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Introduction.

Throughout this paper, we will work over a fixed algebraically closed field
k. Let A be a finite dimensional basic algebra. We may consider 4 as a
locally bounded k-category. As well known, any locally bounded k-category A
is given by a quiver with relations, that is, there is a locally finite quiver @
such that A=kQ/I, where kQ is the path-category and I is an ideal of 2Q
generated by linear combinations of paths of length =2 (see for details).
A module over a locally bounded k-category A is a k-linear functor from A4 to
the category of k-vector spaces, nemely, a representation of the quiver satisfying
the relations if A4 is given by a quiver with relations. We will denote by
mod /4 the category of all finite dimensional left /-modules.

In the present paper, we are interested in two-point algebras, namely, alge-
bras which have just two non-isomorphic simple left modules. Our aim is to
classify two-point algebras of certain classes according to their representation
types. An algebra A is said to be representation-finite if there are only a finite
number of pairwise non-isomorphic indecomposable objects in mod 4, to be wild
if there is an exact embedding mod £#2—mod A4, where k2 is the path-algebra
of the quiver 2:(C+0), which is a representation equivalence with the corre-
sponding full subcategory of mod 4, and to be tame if A is neither representa-
tion-finite nor wild. There has been given the complete list of the maximal
representation-finite two-point algebras [3].

Covering techniques ([1], [3], and [6]) will play an indispensable role
in deciding the representation type of a given algebra. For a certain class of
algebras, by taking appropriate Galois coverings, the problem can be reduced to
the calculation of vector space categories, which have been classified in
(see also [9]). On the other hand, we will come across an algebra which can
be obtained as a quotient of a suitable Galois covering of the tame local algebra
zCe Do with ¢?=72=0 [11], thus is tame. The similar argument will also
apply to the situation that there is a Galois covering of a given algebra which
has a wild algebra as a finite quotient.
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1. Main Results.

In the present paper, we will consider two classes of two-point algebras,
one is the class of the triangular matrix algebras, namely, the algebras of the

form [64 ]g] with A, B local, and the other is that of the distributive algebras
of ordinary quiver <=+ (cf. [1]).
THEOREM A. Let A be a finite dimensiona! two-point triangular matrix alge-

bra. Then A is tame if and only if A is isomorphic to one of the algebras (0)-
(4, in Table T or their duals.

THEOREM B. Let A be a finite dimensional basic distributive algebra of
ordinary quiver «——>+). Then A is tame if and only if A is isomorphic to one
of the algebras (5,)-(11,) in Table T or their duals.

During the preparation of the paper, the authors noticed that the algebra
(4,) in Table T is shown to be tame [15].

Table T

1) -—i—»-Qa with a’p=a’=0
2) BC+—+Da with a’=f=0

2%) with apf=a’=p*=0

30 with ap—pp=a'p=a’=4=0, ¢=2,3

4) with ap—pf=a'p=a'=p'=0, ¢=2, 3,4

5¢) u__u’__-Qa with my—a’*=vap=a?=0, ¢=3,4,5

59) i with pgyv—a*=vap=va*p=a?=0, ¢=3,4,5

59) with pyv—a’=vap=a’p=a?=0, ¢=3,4

57) with py—a*=vap=a’u=va’=a?=0, ¢=3, 4

6,) with mwy—a*=vap—va*y=a?=0, ¢=4,5
(only if char £=3)

7 with pyv—a*=yvp=apu=0

8,) with w—a*=vp=a’p=va’=a?=0, ¢=3,4,5

82) with w—a*=vp=vap=a’p=va*=a?=0, ¢=3,4,5

9) with my—a’=vp—vap=a’p=va*=a’*=0

(only if char k=3)



Tame Two-point Algebras 67

10) with pyv=yp=vap=a®=0

10%) with w=yp=vap=ra’p=a?*=0

107) with pmy=yu=vap=a’p=a*=0

11,) with w—a‘=ap=va®’=a?=0, ¢=4,5

EXAMPLES. In Section 5, as an example, we will show that the following

is tame :

12) +c=Da  with a’=py=0,

v

this is not distributive (cf. (W-11)).
There are several other algebras which have been known to be tame [4]

(see also and [11]):

13) +T=Da with a?=yp=0

v

14) BC-==-Da with a’=f'=pm=yp=0

15) with ag=pB=va=pv=0
21
16) n@o With ﬂlvlzﬂgvzzlh‘ul:vgﬂz:o
2/
vi
17) With ﬂlylzﬂzyz-—:ulﬂgzyzﬂl:().

In particular, one can easily determine the finite dimensional basic tame

algebras of ordinary quiver «——-..

In order to prove the “only if” parts of the theorems, we need the list of
minimal wild algebras and that of maximal representation-finite algebras.

PROPOSITION 1. The algebras (0)-(18) in Table W are wild. They are mini-
mal, with the possible exception of (11), in the sense that no proper quotient of

them is wild.,
PROPOSITION 2 (see [3]). The algebras (1)-(15,) in Table F are representation-

finite.  They are maximal in the sense that any finite dimensional basic represent-
ation-finite two-point algebra can be obtained as a quotient of one of them or their

duals.
Table W
0) e—>e

1D .—#—pogg with a#:—_—ﬁ”:aﬂ:ﬁa:—_azzﬁzzo
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2) -f—_,"-()a with ap=av=a*=0

3) °L>-Qa with a’p=a’=0

4) with a’*p=a'=0

5) BC.——.Da with pf=a’=p=0

6) with a’p=pB=a*=F*=0

7) with a’p=pf=a'=p*=0

8) with a’p=apuB=a’*=pF>=0

9) with ap—pf=a’y=a’=p'=0

10) with ap—pf=a’p=a’=p*=0

11) -#-Qa with pyv—a’*=a’u=a’=0

12) with prv—a*=vpu=vapu=a’p=a‘=0

13) with mpv=ap=a’=

14) with pwy=vp=a’*p=a*=0

15) with mv=vap=a*p=va’=a’=0

16) with pr=vp=ap=va’=a*=0

17) with py=yvp=vap=a’p=va*=a*=0

18) with pyv=yvp=ap=va’=a*=0
Table F

1) e——eDa with a’p=a’=0

20 BC—>:Da with ap=pp=a'==0, ¢=2

3) with pf=a’=p1=0, ¢=2

4, with ap—puB=a?=p?=0, ¢=2

5) with ap—puB=a*=p*=0

6) with a’p—pB=a’=p*=0

79 -#- with (puv)?=@p)?=0, g¢=1

8) -#-Qa with pyv—a*=ap=0

9) with pv—a’=yp=0

10) with pyv—a=vp—vap=a*=0 (only if char k=2)

11 with py=vap=a®=0
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12) with mv—a*=ap=va’=0

13) with pv=vp=ap=a*=0

14) with pyv—a'=vpu=ap=va’=0
15,) with pyv—a?=ap=va=0, ¢=4.

