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ON THE EXISTENCE OF A STRAIGHT LINE

By

Fumiko OHTSUKA

\S 1. Introduction.

Let $M$ be a connected, complete, non-compact, oriented and finitely con-
nected Riemannian 2-manifold. The total curvature of such an $M$ is defined to

be an improper integral of the Gaussian curvature $G$ with respect to the volume

element of $M$ and expressed as $C(M)=\int_{M}Gd_{M}$ . The influence of total curvature

of such an $M$ have been investigated by many people. The pioneering work on
total curvature was done by Cohn-Vossen in [1], which stated that if $M$ admits
total curvature, then $C(M)\leqq 2\pi\chi(M)$ , where $\chi(M)$ is the Euler characteristic of
$M$. He also proved in [2] that if a Riemannian plane $M(i$ . $e$ . $M$ is a complete

Riemannian manifold homeomorphic to $R^{2}$ ) admits total curvature and if there
exists a straight line on $M$, then $C(M)\leqq 0$ . It is known that this is generalized

as follows. (Confer section 4 in [4].); Let $M$ have only one end. If such an
$M$ admits total curvature and if $M$ contains a straight line, then $ C(M)\leqq$

$2\pi(\chi(M)-1)$ .
It is natural to consider whether the converse of the fact mentioned above

is true or not. In this paper, we shall prove the following theorem.

THEOREM. Let $M$ be a connected, complete, non-compact, oriented and finitely

connected Riemannian 2-manifold having one end. If $M$ admits total curvature
which is smaller than $2\pi(\chi(M)-1)$ , then $M$ contains a straight line.

In the case where $C(M)=2\pi(\chi(M)-1)$ , it is not always that $M$ contains a
straight line. In section 4, we shall show an example of a $C^{2}$-surface $M$ whose

total curvature is equal to $0$ and on which there are no straight lines. Finally

we shall note that if $M$ has more than one end, then it is obvious that $M$ con-
tains a straight line.

\S 2. Preliminaries.

This section is devoted to introduce some definitions and the properties used
throughout this paper.
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From completeness and non-compactness of $M$, through every point on $M$

there is at least a ray $\gamma:[0, \infty$ ) $\rightarrow M$, where it is a unit speed geodesic satisfy-

ing $d(\gamma(t_{1}), \gamma(t_{2}))=|t_{1}-t_{2}|$ for all $t_{1},$ $t_{2}\geqq 0$ , and $d$ is the distance function induced
from the Riemannian metric on $M$. A unit speed geodesic $\gamma:R\rightarrow M$ is called a
straight line if $d(\gamma(t_{1}), \gamma(t_{2}))=|t_{1}-t_{2}|$ for all $t_{1},$ $t_{2}\in R$ . From now on, geodesics

are assumed to be unit speed unless otherwise mentioned. By definition, $M$ is
said to be finitely connected if it is homeomorphic to be a compact 2-manifold
(without boundary) with finitely many point removed. The number of these
points removed is equal to the number of ends on $M$.

For a point $p$ on $M$ let $M_{p}$ and $S_{p}$ be the tangent space to $M$ at $p$ and
the unit circle of $M_{p}$ centered at the origin. $S_{p}$ is equipped with the natural
measure which is induced from the Riemannian metric on $M$. Let $A(p)$ be the
set of all unit vectors tangent to rays emanating from $p$ . Then the following
lemma is known. (Confer section 4 in [4].)

LEMMA 1. Let $M$ be a connected, complete, non-compact, oriented and finitely
connected Riemannian 2-manifold having one end. If $M$ admits total curvature
and if $D\subset M$ is a domain bounded by two rays emanating from a point $p\in\partial D$

such that any ray starting from $p$ dose not intersect $D$ and if $M\backslash D$ is homeo-
morphic to a closed half-plane, then

$C(D)=2\pi(\chi(M)-1)+\triangleleft;(u, v)$ ,

where $u,$ $v\in A(p)$ are tangent to the rays lying in the boundary of $D$ .

\S 3. Proof of Theorem.

First we consider the case that $\int_{H}G_{-}d_{M}>-\infty$ , where $G_{-}=\min(G, 0)$ . We

put $\epsilon=\{2\pi(\chi(M)-1)-C(M)\}/2>0$ . Then there exists a compact set $K\subset M$ such
that

$\int_{K}G_{-}d_{M}<\int_{K}G_{-}d_{H}+\epsilon$ and

$M\backslash K$ is homeomorphic to $ S‘\times[0, \infty$),

where $S^{1}$ denotes a unit circle. For an arbitrarily point $p$ on $M\backslash K$, we shall
show that there exists a ray emanating from $p$ which intersects with the
interior of $K$.

