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APPROXIMATIVE SHAPE I
—BASIC NOTIONS—

By

Tadashi WATANABE

§0. Introduction.

Many mathematicians discussed the classical questions of the expansions of
spaces and maps into polyhedral inverse systems. For expansions of spaces
Freudenthal [9] showed that

(i) any compact metric space X admits a polyhedral inverse sequence X
whose inverse limit is X.

(i) has very important meanings. Because it gives us a method to investi-
gate X by means of a polyhedral inverse sequence X. This idea goes back to
Alexandroff and Lefschetz. It is a good and fruitfull idea in topology.

Naturally we have the question: Can we use this idea for maps? Essenti-
ally this is divided in two questions (ii) and (iii) stated below: Let XandY be
compact metric spaces. Let £={Xy, ps,;, N} and Y={Y4, ¢s,;, N} be polyhedral
inverse sequences such that lim2=2X and lim4=Y. Here lim%¥ and N denote
an inverse limit of % and the set of all positive integers, respectively.

(i) For any map f:X—Y, is there a system map f:X—% for some X
and ¥ such that f=limf?

(iii) For any %, % and any map f: X—Y, is there a system map f:X—%Y
such that f=Ilimf?

When we handle maps by this idea, we encounter some troubles. By
examples we consider the above questions. Let C, I and R be the Cantor
discontinuum, the unit interval and the real line, respectively. There is an
onto map f:C—1.

First we consider question (iii). Let €={C;, p:;, N} and F={I,, g5, N} be
inverse sequences such that C=limC, I=lim 4, all C; are finite sets, all I;=I
and all ¢;; are the identity map 1;:I—J. Let p={p;:i€N}:C—C be an
inverse limit. Let all g;:/—I be 1;. Then g={¢;:7€N}:I-4 forms an
inverse limit.

We assume that there is a system map f={f, f;:i€N}:C—# such that
limf=f. Then q.f=f:psu, for each 7. Since ¢; and f are onto, f; must be
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onto. Since Cy(y, is finite, I=1,=f,(C,) is also finite. This is a contradiction
Hence there is no such system map. Thus, in general, question (iii) is negative.

Next we consider question (ii). We may assume that C and I are closed
subsets of R. Since R is an absolute retract, there exists a map F: R—R such
that F(x)=f(x) for x&C. We can choose polyhedral neighborhood systems
{U;} and {V;} of C and I in R, respectively, such that U;.,CU;, V., ,CVy,
FU)cV,; for each i{ and C=N{U;:iesN}, I=N{V;:ieN}. We put f,=
F|U;:U;—>V,; for each ¢ and p;;:U;—U;, ¢;;:V;—V; are inclusion maps for
i=j. Then f={ly, fi:i€N}:X={Uy, pi;, N} =Y={Vy, gi;, N} forms a system
map and f=limf:C=lim*¥—I=1lim%. Thus in this case question (ii) is
positive.

By dim X we denote the (covering) dimension of a space X. Though
dim C=0, in the above construction dimU;=1 for each ;. We can not choose
0-dimensional neighborhoods U; of C in R. This is a disadvantage of this
method.

The questions (ii) and (iii) are positively answered in the homotopy category.
They gave the ANR-systems approach and Borsuk’s original approach to shape
theory (see Mardesic and Segal [18]).

Many mathematicians considered these phenomena. How to handle the
maps ? The most successfull treatment is given by Mioduszewski [19]. He
showed the existence of approximative expansions of maps into polyhedral
inverse sequences. However, his description is neither simple nor categorical.

In this paper we shall give a systematic approach to approximative expan-
sions of maps into polyhedral inverse systems. Our method is natural and
categorical. To do so we need some ideas and notions which are developed in
shape theory.

In §1 we give the terminology. In §2 we introduce approximative pro-
categories and discuss their basic properties. In §3 we introduce approximative
resolutions for spaces. This notion is related to inverse limits. In §4 we
introduce approximative resolutions of maps. This notion is the central notion
of this paper. We show that any map has an approximative resolution with
respect to any approximative polyhedral resolutions. This gives a positive
answer to question (iii) by approximations. In §5 we introduce the approxi-

mative shape category. This category is analogous to the shape category. In
§6 we show that the Tychonoff functor and the completion functor induce

functors on the approximative shape category. In §7 we introduce the reali-
zation functor. Finally we show that the approximative shape category is
categorically isomorphic to the topological category of complete Tychonoff
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spaces. This gives us a method to investigate bad spaces and bad maps by
means of polyhedra and maps between them.

