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COMPACT CARDINALS AND ABELIAN GROURS

By

Katsuya EpA and Yoshihiro ABE

Some properties about abelian groups are known to be related to large cardinals.
Among them a certain property of the radical R, i.e., R:(A)=nN{Ker(h) : he
Hom (A, Z)} for an abelian group A, has been known to be related to the exist-
ence of a compact cardinal and a measurable cardinal. To state it more precisely,
let RYI(A) =3 {R.(B) : Bis a subgroup of A of cardinality less than «}for a cardinal
k. The radical R, satisfies the cardinal condition, if there exists a cardinal & such
that R;(A) =RYJ(A) for every abelian group A. M. Dugas and R. Gobel
proved that if there exists no measurable cardinal, then the condition does not hold.
On the other hand M. Dugas showed that if there exists a strongly compact
cardinal, then the condition holds. Using subgroups of Zr/Z<t(=~Z‘B®), which
itself was also used in [5], B. Wald got some result relating to a weakly
compact cardinal.

In the present paper we show that their results can be unified under the notion
of 2-L, .-compactness and using it we improve their results, e.g. the radical R;
satisfies the cardinal condition iff a strongly L.,.-compact cardinal exists, where
the last property has been studied by J. Bell [2].

First we state definitions. Z is the additive group of integers and N is the
set of natural numbers. In this paper « always stands for an infinite cardinal and
in most cases is regular. The word “of cardinality <4” is an abbreviation of “of
cardinality less than or equal to 2”. L,, is the infinitary language which admits
a-sequences of disjunctions and conjunctions and §-sequences of quantifiers for a< g
and B<v. See for a precise definition. A cardinal ¢ is 4-L,,-compact, if the
following hold: For a set 7" of L,-sentences of cardinality 4, if any subset of
T of cardinality less than « has a model, then T itself has a model. & is strongly
L,,-compact, if £ is 2-L,,-compact for any 4. P2 is the set of all subsets of 2
whose cardinalities are less than . Let Uz={ye P.A: xCy} for xe P.A2 and F,Z
={xCP.A: UzCX for some xe P,2}. Then, F,2 is a k-complete filter on P,Z for
a regular cardinal . Let B,; be the quotient algebra P(P,2)/F.,. (We use filters
instead of ideals when constructing quotient algebras, differing from [13].) Then,
a filter on P,2 which contains U for all x& P.2 corresponds to a filter of B...
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Moreover, a countably complete ultrafilter on P.4 which contains Ux for all ze
P2 corresponds to a countably complete ultrafiter of B.;. In case that « is regular,
by B., we denote the x-complete quotient Boolean algebra P(x)/F., where F.=
{XCrk:|k—X|<#k}. A k-complete Boolean algebra B is x-representable, if B is
isomorphic to the quotient algebra of a x-complete field of sets modulo a #-complete
filter [13, §29]. (Note that “s-complete”, “s-representable” and so on in mean
our “s*-complete”, “k*-representable” and so on.) The symbols \V/, A, 7 denote
least upper bound, product, complement respectively. For a countably complete
Boolean algebra B, Z‘® is the Boolean power of the group of integers Z, i.e.
ZPB=(f:f:Z>B & Vmez f(m)=1 & f(m) ANf(n) =0 for m=n} and (f+g) (m)
= Am=n+k f(7) Ng(k). An abelian group A is torsionless, if A is a subgroup of
Z! for some I. It is equivalent to the property that for any nonzero ac A there
exists a homomorphism 2: A—Z such that A(a) %0.
Now we state the main theorem.

THEOREM 1. Let £ be an uncountable regular cardinal and 2<<=2A. Then,
the following propositions are equivalent :
1) & is A-L,u,-compact ;
(2) & is A-La,o-compact ;
(3 Any k-complete r-representable Boolean algebra of cardinality 2 has a count-
ably complete ultrafilter ;
4 If A is an abelian group of cardinality<2, then R;(A) =R5"](A) holds ;
(5) If A is an abelian group of cardinality<2 and any subgroup of A of car-
dinality less than k is torsionless, then A itself is torsionless
(6) Any subgroup of ZB¥ of cardinality<2 is torsionless
(7) For any subgroup S of Z'B- of cardinality<2, Hom(S, Z) %0;
(8 For any k-complete k-representable Boolean algebra B of cardinality <1, Hom
(Z®, Z)=x0.
To prove the theorem, we state some lemmas.

