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ON COMPACTA WHICH ARE $l$-EQUIVALENT TO $I^{n}$

By

Akira KOYAMA and Toshinao OKADA

1. Introduction.

All spaces considered in this paper are assumed to be metrizable. A com-
pactum is a compact space. A continuum is a connected compactum, and a
mapping is a continuous function. For a space $X$ we denote by $C(X)$ the space
of all real-valued mappings on $X$ with the topology of uniform convergence.
Then by Milutin’s interesting work [8], we have known that for each pair of
uncountable compacta $X$ and $Y,$ $C(X)$ is linearly isomorphic to $C(Y)$ (see [12]

for the details and generalizations). On the other hand, for space $X$ we denote
by $C_{p}(X)$ the space of all real-valued mappings on $X$ with the topology of
pointwise convergence. Spaces $X$ and $Y$ are said to be l-equivalent [1] provided

that $C_{p}(X)$ is linearly isomorphic to $C_{p}(Y)$ , written $C_{p}(X)\cong C_{p}(Y)$ . Recently,

Pavlovskii [11] showed the following.

1.1. THEOREM. (1) If locally compact spaces $X$ and $Y$ are l-equivalent, then

for each non-empty open or closed set $\tilde{X}$ of $X$, there exists a non-empty open set
in $\tilde{X}$ which can be embedded in Y. Therefore, $\dim X=\dim Y$ (see also [4] and
[13]).

(2) Non-zero-dimensional compact polyhedra $P$ and $Q$ are l-equivalent if and
only if $\dim P=\dim Q$ .

(3) Let $B$ be the Pontryagin’s 2-dimensional continum with the property
$\dim(B\times B)=3$ . Then $B$ is not l-equivalent to $I^{2}$ , where I is the unit interval
$[0,1]$ .

Being motivated by Theorem 1.1 (2), readers may consider that for $n\geqq 1$ ,

all n-dimensional compact ANR’s are l-equivalent to $I^{n}$ . However, by Theorem
1.1 (1) and [3, Theorem VI. (6.1)], we can easily see that for each $n\geqq 1$ , there
exists a collection of $2^{\aleph_{0}}$ n-dimensional compact AR’s in $R^{n+1}$ which are not l-
equivalent to each other. On the other hand, let $X$ be a compactification of the
half-open interval $[0,1$ ) whose remainder is $I^{n}$ . Then $X$ is l-equivalent to $I^{n}$ ,
although $X$ is not even locally connected. Therefore it seems to be difficult to
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control n-dimensional compacta which are l-equivalent to $I^{n}$ .
In this paper we will show a criterion of an n-dimensional locally compact

space which is l-equivalent to an n-manifold. Concerning l-dimensional com-
pacta, Lelek [7] introduced the class of finitely Suslinian compacta, which con-
tains all hereditarily locally connected continua, and therefore all l-dimensional
comapct ANR’s. We will also show a simple criterion of a curve ( $=1$-dimen-
sional continuum) which is l-equivalent to a finitely Suslinian compactum. Hence
we can easily see that neither the Cantor fan nor the Knaster indecomposable
curve are l-equivalent to any finitely Suslinian compacta. Moreover, we will
investigate a class of curves which are l-equivalent to $I$. So we have a desired
class of special comapct ANR’s which contains all graphs, and show that every
continuum which is a one-to-one continuous image of $[0, \infty$ ) is l-equivalent to $I$ .

Most of our results can be applied to the theory of free topological groups
in the sense of Graev [5]. So we may have interesting examples concerning
free topological groups in the sense of Graev.

We denote by $\dim X$ the covering dimension of a space $X$. Let $A$ be a
subset of a space $X$. We denote its interior and closure in $X$ by int $A$ and $clA$ ,

respectively. The symbol ANR is used to specify an absolute neighborhood
retract for the class of all metric spaces. Undefined terms and notations in
continuum theory may be found in [6] and [14].

The authors would like to express their thanks to Professor A. Okuyama
for his valuable and kind suggestions.

