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REMARKS ON TRANSMISSION, ANTITRANSMISSION
AND ANTILOCAL PROPERTIES FOR SUMS

OF STABLE GENERATORS

By

Yasushi ISHIKAWA

\S 1. Introduction.

The antilocal property (to all directions) of an operator $A$ states that, if
$f=Af=0$ in a domain $U$ , then $f$ is identically zero on the whole space. (For
the precise definition see \S 2). This property is known to hold for the class of
fractional powers of the Laplacian: $A=\Delta^{\lambda}$ , where $\lambda$ is a non-integral real
number, by Goodman-Segal [6] when the space dimension is odd and by
Murata [14] in general. Liess [13] showed this property for the fractional
powers of the elliptic differential operator with analytic coefficients using the
theory of pseudodifferential operators with analytic symbol.

As is well known, the fractional power $\Delta^{\alpha/2}$ is the generator of the isotropic
stable process in case $0<\alpha<2$ . In this case the antilocal property has an
interesting application for the uniqueness problem of measures of Riesz potentials.
See Kanda [10].

The class of generators for $\alpha$ -stable processes (called the stable generators)
includes a class of operators which are different from $\Delta^{\alpha/2}$ , for example, that
of one-sided $\alpha$ -stable generators. For details see \S 4. The author [9] showed
that if $A$ is a one-dimensional one-sided $\alpha$ -stable generator (to the right), $A$

has a biased antilocal property in the sense: if $f=Af=0$ on $(0, \epsilon),$ $f\in C_{0}^{\infty}(R)$ ,
$\epsilon>0$ , then $f\equiv 0$ on $(0, +\infty)$ but not necessarily $f\equiv 0$ in $(-\infty, 0)$ . The result
has been shown for $\alpha\in(0,1)$ and will be extended to $\alpha\in(0,1)\cup(1,2)$ in \S 4, b),

2). [It is still open if the asymmetric Cauchy generators (the generalized case
for $\alpha=1$ ) have the similar property.] The proof is carried out on the similar
line as in Liess [13], and so Sato-Kashiwara-Kawai theory is essential in the
proof.

The first aim of this note is to show what type of antilocal property holds
for a finite sum of one-dimensional stable generators, for example, the sum of
a one-sided $\alpha$ -stable generator to the right and a one-sided $\beta$ -stable generator

to the left. The solution will be given in \S 4, b), 3). In faet the example cited
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just before has the antilocal property to all directions.
Secondly, the antilocal property has a localized version, which the author

calls the antitransmission property. This property turns out to be equivalent

to “ not” transmission property in our simple case. These terminologies would

make our proof clearer than the earlier ones. Indeed we first prove the anti-
transmission properties and then the antilocal property follows.

We restrict our study to the one-dimensional simplest class of operators in
the class of analytic pseudodifferential operators. Some results are valid for
more general class of operators in one-dimensional case. As is mentioned
before, operators with the antilocal property to all directions were discovered
even in higher dimensional case. The author hope that the method in this
paper would apply to the higher dimensional case in the future.

The author expresses his hearty thanks to Professor M. Kanda for invalu-
able comments.

\S 2. Notation and main theorem.

In this section we introduce a class of operators and some properties con-
nected with it which we shall study in this paper. Throughout this section,
$\Gamma$ denotes an open cone in $R\backslash \{0\}$ . Setting $\Gamma_{\epsilon,\delta}\equiv\{\zeta\in C;{\rm Re}\zeta\in\Gamma,$ $|\zeta|>\delta,$ $|{\rm Im}\zeta|$

$<\epsilon|{\rm Re}\zeta|\}$ for $\epsilon>0,$ $\delta>0$ , we define $S_{A}^{s}(\Gamma)$ as the set of all functions $a(\xi)\in C^{\infty}(\Gamma)$

such that there are $\epsilon>0,$ $\delta>0$ and $c>0$ for which $a(\xi)$ extends to an analytic

function on $\Gamma_{\epsilon.\delta}$ which satisfies $|a(\zeta)|\leqq c(1+|\zeta|)^{s}$ on $\Gamma_{\epsilon,\delta}$ . We also denote the
class of symbols $a\in S_{1.0}^{s}(R)$ such that the restriction of $a(\xi)$ to $\Gamma$ belongs to
$S_{A}^{s}(\Gamma)$ by $S_{A}^{s}(R, \Gamma)$ , where $S_{1,0}^{s}(R)$ is the class of classical symbols $a(x, \xi)=a(\xi)$

of pseudodifferential operators with constant coefficients of order $s$ of type $(1, 0)$

