a_—“
Cjb

QH(t, x, & D=—-Q'(t, x,§,0) ;

_é_

0
ij(t X, 5: C)— ac
Fult, %, 0+ To, 0,6 1)=Fults %, 0T, 2, & 1)+ 5 AL, %, 0+T0, )5

G, x, 0+To, & 0,8, 9)=gC, x, 0+T0, & 0,8, 7')

Wt x, 605

—(O+ TN, %, 04T, D+p Q' 5, &, 7).

0)—5?_
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Put v :
AY=(A); B'="(Bi, -, B1); N*=(Ni, -, Nb);
R'”=(R§j: Tty R?’Lj); th(Fl) Tt Fn)-
Here AY are nXn matrices whose subscripts a and b denote the row and
column, respectively. '
Furthermore we assume that
(A.2)
(1) For i, ]:11 e, M, tAij:Aji: QU:Q'”-
(2) There exists a ,>0 such that for all ve R™

Atj(t’ X, 0+T0) C)v,iyj_g.al l u-l 2[1’! »
Qij(tp X, 5, OWW.Z&JVP ’

uniformly in (¢, x, 8, {)=D, and (¢, x, &, 0D, where I, is the unit nXn
matrix.
"(3) Thre exists a 8,>0 such that

.0 . ’
—ajo—N(t) X, 0+T01 C)252,

for (¢, x, 8, O D
@) F(t, x, T, 0,0,0=0, G, x, T,,0,0,0,0)=0,
for all t[0, ) and x=R™.
Our purpose is to prove
THEOREM 1.2. Let s=[m/2]+1 be an integer. Assume (A.l) and (A.2).
If the initial data #,, #,, 0, satisfy the conditions
dsH*, m,cH"™, 0,cH**,
l@ollz=,  UNGollze, Nallze, [VOollo<L,
105l o<min{T,, L},

then there is a T>0 such that the Cauchy problem [0.1), [0.2) and [0.3) admits a
unique pair of solutions ‘

asC; H*HNCI ; H¥)HNCYI ; H*™Y),
b LI ; H*YN\CU ; H*+)NCYI ; HY),

where I=[0, T].

The method of our proof of this theotem is standard : apply the successive
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approximation to solutions of a related linear problem. For this reason we shall
need to examine the linear system
(1.1 da— AY(t, x)0;0;0— B‘(t x)0:0= F(t x),

1.2) | P(t, x)3.0—Q"(t, x)0.0,6 +R*(¢, x)-0,0;
| | + NI, x)-0.0,4=G(, x),
with initial conditions |
1.3y #(0, x)=1to(x), 0,40, x)=a(x), 60, x)=04x).

Here A¥/=(A!,) are nXn matrices; Bi=%ABi, -+, BL); RY=(R¥, ---, RY);
Ni=(N{, ---, Ni); E=4F,, -, F,); AY, Bt, P, Q%, R¥ and N/ are functions
such that '

(1.4) A% and BieB(IXR™)+L>; H*)N\CU ; H*"Y);
9, A= B~(IX R™)+ L=(I ; H*);
P, Q” N7, R’ffeBw(ImeHLw(I H‘“)r’\C(I H‘),

Where I [o, T] and s>[m/2]+1
Assume that the following conditions hold;

(L.5) tAY=A%, QY=Q% (i, ]"1 m).
(1.6) There exists a 53>0 such that for yveR™ |
AY(t, x)w; =05 v |2,

o o QH(t, x)vew;=0slv|®,

for t<[0, T] and x€ R™. |
(1.7) There exists a §,>0 such that P(¢, x)=0d,. Furthermor there exists

PoeB*(IXR™) and P,< L>(I; H**)NC({ ; H®) such that P=P.+P, and
P.(t, x)=0; for some ;>0 uniformly in t and «x.

- THEOREM 1.3 (Linear theorem). Let s=[m/2]+1and T>0. Put I=[0, T].
FelLxI; H*)NCI; H**Y), GeLI; H*)NCU ; HY),

and the initial data satisfy
w=sH™, a,=sH'*, @,=H**?,

then for any T' of 0<T'<T, the Cauchy problem (1.1), (1.2) and (1 3) admits a
unique pair of solutions .
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acCI'’; H*NCYI'; H*)NC*I'; H*),
0= L¥(I’; H*)NCU'; H*)NCI'; HY),
where 1'=[0, T'].
The strategy of our proof of is the following: First we
regularize the coefficients and data. Secondly we prove the existence of
solutions to such regularized problems by using the abstract theory of evolution

equations. Finally we prove the convergence of such a family of solutions by
using the energy inequality.

2. Some lemmas
We list below the Sobolev embedding theorems and the Garding’s inequality.

The proofs may be omitted.