The principle of shape theory is to investigate bad spaces and bad maps
by means of the homotopy category of polyhedra. On the other hand, our
principle of approximative shape theory is to investigate bad shapes and bad maps
by means of the category of polyhedra without any homotopies. We say that the
approximative shape theory is a shape theory without homotopies.

Our theory has many applications in topology. For example we will apply
it to generalized absolute neighborhood retracts, fixed point theorems, shape
fibrations, UV "-maps, Steenrod homology (see [28]), Cech homology (see 28]
and so on. These applications shall be published in the sequels.

The author thanks Professor Y. Kodama who encouraged him to develop
this theory, and also Dr. K. Sakai and Dr. A. Koyama. They carefully read
the first manuscript and gave valuable advices.

§1. Preliminaries.

All spaces and maps are topological spaces and continuous functions,
respectively. For a space X 1ly:X—X denotes the identity map. For a subset
X,CX Int X, and X, denote the interior of X, and the closure of X, in X,
respectively.

We assume that the reader is familiar with the theory of ANRs and with
shape theory. Borsuk and Hu are standard textbooks for the theory
of ANRs. Borsuk and Mardesic and Segal [18], which is quoted by MS
[18], are standard textbooks for shape theory. Without any specification we
shall use the terminology and notions from the theory of ANRs and from shape
theory. For undefined terminology and notions see Hu and MS [18].

TOP denotes the category of all spaces and all maps. TOP,; M, COM
and CM denote the full subcategories of TOP consisting of all Tychonoff
spaces, all metric spaces, all compact (Hausdorff) spaces and all compact metric
spaces, respectively. Polyhedra denote realizations of simplicial complexes with
the CW-topology. AR and ANR denote an absolute retract and an absolute
neighborhood retract for metric spaces, respectively. POL, POL,;, AR and
ANR denote the full subcategories of TOP consisting of all polyhedra, all finite
polyhedra, all ARs and all ANRs, respectively.

Without any specification coverings mean always normal open coverings (see
1] and [18]). Normal open coverings are equivalent to numerable open
coverings or to open coverings with a partition of unity. Cov(X) denotes the
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set of all coverings of X. Let U, U’'eCov(X). We say that U is a refiement
of U’, in notation U <U’, provided that for each Ue there exists U’'e’
with UCU’. For a subset X, of X we define st(X,, U)=u{UcsU :UNX,+ D}
and Ul Xy={UNX,: UV} €Cov(X,). Wedefine stU={st(U, V) :UcU} € Cov(X).
For each integer n=0 we inductively define st®*U=U and st®*'U=st(st™V).
Note that for each UecCo»(X) and for each positive integer n there exists
U’€Cov(X) such that st®U’<U. Let U, =1, 2, ---, n, be coverings of X.
U3 AU A+ AU, denotes the covering {U,N\U,N\--NU,:U;€U; and i=1, 2,
-, n} of X,

Let X, be a subspace of X. We say that X, is P-embedded in X provided
that for each U,eCov(X,) there exists U e&Cov(X) such that U|X,<U, (see
[1]). In MS [18, p.89] such an X, is said to be normally embedded in X.
dim X denotes the covering dimension of a space X with respect to coverings
(see [22]).

Let f,g:X—-Y be maps and &VeCov(Y). [~V denotes the covering
{f(V):Vecv} of X. We say that f and g are <V-near, in notation (f, g)<<V,
provided that for each x= X there exists V&<V such that f(x), gx)eV. f=g
denotes that f and g are homotopic. We say that f and g are &-homotopic
provided that there exists a homotopy A :XXI—Y such that for each x€X
h(x, 0)=f(x), h(x, 1)=g(x) and A(xXI)CV for some Vecy. Here I=[0, 1] is
the unit interval. H(f) denotes the homotopy class of f.

HTOP, HPOL and HANR denote the homotopy categories of TOP, POL
and ANR, respectively. H:TOP—HTOP denotes the homotopy functor. Sh
and S:HTOP—Sh denote the shape category and the shape functor. Let C
and D be categories. ObC and Mor C denote the collections of all objects and
all morphisms in C, respectively. When X, YeOb(, C(X, V) denotes the set
of all morphisms from X to Y in C. Sometimes XC means XObC. When
Ob DCObC, C(D) denotes the full subcategory of C consisting of ObD. From
our notations Sh(CM) is the shape category on compact metric spaces.