2. Criterions for being l-equivalent to special spaces.

First, we will discuss a compactum which is l-equivalent to $I^{n}$ . A space
$X$ is locally contractible at a point $x$ of $X$ if for every open neighborhood $U$ of
$x$ in $X$, there exists an open neighborhood $V$ of $x$ in $X$ such that $V\subset U$ and
$V$ is contractible in $U$ . We denote the set of all points of $X$ at which $X$ are
locally contractible by $L_{c}(X)$ . Now we have

2.1. THEOREM. Let $X$ be an n-dimensional locally compact space and $\tilde{X}$ be
the closure of the set of all points of $X$ whose local dimensions are exactly $n$ . If
$X$ is l-equivalent to an n-manifold, then $L_{c}(\tilde{X})$ is dense in $\tilde{X}$.

PROOF. Note that $\dim A=n$ for any non-empty open subset $A$ of $\tilde{X}$. Sup-
pose that $X$ is l-equivalent to an n-manifold $M$. First, we show that for an
arbitrary open subset $U$ of $\tilde{X}$, there is an open subset of $U$ which is con-
tractible in $U$ . By Theorem 1.1 (1), there exists a non-empty open subset $V$ of
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$U$ and there exist maps $f:V\rightarrow M$ and $g:f(V)\rightarrow V$ such that $gf=l_{V}$ . Since $f(V)$

is the n-dimensional subset of $M$, int $ f(V)\neq\emptyset$ . Hence there is a point $x_{0}$ of $V$

and there is an open subset $W$ of $M$ such that $f(x_{0})\in W\subset clW\subset intf(V)$ and
$clW$ is homeomorphic to $I^{n}$ . Particularly, $W$ is contractible in $f(V)$ , and there-
fore there is a homotopy $G:W\times I\rightarrow f(V)$ such that $g(y, O)=y$ and $G(y, 1)=f(x_{0})$

for all $y\in W$. Take an open subset $V_{0}$ in $V$ such that $x_{0}\in V_{0}$ and $f(V_{0})\subset W$

and define a homotopy $H:V_{0}\times I\rightarrow U$ by $H(x, t)=gG(f(x), t)$ for $(x, t)\in V_{0}\times I$.
Then $H(x, O)=x$ and $H(x, 1)=x_{0}$ for all $(x, t)\in V_{0}\times I$ . Hence $V_{0}$ is contractible
in $U$ .

Next, we show that $L_{c}(\tilde{X})$ is dense in $\tilde{X}$. Let $U$ an arbitrary non-empty

open subset of $\tilde{X}$. By the first part of the proof, we have a sequence $\{U_{n}\}_{n\geq 0}$

of non-empty open subsets of $\tilde{X}$ such that for every $n=0,1,2,$ $\cdots$ ,

(1) $clU_{n+1}\subset U_{n}$ , where $U_{0}=U$

(2) diam $[U_{n}]<\frac{1}{n}$ , and

(3) $U_{n+1}$ is contractible in $U_{n}$ .
Then by (1) and (2), we have a point $x_{*}\in\bigcap_{n\geq 0}U_{n}\subset U$ , and by (2) and (3), we

can see that $x_{*}\in L_{c}(\tilde{X})$ . Therefore $L_{c}(\tilde{X})$ is dense in $\tilde{X}$.

2.2. COROLLARY. Let $X$ be an n-dimensional compactum and $\tilde{X}$ be the closure
of the set of all points of $X$ whose local dimensions are exactly $n$ . Then if $X$

is l-equivalent to $I^{n},$ $L_{c}(\tilde{X})$ is dense in $\tilde{X}$.

Next, we will consider the case of curves. A compactum $X$ is finitely
Suslinian [7] if for every $\epsilon>0$ , each collection of pairwise disjoint subcontinua
of $X$ having diameters greater than $\epsilon$ is finite. We note that every finitely
Suslinian continuum is at most l-dimensional, and that every hereditarily locally

connected continuum is finitely Suslinian. Hence every l-dimensional compact

ANR is finitely Suslinian, and there exist finitely Suslinian compacta which are
not ANR’s. In order to show a criterion of a curve which is l-equivalent to $I$ ,

we introduce a notation as follows. A space $X$ is locally connected at a point $x$

of $X$ if for every open neighborhood $U$ of $x$ in $X$, there exists a connected
open neighborhood $V$ of $x$ in $U$ . By $L(X)$ , we denote the set of all points of
$X$ at which $X$ is locally connected. Clearly a space $X$ is locally connected if
and only if $L(X)=X$. Then we have

2.3. THEOREM. If a curve $X$ is l-equivalent to a fnitely Suslinian compactum,
then the following conditions are satisfied:
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(i) $L(X)$ is dense in $X$, and
(ii) $L(X)$ has non-empty interior in $X$.

