A NOTE ON THE PROJECTIVE NORMALITY OF SPECIAL LINE BUNDLES ON ABELIAN VARIETIES

By

Akira Ohbuchi

Dedicated to Professor Yukihiro Kodama on his 60th birthday

Introduction.

Let L be an ample line bundle on an abelian variety A of dimension g defined over an algebraically closed field k. It is well known that $L^{\otimes 2}$ is base point free and $L^{\otimes 3}$ is very ample and projectively normal. Moreover we know that

$$\Gamma(A, L^{\otimes a}) \otimes \Gamma(A, L^{\otimes b}) \longrightarrow \Gamma(A, L^{\otimes a+b})$$

is surjective if $a \ge 2$ and $b \ge 3$ (Koizumi [3], Sekiguchi [8], [9]). But in the case of a=b=2, this map is not surjective in general. In this paper we determine the condition of projective normality of $L^{\otimes 2}$ for some ample line bundle L. Our result is as follows.

THEOREM. If L is a symmetric ample line bundle of separable type, l(A, L) is odd and assume that $char(k) \neq 2$, then $L^{\otimes 2}$ is projectively normal if and only if $Bs|L| \cap A[2] = \phi$.

In §1 we prove the above theorem for abelian varieties defined over C. In §2 we give the Mumford's theory of a theta group (Mumford [4], [5]). In §3 we prove the above theorem in general by the theory in §2.

Notations.

char (k): The characteristic of a field k

 f^* : The pull back defined by a morphism f

L: The invertible sheaf associated to a line bundle L

 \mathcal{O}_A : The invertible sheaf of a variety A

 (L^g) : The self intersection number

|L|: The set of all effective Cartier divisors which define a line bundle L

Bs|L|: The set defined by $\bigcap_{D=1}^{L}D$

 $\Gamma(A, L)$: The set of global sections of a line bundle L

l(A, L): The dimension of $\Gamma(A, L)$ as a vector space

Received May 12, 1987.

 T_x : The translation morphism on an abelian variety A defined by $T_x(y) = x + y$ where x and y are elements of A

K(L): The subgroup of an abelian variety A defined by $\{x \in A; T_x^*L \cong L\}$ where L is a line bundle on A

A[n]: The set of all points of order n of an abelian variety A

Z: The ring of integers

R: The field of real numbers

C: The field of complex numbers

$\S 1.$ The C case.

First we recall a definition of projective normality.

DEFINITION. Let M be an ample line bundle on an abelian variety A. We call that M is projectively normal if

$$\Gamma(A, M)^{\otimes n} \longrightarrow \Gamma(A, M^{\otimes n})$$

is surjective for every $n \ge 1$.

Next we define a theta function defined on C^{g} .

DEFINITION. Let m', m'' be elements of R^g and let τ be an element of a Siegel upper half space H_g . We define $\theta \begin{bmatrix} m' \\ m'' \end{bmatrix} (\tau, z)$ by

$$\theta \begin{bmatrix} m' \\ m'' \end{bmatrix} (\tau, z) = \sum_{\zeta \in \mathbb{Z}} e((1/2)^t (\zeta + m') \tau(\zeta + m') + {}^t (\zeta + m') (z + m''))$$

where e(x) means $e^{2\pi\sqrt{-1}x}$ and z is contained in C^g .

Let d_1, \dots, d_g be positive integers with $d_1 | \dots | d_g$. We define an integral matrix e by

$$\begin{bmatrix} d_1 & 0 \\ \ddots & 0 \\ 0 & d_g \end{bmatrix}.$$

For an element τ of H_g we define an abelian variety A by $C^g/\langle \tau, e \rangle$ where $\langle \tau, e \rangle$ is a lattice subgroup of C^g defined by $\tau Z^g + e Z^g$. Let \mathcal{A} be a Riemann form on $\langle \tau, e \rangle$ defined by

$$\mathcal{A}(\tau x + e y, \tau x' + e y') = t x e y' - t x' e y$$

where x, x', y, y' are elements of Z^g . It is well known that this \mathcal{A} defines an

algebraic equivalence class of line bundles on A. Now we take a line bundle L on A satisfying that L is symmetric and the global sections of L are generated by $\theta \begin{bmatrix} \eta \\ 0 \end{bmatrix} (\tau, z)$ where η runs over a complete system of representative of $(1/d_1)\mathbf{Z}/\mathbf{Z}$ $\oplus \cdots \oplus (1/d_g)\mathbf{Z}/\mathbf{Z}$.