LEMMA 2.1 (Sobolev embedding theorem). Let s be an integer =[m/2]+1.

(1) If k be a non negative integer, then H***(R™)C B*(R™), whereCimplies
the continuity of the embedding.

(2) Suppose that p;=0, j=1, ---, k, and that

min  min {p; + - +p;,—(h—1)[m/2]+1)}=r=0.

1Shsk 1< <Ip
k
Then ;}‘HPJ'CH'.
LEMMA 2.2 (Garding’s inequality). Let s be an integer=[m/2]+1. For
7, j=1, -, m let AV H*'(R™). Assume that there exists a 6>0 such that
A (x)v; 20|y,
for ve R™ and x€ R™, and that
t fti— 4it,

Then for any 0=r=s+1 (resp. r=0) and 0<d’<d, there exists a constant A>0
depending on s, m, n, r, 8, &' and || A*|s41 (resp. | A% ||p1) such that

2.1) A, 4)r+(A"0:8, 0;4), 208'(@, #)r+y

for any a=%u,, -+, u,)H™?,

3. Energy inequality

In this section we present an inequality useful in Section 5 and 6. For
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preparation we list two lemmas below. A proof of first one may be omitted.

LemMMmA 3.1. Let s=[m/2]+1, A B*(R™)+H**' and ucsH® Let

d=C3(R™) such that suppgdC{x=R™; |x|=1}, ¢(x)=0 for x=R™ and

Skm¢(x)dx=l. For 3>0 put ¢s(x)=0-"¢(d"'x). Then

ey @s(Au)— A(@sxu)lls+1=Cllulls (6>0),
where C is some constant depending on s, m, ¢ and | A1,
2) @ox(Au)— A(@s*w)lls+1 —> 0 (6—0).

LEMMA 3.2. Let s be an integer=[m/2]+1.
(1) Let P=a+b where acB*(R™) and bsH*® such that a(x)=t>0 and
P(x)=d8>0 for some constants v and 8. Then P« B*(R™)+H® and

| P~ =Cr (1+77%|lallp=)(1+07 | P5*)

where C is a constant depending on s and m.
2) If P, QeB*(R™)+H?®, then PQe B*(R™)+H*® and

|PQIs=C’|P|s]Qls
where C’ is a constant depending on s and m.
PrROOF. (1) Note that P'=a-'—a~'(a+b)"'b. Obviously, we see that
a ‘e B*(R™) and
@.1) la=*lss=Cz'A+7"*llal 55).
Put g=(a+b)"'b. Our task is to show that g H*® and
(3.2) lglls=Ca~[blI*(1+0-*| P1?).

By direct calculation, we have for |a|=<s
I - a -k-17a e e a-8
(3.3) 3 g—os%Jsa(‘B){ECal...ak(a—{—b) 541P ... 922 P}3*-Bb

where summation in braces above is taken over all combinations of multi-
indices a,;>0, -+, @,>0 such that a,+ - +a;=f. By Sobolev embedding
theorem, each term in left side of belongs to L%, so we get g H* and

From [3.1) and [3.2) we obtain
(3.4) | P =Cr (147 lalls)(1+07* | P1§¥Y).

(2) Since the proof is easy, we may omit it.

For the simplicity of notation, in Sections 3,4 and 5, we use the same
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letter ¢ to denote various constants depending on some of the following:
0s, Os, 05, s, m, n, r and the norms describing the smoothness of the coefficients
appearing in assumptions of ' |

Put for 0=r=<s+2

(3.5 U= 0. a2+ | @)z -1 0@DIIZ,
(3.6) Er(l‘)=llazﬂ(t)llf-i-lmZ;r(A”(t)a“aiﬁ(l‘), 0%0;a(t))o+ Aol a2+ 1612,
where 4, is some constant such that with 8'=d,/2 and »r=0 is satisfied

uniformly in tI, and it depends on s, m, n, J; and ess-sup | A g1.
€
The result of this section is

THEOREM 3.3 (Energy inequality). Under the assumptions of Theorem 1.3.,
if linear Cauchy problem (1.1), (1.2) and (1.3) has a solution such that

(3.7 g Lo(I'; H*N\CU'; H+H)N\CYU' ; H*Y),
(3.8) d.ac L=I"; H*?),
(3.9) 6= L¥I'; H*HNL=W'; H*)NCU'; H*™Y),

where I'=[0, T'] of OKT'LT, then for 1=r<s+2 and terl’,

3.10)  NUOI+2e 1015dt<2/5{E O+ AP It+clGlz-dt}et.