PROOF. Suppose that $X$ is l-equivalent to a finitely Suslinian compactum $Y$

but $L(X)$ is not dense in $X$ Then there is a non-empty open subset $U$ of $X$

such that $ U\cap L(X)=\emptyset$ . By Theorem 1.1 (1), there is a non-empty open subset
$V$ of $U$ such that $clV\subset U$ and there exists an embedding $f:clV\rightarrow Y$ . Since
$ V\cap L(X)=\emptyset$ , by [14, Theorem I. 12.1], there exist a positive number $\epsilon>0$ and
a sequence $K_{0},$ $K_{1},$ $K_{2},$ $\cdots$ of pairwise disjoint subcontinua of $clV$ such that

diam $[K_{i}]>\epsilon$ for all $i\geqq 0$ , and $K_{0}=Lim_{i}K_{i}$ .
Then the sequence $f(K_{0}),$ $f(K_{1}),$ $f(K_{2}),$ $\cdots$ consists of pairwise disjoint subcontinua
in $Y$ and satisfies the following properies:

$f(K_{0})=Lim_{i}f(K_{i})$ , and $diam[f(K_{0})]>0$ .
But this contradicts to the assumption that $Y$ is finitely Suslinian, because
diam $[f(K_{i})]\geqq 1/2diam[f(K_{0})]$ for almost all $i\geqq 1$ . Namely, the curve $X$ satisfies
the condition (i).

If int $ L(X)=\emptyset$ , then $X-L(X)$ is dense in $X$. Hence we can similarly prove
that the condition (ii) is satisfied.

2.4. COROLLARY. Neither the Cantor fan nor the Knaster indecomposable
curve (see [6, Example 1, p. 204]) are l-equivalent to any finitely Suslinian com-
pactum.

A space $X$ has a decomposable local system if every non-empty open subset
of $X$ contains a non-degenarate decomposable continuum. For example, n-
manifolds, polyhedra, hereditarily decomposable continua, the Knaster indecom-
posable curve, the dyadic solenoid have decomposable local system. By Theorem
1.1 (1), we can easily show the following.

2.5. LEMMA. No compactum which has a decomposable local system is l-
equivalent to any hereditarily indecomposable continuum.

Considering the arc, the Knaster indecomposable curve and the pseudo-arc
[2], by Corollary 2.4 and Lemma 2.5, we have.

2.6. COROLLARY. There exist three arc-like continua which are not l-equivalent
to each other.

Finally, we will construct a finitely Suslinian continuum which is not locally



On compacta which are l-equivalent to $I^{n}$ 151

contractible at any point. Namely, for a curve $X$, the density of $L(X)$ is a
criterion for being l-equivalent to a finitely Suslinian compactum but is not one
for being l-equivalent to $I$ .

2.7. EXAMPLE. Let $S_{0}$ be the unit circle in the plane $R^{2}$. Let $\{a_{i}|i\geqq 1\}$ be
a countable dense subset of $S_{0}$ . Then we can take a sequence $\{S_{1.i}\}_{i\geq 1}$ of
pairwise disjoint circles inside of $S_{0}$ satisfying the conditions;

(1) $S_{0}\cap S_{1,i}=\{a_{i}\}$ for every $i\geqq 1$ , and

(2) diam $[S_{1,i}]\leqq\frac{1}{2^{i}}$ for every $i\geqq 1$ .
Define

$X_{1}=S_{0}\cup(\bigcup_{i\geq 1}S_{1,i})$ .