(see [8] Chap. $V\mathbb{I},$ $XV1\mathbb{I}$ ). By the definition of $S_{1.0}^{s}(R)$ , a symbol in $S_{A}^{s}(R, \Gamma)$ is
required to be of class $C^{\infty}(R)$ , so we need the following

REMARK 2.1. For $a\in S_{A}^{s}(\Gamma)$ , there exists $a^{\prime}\in S_{A}^{s}(R, \Gamma)$ such that $a^{\prime}-a$ has
compact support if $a$ is defined to be zero outside $\Gamma$ .

Indeed, choosing a nonnegative $\psi\in C^{\infty}(R)$ such that $\psi=1$ in $\Gamma\cap\{|\xi|\geqq 1\}$

and $\psi=0$ in $(R\backslash \Gamma)\cup\{|\xi|<1/2\}$ , the function $a^{\prime}(\xi)\equiv\psi(\xi)a(\xi)$ is in $S_{A}^{s}(R, \Gamma)$ and
$a^{\prime}(\xi)-a(\xi)$ has compact support.

By Remark 2.1 we define an operator $A$ corresponding to $a(\xi)\in S_{A}^{s}(\Gamma)$ by

(2.1) A $ f(x)=\int e^{ix\xi}a^{\prime}(\xi)\hat{f}(\xi)d\xi+\int e^{ix\xi}(a(\xi)-a^{\prime}(\xi))\hat{f}(\xi)d\xi$ ,

where $f$ denotes the Fourier transform of $f$ and $ d\xi=(1/2\pi)d\xi$ . Note that the
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second term is real analytic since $a(\xi)-a^{\prime}(\xi)$ has compact support. We call the
operator $A$ defined by (2.1) the operator corresponding to the symbol $a\in S_{A}^{s}(\Gamma)$ .

For a finite sum $a(\xi)=\sum_{f=0}^{N}a_{j}(\xi)$ of $a_{j}(\xi)\in S_{A^{j}}^{s}(\Gamma)$ , we define an operator in an

obvious way and call it the operator corresponding to $a$ .
The operators which we study are those corresponding to the symbol

$a(\xi)=\sum_{j=0}^{N}a_{j}(\xi)$ satisfying

(A1) $a=\sum_{j=0}^{N}a_{j}$ , $a_{j}\in S_{A}^{s-\mu_{j}}(R_{+})\cap S_{A}^{s-\mu_{j}}(R_{-})$ , where $0=\mu_{0}<\mu_{1}<\cdots<\mu_{N}$ ;

(A2) $a_{j}(t\xi)=t^{s-\mu_{j}}a_{j}(\xi)$ for $|\xi|>0,$ $t>0$ .

In what follows we fix an open interval $D$ in $R$ .
A real function $g$ on an open neighborhood of $x$ is said to have an analytic

extension to the right (resp. to the left) at $x$ if there is a real analytic function
$h$ on $\{x^{\prime} ; |x^{\prime}-x|<\epsilon\}$ for some $\epsilon>0$ such that $g-h=0$ in $(x-\epsilon, x)$ (resp.

$(x, x+\epsilon))$ .
Now we shall introduce the key notation.

DEFINITION 2.2. Let $A$ be a linear operator: $C_{0}^{\infty}(D)\rightarrow C^{\infty}(D)$ .
(i) $A$ has the transmission property to the right (resp. to the left) at $x\in D$

if, for every $f\in C_{0}^{\infty}(D)$ such that $f=0$ on $(-\infty, x)\cap D$ (resp. $(x,$ $+\infty)\cap D$), $Af$

has an analytic extension to the right (resp. to the left) at $x$ .
In this case we simply say that $A$ has $[T]_{x}-R$ (resp. $[T]_{x}-L$ ).