PrOOF. Let [1.2) be an equality dividing both side of by P and put
Qt=P-1QY, Ri=pP-'RY, \'=P-'N/ and G=P~'G.
First we assume # and @ are smooth in x. Then we see easily that

| 1 o
(3.11) 2L B =@, )+ 3 {@AY0D,a, 070,

+(AY0,0°0, 1, 0°0,4),+(A*70%0; 1, 0:0%051)o}
+20(ata, 12)1‘+(at09 0),— .

By [(1.1) and [1.2Y}, it follows that

(3.12) (aia, azﬂ)r=“§lsr{(A“a“ata;ﬁ, 0:0%1),

+ 3 (g)aﬁAtiaa-ﬁaﬁjﬂ, 8,0° )} +(B*-3:0, d.),

0fsa

+‘(F’ ata)r ’
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and
3B.13) (.0, 0),=(0"8,0,0+ R"-9,0,i— N/ -8,8,4+GC, 6). .
By assumptions on A% it follows that
(3.14) | %(A*facaaaia, aaa,-a>0+l<A“aaaia, 9:3°9;)y |
| +('Awa&aia.u, aamo:—(a A‘fa"a,u, 0:0%t)
for |a|<r. On the other hand it follows that

(3.15) (Q*73:9,0, 0)1'—(@“6116 0 0).- 1+ P (3“(0“313;0), 0” 0)o

D1V1d1ng a= a1+a2 with a1>0 a,>0 and Iall__l then we get

(3 16) - (6“(Q"aia ), 3%0)= -—(3"2(Q”31310), 3“*710)0

=— (“2)<aﬁQwaaz £9,0,0, 8+*10),

o<[35a2

+(0%10*9920,9,6, 920)s—(53°9,0, aaa,-a)o “
—(6,0%99.,6, 3°8),. "

Substituting (3.12)-(3. 16) mto 3.11), 1ntegrat1ng by parts and applying _
3.2 we obtain

(3.17) ; j E, Sce-xnaeun%nuu +1+|10112>

+(ee— 01t AP IE+ee G,
for any ¢>0. By Garding’s inequality it follows that
(3.18) 8:/2(10c )2+ | )2ei + 11O 1DSE- .

Put £=8,/(2c) then by Gronwall’s inequality we get
t A t '
@19 oo 1ot {B 0+ [P,

for terl'. Applymg (3.18) again, then we obtain (3.10).
~ In the case # and @ satisfy (3.7)-(3.9), operatmg ¢,;* to (1.1 andRI f and
deforming them, then we get
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(3.20) 24— A19,0,40— Bt-8,0°=F;,
(3.21) 9.0°—(0'99,9,6°— R*1.8,0,4°— N/ -8,0,4°=G,
where #’=1dx¢; 0°=0*¢; and
Fs=Fx¢;+(A90,0,4)x¢;— A" -0,0;4°+(B*-0,0)x$;— Bi%3,6°,
Gs=Gxps+(08,0,0)xp,— 00,0,0° 4 (B -8,0,i’)*p;
—R41.8,8,a8— (N -8,0,i)x s+ N? 8,03

Since #° and 6° are sufficiently smooth, we have
5 t P t ~
|2 10%120,dt<2/0{ B0+ (1P sli+cl Gallz-Ddzhe,

for tel’ where U%t) and E2(0) are defined by replacing # and 6 by #° and 6°
in (3.5) and (3.6). Letting 610, by Lemma 3.1 and the assumptions of # and

8 we have (3.10).

Applying the theorem above, we obtain the following:

COROLLARY 3.4. Under the assumptions of Theorem 1.3 if (1.1), (1.2) and
(1.3) has a solution such that

aes L>(I"; H*NCI' ; H*)NCY(I' ; H*Y),
ouis L=(I'; H**?),
G L=(I"; H**)N\C{’; H**),
where I'=[0, T'] of O<K<T’'<T, then it follows that
acsCl’; H**)NC'I'; H**)NCXI"; H*Y),
6=Cl’; H***)NC'(I'; HY).
ProOF. Let #° and 6° be the same as in the proof of For
4, >0, applying to #*—a% and 6°—6% and using Lemma 3.1, we

have
sup (102 — a1 2se+N18°— % |34+ 10°— 0% ||342) —> O

as 8, 8’ | 0. Thus 9,2%¢), #%¢) and 6°%t) are Cauchy sequences on & in H**?,
H*®**3 and H*** respectively, and convergences are uniform in t<I’. The
Corollary follows easily from the following lemma.
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LEMMA 3.5. Let X and Y be Banach spaces and Y be continuously embedded
in X. Let T>O0 be arbitrary and put I=[0, T].
Assume that u,=CU;Y)NC'I; X) for all positive integers n and that they
satisfy
locu Ol x=C

uniformly in t and n where C is some constant. If

3.22) Uy —> u in Y as n —> oo uniformly in tel,
(3.23) Oiun, —>v in X as n —> oo at each t<l

and veC ; X), then d,u=v and usC{l ;Y INC'{; X).

