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A DIRECT PROOF THAT EACH PEANO CONTINUUM
WITH A FREE ARC ADMITS NO
EXPANSIVE HOMEOMORPHISMS

By

Kazuhiro KAWAMURA

A homeomorphism $f:X\rightarrow X$ of a compact metric space $X$ is said to be
expansive if there exists a constant $c>0$ (called expansive constant) such that

$(*)$ for each pair $x,$ $y$ of distinct points of $X$, there exists an integer $n$ such
that $d(f^{n}(x), f^{n}(y))>c$ , where $d$ is a metric for $X$. Expansiveness does not
depend on the choice of metrics for compact metric spaces.

A compact connected metric space is called a continuum. A Peano continuum
means a locally connected continuum. An arc $A$ in a continuum $X$ with end
points $\{a, b\}$ is denoted by $[a, b]$ . $bd$ $A$ means $\{a, b\}$ and int $A=A-bdA$ . An
arc $A$ in $X$ is called a free arc if int $A$ is open in $X$. Let (X, d) be a conti-
nuum. For a point $x\in X$ and $\epsilon>0,$ $U(x, \epsilon)$ denotes the $\epsilon$ -neighbourhood of $x$ .
The Hausdorff metric is denoted by $d_{H}$ .

In this paper, we give a direct proof of the following theorem, which is a
consequence of Proposition $C$ in Hiraide [2].

THEOREM. Let $X$ be a Peano continuum with a free arc. Then there does
not exist expansive homeomorphisms of $X$.

The author benefits from reading Proposition $C$ in [2] and wishes to thank
to Professor K. Sakai for his helpful suggestions.

First we list known results which are necessary for the proof of Theorem.

LEMMA 1 ([3] p. 257, theorem 4). Let (X, d) be a Peano continuum. For
each $\epsilon>0$ , there exists a $\delta>0$ such that each pair of points $x,$ $y\in X$ with $d(x, y)$

$<\delta$ can be joined by an arc whose diameter is less than $\epsilon$ .

LEMMA 2 ([3] p. 179, theorem 1). A continuum $X$ is homeomorphic to an
arc if and only if there exist two points $a$ and $b$ of $X$ such that

1) $X-a$ and $X-b$ are connected and
2) for each $x\in X$ with $a\neq x\neq b,$ $X-x$ is not connected.
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LEMMA 3 ([1] p. 63-68). Let $f:X\rightarrow X$ be an expansive homeomorphism of a
compoct metric space $X$.

1) For each integer $k,$ $f^{k}$ is also expansive.
2) Suppose a closed subset $A$ of $X$ satisfies $f(A)=A$ . Then $f|A$ is also

expansive.
3) There exist no expansive homeomorphisms of arcs and simple closed curves.

To prove Theorem, we first show the following.
(A) Let $(L_{n})$ be an increasing sequence of free arcs in $X$ and $M=LimL_{n}$

(Lim means the limit by the Hausdorff metric).

Then $M$ is either a free arc or
a simple closed curve such that $M\cap cl(X-M)$ is a point.

Let $L_{n}=[p_{n}, q_{n}]$ . It is easy to see that $M=cl(\cup L_{n})$ . Without loss of
generality, we may assume that there exist two points $p$ and $q$ of $M$ such that
$p=\lim p_{n}$ and $q=\lim q_{n}$ . We consider two cases.