LEmMMA 2. ([7, Theorem 17]) Let B be a countably complete Boolean algebra.
Then, Hom(Z®, Z) =Prer Z, where F is the set of all countably complete
ultrafilters of B. Consequently, Hom(Z®, Z)+#0 iff a countably complete ultra-
Silter of B exists.

LemMA 3. ([13, 29.3]) Let B be a k-complete -representable Boolean algebra.
If b#0 and Vmen bam=1 for a<p where p<rk, then exists an fe*N such that
{b, baycay : @<y} satisfies the finite intersection property.
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PROOF OF THEOREM 1. Our proofs go on according to the following diagram :

(1)=>(2)—>(3)«(8)

(4)—>(5)—>(6)— (7)—>(i)
(1)—(2): trivial.
(2)—>(3): Let F be a k-complete field and F a k-complete fiter of # and B=
F|F. By the assumption of cardinality of 2, we can take a #-complete subfield
F’ of F cardinality 2 such that B=7'/F7'NF. Let 7'={P;:£<2} and T be the
set of the following L,,.-sentences :
(a) Pi(c) if P.eF:
(b) vx(/\neNBen(-t)"lEE(x)) if NuenvPen=Ps;
(¢) Va(P:(@o7Py(@) if P=Pr.

Since F' is t-complete, any subset of 7" of cardinality less than «# has a model.
Hence T has model #. Let P.cF iff A=P¢(c). Then, F extends 7/ N F and is
a countably complete ultrafilter of F#’. Consequently, B has a countably complete
ultrafilter.

(3)<(8): Clear by Lemma 2.
(2)—(4): To prove it by absurd, suppose the negation of (4). Then, there
exists an a*e R,(A) such that a*&¢ R (A). Let T be the following set of Laujo-

sentences :

(a) a#a for a#a’, a,a’€A, a+b=c for at+b=c, a,b,c€A;
(b) The axiom of abelian groups;
(¢) VzVme:(Hn(x) & An+tms nez/ Hn(x)) ;
VZ, ¥ Vmynkezs min=b(Hm(x) & Hrn(x) & Hp(x+y));
V m+om (_C_Z:k)

Let 77 be a subset of T of cardinality less tank x. Then, there exists a
subgroup B of cardinality less than « such that B contains a* and if a appears
in 7 then a belongs to B. Since a*eERE’“](A), there exists an A Hom (B, Z)
such that A(a*)#0. Now, the group B with the homomorphism 4 is a model of
T’. By (2) there exists a model # of 77. Then, A is a subgroup of the domain
of & and Hp(me Z) defines a homomorphism to Z which maps a* to a nonzero
element, which is a contradication.

(4)—(5): It is clear, since A is torsionless iff R;(A) =0.

(5)—(6): It is enough to show that S is torsionless for any subgroup of Z¢B-»
of cardinality less than x#. Let s* be a nonzero element of S, then s*(m) %0 for
some m+#0. By there exists a map A : S—Z such that {s(2(s)) : s&S}
satisfies the finite intersection property and A(s*¥) =m=0. I s+t=u for s,t,ucs,
then u(h(s) +h (@) >s(h()) At(h())#0. Hence uh(s) +h(@®)) Auh(w))#0 and
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so h(s) +h(@) =h(@). Now, We’ve gotten a desired homomorphism.

(6)—(7): Trivial.

(3)—(1) and (7)—(1): The property (1) is reduced to the existence of a
countably complete ultrafilter of x-complete subfield F of P(P.2) which extends
F..[1, pp. 76-77 ; or 14, pp. 64-65]. By Lemma 2, both of (7) and (3) imply the
existence of such an ultrafilter.

COROLLARY 4. The radical R, satisfies the cardinal condition iff there exists
a strongly L.,.-compact cardinal.

The proof is clear by the equivalence of (2) and (4) of the theorem.
Another characterization of the strongly L.,.-compact cardinal has been given in
[2, Theorem 2]. As noted in [2, Theorem 4], the existence of a strongly L.,.-
compact cardinal is strictly stronger than that of a measurable cardinal. However,
we do not know whether it is strictly weaker than the existence of a strongly
compact cardinal. (See the last remark.)