(ii) $A$ has the antitransmission property to the right (resp. to the left) at $x$

if, for every $f\in C_{0}^{\infty}(D)$ such that $f=0$ on $(-\infty, x)\cap D$ (resp. $(x,$ $+\infty)\cap D$ ) but
$x\in A$-sing $suppf,$ $Af$ does not have analytic extension to the right (resp. to
the left) at $x$ . Here A-sing $suppf$ denotes the analytic singular support of $f$.

In this case we simply say that $A$ has $[AT]_{x}-R$ (resp. $[AT]_{x}-L$ ).

(iii) $A$ has the antilocality to the right (resp. to the left) if the following
holds: if $f=Af=0$ in an open non-empty set $U\subset D$ and $f\in C_{0}^{\infty}(D)$ then $f=0$ in
$(U+R_{+})\cap D$ (resp. $(U+R_{-})\cap D$ ).

In this case we simply say that $A$ has $[AL]-R$ (resp. $[AL]-L$ ). $A$ has
the antilocality if $A$ has both $[AL]-R$ and $[AL]-L$ , and in this case we
simply say that $A$ has $[AL]$ .

It is immediate that if $A$ has $[T]_{x}-R$ then $A$ does not have $[AT]_{x}-R$ ,
$x\in D$ . It also follows immediately from definition that the sum of two operators,

one has $[T]_{x}-R$ and the other has $[AT]_{x}-R$ , has $[AT]_{x}-R,$ $x\in D$ .
Then we have our main theorem:
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THEOREM 2.3. Let $A$ be the operator corresponding to a symbol $a(\xi)=\sum_{j=0}^{N}a_{j}(\xi)$

satisfying (A1) and (A2).

(i) If, for every $j$ ,

(2.2) $a_{j}(-1)-e^{-i\pi(s-\mu_{J})}a_{j}(1)=0$

(resp. (2.3) $a_{j}(-1)-e^{i_{\overline{\prime}}(s-\mu_{j})}a_{j}(1)=0$ ), then $A$ has $[T]_{x}-R$ (resp. $[T]_{x}-L$ ) for
every $x\in D$ .

(ii) If, for some $j$ , the condition (2.2) (resp. (2.3)) does not hold, then $A$ has
$[AT]_{x}-R$ for every $x\in D$ and $[AL]-R$ (resp. $[AT]_{x}-L$ for every $x\in D$ and
$[AL]-L)$ .

In \S 3 we shall prove Theorem. The properties $[AT]_{x}$ and $[AL]$ has an
intimate relation. Indeed, $[AT]_{x}-R$ for every $x\in D$ implies $[AL]-R$ , which
will be shown in Lemma 3.5.

\S 3. Proof of Theorem.

In this section we shall show Theorem. For the proof we prepare some
important results and simplified versions of Sato-Kashiwara-Kawai’s result. The
precise explanation of the notation below needs somewhat long sequence of
terminologies. So we omit it here. For reference consult Kashiwara-Kawai-
Kimura [12, Chap. 4], Hormander [8, Chap. XNW] or Liess [13]. First we note
that

LEMMA 3.1. ([13, theorem 2.6]) The operator $A$ with symbol $a(\xi)$ in $S_{A}^{s}(R, \Gamma)$

has $\Gamma$-analytic pseudolacal property ($\Gamma-[APL]$ for short), that is, $SSAf\cap(D\times\Gamma)$

$\subset SSf$. In particular, if $a(\xi)$ is in $S_{A}^{s}(R, R_{-})\cap S_{A}^{s}(R, R_{+})$ then $A$ has the analytic
pseudolocal property (simply written as $A$ has $[APL]$ ), that is, $SSAf\subset SSf$,

where $SSf$ denotes the singular spectrum of $f$.
(Note that $SSAf\subset SSf$ implies A-sing $suppAf\subset A$-sing $suppf.$ )

LEMMA 3.2. ([11, theorem 4.4.1] or [8, Chap. $11\mathbb{I}]$ ) Let $u$ be a distribution
on a neighborhood of $x_{0}\in R$ such that supp $u\subset\{x^{\prime} ; x^{\prime}\geqq x_{0}\}$ and that $u$ is micro-
analytic at either of the conormal points $(x_{0}, \pm idx\infty)$ . Then $u$ vanishes on a
neighborhood of $x_{0}$ .