For $n\geqq 1$ , assume that we have constructed a sequence $\{S_{n,i}\}_{i\geq 1}$ of pairwise
disjoint circles and a continuum $X_{n}$ of the form $X_{n-1}\cup(\bigcup_{i\geq 1}S_{n,i})$ , where $X_{0}=S_{0}$,
such that for every $i\geqq 1$ ,

(3) $X_{n-1}\cap S_{n.i}=\{a_{n.i}\},$ $ X_{n-2}\cap S_{n.i}=\emptyset$ ,

(4) diam $[S_{n,i}]\leqq\frac{1}{n\cdot 2^{i}}$ ,

(5) $\{a_{n.i}|i\geqq 1\}$ is dense in $X_{n-1}$ .
Then for every $i\geqq 1$ , take a countable subset $\{b_{i.j}|j\geqq 1\}$ of $S_{n,i}-X_{n-1}$ which is
dense in $S_{n.i}$ . Further let us take a sequence $\{S_{n.i.j}\}_{j\geq 1}$ of pairwise disjoint
circles inside of $S_{n,i}$ such that for every $i\geqq 1$ ,

(6) $X_{n}\cap S_{n,i.j}=\{b_{i.j}\}$ , and

(7) diam $[S_{n.i,j}]\leqq\frac{1}{(n+1)\cdot 2^{i^{2}+j}}$.
Then define

$ X_{n+1}=X_{n}\cup[\bigcup_{\geq 1}(\bigcup_{j\geq 1}S_{n.i,j})]\iota$

It is easily seen that $X_{n+1}$ can be represented in the form which satisfies the
inductive assumptions (3) $-(5)$ in replacement of $X_{n}$ by $X_{n+1}$ . So we define a
curve

$X=\bigcup_{n\geq 1}X_{n}$ .
Now we can rewrite $X$ as follows;

$ Y_{i}=S_{1,i}\cup(\bigcup_{j\geq 1}S_{1,i,j})\cup(\bigcup_{j\geq 1}\bigcup_{h\geq 1}S_{1.i,j.k})\cup\cdots$ for $i\geqq 1$ , and $X=\bigcup_{i\geq 1}Y_{i}$ .
By the construction, every subcontinuum of $X$ having diameter greater than
$1/2^{i}$ , which intersects $Y_{i}$ , must contain $a_{i}$ . Hence it is easily seen that $X$ is
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finitely Suslinian. By the conditions (3) $-(7)$ , every non-empty open subset of $X$

contains simple closed curves. Hence $ L_{c}(X)=\emptyset$ . Therefore the curve $X$ is
the required one.

3. Curves which are l-equivalent to $I$ .
In this section we will show that certain curves are l-equivalent to $I$ . We

need the following lemma as elementary and key tools for calculations.

3.1. LEMMA (Pavlovskii [8]). (1) For a closed subset $S$ of $I,$ $C_{p}(I)\cong C_{p}(S)$

$\times C_{p}(I;S)$ , where for a subset $A$ of a space $X$, we define $C_{p}(X;A)=$

$\{f\in C_{p}(X)|f(A)=0\}$ , and if $A=\{a\}$ , we write $C_{p}(X;A)=C_{p}(X;a)$ .
(2) Let $A$ be a closed subset of a space $X$, which is a neighborhood retract

of X. Then $C_{p}(X)\cong C_{p}(A)\times C_{p}(X;A)$ .
(3) Let $X_{1}$ and $X_{2}$ be closed subsets of a space $X$ such that $X=X_{1}\cup X_{2}$ , $X_{0}$

$=X_{1}\cap X_{2}$ is a neighborhood retract of $X$ and $C_{p}(X_{0})\cong C_{p}(X_{0})\times C_{p}(X_{0})$ . Then
$C_{p}(X)\cong C_{p}(X_{1})\times C_{p}(X_{2})$ .

(4) $C_{p}(I)\times C_{p}(I)\cong C_{p}(I)$ .

3.2. THEOREM. Every dendrite ( $=1$ -dimensional compact $AR$) with finite
ramification points is l-equivalent to $I$.

PROOF. By Theorem 1.1 (2), we consider only a dendrite which is not a
tree. Let $X$ be a dendrite with ramification points $x_{1},$ $x_{2},$ $\cdots,$ $x_{n}$ . Let $A$ be a
tree in $X$ which contains all $x_{i}$ . Then by Lemma 3.1 (2) and (4),

$C_{p}(X)\cong C_{p}(A)\times C_{p}(X;A)\cong C_{p}(I)\times C_{p}(X/A;[A])$

$\cong C_{p}(I)\times R\times C_{p}(X/A;[A])$

$\cong C_{p}(I)\times C_{p}(X/A)$ ,

where $[A]$ is the identification point of $A$ in $X/A$ . Since $X/A$ is a dendrite
with exactly one ramification point, by Lemma 3.1 (4), it suffices to show the
case of dendrites with exactly one ramification point.