A preordering > on a set A is a binary relation on A which is reflexive
and transitive, i.e., (i) a>a for each a€A and (ii) both a>a’ and a’>a”
imply that a>a”. We say that a preordered set (A, >) is directed provided
that for any a, a’€ A there exists a”’€ A with a”>a, a’. We do not assume
the antisymmetry condition: (iii) Both a’>a and a>a’ imply a’=a. We say
that a directed set (A4, >) is cofinite provided that for any e A P(a)=
{a’eA:a>a’} is a finite set. Let (B, >) be a directed set. Let s,¢: A—B
be functions. s>t means that s(a)>t(a) for each a= A. We say that s is an
increasing function provided that s(a’)>s(a) for a’>a. We can easily show
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the following.

(1.1) LEMMA. Let (A, >) and (B, >) be directed sets. Let s;: A—B, i=
1,2, -, n, be functions. If (A, >) is cofinite, then there exists an increasing
function s: A—B such that s>s; for each i. ®

The mark B denotes the end of a proof or of an example. When ‘it
appears just after a statement of a theorem, a proposition or a corollary, it
means that the statement is obviously valid.

§ 2. The approximative pro-category.

In this section we introduce the notion of approximative 'pro-categories.
This notion plays a fundamental role in our theory. It has a role similar to
that of pro-categories in shape theory (see MS [18]).

Let C be a subcategory of TOP. We say that (¥, U)={(Xa, Ua), Pa.a, A}
is an approximative inverse system in C provided that it satisfies the following
three conditions:

(All) X={X,, ba'.a, A} is an inverse system in C, and A is cofinite and
directed.

(AlI2) For each a€ A U, is a covering of X, satisfying that p3} ;U.>U,-
for a’>a.

(AI3) For each a= A and for each U&Cov(X,) there exists a’>a such
that pzt cU>Uy:.

Let (4, W)={(Ys, V), ¢»,», B} be an approximative inverse system in C.
We say that f={f, fy:beB} : (X, U)—(¥Y, V) is an approximative system map
in C provided that f: B—A is a function and f5: X;4—Y, is a map in C for
each be B satisfying the following two conditions:

(AM1) f7'@y>U s,y for beB.

(AM2) For each b’>b there exists a>f(b), f(b’) such that (s sfsPa. s
foPa, 1) <V

Sometimes we refer to approximative inverse systems in C and approxi-
mative system maps in C as to approximative C-inverse systems and approxi-
mative C-system maps, respectively.

Let (&, W)={(Z., W,), re.c, C} be an approximative inverse system in C
and g={g, g.:c€C}: (Y, V)—(Z, W) an approximative system map in C. We
define gf={fg, gcfsc»:c=C}. In general, gf is not an approximative system
map from (X, U) to (&, %) in C. Therefore we need some tricks.
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(2.1) LEMMA. gf forms an approximative system map [from (X, U) to
SHZ, W)y={(Z., stW,), ¥e' e, C} in C.

To prove (2.1) we need the following:

(2.2) LEMMA. Let f: X—>Y be a map. Let U and <V be coverings of X
and Y, respectively. If f-'CUV>U, then f~st"V>st™U for each integer n=0. M

Proof of (2.1). First we show (AIl)-(AI3) for st(Z, W). (All) is trivial
and (Al2) follows from (2.2). We show (AI3). Take any ¢=C and any
WeCov(Z,). There exists W' &Cov(Z,) such that stW’'<w. By (AI3) for
(Z, W’) there exists ¢’>c¢ such that »72* W'>W.. By (2.2) we have that
ret W>rit st W >stW.. This means (Al3) for st(Z, ). Hence st(Z, W) forms
an approximative inverse system.

Next we show that gf : (¥, U)—st(Z, W) is an approximative system map
in C. We show (AM1). Take any ceC. By (AMI) for f and g f3ie,gs'W.>
feoVeor>Uysgeey and then by (2.2) (gcf gcer) SEW >t Usgeery>Usgeer. This
means (AM1) for gf.

We show (AM2). Take any ¢’>c¢c. By (AM2) for g there exists b>g(c),
g(c’) such that

(1) (8o, gcer» Ter, e @b, g ) <We .