LEMMA 3.3. ([11, theorem 8.5.7] or [8, theorem 7.4.3]) Suppose that $a(\xi)$

$\in S^{\prime}(R)$ satisfies the following: there exists a function $a(\zeta)$ which is holomorphic
in $\{{\rm Im}\zeta<0\}$ and such that, for each fixed $\epsilon>0,$ $|a(\zeta)|\leqq C(1+|\zeta|)^{N}$ uniformly
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on $\{{\rm Im}\zeta\leqq-\epsilon\}$ for some $N,$ $C>0$ and that $a(\xi-iO)=a(\xi)$ for $\xi\neq 0$ . Then

supp $(\int e^{ix\xi}a(\xi)\hat{f}(\xi)d\xi)\subset[x_{0}, +\infty)$ for every $f\in C_{0}^{\infty}(R)$ , where $x_{0}\equiv\inf[suppf]$ .

Now we shall begin the proof of Theorem. First we shall study the
operator connected with $a_{j}(\xi)$ . Define a symbol $d_{j}(\zeta)$ on $C\backslash \{it;t\geqq 0\}$ so that

$d_{j}(\zeta)=a_{j}(1)\zeta^{s-\mu_{j}}$ ,

where the branch is chosen so that $\zeta^{s-\mu_{j}}=1$ at $\zeta=1$ . Then $d_{j}$ is holomorphic

in $C\backslash \{it;t\geqq 0\}$ and

$d_{j}(\xi)=d_{j}(\xi-i0)=\left\{\begin{array}{l}a_{J}(1)e^{-i\pi(s-\mu_{j})}|\xi|^{s-\mu_{j}}, \xi<0\\a_{j}(1)\xi^{s-\mu_{j}}, \xi>0.\end{array}\right.$

In particular $d_{j}(\xi)\in S_{A}^{s-\mu_{j}}(R_{-})\cap S_{A}^{s-\mu_{j}}(R_{+})$ . Further it follows from Lemma 3.3
that, for $f\in C_{0}^{\infty}(D)$ such that $f=0$ on $(-\infty, x)\cap D$ (then $f$ can be regarded as
a function on $R$ with $f=0$ on $(-\infty, x))$ ,

$(3,1)$ $Supp(\int e^{ix\xi}d(\xi)\hat{f}(\xi)d\xi)\subset[x, +\infty)$ .

If the condition (2.2) is satisfied, then $a_{j}(\xi)=d_{j}(\xi)$ for every $j$ . Therefore
$[T]_{x}-R$ follows easily. The proof of $[T]_{x}-L$ is similar.

Next we prove the statement (ii) of Theorem. In what follows we assume
that $f$ is a function in $C_{0}^{\infty}(D)$ such that $f=0$ in $D\cap(-\infty, x)$ . First note that
$Af$ is real analytic on $D\cap(-\infty, x)$ by Lemma 3.1. Further, since $a_{j}(\xi)=d_{j}(\xi)$

for $\xi>0$ and every $j$ , we have

(3.2) $(x, idx\infty)\not\in SS(\int e^{ix\xi}(a(\xi)-d(\xi))\hat{f}(\xi)d\xi)$

by the Paley-Wiener theorem (see [11, definition 1.6.1, corollary 8.5.6] or [15,

corollary 3.3]), where $d(\xi)=\sum_{j=0}^{N}d_{j}(\xi)$ . Assume that $Af$ has an analytic extension

to the right at $x$ (in the present case this means that $Af=h$ in $(x-\epsilon, x)$ for
some $\epsilon>0$ and some real analytic function $h$ near $x$ ). Then it follows from
(3.2) that