REMARK 1. For an integer m=1, denote by P™ the linearly ordered set
with m elements, and for m, n=1, consider P™X P™ as a partially ordered set
by componentwise order. Then the representation type of P™X P" is finite if
1/m+1/n>1/2, tame if 1/m+1/n=1/2 and wild if 1/m+1/n<1/2 (cf. [14]).

This is also the case with the algebra ,BC‘-—#*-Qa with ap—up=a™=p"=0.

REMARK 2. Let A be a local Nakayama algebra of length ¢=2. Then the
triangular matrix algebra [61 jﬂ can be given by the quiver ‘BC‘-—#»-Oa
with relations apg—pB=a?=F%=0. This is tame if and only if g=4. In general,

for a connected self-injective algebra /, the triangular matrix algebra [31 j]

is tame if and only if 4 is representation-finite of Dynkin class A, (see

and [15]).

2. Preliminaries.

In this section, we will recall some basic definitions and results (see

[31. [5] [6]. [10], and [137).

2.1. Locally Bounded Categories.

A locally bounded category A is a k-category such that: a) distinct objects
are not isomorphic; b) for each x= A, the algebra A(x, x) is local; c¢) for each
x€A4, ZyealAlx, y): k] and Z,cs[A(y, x): k] are finite [1]J. The support
supp M of a A-module M is the full subcategory of A consisting of the objects
x€ /A such that M(x)#0. The dimension vector of a 4-module M is the family
dim M={[M(x): k1}zcs. Let I'; GI) be a family of full subcategories of A.
Denote by \U:c;I"; the full subcategory of A consisting of the objects of the I7;.
For a family of objects x;= 4 (I), we denote by {x;}.c; the full subcategory
consisting of the objects x;. A is said to be locally support-finite if for each
x4, U%u#o supp M is finite [5].

cind 4

i

2.2. Galois Coverings.
Let A be a connected locally bounded category and G a group of k-linear
automorphisms of 4. Then G acts naturally on mod 4 by the left. We assume
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that the action of G on A is free, namely, gx+x for any geG {1} and any
x€A. Following [6], we can consider the quotient 4/G and the Galois cover-
ing F: A—»A/G. Then we have the push down functor F;: mod A—mod 4/G
which is left adjoint to the induced functor F.: mod 4/G—mod A. If G acts
freely on ind 4, namey, M+ M for any g=G\{l1} and any M<ind 4, then F;
preserves the Auslander-Reiten sequences. We will freely use the following
results.

PROPOSITION 3 (see [6]). Let S be a quotient category of A with the natural
embedding mod S—mod A, and L={M<cind S| M&ind S for any g=G\{1}}. Then
there exists a set-theoretic injection L—ind A/G. In particular, in case L is co-
finite in ind S, the following hold.

(1) If A/G is tame, so is S unless it is representation-finite.

2) If S is wild, so is A/G.

PropoSITION 4 ([5]). If A is locally support-finite and if G acts freely on
ind 4, then the push down functor F;: mod A—mod A/G is dense. In particular,
if A is tame, so is A/G.

In what follows, we will deal only with a full subcategory A of a Galois
covering U which is in fact a quotient category, thus we may consider mod A
as a full subcategory of mod U by the natural embedding.

2.3. Vector Space Categories.

A vector space category K is an additive k-category together with a faith-
ful functor ||: K—mod k£ such that every idempotent in K splits. Given a
vector space category K, its subspace category U(K) is defined as follows: its
objects are triples of the form (U, X, ¢), where U is a k-space, X is an object
in K and ¢: U—|X| is a k-linear map. A homomorphism from (U, X, @) to
(', X', ¢’) is given by a pair (a, B), where a: U-U’ is k-linear, B: X— X’ is
a morphism in K such that |S|¢=¢’a. Given a poset S, considered as a cate-
gory, addkS is a vector space category. Conversely, assume that K is a
vector space category consisting only of l-dimensional indecomposable objects,
then K is of the form add kS for some poset S.

Let A be a one-point extension algebra of R by M, then a A-module
is given by a triple (WU, X, ¢: eMQ,U—rX). It is well known that
U(Hom (M, mod R)) is representation equivalent to the full subcategory of mod A
consisting of the /-modules without non-zero direct summands of the form
(k,0,0) or (0,Y,0) with Hom (M, Y)=0. In case R is tame, if the vector space
category Hom (M, mod R) is tame, so is A.
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3. Classification.

In Section 4, we will prove that the algebras in Table W are wild, and in
Section 5 we will prove that the algebras in Table T are tame. We have only
to consider the algebras of ordinary quiver +——+), Ce——>¢) or «T=+D.

Given an algebra A of the classes stated in the theorems, we will show that
one of the following cases occurs: 1) A is isomorphic to a quotient of one of
the algebras in Table F or their duals; 2) 4 is isomorphic to one of the algebras
in Table T or their duals; and 3) 4 has a quotient isomorphic to one of the
algebras in Table W or their duals. These are clearly pairwse inconsistent.

) A of ordinary quiver «——<Da.
Suppose a™u=a"=0, m=n.
i) If m=1, then A is a quotient of (F-2,).
ii) If m=2 and n<5, then 4 is a quotient of (F-1).
iii) If m=2 and n=6, then A=(T-1).
iv) If m=2 and n=7, then 4 has (W-3) as a quotient.
v) If m=n=3, then 4 is a quotient of the dual of (F-13).
vi) If m=3 and n=4, then 4 has (W-4) as a quotient.

II) A of ordinary quiver 8Cb——>aDa.