PrROOF. From (3.22) it follows that u=C(I;Y). For any t, s and positive
integer n, we have

uUa(t)— un(S)———Szazun(r)dr.

Letting n—oo, by Lebesgue’s convergence theorem, we get 0,u=v and
usC{ ; YINCY ; X).

4. A result on the linear hyperbolic-parabolic coupled systems
with smooth coefficients and data.

For a preparation of our proof of [Theorem 1.3, we consider linear problem
1.1, and with smooth coefficients and data. The result of this
section is

LEMMA 4.1. Let s=[m/2]+1, 0=r<s and T>0. Put I=[0,T]. Let

A¥i, Bt, Qi, R¥, Nie B>(Ix R™)+CI; H**Y),
P=1,
for i, j=1, ---, m. Furthermore, we assume (1.5) and (1.6) on A% and Q%. If
FeCd; H*Y, GeCU; H™Y),
and the initial data satisfy
‘ ﬁoe HT+2 , ﬂIEH'“ , 006 H'r+2 ,
then the Cauchy problem (1.1), (1.2) and (1.3) admits a unique solution
weCl; H+)NC'U ; H™Y)YNC*(; H™),
0=CU ; H**)NC'(; H").
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The reason why P=1 is that under the assumptions of [Theorem 1.3 (Linear
theorem), there is no essentially change of properties of coefficients if both
sides of is divided by P. We can see this by Lemma 3.2,

To prove Lemma 4.1, we use the following theorem of linear evolution
equation.

THEOREM 4.2. Let X and Y be Banach spaces and Y is continuously and
densely embedded in X. Let us consider the equations:

(L) UM —AOUN=HE), U0)=U,.

We assume that

(1) A={AQ@);t<I} is a stable family of generators of C,-semigroups on X
with stability constants M and B. (The definition of this notion is given by [4].)

(2) The domain D(AQ®)=Y.

3) A(ECLU; LY : X)), i.e. A)eLY : X) for t€l and A)UsC'{; X)
for UeY. (LY : X) means the set of all bounded linear operators of Y into
X. The symbol Ci appears in [6].)

4) HeClU;Y).

6 U,=Y.

Then (L) has a unique solution

UsCU; Y)NC ; X).

REMARK. Under the weaker assumptions on A(t), Kato [4], proved

Put
4.1) ADUR=(5(t), AY(E)0:5i+ B,()8, Ax(t)8+ Bot)@t), 5(1)));
H@t)=(0, F@), Ga)),
where
4.2) B,()8=B1)3,6,
4.3) A1)0(t)=Q*(t)d.0,0 ,
4.9) Byo)a(t), o(t)=R(t)-8:8,a—N/t)-8,5.

Then, in terms of the present U(t), U,, A(t) and H(t) we cah rewrite [(1.1),
(1.2) and [(1.3) in the form (L). '

In the present case, we put
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X={U=(u, v, 0); acH™, 9ocH", 0cH"},

Y={U=(@, v, 0); acH™?, s H™!, G H™?) .
If we put -
VU= a2+ 1512+ 1612 for U—(a, 5, D) X,

1T =ll@l2+e+ 191202+ 1601242  for U=, 9, )Y,

then X and Y are Banach spaces and Y is densely and continuously embedded
in X. By and the definition of 4, (c.f. (3.6)), let us define the
innerproduct (U, U’), t=I) of X by

(4‘5) (U: U,)t:<ﬁ: ﬁl>t+(i)) 5’)7'_}'(0: 0’)7"

where
Gty 7= (ADD, D1")s 5 (AKODE, D)y +Aaliy #)r -

In particular, the norms ||Ul|,=(U, U)¥* and ||U|lx are equivalent for all
tel, i.e,; ’

@/ U xS WU ZelUNx
for U= X and t<l.

Obviously, the present A(f), H() and U, satisfy the conditions (2)-(5) in
Theorem 4.2. Our task is to show that (1) is satisfied. To do this we shall
prove that ’ |

(i) the range of A—A(t) equals X for large 2,

(i) 1 AQU, Uy | =c||U]} for UsY and t<l,

(iii) U= |\U)le exp(clt—2t']) for U X and t, '],
where ¢ is a constant. v ; ,
~If we prove (i), (ii) and (iii), then by Prop. 3.4 of [4] we can see easily
that A(f) is a stable family.

To prove (i), (ii) and (iii) we use the following lemmas.

LEMMA 4.3. Let AY be the same as in Lemma 4.1. For 0=r=s, put
X, ={Ve@, 9); acH™, scH"},
IViz=lalz+ 117,
(V, Ve o=Sat, &' 4(9, '),

for V=C(a, v), V'=@', v")eX,.