$(x, idx\infty)\not\in SS(\int e^{ix\xi}(a(\xi)-d(\xi))\hat{f}(\xi)d\xi-h)$

and from (3.1) that $supp(Af-\int e^{ix\xi}d(\xi)\hat{f}(\xi)d\xi-h)\cap\{x^{\prime} ; |x^{\prime}-x|<\epsilon\}\subset[x, x+\epsilon)$ .
Hence, by Lemma 3.2, $(Af-\int e^{ix\xi}d(\xi)\hat{f}(\xi)d\xi-h)$ vanishes near $x$ , and so

(3.3) $ Af-\int e^{ix\xi}d(\xi)\hat{f}(\xi)d\xi$ is real analytic near $\chi$ .
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Now we use the assumption posed in (ii). Let $j_{0}$ be the minimum of num-
bers $j$ for which $a_{j}(-1)-e^{-i\pi(s-\mu_{j})}a_{j}(1)\neq 0$ . Then the restriction of a $(\xi)-d(\xi)$

to R-defines a non-zero symbol in $S_{A}^{s-\mu_{Jo}}(R_{-})$ , where the modification obtained
in Remark 2.1 is denoted by $c(\xi)\in S_{A}^{s-\mu_{j_{0}}}(R, R_{-})$ . Then, since $a(\xi)=d(\xi)$ for
$\xi\in R_{+}$ , it follows from (3.3) that

(3.4) $\int e^{ix\xi}c(\xi)\hat{f}(\xi)d\xi$ is real analytic near $x$ .

Since $c(\xi)$ is of the form

$c(\xi)=\psi(\xi)(c_{Jo}|\xi|^{s-\mu_{j}}0+c_{j_{0}+1}|\xi|^{s-\mu_{J\mathfrak{c}+1}}+\cdots c_{N}|\xi|^{s-\mu_{A}})$

with $s-\mu_{j_{0}}>s-\mu_{j_{0}+1}>\cdots>s-\mu_{N}$ and $\psi\equiv 1$ on $\{\xi<-1\}$ , we see that $c(\xi)$ does
not vanish for $\xi<-M$ for sufficiently large $M>0$ . Put $R(\xi)\equiv\psi(\xi/2M)\cdot(c(\xi))^{-1}$ .
Then $R(\xi)$ is in $S_{A}^{-s+\mu_{Jo}}(R, R_{-})$ and satisfies $R(\xi)\cdot c(\xi)=\psi(\xi/2M)$ .

By $R..-[A_{I^{P}}L]$ for the operator with symbol $R(\xi)$ (Lemma 3.1) and by (3.4),

(3.5) $(x, -idx\infty)\not\in SS(\int e^{ix\xi}\psi(\xi/2M)\hat{f}(\xi)d\xi)$ .

Since $\psi(-\xi/2M)$ has its support in $\{\xi\geqq 2M\}$ , it follows from the Paley-Wiener

theorem that

(3.6) $(x, -idx\infty)\not\in SS(\int e^{ix\xi}\psi(-\xi/2M)\hat{f}(\xi)d\xi)$ .

Combining (3.5), (3.6) we have

(3.7) $(x, -idx\infty)\not\in SS(\int e^{ix\xi}(\psi(\xi/2M)+\psi(-\xi/2M))\hat{f}(\xi)d\xi)=SSf$ .

The last equality holds since $1-(\psi(\xi/2M)+\psi(-\xi/2M))$ has compact support.

Using Lemma 3.2 with the assumption that $suppf\subset[x, +\infty$ ) $\cap D$ , we have
$\chi\not\in suppf$, in particular $x\not\in A$-sing $suppf$. This proves $[AT]_{x}-R$ for $A$ . The
proof for $[AT]_{x}-L$ is similar.

REMARK 3.4. In view of the conditions (2.2), (2.3) and Definition 2.2, we
can easily see that these conditions are also necessary.

For the proof of second part of (ii), we note that the operator $A$ has $[APL]$ ,

since each symbol $a_{j}(\xi)$ satisfies the assumption (A1) and so their modifications
are in $S_{A}^{s-\mu}(R, R_{-})\cap S_{A}^{s-\mu}(R, R_{+})$ . Hence the proof follows directly from the
following

LEMMA 3.5. If a linear operator $A:C_{0}^{\infty}(D)\rightarrow C^{\infty}(D)$ has the properties $[APL]$

and $[AT]_{x}-R$ (resp. $[AT]_{x}-L$ ) for all $x\in D$ , then $A$ has $[AL]-R$ (resp.
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$[AL]-L)$ on $D$ .