Suppose a™=pB"=0. Let A=Fk[a], B=Fk[B] and M=A(b, a). We may
assume dim Ap>dim gB. Note that if M+ Ap then puf& Ap.
1) If dim M=1, then 4 is a quotient of (F-2,), g=max{m, n}.

2) Suppose dim M=2. Then M=Ay, and pf=xap for some x<k.
2.1) The case x=0:

i) If m=2, then A=(F-3,).

iil) If m=3 and n=2, then 4 is a quotient of (F-6).

iti) If m=3 and n=3, then 4 has (W-6) as a quotient.

iv) If m=4, then 4 has (W-7) as a quotient.

2.2) The case x#0: Replacing a with xa, we can assume ap—puS=0. We
may also assume m=n.

i) If n=2, then A=(F-4,).

ii) If n=3 and m<5, then 4 is a quotient of (F-5).

iii) If n=3 and m=6, then A=(T-3,).

iv) If n=3 and m=7, then 4 has (W-10) as a quotient.

v) If n=m=4, then A=(T-4,).

vi) If n=4 and m=5, then 4 has (W-9) as a quotient.
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3) Suppose dim M=3, M=+ Ap and mn>4. Then, as a quotient, A has either
(W-8) or its dual.

4) Suppose dim M=3, M+ Ay and m=n=2.
i) If dim M=3, then A=(T-2’).
ii) If dim M=4, then A=(T-2).

5) Suppose dim M=3 and M=Ap. Then uf=xap+ya’py for some x, yEk.
5.1) The case x=y=0: A has (W-5) as a quotient.

5.2) The case x=0 but y+0: Replacing B with y™'8, we can assume a’p—pf
=0.

i) If m=3 and n=2, then A=(F-6).

iiy If m=3 and n=3, then 4 has (W-6) as a quotient.

iii) If m=4, then A has (W-7) as a quotient.

5.3) The case x+0: Replacing a with xa+ya®, we can assume ap—pp=0.
We may also assume m=n.

i) If n=3 and m<5, then A4 is a quotient c¢f (F-5).

ii) If n=3 and m=6, then A=(T-3,).

iii) If n=3 and m=7, then 4 has (W-10) as a quotient.

iv) If n=m=4, then A=(T-4,).

v) If n=4 and m=5, then 4 has (W-9) as a quotient.

6) Suppose dim M=4 and M=Ap. Then pf=xap+ya’u+za’y for some

x, ¥, zEk.
6.1) The case x=0: A has (W-7) as a quotient.

6.2) The case x+0: Replacing @ with xa+ya®+za’, we can assume ap—pp
=(0. We may also assume m=n.

i) If m=n=4, then A=(T-4,).

ii) If m=5 and n=4, then 4 has (W-9) as a quotient.

7) Suppose dim M=5 and M=Ap. Then pB=>¢,xa'p, where d=dim M—1,
for some x.€k, 1=:1=d.
7.1) The case x,=0: A has (W-7) as a quotient.

7.2) The case x,#0: Replacing a with 3¢, x;a’, we can assume ap—pf=0.
Then A has (W-9) as a quotient.
1II) A of ordinary quiver béa@a.

Suppose a"=0. Let A=k[a]. We may restrict ourselves to the case
A(a, a)=A. Thus A(b, a)=Ap and A(a, b)=vA. We may also assume dim Ay
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<dimvA. In case puv+0, there are some f(x)=k[x] with f(0)#0 and some
m=1 such that py=f(a)a™ Replacing ¢ with f(a)™'p, we can assume pyv—a™
=0.
1) Suppose dim Agp=dimvA=1. Then A is a quotient of (F-8), (F-12) or
(F-15,).

In what follows, we assume dim vA=2.

2) Suppose py—a’=0.
2.1) If dim Ap=1, then A is a quotient of (F-8).

2.2) Suppose dim Ap=2.

2.2.1) The case dimvAp=0: A is a quotient of (F-9).

2.2.2) The case dimvAp=1: We have xypu—+yvap=0 for some x, y&k with
with (x, »)#0. In case xy#0, by replacing @ with —x~'ye and p with (x7 ')y,
we can assume yu—vap=0.

i) If yp=0, then 4 is a quotient of (F-9).

ii) If vap=0 and n=2, then A=(F-11).

iii) If vap=0 and n=3, then A=(T-5;) or (T-57").

iv) If yu—vap=0, then 4 is a quotient of (F-9) or (F-10).

2.2.3) The case dimyAp=2: A is not distributive. Notice however that A
has (W-11) as a quotient if dimvA=3.

2.3) Suppose dim Ag=3. Then ypud(kvap+kyva’p).

2.3.1) The case dimvAp=1: A=(T-57).

2.3.2) The case dimvAp=2: We have xvap+yva’p=0 for some x, yek with
(x, y)#0. In case xy+0, by replacing a with —x"'ya and g with (x7'y)’s,
we can assume vay—va’n=0.

i) If vap=0, then A=(T-5,).

ii) If va’u=0, then A has (W-11) as a quotient.

iii) If vap—va?p=0 and n=3, then A=(T-5,).

iv) If vap—vatp=0 and n=4, then A=(T-5,) or (T-6,).

v) If vap—va®p=0 and n=>5, then A=(T-5;) or (T-65).

2.3.3) The case dimvAp=3: A has (W-11) as a quotient.

2.4) Suppose dim Ap=4. Then, dim (kyp+kvap)=2 and (kyp+kvap)N\(kva®p
+kyva*p+ ---)=0. Thus, 4 has (W-11) as a quotient.

3) Suppose pyv—a®=0 and n=3.
3.1) Suppose dim Ap=1.
3.1.1) The case dimvA=2: A is a quotient of (F-12).
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3.1.2) The case dimvA=3:

i) If n=3 and dimvAp=0, then A=(F-13).

ii) If n=4 and dim vAp=0, then A=(T-7).

iii) If dimvApg=1, then 4 has (W-13) as a quotient.

3.2) Suppose dim Ap=>2, dimvA=3 and n=4. Then 4 has (W-12) as a quotient.

3.3) Suppose dim Ap=2.

3.3.1) The case dimvAu=0:

i) If dimvA=2, then A=(T-8,).

ii) If dimvA=n=3, then A=(T-10").