Put A,@)V=(d, AY(t)0;0,it) and let ||-|,., denote the norm of operators of
X, into itself. Then the, following two assertions are valid. |

(1) For 0<r<s and Ve X,,,, it follows that
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(AV, Vi ZcVIE, @el).
(2) Let 0=sr=<s. There exist some constants M>0 and BER such that for
2> B operators A—A,(t): X..,—X, (t<]) are surjective and for A>f

M

1(A—A.@) 7+ Tgﬁ

t<I).

LEMMA 4.4. Let tel be fixed and let Q< B=+H** satisfy (1.5) and (1.6).
Let 2 is sufficiently large then

A—Az: HT+2 —'*HT,
is surjective and
”(2_142)—1”1': r+Z_S_C,

where C is some constant depending on s, m, r, 0; and |Q%|s41.
Defering the proofs of lemmas above, we shall prove (i), (ii) and (iii). To
prove (i), it suffices that for given (D:(f, g, ¢)=X we find U=(a, 9, 8) such

that A—A@)U=®, provided that A is sufficiently large. Put V=(z&, %) and
T=(f, ). Then what A—A®)U=0 implies that

(4.6) AV—A,@®V—B,06=",

where B,()=(0, B.()).
Let t=I be fixed and omitted from now. If VeX,,,, then B,UcsH".
Hence by Lemma 4.4 we see that can be solved in @ as follows,

(4.8) 0=(A—A,)"{p+B,V}cH™?,
if 2 is sufficiently large. Substituting [(4.8) into [4.6), then we have the equation:
4.9) (Z—Al—Bx(lz'“Az)-le)V=w+Bl(z“Az)-lfﬁ,

for unknown V. Put B=B,(A—A,)"'B,. By we see that B is a
bounded linear operator of X, into itself and that there exists a K>0 independent
of A such that |B|,..<K for any large 2. Since

A—A,—B=QA—A){1—-(A—A)"'B},
and since

uu—AlruzanmgMT"E2 @),

for some M>0 and B<=R! as follows from Lemma 4.3, we see that the inverse
operator of the {1—(1—A,)"'B} exists for 2> MK+ 8 by Neumann series. Since
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A—A, is surjective mapping on X,,, to X, for large 4, has a unique
solution Ve X,,,. If we define § by and put U=(V, #) then U=X and
(A—A@®)U=®, which shows (i).

Next we shall prove (ii). Let U=(a, 9, )€Y and V=(4, #). By [Lemmal
4.3 (1) and the definition of A(t) (c.f. (4.1)), we have

(AU, U)e=c/e(IVIE 1013
+(ce—0s/2)|| 01341,

for any €>0. If we take >0 sufficiently small, then (ii) is proved.
Next we shall show (iii). Let U= X and ¢, t’el. Then it follows easily
that
[U, U)—WU, U | S1t—t"|c Z210: AU 1% -

Hence we have
NWUIiSIUNG +clt—t' U = I1U N3 exp(clt—2t']),
and the proof is completed.

Finally we shall give proofs of and 4.4.

PROOF OF LEMMA 4.3.
(1) Let W=(&, 9) X,,,. By definition of A,(#), we have

(AOW, W), c= 5 (A0, 0,)r+ (A5, 8,0

+2o(D, @) +(AY(t)0:0;%, D).
Applying integration by parts to the last term in right side of the above
inequality and using equations:
(A“(t)a“aiﬁ, aaajﬂ)o-:(Aij(t)aaaiﬂ, aaajﬁ)o

for |a|<r, we obtain (1).
(2) First we will show the surjectiveness of 1—A,(¢). Let F=(f, e X,.
That (A—A,(@¢))W=F implies that

-

(4.10) Ai—v=f,

(4.11) A0—AY(t)0.0,u=g,
Substituting into we obtain

4.12) 2ia—AY)0.0,4=8+Af

Since §+lfeH T (4.12) has a unique solution #= H™? if 4 is sufficiently large.
If we define 4 by [4.10), then s=H™*! and, % and # satisfy [4.10) and [(4.1I).
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Next we shall estimate the resolvent of A,(!). Let We X,,,. By the result
of (1),

(4.13) (A—AOW, A=AOW)r ..
Z22W, W)r, e —22|(A:(OW, W), .|
Z@—=CPIW|z., if 2>C

where C’'=4¢/d,. Since norms ||-||, and |-||,.. are equivalent, there are some
constants M>0 and B>0 such that

M
— -1 _
13— A rS 325 (D)
for A>p. This completes the proof.