PROOF. We only prove the case $[AL]-R$ .
Let $U$ be an open set in $D$ . Let $\Lambda\equiv\{x\in D;f=Af=0in(U+R_{+})\cap D\cap$

$(-\infty, x)\}$ . Clearly $\Lambda\supset U$ so $\Lambda\neq\emptyset$ . We show that $\Lambda$ is open and closed in
$(U+R_{+})\cap D$ .

(i) $\Lambda$ is closed.
Since $ x\in\Lambda$ and $y<x$ implies $ y\in\Lambda$ for $\chi y\in D\cap(U+R_{+})$ , we may show

$\sup\Lambda\in\Lambda$ . Let $ x_{0}\equiv\sup\Lambda$ . However since $f$ and $Af$ are $C^{\infty}$-functions in $D$ , it
follows that $f(x_{0})=Af(x_{0})=0$ . Hence $ x_{0}\in\Lambda$ .

(ii) $\Lambda$ is open.
Take any $ y\in\Lambda$ . Then $suppAf\subset D\cap[y, +\infty$ ). Since $Af$ has analytic ex-

tension $h\equiv 0$ to the right at $y$ , it follows that $y\not\in A$-sing $suppf$ by $[AT]-R$ .
Since $suppf\subset D\cap[y, +\infty$ ), it implies that $y\not\in suppf$. By $[APL],$ $(y, \pm idx\infty)$

$\not\in SSAf$. Since $suppAf\subset D\cap[y, +\infty$ ), then $y\not\in suppAf$ by Lemma 3.2. Hence
for some neighborhood $\sigma$ of $y,$ $f=Af=0$ in $\sigma$ . Hence $ y+\eta\in\Lambda$ for some $\eta>0$ .

$q.e.d$ .
\S 4. Examples.

a) $[T]$ .
Let $D\subset R$ be a domain. Let $A$ be a differential operator with constant

coefficients on $D$ :
$A=\sum_{k\Leftarrow 0}^{l}c_{l-k}D_{x}^{k}$ , $(D_{x}=\frac{1}{i}\frac{d}{dx})$ .

Then $A$ has $[T]_{x}-R,$ $L$ for $x\in D$ . It is clear that $A$ has $[T]_{x}-R,$ $L$ by

definition. However we may confirm it in terms of the symbol.

Indeed, its symbol is $a(\xi)=\sum_{J=0}^{l}c_{j}\xi^{l-j}$ and this clearly satisfies (A1), (A2)

with $s=1,$ $\mu_{j}=j$ . (2.2), (2.3) are checked since $e^{\pm i\pi(l-j)}a_{j}(1)=(-1)^{l\leftrightarrow j}c_{j}=a_{j}(-1)$ .
Hence $A$ has $[T]_{x}-R,$ $L(x\in D)$ by Theorem.
b) [AT] and $[AL]$ .
1) Let $A$ be the Hilbert transform on $D=R$ ,

$Af(x)=\int_{\rightarrow\infty}^{+\infty}\frac{f(x-y)}{y}dy$ , $f\in C_{0}^{\infty}(R)$ .

Then $A$ has $[AT]_{x}-R,$ $L(x\in D)$ and $[AL]$ .
Indeed $A$ may be rewritten $Af(x)=\mathcal{F}^{-1}[-\pi isgn(\xi)\hat{f}(.\xi)](x)$ . Hence the

symbol of $A$ is $a(\xi)=-\pi isgn(\xi)$ . Then $a(\xi)$ is certainly homogeneous of order
$0$ and satisfies (A1), (A2).
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We see $a(-1)=\pi i\neq-\pi i=e^{0}a(1)$ . Hence $A$ has $[AT]_{x}-R,$ $L(x\in D)$ and
hence $[AL]$ by Theorem.

2) Let $A$ be the sum of the Laplacian and the stable generator with
“ drift” (a first order differential operator) on $D=R$ ( $i$ . $e.$ , L\’evy generator).