Let $p$ be the pole (i.e., the origin) in the polar coordinate system in the
plane $R^{2}$ . Define in the polar coordinate $(r, \theta)$ ,

$p_{n}=(\frac{1}{n},$ $\frac{1}{n})$ for every $n\geqq 1$ ,

and let
$Y=\bigcup_{n\geq 1}\overline{pp}_{n}$ ,

where $\overline{xy}$ stands for the straight line segment joining $x$ and $y$ . Now it is easily
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seen that every dendrite, which is not a tree and has exactly one ramification
point, is homeomorphic to $Y$ . Hence it suffices to prove that

$(^{*})$ $C_{p}(Y)\cong C_{p}(I)$ .

Let $S=\{0,1,$ $\frac{1}{2},$ $\frac{1}{3},$

$\cdots,$
$\frac{1}{n},$ $\cdots\}$ . Then by Lemma 3.1 (2),

$C_{p}(I)\cong C_{p}(S)\times C_{p}(I;S)\cong R\times C_{p}(S;0)\times C_{p}(I;S)$

We note that we can identify each $\alpha\in C_{p}(S;0)$ with the sequence $\{a_{n}\}_{n\geq 1}$ defined
by $a_{n}=\alpha(1/n)$ , which converges to $0$ . So for each $(\alpha, f)\in C_{p}(S;0)\times C_{p}(I;S)$ ,
we define $\varphi(\alpha, f)\in C_{p}(Y;p)$ by the formula;

$\varphi(\alpha, f)(r,$ $\frac{1}{n})=f(\frac{r+1}{n+1})+nra_{n}$ for each $r,$
$0\leqq r\leqq\frac{1}{n},$ $n\geqq 1$ .

Namely, we have the continuous linear function $\varphi:C_{p}(S;0)\times C_{p}(I;S)\rightarrow C_{p}(Y;p)$ .
On the other hand, for each $g\in C_{p}(Y;p),$ $\psi_{1}(g)\in C_{p}(S;0)$ and $\psi_{2}(g)\in C_{p}(I;S)$

are defined as follows;

$\psi_{1}(g)(t)=\{g(p_{n})0$ $ifift=0t=\frac{1}{n}$

for some $n\geqq 1$ ,

$\psi_{2}(g)(t)=\left\{\begin{array}{l}g((n+1)t-1,\frac{1}{n})+\{n-n(n+1)t\}g(p_{n})\\ift\in[\frac{1}{n+1},\frac{1}{n}] forsomen\geqq 1,\\0 ift=0.\end{array}\right.$

Hence we have the continuous linear function $\psi:C_{p}(Y;p)\rightarrow C_{p}(S;0)\times C_{p}(I;S)$

given by $\psi(g)=(\psi_{1}(g), \psi_{2}(g))$ . Then we can see that $\varphi\psi=1_{C_{p}(Y,\cdot p)}$ and $\psi\varphi=$

$1_{c_{p}(S;0)xC_{p}(I:S)}$ . Hence $C_{p}(S;0)\times C_{p}(I;S)\cong C_{p}(Y;p)$ . Therefore we have

$(^{*})$ $C_{p}(I)\cong R\times C_{p}(S;0)\times C_{p}(I;S)\cong R\times C_{p}(Y;p)\cong C_{p}(Y)$ .

3.3. COROLLARY. Every l-dimensional compact $ANR$ with finite ramification
points is l-equivalent to $I$.

PROOF. Let $X$ be a l-dimensional compact ANR with finite ramification
points. By Lemma 3.1 (4) and (3), we may assume that $X$ is connected. We
will prove by the induction on the number of simple closed curves in $X$. If
there is no simple closed curve in $X$, then $X$ is a dendrite. Hence by Theorem
3.2, the assertion holds.