LEMMA 1. The basis of $\Gamma(A, L^{\otimes 2^n})$ is given by $\theta \begin{bmatrix} \eta \\ 0 \end{bmatrix} (2^n \tau, 2^n z)$ where η runs over a complete system of representative of $(1/2^n d_1) \mathbb{Z}/\mathbb{Z} \oplus \cdots \oplus (1/2^n d_g) \mathbb{Z}/\mathbb{Z}$ $(n=1, 2, \cdots)$. Moreover $\Gamma(A, L^{\otimes 4})$ is generated by $\theta \begin{bmatrix} \xi \\ \sigma \end{bmatrix} (\tau, 2z)$ where ξ runs over a complete system of representative of $(1/2d_1)\mathbb{Z}/\mathbb{Z} \oplus \cdots \oplus (1/2d_g)\mathbb{Z}/\mathbb{Z}$ and σ runs over a complete system of representative of $((1/2)\mathbb{Z}/\mathbb{Z})^g$.

PROOF. This is well known fact (cf. Igusa [2], p. 72, Theorem 4, and p. 84, Theorem 6).

LEMMA 2 (Multiplication formula). If η' , η'' , ξ' , ξ'' are contained in \mathbf{R}^g and τ is contained in H_g , then

$$\theta \begin{bmatrix} \eta' \\ \eta'' \end{bmatrix} (\tau, z) \theta \begin{bmatrix} \xi' \\ \xi'' \end{bmatrix} (\tau, z) = (1/2^{g}) \sum_{\substack{a' \in ((1/2)Z/Z)^{g} \\ \xi'' = (1/2)Z/Z}} e(-2^{t}\eta'a'') \\ \cdot \theta \begin{bmatrix} \eta' + \xi' \\ (\eta'' + \xi'')/2 + a'' \end{bmatrix} (\tau/2, (z_{1} + z_{2})/2) \\ \cdot \theta \begin{bmatrix} \eta' - \xi' \\ (\eta'' - \xi'')/2 + a'' \end{bmatrix} (\tau/2, (z_{1} - z_{2})/2)$$

where z_1 and z_2 are contained in C^g .

PROOF. This is also well known fact (cf. Igusa [2], p. 139, Theorem 2).

LEMMA 3. If η , η' are elements of $(1/d_1)\mathbf{Z}/\mathbf{Z} \oplus \cdots \oplus (1/d_g)\mathbf{Z}/\mathbf{Z}$, d_g is odd and ε , ε' are contained in \mathbf{Z}^g , then

$$\sum_{\sigma \in (\mathbf{Z}/2\mathbf{Z})^{\mathbf{g}}} (-1)^{t_{\sigma}e\varepsilon'} \theta \begin{bmatrix} \eta + (\sigma/2) \\ 0 \end{bmatrix} (2\tau, 2z) \theta \begin{bmatrix} \eta' + (\sigma+\varepsilon)/2 \\ 0 \end{bmatrix} (2\tau, 2z)$$

$$= \theta \begin{bmatrix} \eta + \eta' + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 2z) \theta \begin{bmatrix} \eta - \eta' + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 0).$$

PROOF. By lemma 2, we obtain

$$\theta \begin{bmatrix} \eta + (\sigma/2) \\ 0 \end{bmatrix} (2\tau, 2z) \theta \begin{bmatrix} \eta' + (\sigma + \varepsilon)/2 \\ 0 \end{bmatrix} (2\tau, 2z)$$

$$= (1/2^{s}) \sum_{a' \in ((1/2) \mathbb{Z}/\mathbb{Z})^{s}} e(-2^{t}(\eta + (\sigma/2))a'')$$

$$\cdot \theta \begin{bmatrix} \eta + \eta' + (\varepsilon/2) \\ a'' \end{bmatrix} (\tau, 2z) \theta \begin{bmatrix} \eta - \eta' + (\varepsilon/2) \\ a'' \end{bmatrix} (\tau, 0).$$

Hence

$$\sum_{\sigma \in (\mathbb{Z}/2\mathbb{Z})^g} (-1)^{t_{\sigma}e\varepsilon'} \theta \begin{bmatrix} \eta + (\sigma/2) \\ 0 \end{bmatrix} (2\tau, 2z) \theta \begin{bmatrix} \eta' + (\sigma+\varepsilon)/2 \\ 0 \end{bmatrix} (2\tau, 2z)$$

$$= (1/2^g) \sum_{\alpha' \in ((1/2)\mathbb{Z}/2)^g} \sum_{\sigma \in (\mathbb{Z}/2\mathbb{Z})^g} (-1)^{t_{\sigma}(\varepsilon\varepsilon' - 2\alpha')}$$