$A=A_{0}+A_{1}+A_{2}$ ,

$A_{0}f(x)=-a\frac{d^{2}f}{dx^{2}}(x)$ , $A_{1}f(x)=b\frac{df}{dx}(x)$ and

$A_{2}f(x)=A_{a}f(x)$ , where $A_{a},$ $\alpha\in(0,2)$ , is given by

$A_{\alpha}f(x)=\int_{(}\int_{\int R^{1}}R^{1}[f(x+y)-f(x)]N(y)dy,(0<\alpha<1)\int R^{1}[f(x+y)-f(x)^{-}\frac{y_{d}\frac{df}{fdx(}}{dx}x)\sin y]N(y)dy,\alpha=^{2_{1})}[f(x+y)-f(x)_{-}(x.)]N(y)dy,(1<\alpha<$

where “ the L\’evy measure” $N(y)dy$ is of the form

$N(y)dy=(p1_{R_{-}}(y)+q1_{R_{+}}(y))\frac{dy}{|y|^{1+\alpha}}$ .

Here $p,$ $q\in[0,1],$ $p+q=1,1_{R_{x}}(y)=1$ or $0$ according as $y\in R_{\pm}$ or not. In case
$\alpha=1$ we restrict ourselves to the symmetric case, that is, $p=q=1/2$ .

Then $A$ has $[AL]-R$ (resp. $[AL]-L$ ) if and only if the support of the
L\’evy measure contains $R_{+}$ (resp. $R_{-}$ ).

Indeed, the symbol is of the form

$a(\xi)=a_{0}(\xi)+a_{1}(\xi)+a_{2}(\xi)$

$a_{0}(\xi)=a\xi^{2}$ , $ a_{1}(\xi)=ib\xi$ and

$a_{2}(\xi)=\left\{\begin{array}{l}-C_{a}[pe^{isgn(\xi)a\pi/2}+qe^{-isgn(\xi)\alpha\pi/2}]|\xi|^{\alpha}, \alpha\in(0,1)\cup(1,2)\\-C\backslash \pi J2|\xi|, \alpha=1. (SeeFeller[5]Chap.X\backslash N)\end{array}\right.$

Then (A1), (A2) are satisfied with $\mu_{1}=1\wedge(2-a),$ $\mu_{2}=1(2-\alpha)$ .
For $A_{0}$ and $A_{1}$ , they have $[T]_{x}-R,$ $L(x\in D)$ as above.
However for $A_{2}$ , we have for $\alpha\in(0,1)\cup(1,2)$ ,

$a_{2}(-1)=-C_{\alpha}[pe^{-i\alpha\pi/2}+qe^{t\alpha\pi/2}]$ ,

$e^{-ia\pi}a_{2}(1)=-C_{a}[pe^{-i\alpha\pi/2}+qe^{-i3\alpha\pi/2}]$ , and

$e^{la\pi}a_{2}(1)=-C_{\alpha}[pe^{i3\alpha\pi/2}+qe^{ia\pi/2}]$ .

And for $a=1$ ,
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$a_{2}(-1)=-C\pi/2\neq e^{\pm i\pi}(-C\pi/2)=e^{\pm i\pi}a_{2}(1)$ .

Hence, in case $\alpha\in(0,1)\cup(1,2)$ if $q>0$ then not (2.2) is checked and if $p>0$

then not (2.3) is checked. Therefore, if $q>0$ then $A$ has $[AT]_{x}-R(x\in D)$ and
hence $[AL]-R$ . If $p>0$ then $A$ has $[AT]_{x}-L(x\in D)$ and hence $[AL]-L$ .
In particular if $p:q>0$ then $A$ has $[AL]$ .

For the case $\alpha=1$ , conditions in (ii) are clearly checked, and so $A$ has
$[AT]_{x}-R,$ $L(x\in D)$ and hence $[AL]$ by Theorem.

3) Let $A$ be the $(N+1)$-sum of stable generators on $D=R$ .

$A=\sum_{j=0}A_{\alpha_{j}}N$ $\alpha_{j}\in(0,2)$ , $\alpha=\alpha_{0}>\alpha_{1}>\cdots>\alpha_{N}$ .