3.3.2) The case dimvAp=1: We have xvu+yvap=0 for some x, yEk with
(x, ¥)#0. In case xy+0, by replacing a with —x~'ya and g with —(x7'y)’g,
we can assume ypg—vap=0.

i) If yp=0 and dimvA=2, then A=(T-8,).

ii) If yp=0 and dimvA=n=3, then A=(W-14).

iii) If vap=0, then 4 has (W-15) as a quotient.

iv) If yp—vap=0 and dimvA=2, then A=(T-8,) or (T-9).

v) If yp—vap=0 and dimvA=n=3, then A=(W-14).

3.3.3) The case dimvAp=2: A has (W-15) as a quotient.

3.4) Suppose dim Ap=dim vA=n=3.

3.4.1) The case dimvAu=0: A=(T-10").

3.4.2) The case dimvAp=1: Consider first the case vpy=0. Then xvap+
yvaty=0 for some x, yek with (x, y)#0. In case x+#0, by replacing a with
xa+ya?, we can assume vap=0. Next, suppose vu+#0. In case vap+0, we
have vu+xvap=0 for some xck\{0}. Replacing p with p+xap, we can
reduce the case to vp=0. Also, in case va’u+0, we have vu+xvaty for some
x< k\{0}, and by replacing g with pg+=xa®u, we can reduce the case to vu=0.
i) If yu=vap=0, then A=(T-10).

ii) If yp=va®p=0, then 4 has (W-14) as a quotient.

iii) If vapg=va®p=0, then 4 has (W-15) as a quotient.

3.4.3) The case dimvAp=2: We have xvu+yvap+zva®y=0 for some x, y, z
ek with (x, y, 2)#0. In case (xy, x2)#0, by replacing ¢ with pg+x"'yap+
x"'za’y, we can assume vu=0.

i) If yp=0, then 4 has (W-14) as a quotient.

ii) If yp+0, then 4 has (W-13) as a quotient.

3.4.4) The case dimvAp=3: A has (W-13) as a quotient.

4) Suppose pv—a*=0 and n=4.
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4.1) If dimvA=3, then 4 has (W-16) as a quotient.

4.2) If dim Ap=dim vA=2, then A has (W-17) as a quotient.

4.3) Suppose dim Ap=1 and dim vA=2.

4.3.1) The case dimvAp=0: A is a quotient of (F-14).

4.3.2) The case dimvAp=1: A=(T-11,).

5) Sppose pv—a™=0 and n=m=5. Then A has (W-18) as a quotient.

4. Wild Algebras.

To begin with, let us consider the following quivers without relations :

*e—>e > e < * <
.
2
E; ; and
. > e [ > e —> o € o0 ——
.
- l
Eq
*——>e > e > e *«—>0 . < * < .

These are well known to be wild. In fact, for a representation BCV Da
of the quiver 2: C-+0 by defining the representation

of the quiver ——=+., we obtain a full exact embedding. Next, for a repre

a

/-_\
sentation U-L5V of the quiver «——+, by defining the representationn
~———n —

HEH
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of the quiver «——+—}+, we also obtain a full exact embedding. Finally, given

8

a representation U——V —=W of the quiver «—>+=73., following [2], let us
7

construct the following representations:

e [ :

N B, B ,___@_)Wz/[loj ,
/W " i \[O o
N v

W

[[9]

WZ

11

11 0}

0 1

U—V—W— W — W e—r W? W?«—— W ; and
a
21 [e] (61 [2) (2] [5]

W3

OHOHO
OOMOMO
HRREOO

U V 'WZ ’Wa 'W4 W5 WG WA‘ WZ
B 1 S s I T S B Y O Y
7 0 0 0 0 E, E,
of the quivers D,, E., E, and E, respectively. It is not difficult to see that
these definitions induce full exact embeddings respectively. It should be noted

that the above constructions are due to the indecomposable representations of
the corresponding Dynkin quivers whose dimension types are the maximal roots
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M7 . .
k] is the one-point

extension algebra, and if Neind R has endomorphism ring &, let {a;, -+ - , g}

of the corresponding Dynkin diagrams. In fact, if SZ[(};

be a fixed k-basis of Homgz(M, N). Then, for a representation

4

U vV

Pa
of the quiver I': « : . (d arrows), by defining the S-module

(U, RN®.V, 2g=1ai®¢i 1 eMRU — ek NRLV),

we obtain a full exact embedding mod #/"—>mod S (cf. [13]).

In order to prove wildness of the algebras (W-1)-(W-18), we will show
that for each of them there is some Galois covering U having one of the above
wild algebras of their concealments as a finite quotient.

J7
(W-1) b— a%% with ay——‘ﬁy:aﬁ:ﬂa:azzﬁz_—_o.
Take the following Galois covering U with Galois group =Z:

b, bo b,

PR
a_q (44

3 a.,"—3a,—3Fa =
B Bo
with a;p;=Bipti=a:+:10:=Bir1@i=ir1a;=F:1:8:;=0 for all ;€Z. Then, as a
quotient, U has the following :

b,

(29 l‘ul
Qy — 4y

Bo

7
(W-2) b—= aDa with apg=av=a’*=0.
v

Take the following Galois covering U with Galois group =Z:

b_, bo b,
| P
a_, [ a; —

a_; : (40
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with a,p;=av;=a,;.,a;=0 for all 7&Z. Then, as a quotient, U has the follow-
ing:
by

o

Ao — a,
Qy

7
(W-3) b— aDa with a*u=a’=0.

The universal Galois covering with Galois group=~Z has as a quotient the

following :
b, bs b
o oo
Qo —> Ay —> A, — Q3 > a, > Qs > Qg
o a, a; a; a; a;

with asa,p,=0. This is a concealed hereditary algebra of type E,.

7
(W-4) b— aDa with a*p=a*=0.

The universal Galois covering with Galois group =Z has as a quotient the

following :
by b, bs

lo |m |m

Q, > Q, >, > dg
a, a; (24 .