$$\cdot \theta \begin{bmatrix} \eta + \eta' + (\varepsilon/2) \\ \alpha'' \end{bmatrix} (\tau, 2z) \theta \begin{bmatrix} \eta - \eta' + (\varepsilon/2) \\ \alpha'' \end{bmatrix} (\tau, 0)$$

$$= e^{(t} \eta e\varepsilon') \theta \begin{bmatrix} \eta + \eta' + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 2z) \theta \begin{bmatrix} \eta - \eta' + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 0)$$

$$= \theta \begin{bmatrix} \eta + \eta' + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 2z) \theta \begin{bmatrix} \eta - \eta' + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 0).$$

Therefore we obtain this lemma.

LEMMA 4. If M is an ample line boundle on an abelian variety A, then

$$\Gamma(A, M^{\otimes a}) \otimes \Gamma(A, M^{\otimes b}) \longrightarrow \Gamma(A, M^{\otimes a+b})$$

is surjective for $a \ge 2$ and $b \ge 3$.

PROOF. See Koizumi [3] or Sekiguchi [8], [9].

LEMMA 5. Under the notation of lemma 3, if there exists some $\eta_0 \in (1/d_1)\mathbf{Z}/\mathbf{Z} \oplus \cdots \oplus (1/d_g)\mathbf{Z}/\mathbf{Z}$ with $\theta \begin{bmatrix} \eta_0 + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 0) \neq 0$, then $\theta \begin{bmatrix} \eta + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 2z)$ is in the image of $\Gamma(A, L^{\otimes 2})^{\otimes 2} \rightarrow \Gamma(A, L^{\otimes 4})$ for every $\eta \in (1/d_1)\mathbf{Z}/\mathbf{Z} \oplus \cdots \oplus (1/d_g)\mathbf{Z}/\mathbf{Z}$.

PROOF. Let η_1 be an element of $(1/d_1)\mathbf{Z}/\mathbf{Z}\oplus\cdots\oplus(1/d_g)\mathbf{Z}/\mathbf{Z}$. In this case, we obtain that

$$\theta \begin{bmatrix} {}^{2}\eta_{1} + \eta_{0} + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 2z) \theta \begin{bmatrix} \eta_{0} + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 0)$$

is contained in the image of $\Gamma(A, L^{\otimes 2})^{\otimes 2} \to \Gamma(A, L^{\otimes 4})$ by lemma 3. Hence $\theta \begin{bmatrix} 2\eta_1 + \eta_0 + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 2z)$ is contained in the image of $\Gamma(A, L^{\otimes 2})^{\otimes 2} \to \Gamma(A, L^{\otimes 4})$. As

 d_g is odd, therefore the set $\{2\eta_1 + \eta_0; \eta_1 \in (1/d_1)\mathbf{Z}/\mathbf{Z} \oplus \cdots \oplus (1/d_g)\mathbf{Z}/\mathbf{Z}\}$ is equal to $(1/d_1)\mathbf{Z}/\mathbf{Z} \oplus \cdots \oplus (1/d_g)\mathbf{Z}/\mathbf{Z}.$

Therefore we obtain this lemma.

LEMMA 6. Under the assumption of lemma 3, the following conditions are equivalent:

- a) For every ε , $\varepsilon' \in \mathbb{Z}^g$, there exists some $\eta \in (1/d_1)\mathbb{Z}/\mathbb{Z} \oplus \cdots \oplus (1/d_g)\mathbb{Z}/\mathbb{Z}$ with $\theta \begin{bmatrix} \eta + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 0) \neq 0$;
 - b) $Bs|L| \cap A[2] = \emptyset$.

PROOF. As

$$\theta \begin{bmatrix} m' + \xi' \\ m'' + \xi'' \end{bmatrix} (\tau, z) = e((1/2)^t \xi' \tau \xi' + t' \xi' (z + \xi'' + m'')) \theta \begin{bmatrix} m' \\ m'' \end{bmatrix} (\tau, z + \tau \xi' + \xi_{"})$$

(cf. Igusa [2], p. 50, $(\theta.3)$), therefore the condition $\theta \begin{bmatrix} \eta + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 0) \neq 0$ is equivalent to $\theta \begin{bmatrix} \eta \\ 0 \end{bmatrix} (\tau, (\tau \varepsilon + e\varepsilon')/2) \neq 0$. Hence this lemma is clear because $A = C^{g}/\langle \tau, e \rangle$.

THEOREM. If l(A, L) is odd, then $L^{\otimes 2}$ is projectively normal if and only if $Bs|L| \cap A[2] = \phi$.