Assume that the assertion holds for ANR’s which has at most $n-1$ simple
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closed curves, where $n\geqq 1$ . Let $X$ be l-dimensional compact ANR which has $n$

simple closed curves. Take a simple closed curve $L$ in $X$. Then $X/L$ is a 1-
dimensional compact ANR and has at most $n-1$ simple closed curves, because
a l-dimensional locally connected continuum with the finite Betti number is an
ANR. Hence by the assumption, Theorem 1.1 (2) and Lemma 3.1,

$C_{p}(X)\cong C_{p}(L)\times C_{p}(X;L)\cong C_{p}(I)\times C_{p}(X/L;[L])$

$\cong C_{p}(I)\times C_{p}(X/L)\cong C_{p}(I)\times C_{p}(I)$

$\cong C_{p}(I)$ .
Therefore $X$ is also l-equivalent to $I$. The induction is completed.

3.4. COROLLARY. Let $X$ be a dendrite. If there exists an increasing finite
sequence $X_{0}\subset X_{1}\subset\cdots\subset X_{n+1}=X,$ $n\geqq 0$ , of snbcontinua of $X$ such that

(1) $X$ has at most finite ramification points, and
(2) for $i=0,1,$ $\cdots,$ $n$ , the continuum $X_{i+1}/X_{i}$ has at most finite ramification

points,

then $X$ is l-equivalent to $I$.
Next, we will give other curves which are l-equivalent to $I$ .

3.5. THEOREM. Every continuum which is $a$ one-to-one continuous image of
$[0, \infty)$ is l-equivalent to $I$.

PROOF. Let $X$ be a continuum which admits a bijective map $ f:[0, \infty$) $\rightarrow X$.
Then by [9, Structure Theorem and its Remark], $X$ can be written in the form
$X=\alpha\cup C\cup L$ , where $\alpha$ is an arc or a point, $C$ is an arc-like continuum with at
most two arc-components, $L$ is an arc, $L\cap C$ is exactly the two non-cutpoints
of $L$ which are also opposite endpoints of $C$, and $\alpha\cap(C\cup L)$ is a single point
of $C$ which is a non-cutpoint of $\alpha$ and which, if $C$ is not an arc (i.e., $C\cup L$ is
not a simple closed curve), is the non-cutpoint not in $L\cap C$ of the arc-component

of $C$ which is an arc. In fact, by the proof, there are real numbers $0\leqq a\leqq b<c$

such that $\alpha=f([0, a]),$ $C=f([a, b])\cup f([c, \infty))$ and $L=f([b, c])$ .
If $a=b$, namely, $C\cup L$ is a simple closed curve, by Theorem 1.1 (2), $X$ is

l-equivalent to $I$. So we may assume that $a<b$ . Let define

$X_{1}=\alpha\cup C$ ,
and

$X_{2}=f([0, d])$ , where $d$ is an arbirary real number with $d>c$ .
Then by Lemma 3.1 (2) and (4),
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$C_{p}(X_{1})\cong C_{p}(f([0, b]))\times C_{p}(X_{1}/f([0, b]);[f([0, b])])$

$\cong C_{p}(I)\times C_{p}(I;0)$

$\cong C_{p}(I)$

Note that $X=X_{1}\cup X_{2}$ and $X_{0}=X_{1}\cap X_{2}$ is a disjoint union of two arcs. Hence by
Lemma 3.1 (3) and (4),

$C_{p}(X)\cong C_{p}(X_{1})\times C_{p}(X_{2})\cong C_{p}(I)\times C_{p}(I)\cong C_{p}(I)$

Therefore such a curve $X$ is l-equivalent to $I$ .

3.6. COROLLARY. Every continuum which is $a$ one-to-one continuous image of
the real line $R$ is l-equivalent to $I$.

Curves described in Theorem 3.5 and Corollary 3.6 are called half-real curves
and real curves, respcetively [10]. By Theorem 3.5 and Corollary 3.6, we see
that the property of being l-equivalent to $I$ does not imply even local con-
nectivity. Hence Theorem 2.1 and Theorem 2.3 may be interesting properties.
As mentioned in Introduction, for each $n\geqq 1$ , there exist uncountable many n-
dimensional compact AR’s which are not l-equivalent to each ohther. Hence
characterizatios of continua or compact AR’s which are l-equivalent to $I^{n}$ are
important. In the case of curves we pose the following problem related to our
result;

PROBLEM. Characterize dendrites which are l-equivalent to I. Particularly,
is the converse of Corollary 3.4 valid?
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