©
(W-5) BCb— aDa with pf=a’=p§*=0.
The universal Galois covering with Galois group =<x, y>, the free group
on two generators, has as a quotient the following:
by

| 8.
be

[

byx — bx > Q¢ Q¢ Az-1 b_z—l .
,B.z: Uz a¢ A z-1 Hz-1

(W-6) ﬁCbi» aDa with a’p=pB=a’*=p>=0.
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The universal Galois covering with Galois group =<{x, y> has as a quotient

the following:

Byos —— byn— by —— Gy Qo by —> by — bya.
‘Byz ABZ‘ Mz Qe e ,Be [sy
H .
(W-7) ,BC'b—~—>aQa with azy:‘uﬂ:a4:ﬂzzo_

The universal Galois covering with Galois group =<x, y> has as a quotient

the following:

by
[ 5.
be
|z
byz < b > Q, Q.+ Az-1— Az-2 .
/3.7: Uz Qe Xz-1 Kz-2

7
(W-8) BCb—> aDa with a’u=appf=a*=p2=0.
The universal Galois covering with Galois group =<{x, y> has as a quotient

the following:

a,-1, ¢ by-xx

#y'lx ABy"lx Uz Qe pe lBe #]I

7
(W-9) BCb— aDa with au—pf=a*p=a’=F'=0.
The universal Galois covering with Galois group =Z has as a quotient the

following :

[38 [34 135
by > by bs > bs
rp
ao—’al"“—’az_‘“"a3—"’a4
(24} (24} 22 A3

with asps—p.f;=0. This is a concealed hereditary algebra of type o

(W-10) ,scb-ia:)a with ap—pB=a’=g*=0.
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The universal Galois covering with Galois group =Z has as a quotient the

Bs Bs

bs"‘—>b6_—"b7

e Lo

a, — a, > dy > Qs > A, > Qs — Qg
24 ay a, a; a, ag

following :

with asps— peBs=0. This is a concealed hereditary algebra of type E..

J7
(W-11) b aDa with pp—a’=a’*u=a*=0.
v

The universal Galois covering with Galois group =Z has as a quotient the

bl bz b3
>
a T T

with p,v,—a,@,=0. This is a concealed hereditary algebra of type Ds.

following :
be

a

J7
(W-12) b——= aDda with pp—a*=yvp=vap=a’*p=a'=0.
y

The universal Galois covering with Galois group =Z has as a quotient the

following :
bo

with g,y,—asa,a,=v,¢,=0. This is a concealed hereditary algebra of type E,.

J7
(W-13) b— aDa with py=ap=a’=0.
v

The universal Galois covering with Galois group =<{x, y> has as a quotient

the following:
b

a1 de

a, ., —— a, —> A,

PR

b b,  by: .

e
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u
(W-14) b=—=ala with pp=vp=a’y=a’=0.
v

The universal Galois covering with Galois group =<{x, y)> has as a quotient
the following:
b bz

Jﬂe l/xx
a__q A

x
Q,-1 >0 —> Ay

[or [oe |w

b by by

yr~!
with vep,=v,p,=0. This is a concealed hereditary algebra of type E‘G.
J7
(W-15) b — aDa with py=vap=a*p=va*=a’=0.
y
The universal Galois covering with Galois Group =<x, y> has as a quotient
the folltwing:
b, b

-
a. -1 A,

A,y —> A, — A,

|

by

7
(W-16) b=—aDa with pv=yp=ap=va*=a'=0.
y

The universal Galois covering with Galois group =<x, y> has as a quotient
the following:

b

.132
a, Q. (29"
ax_l 4 ae a_z' axz
l"’e ly.r
b, by

7
(W-17) b — aDa with pw=yp=vap=a’p=va’=a'=0.
)

The universal Galois covering with Galois group =<x, y> has as a quotient
the following:
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b b2
l#x 1#12
az_l [+ P (2 8%
a,-1 > Qg > Ay > 4.2
[
by L]

7
(W-18) b —aDa with py=vp=ap=va’=a’=0.
y

The universal Galois covering with Galois group ={x, y> has as a quotient

the following:
b, b, b

x z3

l#z 1#32 luzs
ax-l 4 P ax QA z2

Qpoy —> Be —> 8z —> Qs — @

o |

b b,

z3

yz—1

with a.p.=ap,»=0. This is a concealed hereditary algebra of type E..

5. Tame Algebras.

In this section, we will show that the algebras in Table T are tame. In
dealing with extensions of algebras, we will always calculate vector space cate-
gories. In fact, we have to deal with extensions of algebras which are not
tublar extensions.

It is easy to see that no algebra in Table T is representation-finite, and it is
well known that the algebra (T-0) is tame. Thus, it suffices to prove the tame-
ness of the algebras (T-1), (T-2), (T-3,), (T-4,), (T-55), (T-65), (T-7), (T-8),
(T-9), (T-10) and (T-11;), since any other algebra in Table T can be obtained
as a quotient of one of them. As an example, we will show also that the
algebra (T-12) is tame.

J7
(T-1) b—> aDa with a’u=a’=0.
Take the universal Galois covering U with Galois group =Z:

b-, be b

l#-l l#o lm

—> ad.y —> Ay —> Q; —
[+ %7 (44
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with a;maipti=ass - a;pa;=0 for all ieZ. For each neZ, let A, be the
following full subcategory of U :

bn+3 bn+4 bn+5
an Qn+1 An+e Qpt+s —> Api+s — > Apys

this is a concealed hereditary algebra of type 1;“8, and for [, meZ with [=Zm,
let A;, » be the full sucategory of U consisting of the objects of the A,, ISn=m.
Notice that A, .+, is the one-point coextension of A, U{b,+s} by the module
D(N,BN;), where N,=,.3%° with restriction to A, being preprojective and
Nir=000333'. The vector space category Hom (mod (A,\U{b.+s}), N.BN,) is of
the following form:

This is a poset of tame type (see [9] and [12]). Thus, A, »+: is tame. For
[, neZ with I<m, A, m+ is the one-point coextension of A, »\U{bm:+s} by the
module with support in A,\U{bm+¢} and with restriction to it being D(N, ,BDNn).
The vector space category Hom (mod (A, »n\U{bm+e}), NufON%) is isomorphic to
Hom (mod (A»\U{bm+e}), Nu@®N?Z), and as a set ind A, m+1=ind A, »\Jind Ap, m+1-
Therefore ind U=\,czind A, »+:, in particular, U is locally support-finite and
tame. Thus, (T-1) is tame by ‘[Proposition 4l
7

(T-2) BCb
@
This is a quotient of the following tame algebra: BCb—aDa with a’=g*

=vap=pBv=yp=pv=0 (see [4] for details). - Thus, (T-2) is tame.