Case a) $p\neq q$ . In this case, $M$ is a free arc. To see this, we show

1) $M=cl(\cup L_{n})=\cup L_{n}\cup\{p, q\}$ .
Suppose that there exists a point $u\in cl(\cup L_{n})-\cup L_{n}\cup\{p, q\}$ . We can choose a
sequence $u_{n}\prime s$ of points in $L_{n}\prime s$ which converges to $u$ . Since $p\neq u\neq q$ , we may

assume that $u_{n}\in intL_{n}$ . By Lemma 1, there exists a sequence $A_{n}\prime s$ of arcs
joing $u$ and $u_{n}$ and diam $A_{n}\rightarrow 0$ as $ n\rightarrow\infty$ . On the other hand, $u_{n}\in intL_{n}$ and
$u\not\in L_{n}$ , and so $ A_{n}\cap bdL_{n}\neq\emptyset$ . Therefore there exists an integer $N>0$ such
that for each $n>N$, diam $A_{n}>\min\{d(u, p), d(u, q)\}/2>0$ , which is a contra-
diction. Hence $cl(\cup L_{n})\subset\cup L_{n}\cup\{p, q\}$ . Clearly $cl(\cup L_{n})\supset\cup L_{n}\cup\{p, q\}$ , and
therefore $M=\cup L_{n}\cup\{p, q\}$ . It is easy to see that $M^{}-p$ and $M-q$ are con-
nected and $M-x$ is not connected for each $x\in M-\{p, q\}$ . By Lemma 2, $M$ is
an arc. $M-\{p, q\}$ is open in $X$, so $M$ is a free are.

Case b) $p=q$ . In this case, $M$ is a simple closed curve and $M\cap cl(X-M)$

is a point. To prove this, take $c\in intL_{1}$ and let $A_{n}=[p_{n}, c]$ and $B_{n}=[q_{n}, c]$ .
Since $L_{n}\prime s$ are free arcs, $p=q\neq c$ . Applying the argument of Case a), we see
that $A=LimA_{n}$ and $B=LimB_{n}$ are free arcs with end points $\{p, c\}$ and $\{q, c\}$

respectively. Clearly $M=A\cup B$ and since $A_{n}\cap B_{n}=\{c\}$ , $A=\cup A_{n}\cup\{p\}$ and
$B=\cup B_{n}\cup\{q\}$ , we have $A\cap B=\{c, p=q\}$ . Therefore $M$ is a simple closed

curve. Since $M$ is a limit of free arcs, $M\cap cl(X-M)$ is a point.
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Let $\mathcal{F}$ be the collection defined by

$\mathcal{F}=\{K|_{sequenceoffreearcswhichconvergestoK^{an}}^{KisasubcontinuumofXandthereexists}increasing\}$ .
$\mathcal{F}$ is a partially ordered set by the usual inclusions. We show

(B) Each totally ordered subset of $\mathcal{F}$ has an upper bound.
Let $\mathcal{H}$ be a totally ordered subset of $\mathcal{F}$ and $K_{0}=cl(\cup j\zeta)$ . We must find an

increasing sequence of free arcs which converges to $K_{0}$ . Notice that each
$K\in \mathcal{F}$ is either a free arc or a simple closed curve by (A). We consider two
cases.

Case a) Each $K\in \mathcal{F}$ is a free arc. Let $\{x_{1}, \cdots, x_{n}\}\subset K_{0}$ be a finite set

such that $K_{0}\subset\bigcup_{i=1}^{n}U(x_{i}, 1/2)$ . For each $i=1,$ $\cdots,$ $n$ , there exist $K_{a_{i}}\in \mathcal{F}$ and a
point $p_{i}\in K_{a_{i}}$ such that $d(p_{i}, x_{i})<1/2$ . Take a $K_{1}\in \mathcal{F}$ which contains all of
$K_{a_{1}},$ $\cdots,$ $K_{a_{n}}$ . Then it is easy to see that $d_{H}(K_{1}, K_{0})<1$ .

Take a finite set $\{y_{1}, \cdots, y_{m}\}\subset K_{0}$ such that $K_{0}\subset\bigcup_{i=1}^{m}U(y_{i}, 1/4)$ . For each

$i=1,$ $\cdots,$ $m$ , there exist $K_{b_{i}}$ and a point $q_{i}\in K_{b_{i}}$ such that $d(q_{i}, y_{i})<1/4$ . Take
a $K_{2}\in \mathcal{H}$ which contains all of $K_{1},$ $K_{b_{1}},$ $\cdots,$ $K_{b_{m}}$ . Then $ d_{H}(K_{2}, K_{0})<1/2\cdots$ .
Continuing this processes, we can take an increasing sequence of free arcs
which converges to $K_{0}$ .