PROOF. By lemma 1, a basis of $\Gamma(A, L^{\otimes 4})$ consists of $\theta \begin{bmatrix} \eta \\ \sigma \end{bmatrix} (\tau, 2z)$ where η runs over a complete system of representative of $(12d_1)\mathbf{Z}/\mathbf{Z} \oplus \cdots \oplus (1/2d_g)\mathbf{Z}/\mathbf{Z}$ and σ runs over a complete system of representative of $((1/2)\mathbf{Z}/\mathbf{Z})^g$. Hence $\Gamma(A, L^{\otimes 2})^{\otimes 2} \to \Gamma(A, L^{\otimes 4})$ is surjective if and only if for every ε , $\varepsilon' \in \mathbf{Z}^g$, there exists some $\eta_0 \in (1/d_1)\mathbf{Z}/\mathbf{Z} \oplus \cdots \oplus (1/d_g)\mathbf{Z}/\mathbf{Z}$ such that $\theta \begin{bmatrix} \eta_0 + (\varepsilon/2) \\ e\varepsilon'/2 \end{bmatrix} (\tau, 0) \neq 0$ by lemma 5. Hence we obtain this theorem by lemma 4 and lemma 6.

§ 2. Review of a theta group.

In this section we recall the Mumford's theory for a theta group (cf. Mumford [4], [5]). Let A be an abelian variety of dimension g defined over an algebraically closed field k with $char(k) \neq 2$. We fix these notations.

DEFINITION. Let M be an ample line bundle on A. We call that M is of separable type if $\operatorname{char}(k) \nmid l(A, M)$.

DEFINITION. Let M be an ample line bundle on A and be of separable type. We define a theta group G(M) by

$$\{(x, \psi); x \in K(M) \text{ and } \psi: M \xrightarrow{\sim} T_x * M\}.$$

This G(M) is a group by the following way:

$$(x, \psi) \cdot (y, \rho) = (x + y, T_x * \psi \cdot \rho).$$

It is well known that K(M) is isomorphic to the following abelian group via Weil pairing:

$$K(M) = \mathbb{Z}/d_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/d_g\mathbb{Z} \oplus (\widehat{\mathbb{Z}/d_1\mathbb{Z}} \oplus \cdots \oplus \mathbb{Z}/d_g\mathbb{Z})$$

where $d_1|\cdots|d_g$ and \hat{G} means $\operatorname{Hom}(G, k^*)$ for a group G. Here we denote by $k^*=k-\{0\}$. In this situation, we set $\delta_M=(d_1,\cdots,d_g)$ and put $H(\delta_M)=Z/d_1Z\oplus\cdots\oplus Z/d_gZ$. We define a Heisenberg group $G(\delta_M)$.

DEFINITION. In the above notations, we define a Heisenberg group $G(\delta_{\mathtt{M}})$ by

$$G(\delta_{M}) = k^* \times H(\delta_{M}) \times H(\hat{\delta}_{M}).$$

This $G(\delta_M)$ is a group by the following way:

$$(t, (x, m)) \cdot (t', (x', m')) = (tt'm'(x), (x+x', m+m'))$$

where $x, x' \in H(\delta_M)$, $m, m' \in H(\hat{\delta}_M)$ and $t, t' \in k^*$. The following theorem is foundamental.

THEOREM. In the above notations, the following two horizontal sequences are exact and isomorphic:

$$0 \longrightarrow k^* \longrightarrow G(M) \longrightarrow K(M) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

PROOF. See Mumford [4], p. 294, Corollary of Th. 1.

DEFINITION. Let $z=(x, \phi)$ be an element of G(M). We define a map U_z as follows:

$$U_z: \Gamma(A, M) \xrightarrow{\Gamma(\phi)} \Gamma(A, T_x * M) \xrightarrow{T_{-x} *} \Gamma(A, M).$$

It is clear that $\Gamma(A, M)$ is a G(M)-module by this way. Next we define a vector space $V(\delta_M)$ and its $G(\delta_M)$ -module structure.

DEFINITION. The vector space $V(\boldsymbol{\delta}_{\mathtt{M}})$ is defined as follows:

 $V(\delta_{\mathtt{M}})$ =the set of all maps from $H(\delta_{\mathtt{M}})$ to k.

Let (t, (x, m)) be an element of $G(\delta_M)$. We define an automorphism $U_{(t,(x,m))}$ of $V(\delta_M)$ as follows:

$$U_{(t,(x,m))}(f)(y)=tm(y)f(x+y)$$

where $f \in V(\delta_M)$ and $y \in H(\delta_M)$.