PROOF OF LEMMA 4.4. Let fH"™?2 Then, the equation:
A0—QY0,0,0=f

has a unique solution = H™*? if A is sufficiently large. By a priori estimate
for the elliptic equations we have,

101l +e=CIllfHi+

where C depends on s, m, 7, 0;, |Q:;]ls+1. This completes the proof.

5. A proof of linear theorem (Theorem 1.3).

Let ¢=C7(R™) such that suppdC{xesR™; |x|<1}, ¢é(x)=0 and
SRm¢(x)dx=1 and let p=C%(R') such that supppC[—1, 0]; p®)=0 and
S:r:p(t)dtzl. For ¢>0 put

Po(x)=0""P(x07"), (x&R™)
p)=a7'p(te";), (=RY).
Let T’ of any 0<T'’<T be fixed, and for any ¢ of 0<e<T—T"' put
P,(t, x)=(P *,6s) % po.

T

In the same manner we define AY, Bi, Qi, Ri/ and Ni. In the case of
regularizing only in x, we put

F?z(h x)=Fa(’;)¢¢7) (a':l’ Ty n)-

We define g and 6§ in the same manner. On the other hand, put Qi=
P3'QY, Ry=P;'R¥, Ni=P;'N} and G°=P;'G°. Then by [Lemma 4.1, the
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following linear problem :

(5.1) 2i—A0,0,i4— Bt 9,0 =F°,
(5.2) 8,0—00,0,6 —Ri-9.0,4+N$-0,0,a=G°,
(5.3) a0)y=1,, 0.a(0)=id,, 6(0)=03

has a unique pair of solutions

asCU’; H**YNCI"; H**)NC*(I"; H**Y),

6=Cl’; H***NC'I"; H**),
where I'=[0, T']. We denote these solutions by #,, 8,. From (3.10), if follows
that

.
G.4) U oOla+267 {10, ]21dt

<2/0{Bors, o O+ AB180a+c1G I1)dtfe T

for teI’ where [|U,(®)||2,: and E,,, , are defined by replacing # and 6 by i,
and 0, in (3.5) and (3.6). Since the constants c¢ in and A, in (3.6) are
independent of ¢ and ¢, from it follows that there exists a constant M>0
such that

5.5) 10 Olat267 (10, 1300de M2,

for tel’ and 0<eT—-T".

Let 0<¢,0’'<T—T’'. Then #,—i, and 0,—8@, satisfy the following
equation :

a%(ﬂo"ﬁa'>_"Agjaiaj(ﬁa_ﬁo’)—'Bg'ai(aa_aa’):Fma’ ’

ai(ea_00’)_égjaiaj(0a—00’)_ﬁgj'aiaj(ﬂa_aa’)_l‘]’\vfg'ataj(ﬁa_ﬂa’):éa, g’
with initial conditions '

(ﬁa—ﬂa'xo):O, at(ﬁa—aa'xo):(): (00——00'>(O)=03-‘03' ’

where

F, o=F'—F" +(A¥—A)8:0,i, +(Bi—B&)-0:0,,

Goa=G"—G" +(QY—01)2,8,0 5 +(Ri?— RiF)-0:0,i1 » — (Nf— N3 )00k 41 .
Applying (3.10) with p=s-+1 and letting o, ¢’ |0, we can see that {0.i(?)},
{#,@)} and {6,()} are Cauchy sequences in H°**', H**? and H°**!, respectively

-

and their convergences are uniform in t<I’. Let &', %, § be the limits of
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{0.%,}, {@,}, {6+}, respectively. Then we can see easily
a'eC’; H*Y), asCd’; H*?), 0<CU’'; H*)

and that 9,#a=a’. By {6,} is bounded in L%(I’; H**®). We can choose
a subsequence {f,;} of {#,} which converges weekly in L*(I’; H**®). Let us
put its limit in §. For {6,} converges to 8 in CI’; H**'), we can see easily
§=0 a.e. tel’, which implies < L2(I’; H**).

By and (5.1)-(5.3), we see that u, @ is a solution of
and satisfies

ac L=(I'; H*)N\(CU’ ; H*HNCYI' ; H*HN\CI' ; HY),
d.is L=(I' ; H**?),
0 L*('; H**N\L=(I"; H**)N\CU’ ; H*YNC''; H*Y).
Thus by we get
acsCl’; H**NC'(I"; H**)NC*(I’ ; H*Y),
0 L' ; H*N\CU'; H*)NCYI'; H?).

Uniquness of solution is seen clearly by energy inequality (3.10).