»aDa  with a®?=p2=0.

REMARK. Given a representation $CV D¢ of the quiver tC+Deo with rela-

tions ¢*=7c%=0, by defining the representation ¢CV—1—>V3¢, we obtain a full
exact embedding. Since the above algebra is a Galois covering of the algebra
7C+*D0 with ¢*=t*=rg7=0, with Galois group =Z/2Z, by the
category of the finite dimensional representations of the quiver (<o with
relations ¢?=72=0 is similar to that of the quiver (¢ with relations g?=
?=107=0. Note that the latter is a finite dimensional algebra.

(T-3) BCb—— aDa with ap—pp=a’=pF=0.
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Take the universal Galois covering U with Galois group =Z2:

B-r  Bo

——»b_l——>bo———>b1——-—)

| | |m

»ad_, ——> Ay —> 4, —

(2 8% [2 4

with a,-;li——y,-ﬂﬁi———a“s-"a,-Hai———ﬁHzﬁ,-Hﬂi:O for all 7=Z. For each nEZ,
let A,, be the following full subcategory of U :

bpsse — bn+5 I bn+6

Lo

AQn — > Qn4y > Ao > An+s > Apig — > Qpis

and let A,,_, be the following full subcategory of U :

bpss — bnss — bpss

Lol

Ay — > Qp41 > Qpt2 > Qn+3 > Qs — > Qn+s ,

these are concealed hereditary algebras of type Es, and for [/, meZ with [<m,
as before, let A, » be the full subcategory of U consisting of the objects of the
A,, [En<m. Then, as an algebra, Asn-1 2.+ IS iSomorphic to

k. DN,, O
O A2n M2n
0 0 k

where M, =000:1° and N,,=o ;11! are regular modules belonging to the same
tube :

-y

. Now -
:\/’\/\/’ /\/

/\/\/’\/‘\/\'
'\/\/'\/\/‘\/

The vector space categories Hom (M,,, mod A,.) and Hom (mod A.., N;.) belong
to the pattern (Eq, 5), and ind Asn-1.2n41=Pon\JIRs:,\JQ:,, where P;, consists of
the objects of ind Aj, 2n+1 With restriction to A., being preprojective, Q.. con-
sists of the objects of ind As.-1.».» With restriction to A,, being preinjective and
R,, consists of the regular objects of ind A,, except that the above tube changes
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to the following :

/’\/\/\
\/’\/\/‘\/\/\/"

/\/\/\/\/\/Q

Thus, Asn_1,2,+: IS tame.
Similarly, Ajn_s,2, iS isomorphic to

k- DNy, 0O
0 Aznor Manoa |,
0 0 k

where My, -1=1:.3%% and NZn_lzooog},}, are regular modules:

N
'\/\/ /\W
-/\/\/\/\/v
.\/‘\/\/‘\/\/.

The vector space categories Hom (M,,_,, mod A,,_,) and Hom (mod A;,-1, Nzp-1)
belong to the pattern (Es, 5), and ind Asn-2,20=Pon-1\YRon-1\JQ2r-1, Where Ps,_,
consists of the objects of ind A,,_;,», With restriction to A,,., being preprojec-
tive, Q,,-, consists of the objects of ind Asn_s 2,1 With restriction to A;,-,
being preinjective and R,,_, consists of the regular objects of ind A;,., except
that the above tube changes to the following :

/'\ /'\
. M,,
\/\f\/\/ /\/
AVAVAVINVAVAN

——————— o ———

Thus, Asn_s,2, IS tame. ‘

For I, meZ with I[<m, A,;_; m+: is the one-point extension of A, »+: by the
module with support in A, and with restriction to it being M;. The vector
space category Hom (M,, mod A; m+,) is isomorphic to Hom (M,, mod A;), and
ind A;_y my1=ind A;-, ;1,vind A, m+:. Therefore ind U=\Upezind A,_y, n+1, in



86 Mitsuo HosHiNO and Jun-ichi MIYACHI

particular, U is locally support-finite and tame. Thus, (T-3;) is tame.

7
(T'44) BCb _— aOa With a#—#ﬂ=a4=‘84—_—0.
This has been proved to be tame [15], so we omit the proof.

© ; ' o
(T-5) b—ala with py—a*=vap=0. s !
v :

Take the universal Galois covering U with Galois grodp =7:

v

a_y : ay
with g vi—aimai=vinaip,,=0 for all teZ. For each n=Z, let A, be the

following full subcategory of U :

ba . b ba+e

>

' T
Qp———>0Ap41 — > Ag42 ’

this is a concealed heredltary algebra of type D, let B, and B¥ be the full
subcategories of U obtained from A, by adding a,-, and a..s respectively,
these are tilted algebras of type E,, and let C, be the full subcategory of U
consisting of the objects of B, and B%, this is isomorphic to

k DL, k
0 A, L.,
0 0 k

where L,=}!1 is a regular module:

'\/\/§

'/\/\'
\/’\/‘

The vector space categories Hom (L,,, mod A,,) and Hom (mod A,, L,) belong to
the pattern (55, 2), and ind C,=P,\JR,\JQ,, where P, consists of the objects
of ind B* with restriction to A, being preprojective, @, consists of the objects
of ind B, with restriction to A, being preinjective and R, consists of the regular
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objects of ind A, except that the above tube changes to the following:
7N\
T M, Ng
NSNS NS
: .
!
!

L, -
VAANWARANWARN

- —

Thus, C, is tame.
For I, meZ with {<m, define A, » and B, . as before. Then, A,_1 n+: i

isomorphic to

k DL, k
0 Cn Lay,
0 0 k

where L7=,il}, is a regular module:

. ’

The vector spaée categories Hom (L}, mod C,) and Hom (mod C,, L7) belong
to the pattern (EG, 2), and ind A,_y, 1 =Pi\JR\JQ, where P; consists of the
objects of ind A, .+ With restriction to C, lying in P, Q7 consists of the
objects of ind A, » with restriction to C, lying in Q. and R coincides with
R, except that the above tube changes to the following:

/N

M, N
7NN/

. L, .
N2 NN\

o

Thus, A,_i »+: iS tame.