Since b>g(c), g(c¢’), by (AM2) for f there exists a>fg(c), fg(c’), f(b) such that
(2) (feoba. recerr @b gcofsPa, 1) <Vgcey and
@) (FeerPa. racess Go, acess Foda. ) <Vgcers »
By (2), (3) and (AM1) for g
(D) (gcfecoba.racerr 8edbv, ecerfoba. r0)<W. and
(B) (gefacerPa racesr 8o, gcc>foba, r)) <Wer .
By (AI2) for (2, %) and (5)
(6) (Yo c8cfacesPa,racerss Ve, c&er o, ge>foba, reo) <We .
By (1)
(7)  (&elv, gcofvPa. s03) Ter,cBe b, gce>f vDa, y0)) <We
By (4), (6) and (7)
8) (gcfacorPa.racers Ter,cBe'Sf geesPa. race ) <SEWe .
(8) means (AM2) for gf. m
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Let f'={f’, fo:b=B}: (¥, U)— (Y, V) and g'={g’, gc:c=C}: (Y, V)—
(Z, %) be approximative system maps in C. We say that £ and f’ are simply
approximatively equivalent, in notation r=:f’, provided that for each b= B
there exists a> f(b), f’(b) such that (fspa, sy, foPa, s )<V We say that £
and f’ are approximatively equivalent, in notation f=:f’, provided that there
exists a finite collection of approximative system maps f;: (X, U)—(Y, V) in
C, i=1, 2, ---, n, such that f=f,, f’=f, and f;=:fy, for =1,2, ---, n—1.
Obviously this relation =: forms an equivalence relation. [f] denotes the
equivalence class of f.

lx,an=A{l4, 1x,:a€ A} : (¥, U)—(Z, V) is the identity approximative sys-
tem map. Let s:A—A be an increasing function with s>1,. We define
P(s)=1{s, pscar,a : aE A}.

(2.3) LEMMA. p(s): (X, U)—(¥, U) forms an approximative system map in
C and p(s)= . l(y,qj). ]

We say that s is an n-refinement function of (&, U) provided that
p;(la).aqja>3tncl]3(a) for ac A.

(2.4) LEMMA. If s and s’ are n-refinement and m-refinement functions of
(%€, U), respectively, then s’s is an (n+m)-refinement function of (€, U). W

(2.5) LEMMA. Any approximative inverse system in C has an n-refinement
function for each integer n=0.

PrOOF. We show that (¥, U) has an n-refinement function. Since each
U, is a normal open covering, there exists UgECov(X,) such that st*U,<U,.
By (AI3) there exists a function s’ : A—A such that s">1, and pike), s Ue>Uy cas
for a=A. By (L.1) there exists an increasing function s: A—A with s>s’.
Thus by (AI2) and (2.2) piles.aUa > Pslar, aSt"Us=Dslar. s carDsar, oSt Uy >
Dites. st carSt" Uy cay >St"Uscay for each a€ A. Then s is the required n-refine-
ment. MW '

Let ¢t: B—B be an increasing function with t>15 By (2.3) @) : (Y, <V)—
(Y, €V) is an approximative system map. From the definitions and (2.5) it is
not difficult to show the following two lemmas :

(2.6) LEMMA. q)f : (¥, U)—(Y, V) forms an approximative system map in
C and qit)f=:f. ®
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(2.7) LEMMA. f=:f’ iff there exists an increasing function t: B—B such
that t>1g and q(t)f=:qt)f’. W

(2.8) LEMMA. Let u, u’:C—C be l-refinement functions of (Z, W).

(i) r(u)(gf) forms an approximative system map from (X, U) to (B, W)
in C.
(ii) r(u)gf)=:r(u')gf).
(ii) If F=:f’, then r(u)(gf)=:r(u)gf’).
(iv) If g=:g’, then r(u)(gf)=:r(u)g’f).

PROOF. We show (ii). By (2.5) there exists a 2-refinement function u”:C
—C of (&, %). We show that r(u”)r(u)(gf))=:r(u”)r(u’)gf)). Take any
ceC and then

(1) r;)(c).cq’Vc>St2un'(c)-

Take any ¢’>uu”(c), w'u”(c). Since gf : (X, U)—st(Z, W) is an approximative
system map by (2.1), there exists a>fg(c"), fguu”(c), fgu'u"(c) such that

(2) (guu'(c)fguu'(c)pa.fguu'(c)» rc’.uu'(c)gc’fg(c’ )pa.fg(c'))<3tcpyuu'(c) and

3) (gu'u'(c)fgu’u'(wpa.fgu’u'(c); Tc’.u'u'(c)gc'fg(c’)pa,fg(c’))<3t W uecer -

BY (AIZ) and (2-2) r;}t'(c),u'(c) St Wu’(c)>5t q”uu'(o) and r;’lu'(c).u’(c) st Cqu”(o)>
StWyruces» Thus by (2) and (3)