6. A proof of main theorem
For preparation we list two lemmas.
LEMMA 6.1 (Shibata [13] Theorem Ap. 6). Let I be a closed interval and
ues L= ; HI™?HY (R™)N\Lip(l; HI™*(R™)).
Then for any e<(0, [m/2]4+1—m/2), ucB(IXR™). Furthermore
lu(t, x)—uls, M =CIC, x(—(s, M| uls.cmrer 1.8m

where C is a constant depending on n and e, and

| (t)— u(s)llcm 23
t—s ’

{uly cmsea. 1, rm=ess-sup || ()l cm 2341+ SUp
tel t't:ssl

LEMMA 6.2. Let d=(a,, -, ak)ER*, Q-—‘{yER"; Iy,--—a¢|§a',~, g;=0,
fori=1,.--, k}, A& B*(R™X8), s be an integer 2[m/2]+1 and 0 K<Cy'min{e,}
is a constant. For any a=(u,, -, ug), =@y, -, va)SHR™) of |uls,
lvills <K (i=1, ---, k), it follows that

A(-, a(-)+a)—A(-, o(-)+ad)eH®,
"A(" ﬁ(')+a)—A(°, 5(')+a)llsécuﬂ—ﬁ”s;
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where C is some constant depending on s, m, b, K and || Al gs+1.

PRrROOF.

6.1) A(x, #(x)+ad)—A(x, 9(x)+ad)

=S’z§§¢<x, ()4 (=) 3(x)+ B) ua(x)—va(x)dr.

01

Let 7 and 7 be fixed and put F=~g§1—, ¢:=tit+(1—7)d and ¢=u;—v;. For
. )

la| <s, by direct calculation we have
©2) °FC, g+ay= 3 a(g){zc,l 1, BC, $+8)0@, -+ FIw;}0"B,

where B is some derivative of F of order<j and for each [/, w;=¢; for some
i=1, .-, k. The summation in braces above is taken over all combinations of
multi-indices 7,>0, ---, 7,>0 such that 7,4+ --- +7;=8. By Sobolev embedding
theorem, each term of right side of (6.2) belongs to L2 so we have

A, a()+a)—A(, 5()+a)eH?,
and

JAG, @)+ D= AC, 3()+DISCI Al 3 Ko la—ll.

where C is a constant depending on s, m and k.

Let us proceed to the main issue. The method of the proof is the successive
approximation.
Let s=[m/2]+1. For any initial data such that

g, H™, a,eH*?, 0,=H*?,

(6.3) ol 2o, NGEoll 2o, dsllze, 1VOoll <L,
(6.4) 180l zo<min{T%,, L},

we choose positive constants L’, 9, y such that

(6.5) max {[|#oll o, |Vitollze, |@:llz, Vol =} <L'<L,
(6.6) [|@oll ze<0<min{T,, L},

(6.7) ol 22 <7 .

In the definition of E, (3.6), 4, can be chosen as some constant depending
on s, m,n, 8,7, L' and ||A?| g such that

(6.8) Ao(it, a),+mzsr<Awaaa,-a, 0%0;1)0=01/2(, #)r 41,
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is satisfied for 0<r<s+2 and t<[0, T]=I when & and @ satisfy (6.12),
(6.17) and [6.18) below. The coefficients A% in are functions of (¢, x)&
I'XR™ substituted by 8(t, x)+T,, Va(, x).

Let M be some positive constant such that

(6.9) (2/0)Es4(0)<M?,
where
Ess0)=a, |22+ Aoll @ol| 242+ | OollZ+2

+ 3 (4%, -, 0o+ To, Vue)d*0:tho, 0°0;ko)s -

la|S8+2

From now, we denote by ¢ various constants depending on some of the
following: s, m, n, 8,, 0;, To, L, which appear in assumptions of [Theorem 1.2;
d, L', v, M appearing above; B<.norms (d=N) and values of special points of
At, £, N, Q* and g.

Now let us define #” and #? for p=N by induction on p with fixed d, L,
7, M above. Let T’ be a positive number determined below. For any peN, |
put T,=T"+1/p(T'—T"), I,=[0, Tp] and I”=[0, T”] where T” is an arbitrary
number=(0, 7’). Assume that #* and 6* for 1<k<p—1 are already defined
and satisfy the following conditions:

(6.10) ate LI, ; H*NCU,; H*¥*)NC' U, ; H*Y),
(6.11) o.* s L=(I,; H**?),
(6.12) 0 < LI, ; H*NL>(Iy; H**)NCU, ; H**Y),
(6.13) 0.0*=L=(I,; H*),
(6.14) a*0)=a,, 0.a*0)=u,, 6*0)=80,,
(6.15) sup llUk(t)I13+z+2exp(ch)S 10%|2,.dt < M?,
tely Ip
(6.16) sup |0*(@)|[~<0,
telg
(6.17) tiulg(llﬂ"(t)llm V@ (@) =, 10ca* @) 2, [NO*@) =)< L',
(6.18) sup l|&*(t))| g <7 .
tel