The following theorem is also foundamental.

THEOREM. If $\alpha: G(M) \cong G(\delta_M)$ is an isomorphism given in the above theorem, then we obtain an isomorphism

$$\Gamma(A, M) \xrightarrow{\sim} V(\delta_M)$$

as $G(M) \cong G(\delta_M)$ -modules.

PROOF. See Mumford [4], p. 295, proposition 3, and p. 297, theorem 2.

DEFINITION. Let x be an element of $H(\delta_M)$. We define $\delta_x \in V(\delta_M)$ by $\delta_x(y) = 1$ if y = x and $\delta_x(y) = 0$ if $y \neq x$.

It is clear that $U_{(t,(x,m))}(\delta_u)=tm(u-x)\delta_{u-x}$.

§ 3. The general case.

Let L be an ample line bundle on an abelian variety A of dimension g. Throughout of this section, we assume that L is of separable type and $\ell(A, L)$ is odd and L is symmetric. We fix an isomorphism $G(L^{\otimes 4}) \cong G(4\delta_L)$ and identify two vector spaces $\Gamma(A, L^{\otimes 4})$ and $V(4\delta_L)$ by the isomorphism in § 2.

LEMMA 1. Let f be an element of $V(4\delta_L) \cong \Gamma(A, L^{\otimes 4})$ defined by $f = \sum_{u \in H(4\delta_L) \text{ and } 2u = 0} \delta_u$. Then f is in the image of $2_A^* \colon \Gamma(A, L) \to \Gamma(A, L^{\otimes 4})$ for some isomorphism $2_A^*L \cong L^{\otimes 4}$ where $2_A(x) = 2x$ $(x \in A)$.

PROOF. This lemma is trivial.

By the above lemma, we obtain $\theta \in \Gamma(A, L)$ with $2_A * \theta = f$. We fix these notations through this section.

DEFINITION. Let x be an element of $H(4\delta_L)$ and σ be an element of $H(\hat{\delta}_L)$. We define an element of $\theta \begin{bmatrix} x \\ \sigma \end{bmatrix}$ of $V(4\delta_L)$ by

$$\theta \begin{bmatrix} x \\ \sigma \end{bmatrix} = U_{\mathbf{z}}(2_{\mathbf{A}} * \theta)$$

where z is an element of $G(L^{\otimes 4})$ corresponding to $(1, (x, \sigma))$ which is an element of $G(4\delta_L)$.

LEMMA 2. Let x, u be elements of $H(4\delta_L)$ and σ , u^* be elements of $H(\hat{\delta}_L)$. If 2u=0 and $2u^*=0$, then $\theta \begin{bmatrix} x+u \\ \sigma+u^* \end{bmatrix} = u^*(x)\theta \begin{bmatrix} x \\ \sigma \end{bmatrix}$.

PROOF. By the definition, we obtain that

$$\theta \begin{bmatrix} x \\ \sigma \end{bmatrix} = \sum_{2\zeta=0} \sigma(\zeta-x)\delta_{\zeta-x}.$$

Therefore

$$\theta \begin{bmatrix} x+u \\ \sigma+u^* \end{bmatrix} = \sum_{2\zeta=0} (\sigma+u^*)(\zeta-x-u)\delta_{\zeta-x-u}$$

$$= \sum_{2\zeta=0} (\sigma+u^*)(\zeta-x)\delta_{\zeta-x}$$

$$= \sum_{2\zeta=0} u^*(\zeta-x)\sigma(\zeta-x)\delta_{\zeta-x}.$$

As $2u^*=0$, hence $u^*(\zeta)=1$ for every $\zeta \in H(4\delta_L)$ with $2\zeta=0$. Therefore

$$\theta \begin{bmatrix} x+u \\ \sigma+u^* \end{bmatrix} = u^*(-x) \sum_{2\zeta=0} \sigma(\zeta-x) \delta_{\zeta-x}$$
$$= u^*(x) \theta \begin{bmatrix} x \\ \sigma \end{bmatrix}.$$

So we obtain this lemma.

LEMMA 3. The vector space $\Gamma(A, L^{\otimes 4})$ is sppaned by the elements $\theta\begin{bmatrix} x \\ \sigma \end{bmatrix}$ where $x \in H(4\delta_L)$ and $\sigma \in (\mathbf{Z}/4\mathbf{Z})^g$ which is regarded the subgroup of order of $H(4\hat{\delta}_L)$.