Here $A_{\alpha_{j}}$ is given in 2), each L\’evy measure is of the form

$N_{j}(y)dy=[p_{j}1_{R_{-}}(y)+q_{j}1_{R_{+}}(y)]\frac{dy}{|y|^{1+a_{j}}}$ .

(In case that $\alpha_{j}=1$ , we always assume $p_{j}=q_{j}=1/2.$ )

Then $A$ has $[AL]-R$ (resp. $[AL]-L$ ) if and only if the union of supports

of the L\’evy measures contains $R_{+}$ (resp. $R_{-}$ ). In particular, if $N=1,$ $\alpha_{0}=\alpha$ ,
$\alpha_{1}=\beta$ with $\alpha,$ $\beta\in(0,2)$ and $q_{0}=1,$ $p_{1}=1$ , then $A$ has $[AL]$ .

Indeed, the symbol of $A$ is $a(\xi)=\sum_{j=0}^{N}a_{j}(\xi)$ ,

$a_{j}(\xi)=-C_{\alpha}[p_{j}e^{isgn(\xi)\alpha_{j}\pi/2}+q_{j}e^{-isgn(\xi)\alpha_{j}\pi/2}]|\xi|^{\alpha_{j}}$ .

Then (A1), (A2) are satisfied with $\mu_{j}=\alpha-\alpha_{j}$ .
As in 2), we have for each $j=0,$ $\cdots$ , $N$, if $q_{j}>0$ then not (2.2) is checked

and if $p_{j}>0$ then not (2.3) is checked.
Hence we have the following results:

$q_{0}=\cdots=q_{N}=0$ $p_{0}=\cdots=p_{N}=0$ otherwise

$[AL]-L$ $[AL]-R$ $[AL]$

REMARK 4.1. In case $q_{0}=\cdots=q_{N}=0$ (resp. $q_{0}=\cdots=q_{N}=1$ ), the fact that $A$

does not have $[AL]-R$ (resp. $[AL]-L$ ) is known by the counter example in [9].

And so in this case $[AL]-R$ (resp. $[AL]-L$ ) implies $[AT]_{x}-R$ (resp. $[AT]_{x}-L$)

for every $x\in D$ by Theorem.

Appendix.

Though we have treated the case of finite sum $a(\xi)=\sum_{j=0}^{N}a_{j}(\xi)$ alone, one
may treat the case for formal analytic symbol with constant coefficients
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$a(\xi)=\sum_{j\geqq 0}a_{j}(\xi)$ with the assumptions

(B1) $a\in SF_{A}^{s}(R_{+})\cap SF_{A}^{\epsilon}(R_{-})$

(B2) $a$ is polyhomogeneous in the sense that

$a_{j}(t\xi)=t^{s-j}a_{j}(\xi)$ for $|\xi|>1,$ $t>1$ .
(For the definition of the symbol class $SF_{A}^{s}(R_{\pm})$ , see [9].)

One puts the condition that $a_{j}(\xi)$ is homogeneous of order $s-j$ to ensure con-
vergence of the formal symbol (see [1], [3] and [13]).

For those symbols, discussions in \S 3 remain valid with replacing $\mu_{j}$ with
$j$ and some modifications necessary.

Then we have

PROPOSITION. (i) If, for every $j$ ,

$(AP. 1)a_{j}(-1)-e^{-i\pi(s-j)}a_{j}(1)\neq 0$ (resp. $(AP.2)a_{j}(-1)-e^{i\pi(s-j)}a_{j}(1)\neq 0$),

then $A$ has the property $[T]_{x}-R$ (resp. $[T]_{x}-L$ )$for$ every $x\in D$ .
(ii) If, for some $j$ , the condition $(AP. 1)$ (resp. $(AP.2)$ ) does not hold, then

$A$ has the property $[AT]_{x}-R$ for every $x\in D$ and $[AL]-R$ (resp. $[AT]_{x}-L$

for every $x\in D$ and $[AL]-L$ ).

As in \S 3, conditions are also necessary. Cf. [8] Chap. xvm, section 2.
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