Then, we shall define #? and 67 as follows. Let A*(k) be a function of
(t, x) substituting @#* and 6* in A¥. Similarly we define Bi(k), F(k), P(k),
Qii(k), R*(k), Ni(k), G(k). Then they satisfy all the hypotheses of the linear
theorem with 8,=4,, 6,=(T,—8)d, and J;=0, by [Lemma 6.2.
Thus the following linear problem:
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8a— A (p—1)9,0;4—Bi(p—1)-8,0=F(p—1)
) | P(p—1)8.0 —Q(p—1)0,0;0 — R (p—1)-0,0;4+ N*(p—1)-8,0,8=G(p—1)
a(0)=a,, 0.40)=u,, 6(0)=0,

has a unique pair of solutions # and € on I, which satisfies the conclusions of
Theorem 1.3. We denote these solutions by #? and 6°%.
On the other hand, let #!, 8* be the solution of (x) on [0, T'] with #°=0,

6°=0. Then #' and 6' satisfy the conditions [6.15}6.18) if 7'>0 is sufficiently
small.

Applying (3.10) to (*) by and (6.10)-(6.18) we see that
(6.19) [UP@Ol3s+2exp (T 5|, 107121t
p

<2/0{Es4x(0)+cTy}exp(cTp), (E1p).

Thus, by the definition of M, we see that if T'>0 is sufficiently small then

(6.20) SUp U@ 12+ 2exp (T 167 [Rdi <M.

By the system of equations (x), (6.20) and we can see easily that
(6.21) jar@lse, ¢ely,

(6.22) 10:.07°W)s=c, (sly).

Thus by Sobolev’s embedding theorem,
[162@#)— B0l L=< Coll @P(t)— Oolls < Coct,

for t€I,. In the same manner it follows that
8.4 (@) — |l > = Coct,
aP(#)—tholl o= Co M,
INa?@t)— V| > =CoMt,
a?(t)—ttoll 2= CoMt .

Also by Lemma 6.1, put e=1/2([m/2]+1—m/2) then we get

V67, x)—V07(0, x)| écts(tzglz IVOP@®)ls+ Sup 10:967(@)lls-1)

Zcts(M+Db).

Thus #® and 67 satisfy (6.16)-(6.18) if T’'>0 is sufficiently small.
Now, we shall show #?, 7 converge as p—oco if T7>0 is sufficiently small.
Note that T,>T”>0 for all p=N.
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a? ' +4® and 67— @* satisfy the following equation:
OXAP+ —aP)— AY(p)0,0,(aP+ —a?)— BY(p)-0,(67+ — 6?)=F ,,
P(p)3(67+ —67)—Q*(p)d.0,(67*+' — 07)— R'¥(p)-0,0,(2”** — #?)
+N¥(p)-0:0,@>* —a?)=G,,
with initial conditions ;
@+ —aP)0)=0, 8, (@' —a*)(0)=0, (67+'—67)(0)=0,
where
Fp=F(p)—F(p—1)+(A"(p)— A*(p—1))2:0;4”+(B*(p)— B*(p—1))-9,0?,
G, =G(p)—G(p—1)—(P(p)— P(p—1))8.6” +(Q*(p)— Q" (p—1))3,3,0”
+(RY(p)— R (p—1))-8.0,4> —(N(p)— Ni(p—1))-8,0,47 .
By (3.10) and we get
(6.23) SUp (| #°+' — &7 [0+ 0c7* — 0”341 +1107+: = 07 [54)

=2/0,-cT"exp(cT”) fgﬁlqmp—ﬁp_l”fn‘f‘”azﬁp—azﬂp—IMH

+1167—67341).
Thus if T7>0 is sufficiently small then we have
(6.24) (2/0,)cT” exp(cT")<1.

Then {a”@®)}, {0.#”()} and {07(t)} are Cauchy sequences on p&N in H**?,
H*t' and H**!, respectively and they converge uniformly in tI”. Let @, #’, 6
be the limits of {#?}, {d.#”}, {u?}. Then from the definition of #? and #® and
the boundedness of {67} in L*(I”; H***) and Lemmas 5.1 and it follows
that d,#4=#" and that # and @ satisfy (6.10)-(6.18) with #*, 8* and I* replaced
by @, @ and I”. Since # and @ satisfy (x) with #*~' and 67-'! replaced by #

and 6, by we obtain
acsCU”; H*NC'I”; H***)N\C*(” ; H®Y),
0= L*(1” H**)NCU" ; H**)N\C'I”; H?).
Thus # and @ are so smooth in ¢ and x that # and @ are solutions to

K0.2) and [0.3).

The uniqueness of solutions follows easily from the same arguments as the

calculations of and [(6.24).
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