For [, meZ with [<m, B, m+: is the one-point extension of A; n+: by the
module with support in B¥ and with restriction to it being M,. The vector
space category Hom (M, mod A, n+) is isomorphic to Hom (M,, mod B¥) and
belongs to the pattern (Ds, 2). Next, A1 m+1 is the one-point extension of
B, m+: by the module with support in B, ;+; and with restriction to it being M.
The vector space category Hom (M}, mod B;, n+,) is isomorphic to Hom (M, By, 1+1)
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and belongs to the pattern (EG, 2), and ind A,.;, m+1=ind A;-;,;+,\Vind A}, n41.
Therefore ind U=\,czind A,_;, »+1, in particular, U is locally support-finite and
tame. Thus, (T-5;) is tame.

(T-65) b:—’p_aQa with py—a’*=vap—va’p=a’=0.
Y

This is self-injective and the quotient by the socle is isomorphic to (T-5j).

J7
(T-7) b—aDa with py—a’=ypu=ap=0.
Y

Take the universal Galois covering U with Galois group =Z:

With fli41Vi— @i42@i1 @i =V i1 = Qs ;=0 for all i€Z. For each neZ, let A,
be the following full subcategory of U :

bn+1 bn+2 bn+3
/ : /
/ %
an Ap+1 An+2 Apn+3 ’

this is a concealed hereditary algebra of type E,, and let B, be the full subcate-
gory of U obtained from A, by adding b,, this is a tilted algebra of type E..
Then B, is the one-point extension of A, by the regular module M,=,3, and
the vector space category Hom (M,, mod A,) belongs to the pattern (Es, 3).

For [, meZ with [<m, define A, » and B, as before. Then A,_; , is
the one-point extension of B, by the preinjective module M;=}}i}, and the
vector space category Hom (M, mod B,) is of the form:

Thus, A,_., » is tame.

For [, meZ with [<m, B, » is the one-point extension of A, » by the
module with support in A, and with restriction to it being M,. The vector
space category Hom (M,, mod A, ») is isomorphic to Hom (M,, mod A,). Next,
A,_,. = is the one-point extension of B; n» by the module with support in B, and
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with restriction to it being M;. The vector space category Hom (M}, mod B, n)
is isomorphic to Hom (M}, mod B;) and ind A,-;, »n=ind A;-,,,Jind A}, ». There-
fore ind U=\_Unczind A,_;, ., in particular, U is locally support-finite and tame.
Thus, (T-7) is tame.

7
(T-8) b——=ala with gv—a*=vu=a’p=va’=0.
y
Take the universal Galois covering U with Galois group =Z:

b-

/!
cees / y
T>\§h/

with giﬂvi——aﬂzaiﬂai=vi+2,u,~=ai+3ai+2yi=vi+2ai+lai=0 for all ;ieZ. For each

Q-

neZ, let A,, be the following full subcategory of U:

b bn+1 bn+2
n / \
/ /
Qn —> Qn+1 > AQn+z —> An43

and let A,,_, be the following full subcategory of U:
bn"l bn bn+1 bn+z
N’ /
v /
Qp——————>0p41 —>Ap+2 ’

these are concealed hereditary algebras of type E,, and for /, meZ with (<m,
define A, » as before. Then A;,-y,22+:1 is isomorphic to

k DL,, k
0 A2n LZn ’
0 0 k

where L,,=3%, is a regular module:

7 L2n
N

NN
NN\



90 Mitsuo HosHINO and Jun-ichi MIYACHI

The vector space categories Hom (L.,, mod A4,,) and Hom (mod A,,, L.,) belong
to the pattern (E~6, 2), and ind Asn-1,2n+1=Pon\JIRsn\JQs,, Where P,, consists of
the objects of ind A, s,+; With restriction to A,, being preprojective, @Q,, con-
sists of the objects of ind A,,_, ., With restriction to A,, being preinjective and
R,, consists of the regular objects of ind A,, except that the above tube changes
to the following :
7\

M2n N2n

7NN\
L

\N/\/

N . pd
Y

Thus, Asn-1,22+1 IS tame.
Similarly, Asn_s .n iS isomorphic to

k DLy, k
0 A2n-1 LG—l ’
0 0 k

where L,,.,="}l? is a regular module:

The vector space categories Hom (L,,_;, mod A,,_,) and Hom (mod Asn-1, Lan-1)
belong to the pattern (ES, 2), and ind Azn-2,0n=Pon-1\JR22-1\JQ2n-1, Where Pp,_,
consists of the objects of ind A;,_1,2» With restriction to A,,-., being preprojec-
tive, Q.._, consists of the objects of ind A;,_s 2,1 With restriction to A,,., be-
ing preinjective and R,,., consists of the regular objects of ind A;,., except
that the above tube changes to the following:
7 N\
M;n 1 Npn_y
NN\

M LG—l‘
/NN /N

- = ————
———— - —————

Thus, Asn-2.2n IS tame.
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For [, meZ with [<m, A,_, m+: is the one-point extension of A; n+; by the
module with support in A, ,+; and with restriction to it being M,. The vector
space category Hom (M, mod A, n+,) is isomorphic to Hom (M, mod A;,;+1), thus
belongs to the pattern (Ee, 2), and ind A;_,, m+1=ind A;_,,;+:\Jind A;, m+:. There-
fore ind U=\U,czind A,_1 241, in particular, U is locally support-finite and tame.
Thus (T-8;) is tame.

J7
(T-9) b——=aDa with pw—a*=yp—vap=a’p=va’=0.
v

This is self-injective and the quotient by the socle is isomorphic to (T-8%).

7
(T-10) b — aDa with py=vpu=vap=a’=0.
v

The relation py=0 is splitting-zero, thus it suffices to prove the tameness
of the following algebra:
a
L0

>a >¢  with yp=vapu=a®*=0.