PROOF. We regard that $H(\delta_L)$ and $(Z/4Z)^g$ are the subgroups of $H(4\delta_L)$ in the canonical way. For every $\xi \in H(\delta_L)$, $\tau \in (Z/4Z)^g$ and $\sigma \in (Z/4Z)^g$, we obtain

$$\theta \begin{bmatrix} \xi + \tau \\ \sigma \end{bmatrix} = \sum_{2\zeta = 0} \sigma(\zeta - \xi - \tau) \delta_{\zeta - \xi - \tau}$$
$$= \sum_{2\zeta = 0} \sigma(\zeta - \tau) \delta_{\zeta - \xi - \tau}$$

because as l(A, L) is odd, $\sigma(\xi)=1$. Therefore

$$\sum_{\sigma \in (\mathbf{Z}\hat{i}_4\mathbf{Z})^g} \sigma(\tau) \theta \begin{bmatrix} \xi + \tau \\ \sigma \end{bmatrix} = \sum_{\sigma \in (\mathbf{Z}\hat{i}_4\mathbf{Z})^g} \sum_{2\zeta = 0} \sigma(\tau) \sigma(\zeta - \tau) \delta_{\zeta - \xi - \tau}$$

$$= \sum_{2\zeta = 0} (\sum_{\sigma \in (\mathbf{Z}\hat{i}_4\mathbf{Z})^g} \sigma(\zeta)) \delta_{\zeta - \xi - \tau}$$

$$= 4^g \delta_{\zeta - \xi - \tau}.$$

Therefore we obtain this lemma.

Let x be a closed point of A and M be an ample line bundle on A of separable type. We define M(x) cy

$$M(x) = \underline{M}_x \bigotimes_{\mathcal{O}_{A,x}} k(x)$$

where \underline{M}_x and $\mathcal{O}_{A,x}$ are the stalk of \underline{M} and \mathcal{O}_A at x respectively, and k(x) is a residue field of $\mathcal{O}_{A,x}$. It is clear that $M(x)\cong k$. We choose an isomorphism $\lambda_0: M(0)\cong k$. We fix an isomorphism $G(M)\cong G(\delta_M)$. For every $w\in K(M)$, we take $(w,\phi_w)\in G(M)$ which is corresponding to an element of $G(\delta_M)$ with a type (1,(x,m)) by the above isomorphism.

DEFINITION. We defined $\lambda_w: M(w) \rightarrow k$ by

$$\lambda_w: M(w) {=} (T_x {}^*M)(0) \overset{}{\longleftarrow} M(0) \overset{}{\longrightarrow} k$$

where $w \in K(M)$ and $\phi_w(0)$ is given by ϕ_w .

DEFINITION. Under the above notations, we define q_w^M by

$$q_w^M: \Gamma(A, M) \xrightarrow{canonical \ map} M(w) \xrightarrow{\lambda_w} k.$$

REMARK. For any $z=(x, \phi) \in G(M)$ and any $s \in \Gamma(A, M)$, the conditions $q_w^M(U_z(s))=0$ and $q_{w+x}^M(s)=0$ are eqivalent.

REMARK. The condition that $q_w^M(s)$ = for every $s \in \Gamma(A, M)$ implies that w is contained in Bs|M|.

REMARK. If M is a symmetric ample line bundle on A, then the conditions $q_w^{M^{\otimes 4}}(2_A*s)=0$ and $q_{2w}^M(s)=0$ are equivalent for any $s\in\Gamma(A,M)$.

DEFINITION. We define $q_{L\otimes 4}(x)$ by

$$q_{L\otimes 4}(x)=q_0^{L\otimes 4}(\boldsymbol{\delta}_x)$$

where $x \in K(L^{\otimes 4})$ and $\delta_x \in V(4\delta_L) \cong \Gamma(A, L^{\otimes 4})$. Moreover we define $q \begin{bmatrix} x \\ \sigma \end{bmatrix}$ by

$$q\begin{bmatrix} x \\ \sigma \end{bmatrix} = q_0^{L \otimes 4} \left(\theta \begin{bmatrix} x \\ \sigma \end{bmatrix} \right)$$

where $x \in H(4\delta_L)$ and $\sigma \in (\mathbb{Z}/4\mathbb{Z})^g$.

Now the isomorphism $G(L^{\otimes 4}) \cong G(4\delta_L)$ induces an isomorphism $G(L^{\otimes 2}) \cong G(2\delta_L)$; these isomorphisms define the symmetric theta structure for $(L^{\otimes 2}, L^{\otimes 4})$ (cf. Mumford [4], p. 317). We identify the two vector spaces $\Gamma(A, L^{\otimes 2})$ and $V(2\delta_L)$ by means of the isomorphism $G(L^{\otimes 2}) \cong G(2\delta_L)$.