Now, we suppose that such a ray dose not exists. Let $\Omega$ denote the set of
all elements $(u, v)\in A(p)\times A(p)$ . Note that $\Omega$ is not empty from the non-
emptiness of $A(p)$ and is closed on $S_{p}\times S_{p}$ from the closedness of $A(p)$ . Then
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there exists the element $(u, v)$ of $\Omega$ satisfying

$4:(u, v)\leqq<X(u^{\prime}, v^{\prime})$ for all $(u^{\prime}, v^{\prime})\in\Omega$ ,

where the angle is measured with respect to the domain containing $K$. It should
be noted that if $u=v$ , then the angle is understood as $<X(u, v)=2\pi$ . Let $E$ be
a component containing $K$ and bounded by $\gamma_{u}([0, \infty))$ and $\gamma_{v}([0, \infty))$ , where $\gamma_{u}$

is a ray with initial vector $\gamma_{u}^{\prime}(0)=u$ . From Lemma 1, we have

$C(E)=2\pi(\chi(M)-1)+\not\in(u, v)>2\pi(\chi(M)-1)$ .
On the other hand, we have

$\int_{KBi}G_{+}d_{M}\leqq\int G_{+}d_{M}\leqq\int.G_{+}d_{M}$ and

$\int_{E}G_{-}d_{M}\leqq\int_{K}G_{-}d_{M}<\int_{M}G_{-}d_{M}+\epsilon$ ,

where $G_{+}=\max(G, 0)$ and last inequality is due to the construction of $K$. Hence

$C(E)<C(M)+\epsilon<2\pi(\chi(M)-1)$ .
This is a contradiction. Therefore there exists a ray emanating from $p$ which
intersects with the interior of $K$.

Let $\{p_{j}\}$ be the sequence of points on $M\backslash K$ such that $\{d(p_{j}, K)\}$ is a mono-
tone divergent sequence. As is shown above, for each $j$ there exists a ray $\gamma_{j}$

emanating from $p_{j}$ which intersects with the interior of $K$. Since $K$ is com-
pact there exists a subsequence $\{\gamma_{k}\}$ of $\{\gamma_{j}\}$ such that $\gamma_{k}$ converges to a straight
line as $k$ tends to infinity.

Next we consider the case that $\int_{M}G_{-}d_{M}=-\infty$ . Since $M$ admits total curvature,

$\int_{M}G_{+}d_{M}<\infty$ . We can choose the positive number $\epsilon$ satisfying $\epsilon>\int_{M}G_{+}d_{M}$ . Then

there exists a compact set $K\subset M$ such that

$\int_{K}G_{-}d_{M}<2\pi(\chi(M)-1)-\epsilon$ and

$M\backslash K$ is homeomorphic to $ S^{1}\times[0, \infty$).

In the sequel similarly as the privious case we can prove the existence of a
straight line passing through $K$. Thus the proof of Theorem is complete.

\S 4. Example.

We shall construct a $C^{2}$-surface $M$ in $E^{3}$ whose total curvature is equal to
$0$ and on which there are no straight lines. The construction is carried out as
follows. Consider the $C^{2}$-function $f:(-\infty, 1$ ] $\rightarrow[0, \infty$ ) defined by
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$f(x)=x^{4}-(x^{2}/2)+1$ for $x\leqq 0$ ,

$f(x)=(1-x^{2})^{1/2}$ for $0\leqq x\leqq 1$ .

Then $M$ is defined as a surface of revolusion around the x-axis whose generat-

ing line is the graph of $f$ in the $(xz)$-plane. It is easy to see that $C(M)=0$ .
Next we shall see that there are no straight lines on $M$. Let $ K=\{(x, y, z)\in$

$M|x\geqq-1/2\}$ . Since the boundary of $K$ is a closed geodesic, it is obviously

that there are no straight lines passing through any point on $K$. Furthermore
there are no straight lines on $M\backslash K$. In fact, suppose that there exists a
straight line $\alpha$ on $M\backslash K$. Then $\alpha$ divides $M$ into two components $M_{1}\supset K$ and
$M_{2}$ . Now, it has already been proved by Cohn-Vossen in [2] that $C(M_{1})\leqq 0$

and $C(M_{2})\leqq 0$ . In particular, $C(M_{2})<0$ because the Gaussian curvature is nega-

tive on $M\backslash K$. Hence $C(M)=C(M_{1})+C(M_{2})<0$ . This is a contradiction.
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