Case b) There exists an $L\in_{c}x$ which is a simple closed curve. Each
$ N\in J\zeta$ which contains $L$ is a simple closed curve. Hence $K_{0}=L$ which is the
limit of an increasing sequence of free arcs. Therefore $K_{0}$ is an upper bound
of (

$X$ . This proves (B).

Using Zorn’s lemma, we can find a maximal element $M$ of $\mathcal{F}$ .
Now suppose that $f:X\rightarrow X$ is an expansive homeomorphism with expansive

constant $c>0$ . If $f^{n}(M)=M$ for some integer $n\neq 0$ , we have a contradiction
by Lemma 3, 2) and 3). Thus we have $f^{n}(M)\neq M$ for each $n\neq 0$ . Then the
following holds.

(C) C-l) diam $f^{n}(M)\rightarrow 0$ as $ n\rightarrow\infty$ and
C-2) diam $f^{-n}(M)\rightarrow 0$ as $ n\rightarrow\infty$ .

We prove C-l). Suppose that there exist an $\epsilon>0$ and a subsequence $(n_{i})$

such that diam $ f^{n_{i}}(M)>\epsilon$ . Taking a subsequence if necessary, we may assume
that $f^{n_{i}}(M)$ converges to a continuum $M_{0}$ . Set $M_{i}=f^{n_{i}}(M)$ . Again, we con-
sider two cases.

Case a) $M$ is a free arc. By the maximality of $M,$ $M_{i}\cap M_{j}\subset bdM_{i}\cap bdM_{j}$

for each $i\neq j$ . For each $i$ , take a point $x_{i}\in M_{i}$ such that $d(x_{i}, bdM_{i})\geqq\epsilon/2$ .
Without loss of generality, we may assume that $x_{i}\prime s$ converge to a point
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$x\in M_{0}$ . By Lemma 1, there exists a sequence $(A_{i})$ of arcs joing $x$ and $x_{i}$ such
that diam $A_{i}\rightarrow 0$ as $ i\rightarrow\infty$ . If $x\not\in M_{i}$ for each $i$ , then $ A_{i}\cap bdM_{i}\neq\emptyset$ for each $i$ .
If $x\in M_{i}$ for some $i$ , then for each $j\neq i$ , either $x\not\in M_{j}$ or $x\in bdM_{j}\cap bdM_{i}$ .
Therefore $ A_{j}\cap bdM_{j}\neq\emptyset$ for each $j$ . In any case, diam $A_{k}\geqq\epsilon/2$ for each $k$ ,
which is a contradiction.

Case b) $M$ is a simple closed curve. Let $M\cap cl(X-M)=\{b\}$ and $b_{i}=f^{n_{i}}(b)$ .
In this case, $ M_{i}\cap M_{j}=\emptyset$ or $\{b_{i}=b_{j}\}=M_{i}\cap M_{j}$ for each $i\neq j$ . For each $i$ , take
a point $x_{i}\in M_{i}$ such that $d(x_{i}, b_{i})\geqq\epsilon/2$ . Using the same argument as in Case
a), we have a contradiction.

The proof of C-2) is similar, so we omit it.
Finally we take an integer $m$ such that for each $n>m$ , diam $f^{n}(M)<c/2$

and diam $f^{-n}(M)<c/2$ . There exists a $\delta>0$ such that if $d(x, y)<\delta(x, y\in M)$ ,

then $\max_{|i|=1,\cdots.m}d(f^{i}(x), f^{i}(y))<c$ . Then, for distinct points $x$ , $y$ of $M$ with

$d(x, y)<\delta,$ $d(f^{i}(x), f^{i}(y))<c$ for each integer $i$ . This contradiction completes
the proof.
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