LEMMA 4 (Multiplication formula). If δ_x and $\delta_{x'}$ are elements of $\Gamma(A, L^{\otimes 2})$, then

$$\delta_x \cdot \delta_{x'} = \sum_{\zeta \in H(4\delta_L) \ a \ n \ d \ 2\zeta = 0} q_{L^{\otimes 4}} (\underline{x} - \underline{x'} + \zeta) \delta_{x + x' + \zeta}$$

where \cdot is a canonical map $\Gamma(A, L^{\otimes 2})^{\otimes 2} \rightarrow \Gamma(A, L^{\otimes 4})$ and $\underline{x}, \underline{x}' \in H(4\delta_L)$ satisfying $2\underline{x} = x$, $2\underline{x}' = x'$. Here we regard $H(2\delta_L)$ as a subgroup of $H(4\delta_L)$ in the canonical way.

PROOF. See Mumford [4], p. 330.

Let x, x' be elements of $H(\delta_L)$, and ξ , ξ' be elements of $(\mathbb{Z}/2\mathbb{Z})^g$. We take \underline{x} , $\underline{x}' \in H(\delta_L)$ and ξ , $\xi' \in (\mathbb{Z}/4\mathbb{Z})^g$ satisfying $2\underline{x} = x$, $2\underline{x}' = x'$, $2\underline{\xi} = \xi$ and $2\underline{\xi}' = \xi'$.

LEMMA 5. Under the above notations,

$$\delta_{x+\xi} \cdot \delta_{x'+\xi'} = (1/4^g) \sum_{\sigma \in (\mathbf{Z}\widehat{\mathbf{1}}4\mathbf{Z})^g} \sigma(\xi) q \begin{bmatrix} -\underline{x} + \underline{x'} - \underline{\xi} + \underline{\xi'} \\ \sigma \end{bmatrix} \theta \begin{bmatrix} -\underline{x} - \underline{x'} - \underline{\xi} - \underline{\xi'} \\ \sigma \end{bmatrix}$$

PROOF. For $\delta_{x+\xi}$ and $\delta_{x'+\xi'} \in \Gamma(A, L^{\otimes 2})$, we obtain that

$$\begin{split} \delta_{x+\xi} \cdot \delta_{x'+\xi'} &= \sum_{\zeta \in H(4\delta_L) \text{ and } 2\zeta = 0} q_L \otimes ^4 (\underline{x} - \underline{x}' + \underline{\xi} - \underline{\xi}' + \zeta) \delta_{\underline{x} + \underline{x}' + \underline{\xi} + \underline{\xi}' + \zeta} \\ &= \sum_{2\zeta = 0} q_L \otimes ^4 (\underline{x} - \underline{x}' + \underline{\xi} - \underline{\xi}' + \zeta) (1/4^g) \sum_{\sigma \in (\mathbf{Z} \widehat{\wedge} 4\mathbf{Z})^g} \sigma (-\underline{\xi} - \underline{\xi}' - \zeta) \\ & \cdot \theta \begin{bmatrix} -\underline{x} - \underline{x}' - \underline{\xi} - \underline{\xi}' - \zeta \\ \sigma \end{bmatrix} \\ &= (1/4^g) \sum_{\sigma} \sum_{2\zeta = 0} \sigma (-\underline{\xi} - \underline{\xi}' - \zeta) q_L \otimes ^4 (\underline{x} - \underline{x}' + \underline{\xi} - \underline{\xi}' + \zeta) \\ & \cdot \theta \begin{bmatrix} -\underline{x} - \underline{x}' - \underline{\xi} - \underline{\xi}' - \zeta \\ \sigma \end{bmatrix}. \end{split}$$

On the other hand, $\theta \begin{bmatrix} x+u \\ \sigma+u^* \end{bmatrix} = u^*(x)$ $\theta \begin{bmatrix} x \\ \sigma \end{bmatrix}$ for 2u=0 and $2u^*=0$. Moreover in above situation, $\sigma(\underline{x}) = \sigma(\underline{x}') = 1$. Hence