Under the assumption that & is inaccessible, many conditions are known to be

equivalent to the #£-L,,-compactness of #. An observation of the proof of [14,

[Theorem 1] gives us

PROPOSITION 5. Let & be an infinite cardinal, then the following proposi-
tions are equivalent :
(1) k—>(®3% (See [14] or [12] for the definition.) ;
(2) & is 2<«-L,,-compact ;
(3) & is regular and awny k-complete k-representable Boolean algebra of cardi-
nality <2<+ has a k-complete ultrafilter
(4) « is regular and any k-complete subalgebra of B. of cardinality<2<+c has

a k-complete ultrafilter.

PROOF. Since t— (x)% implies that # is inaccessible, 2<r=& and hence (1)
—(2) 1is clear by [14, Theorem 1.13]. It is known that the x-L.,-compactness of
£ implies that & is regular [3]. Hence, (2) implies that 2<r=x<s, The proof of
implication (2)—(3) is similar to that of (2)—(3) of [Theorem 1. The differ-
ence is to take (b)’ instead of (&), where (B)’ is: Vxr(Na<,Pec(x) o Pe(x)) if
Na<pPea=P: for p<rk. After this change the cardinality of the set of sentences
does not exceed 2<+. Therefore, we can prove similarly as before.

The implication (3)—>(4) is clear. Though Silver’s proof [14, p. 64] is
essentially a proof of (4)—(1), we present the proof for reader’s convenience.
Suppose the negation of (1), then there exists f: [£]?>—2 such that there exists
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no homogeneous set of cardinality #. Let 7 be the minimal £-complete subfield of
P(k) generated by all singletons and UZ(={8: f({aB}) =i}) for a<x, i<2. Then,
the cardinality of & is 2<s. Let n: P(¥)—>B.(=P(x)/F.) be the canonical map.
Then, #(¥) is a s-complete subalgebra of B, of cardinality 2<r. Let F be a
k-complete ultrafilter of #(F), then # (U &F or #(UL) €F. Construct a sequence
a;(6<k) and ¢: £—2 such that a;e ﬂ,;<eU¢(’7’and n(U”“’)EF then we can get
homogeneous sets {a¢: ¢(§) =0} and {a;: ¢(§) 1}. One of them must be of

cardinality #, which is a contradiction.

As noted in [1, Corollary], if # is less than the least measurable cardinal and
2<+.L, ,-compact, then £ is 2<#-L,,-compact. Any k-complete subalgebra of a &-
comlete r-representable Boolean algebra B is also &-representable and any restric-
tion [0, #](={xeB:0<x<b}) for nonzero b B is also a r-complete r-represen-

table Boolean algebra. Hence, Theorem 1, [Lemma 2 and [Proposition 5 imply

COROLLARY 6. (B. Wald [15]) Let x be an wuncountable regular cardinal
which is less than the least measurable cardinal. Then, the following are equiv-
alent :

(1) k—>®3% holds,
(2) If A is an abelian group of cardinality 2<+¢, then R;(A) =RE"](A) ;
(3) If a subgroup S of ZB® is of cardinality <2<+, then Hom(S, Z) +#0.

REMARK: It is known that some results are restricted under the lest meas-
urable cardinal and they do not hold beyond it [11, p. 161; and 5, Theorem 2.7].
However, we did not know whether the class of Fuchs-44-groups were closed under
arbitrary direct products [8]. Here, we show that it is not. To treat such things
it is convenient to use elementary embeddings of the universe [5, Remark 2; and
10]. Therefore, we use notions about elementary embeddings [12]. Let « be the
least measurable cardinal, F' a normal ultrafilter on # and My the related transi-
tive universe. For an fe*V, [ f]r is the element of Myr corresponding to f.
Let A.(a<k) be the abelian groups such that A,=(@.Z)3B» if a is a regular
uncountable cardinal and A.=0 otherwise. Since B, has no countably complete
ultrafilter, A, is a Fuchs-44-group for each a [8, Corollary 3; and 9]. Since F'is
normal, [{A.: a<&)dlr=(D.Z) B> holds in Mp. Since B.= (B)¥p, Il ;<. A./F=
(®.Z)B, On the other hand, B, has a countably complete ultrafilter and hence
there exists a surjective homomorphism from I7.<.A./F to @.Z. This implies
that I7,<.A. contains a direct summand isomorphic to @.Z. Hence, I1.,<.A. is
not a Fuchs-44-group.