Take the universal Galois covering U with Galois group =Z:
b, b b,
, i H-1 l Uo j y231
a_q [4 )
.. '_—)'a—]_—')ao__’al———)"'
[ Lo L
C.y Cy .Gy

with vig;=vinaigi=awa:a;=0 for all /€Z. For each neZ, let A, be the
following full subcategory of U :

bn+1 bn+2
an > Ap+1 > Ap+e,
cn cn+1

this is a concealed hereditary algebra of type EG, let B, and B¥ be the full
subcategories of U obtained from A, by adding b, and c,.. respectively, these are
tilted algebras of type E,, and let C, be the full subcategory of U consisting of
the objects of B, and B¥, this is isomorphic to



92 Mitsuo HosHINO and Jun-ichi MIYACHI

k DL, k
0 A, L. |,
0 0 k

00
where L,=}! is a regular module:

1 L, -

1\/\/\/1
/\/\/v
«\/\/\A

The vector space categories Hom (L, mod A,) and Hom (mod A,, L,) belong to
the pattern (FZG, 3), and ind C,=P,\JR,\JQ,, where P, consists of the objects
of ind B} with restriction to A, being preprojective, Q, consists of the objects
of ind B, with restriction to A, being preinjective and R, consists of the regular
objects of ind A, except that the above tube changes to the following :
7N\
M: M, N, N}
'\ 7N\ /‘ \ 7\ /5
'/’ \ / \ /' \ / \.

’
n

Thus, C, is tame.

For [, meZ with [<m, define A, ., and B, . as before. Let C; be the
full subcategory of U obtained from C, by adding ¢,_, and b,,; Then, A,_ n+1
is isomorphic to

'k D(N.DN?7) 0
0 Ch M, BM7 |,
0 0 k

where M, = ‘ﬁﬁ", M Z=1§§§°, N ;:(ﬁigo and N/= g%ﬁl. The vector space categories
Hom (MM, mod C,) and Hom (mod C,, N,DN?%) belong to the pattern (FI.,, 4)
w{-}, and ind A, ,+1 =Py R,\JQrn, where P; consists of the objects of
ind A, n+1 Wwith restriction to C, lying in P,, Q) consists of the objects of
ind A,_,, » with restriction to C, lying in @, and R} coincides with R, except

that the above tube changes to the following:
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./ \
“ II MII T
\/\/\/\/ \/

/‘\/‘\/‘\/‘\ /\\

\/\/\/\/\/\/
AN ANV /\ ANAN

Thus, A,.1 .+ IS tame.

For [, m&Z with [Em, B, m+: is the one-point extension of A; m+; by the
module with support in B¥ and with restriction to it being M;. The vector
space category Hom (M;, mod A, m+;) is isomorphic to Hom (M,;, mod B¥) and
belongs to the pattern (E,, 3). Next, A,-1.m+ IS the one-point extension of
B, m+:1\J{c;-:} by the module with support in C; and with restriction to it being
M;®My. The vector space category Hom (M;BM7, mod (B m+i\J{ci-1})) is
isomorphic to Hom (M;PM{, mod Cj), and ind A,_; m+1=ind A;_¢, 1+:\Jind A, m+1.
Therefore ind U=\_nezind A,_1 n+;, in particular, U is locally support-finite and
tame. We are done.

i .
(T-11;) b — aDa with pw—a*=ap=va’=0.
Y

Take the universal Galois covering U with Galois group =Z2:

>0a -, > a > a, a,
a_y 0 (240 (241

with piﬂvi—ai+3ai+2ai+1ai—ai+2yi=yi+2a,~+,ai=0 for all ;7=Z. For each nEZ,
let A,, be the following ful subcategory of U :

n+2 bn+3
/ //
/ ~ _—

~—> A n+1 Cln+2 Qnts

ba+s

\

and let Ayn-y be the following full subcategory of U:

bn—l bn n+1

— —
- —

an —> A p+1 Apie Qn+s
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these are concealed hereditary algebras of type Es, and for [, meZ with [Zm,
let A, » be as before. Then, A;,-1,20+1 IS isomorphic to

k DN,, 0
0 AZn M2n ’
0 0 k

where M,,=301° N,,=9%1° are regular modules:
v 2n Nzn .

\/\/\/ /\/
/\/\/\/\/\

’ .

\/\/\/\/\ﬂ

The vector space categories Hom (M,,, mod A.,) and Hom (mod A, N;,) belong
to the pattern (FIS, 5), and ind Asn-1,2n41=Pen\JR3,\JQs,, where P,, consists of
the objects of ind A;n, 2.+, With restriction to A,, being preprojective, Q;, con-
sists of the objects of ind A,,_,.»» With restriction to A,, being preinjective and R,
consists of the regular objects of ind A,, except that the above tube changes
to the following:

/\/\
5\/\/\/\/\/\%
./\/\/\/\/\/v

Thus, Asn-1,22+1 1Sitame.
Similarly, Asn_s,2n iS iSomorphic to

k DNzn—l O
0 A2n—1 MZn—l »
0 0 k

where M,,_,=11% and N,,_.,="%)9 are regular modules:

K/i/\/ /\w
'/\/\/\/\/v
m/\/\/\/\w
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The vector space categories Hom (M,,_;, mod A,,-;) and Hom (mod A,,_1, Non-1)
belong to the pattern (E, 5), and ind Asn-s2,22n=PFPon_1\IR3p_1\JQsn_,, Where P,,_,
consists of the objects of ind A,,_; 2, With restriction to A,,-, being preprojec-
tive, @Q.,-, consists of the objects of ind Asn_s 2n-; With restriction to A,,-, being
preinjective and R,,_, consists of the regular objects of ind A4,,_, except that
the above tube changes to the following:

FNANN

Mn-y - . Non_y ° h
\./\/\/\/\/\/’5
VAV ANVANVINVANVAN

——————p

|
%
Thus, Asp_», 2, IS tame.

For |, meZ with {<m, A,_, n+: is the one-point extension of A; n+, by the
module with support in A, and with restriction to it being M,. The vector
space category Hom (M,;, mod A, n+:) is isomorphic to Hom (M;, mod A,;), and

ind Aj-1, mar=ind A;_; ;+,Vind A, .. Therefore indU=\,ezind Ays_1, o+, IN
particular, U is locally support-finite and tame. Thus, (T-11;) is tame.

7
(T-12) b — ala with pr=a®=0.

v
Since the relation py=0 is splitting-zero, it suffices to consider the algebra
a
(), |
b—ts'a ¢ with a®=0.

This can be considered as a full subcategory of the algebra obtained from the
tame one-relation algebra [12]:

B

al a/l R
a’—— a——> q¢” with a”a’=0,

N
b c
by shrinking the arrow B. Therefore (T-12) is tame.
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