$$\begin{split} \delta_{x+\xi} \cdot \delta_{x'+\xi'} = & (1/4^g) \sum_{\sigma} \sigma(-2\underline{\xi}) \theta \begin{bmatrix} -\underline{x} - \underline{x}' - \underline{\xi} - \underline{\xi}' \\ \sigma \end{bmatrix} \sum_{\zeta} \sigma(\underline{x} - \underline{x}' + \underline{\xi} - \underline{\xi}' + \zeta) \\ & \cdot q_{L^{\otimes 4}} (\underline{x} - \underline{x}' + \underline{\xi} - \underline{\xi}' + \zeta) \\ = & (1/4^g) \sum_{\sigma} \sigma(\xi) \theta \begin{bmatrix} -\underline{x} - \underline{x}' - \underline{\xi} - \underline{\xi}' \\ \sigma \end{bmatrix} \\ & \cdot q_0^{L^{\otimes 4}} (\sum_{\zeta} \sigma(\underline{x} - \underline{x}' + \underline{\xi} - \underline{\xi}, + \zeta) \delta_{\underline{x} - \underline{x}' + \underline{\xi} - \underline{\xi}' + \zeta}) \\ = & (1/4^g) \sum_{\sigma} \sigma(\xi) \theta \begin{bmatrix} -\underline{x} - \underline{x}' - \underline{\xi} - \underline{\xi}' \\ \sigma \end{bmatrix} q \begin{bmatrix} -\underline{x} + \underline{x}' - \underline{\xi} - \underline{\xi}' \\ \sigma \end{bmatrix} \end{split}$$

Therefore we obtain this lemma.

THEOREM. Under the above notations, $L^{\otimes 2}$ is projectively normal if and only if $Bs \mid L \mid \cap A[2] = \phi$.

PROOF. Replacing the lemmas for the theorem in § 1 by the above lemmas, the proof of the theorem in § 1 still works in general case.

COROLLARY. If M is an ample line bundle and is of separable type on an abelian variety A, then $Bs|M|=\phi$ and l(A,M)=odd imply that $M^{\otimes 2}$ is projectively normal.

To conclude this section, we give an easy criterion for the base point freeness of a line bundle M on an abelian variety A. We assume that M is of separable type. Let $\alpha: G(M) \to G(\delta_M)$ be an isomorphism. As α induces $\bar{\alpha}: K(M) \to H(\delta_M) \oplus H(\hat{\delta}_M)$, we put H(M) by $\bar{\alpha}^{-1}(H(\delta_M))$. Let B be an abelian variety defined by A/H(M) and $\pi: A \to B$ the canonical morphism. In this situation, the line bundle M is given by $M \cong \pi^*N$ where N is a principal line bundle on B. In this notations, we obtain the following proposition.

Proposition.
$$Bs|M| = \pi^{-1}(\bigcap_{x \in \pi(K(M))} T_x * \theta) \text{ where } \theta \in |N|.$$

PROOF. As there exists a canonical isomorphism

$$\Gamma(A, M) \cong \bigoplus_{x \in \pi(K(M))} \Gamma(B, T_x * N)$$

therefore this proposition is clear.

The following proposition is also clear.

PROPOSITION. Let M be as in above. If Bs|M| is finite and $(M^g)>(g!)^2$, then $Bs|M|=\phi$.

PROOF. If $Bs|M| \neq \phi$, then there is a point $q \in Bs|M|$. By the definition of K(M), q+K(M) is also contained in Bs|M|. As

the cardinality of $Bs|M| \leq (M^g)$,

hence

the order of $K(M) = ((M^g)/g!)^2 \leq (M^g)$.

Therefore we obtain $(M^g) \leq (g!)^2$.

References

- [1] Geemen, B., Schottky-Jung relations and vector bundles on hyperelliptic curves.

 Thesis University of Utrecht (1985).
- [2] Igusa, J., Theta functions. Springer-Verlag (1972).
- [3] Koizumi, S., Theta relations and projective normality of abelian varieties. Amer. Amer. J. Math. 98, 865-889 (1976).
- [4] Mumford, D., On the equation defining abelian varieties I. Invent. Math. 1, 289-354 (1966).
- [5] Mumford, D., Abelian varieties. Oxford University Press (1970).
- [6] Ohbuchi, A., Some remarks on ample line bundles on abelian varieties. Manuscripta Math. 57, 225-238 (1987).
- [7] Saint-Donat, B., Projective models of K3 surfaces. Amer. J. Math. 96, 602-632 (1974).
- [8] Sekiguchi, T., On projective normality of abelian varieties. J. Math. Soc. Japan 28, 307-322 (1976).
- [9] Sekiguchi, T., On projective normality of abelian varieties II. J. Math. Soc. Japan 29, 709-727 (1977).

Department of Mathematics Faculity of Education Yamaguchi University 16771-1, Oh-aza Yoshida Yamaguchi-shi, Yamaguchi 753, Japan