As we have referred it before, Dugas and Gobel proved that the radical R»
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does not commute with a measurable direct product [5, Theorem 2.7]. Here we

show,

PROPOSITION 7. Let k be a cardinal less than the least measurable cardinal.
If the cardinality of Ai is less than £ for every icl, then Ry(Ilie1A:) =1lier
R:(As) holds.

PROOF. Since R,(I1,e1A:) CIlie1R2(As) clearly, we show the other inclusion.
Hom (I1:e144, Z) =@rey Hom[Tic1A:/F, Z) where F is the set of all countably
complete ultrafilters on I [6, Corollary 2] and hence what we must show is that
h-np(f) =0 holds for fel;e1R:(A»), he Homlie1Ai/F, Z)and F€7, where zr:
IT;c1Ai—Il;c1As/ F is the canonical homomorphism. By the fundamental theorem
of ultraproducts [12], V?!/Fl=VheHoml:c1Ai/F, II;Z|F)h(zr(f))=0).
Since the cardinaity of I7;erA:/F is less the least measurable cardinal and

II;Z|F~Z, h-np(f)=0 for each heHom(l:c1A:/F, Z).

ADDED IN PROOF
1. There is another radical R}, i.e. R7A=3{X<A:Hom(X, Z)=0}. The
purpose of this addendum is to answer a question in [17]. Therefore, we use

their notion.

We show,

;

PROPOSITION 8.
(1) The radical R} satisfies the cardiual condition (iff R is a singly generated
socle) iff there exists a strongly L. ,.-compact cardinal.

(2) RY is not a singly generated radical.

ProoF. First observe the following fact: For a cardinal & of uncountable
cofinality, A=Y {X<A:Hom(X, Z2) =0 & | X|<#} iff A=3{R;X: X<A & |X|<k}.
This can be shown by a closure argument. If there exists a strongly L.,,.-compact
cardinal, let £ be a regular strongly L.,.-compact cardinal. Suppose that R;A +#
J{RYX: X<A &|X|<x}. Since RJY is the largest subgroup X of Y such
that Hom(X, Z2)=0, R7A+3{R,X: X<R7A & |X|<#} by the above fact.
Hence, there exists an a*e R}’ A such that a*¢ R, X for any subgroup X of R}A
of cardinality less than x#. As the proof of (2)—(4) of [Theorem 1, we get a
nonzero homomorphism R7’A to Z, which is a contradiction.

Suppose that a regular cardinal # is not strongly L. ,.-compact. Then, there
exists a 4 such that A=1<+* and « is not A-L,,,-compact. By [Theorem 1 (7) and
a fact in the proof of (5)—(6) of [Theorem 1|, there exists a group S such that
RZ?S=S and {X<S: Hom(X, A)=0 & |X| <x}=0. Hence, the cardinal condi-
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tion does not hold. Another equivalence is easy to show.

(2) (The same reasoning as [17, Proposition 2.8]) Suppose that R is a singly
generated radical, i.e. RFA=RyA=N{Ker(h) :heHom(A4, Y)}. Then, Ry=
RrY=0. Let a be an ordinal such that R;Y=0. By [16, Corollary 3.10] (due
to Mines), there exists a group A such that RYA=0 and R:A#0. Since A is
isomorphic to a subgroup of the direct product Y7 for some I, RIASRIYT< (R2Y)I

=0, which is a contradiction.

2. Recently, G. Bergman and R. M. Solovay announced a similar result to
Theorem 1, i.e. The class of all torsionless groups is characterized by a set of
generalized Horn sentences, iff there exists a strongly L.,.-compact cardinal. They
also commented that M. Magidor had shown that the existence of a strongly L,,.-
compact cardinal is strictly weaker than that of a strongly compact cardinal, which
answers our question after
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