@) (Tuurco, wo8uurof guncorDa, 1 guurcor,
7 ur ey, ucor8u urcof gururcorPa, 1 gu wce)) <SEWurcer -
By (1) and (4)
(B)  (Fuurcor, c8uurcorf guurcorDa, 1 gunrcers Tu urcor, c8u' urcerf gu’ wiorDa, fau ure)) <We.
(5) means that r(u”)(u)(gf))=:r”)ru )(gf)). Hence by 2.7) r(u)(gf)=:

r(u’)(gf). We have (ii). By similar ways as for (ii) we can prove the other

assertions. W

(2.9) COROLLARY. If f=:f’, g=:g’ and u, u’ :C—C are l-refinement func-
tions of (&, W), then r(u)(gf)=:r(u')g'f’). =

Now we introduce a composition of equivalence classes of approximative

system maps as follows: [gl[f]l=[r(u)(gf)] for a l-refinement function u.
By (2.9) this notion is well defined and does not depend on wu. It is not difficult

to show that
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(2.10) LEMMA. For any approximative system maps f:(X, U)—(Y, V),
9: (Y, V)=(Z, W) and h:(Z, W)—(E&, X) in C

(1) Fl=0f 1l v ]=lwy,an]lf] and
(i) ([RIlgDIFI1=[h]1([g](f]). m

We define the approximative pro-category of C, in notation Appro-C, as
follows: Objects are all approximative inverse systems in C. Morphisms from
(%€, U) to (Y, V) are equivalence classes of all approximative system maps
from (¢, U) to (Y, <) in C. Obviously the collection of all morphisms from
(%€, U) to (Y, &) forms a set. The composition is defined above. This com-
position is associative and [1lx @] is the identity morphism of (¥, U) by (2.10).
Hence we may summarize the above results as follow.

(2.11) THEOREM. Appro-C forms a category.
Now we consider the properties of Appro-C.

(2.12) PROPOSITION. Let (¢, U)={(Xq, Ua), Pa.a, A} be an approximative
inverse system in C. If A’ is a cofinal subset of A; then (X, U)y={(Xq, Ua),
Dar. ey A’} forms an approximative inverse system in C and is isomorphic to (¥, U)
in Appro-C.

(2.13) PROPOSITION. If (X, U)={(Xa, Ua), Pa,a» A} and (£, V)={(Xq, Vo),
Dar.a, A} are approximative inverse systems in C, then (¥, U) and (¥, V) are
isomorphic in Appro-C.

Proofs of (2.12) and (2.13). We show (2.13). By (AI3) and (1.1) there
exist increasing functions m, n: A—A, m, n>1,, such that p7%e, aVe>Unca
and priey, aUa>Vacay for ac A. By these conditions p(m)={m, Pmc>, o: aE A} :
(&, U)—(x, V) and p(n)={n, Prca.a:a< A} 1 (X, V)—=(¥, U) form approxi-
mative system maps. It is easy to show that [p(n)][pim)]=[lx «>] and
[pm)1[p(n)]=[1l¢x,o]. Hence we have (2.13). By a similar way we have
(2.12). m

In (2.1) we defined st(%¥¢, U). Inductively we define st*(x, U) for each
integer n=0 as follows: st®(x, U)=(¥, U) and st (¥, U)=st(st(&¥, U)). By
(2.1) and (2.13) we have that

(2.14) COROLLARY. For each integer n=0 st™(, U) forms an approximative
inverse system in C which is isomorphic to (X, U) in Appro-C. W
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We say that (a, b)) AX B is an admissible pair of £ provided that a> f(b).
Let (a’, b') and (a, b) be admissible pairs of f. We say that (a’, b)>(a, b)
provided that both a’>a and b’>b.

We say that f is a special approximative system map provided that A=B,
f=14: B=A—A and it satisfies the following condition :

(SPAM) (fapa',a, Qa’,afa')<cva. fOI' a’>a-

(2.15) THEOREM. Let f:(2, U)—=(Y, V) be an approximative system map.
Then there exist approximative inverse systems (€, U) = {(X4, UL, pi o, C}, (Y, V)’
={{Y¢, V), 9., C}, approximative system maps 8: (X, U)—(, VY, t: (Y, V)
—(Y, <V)’, and an approximative special system map g={l¢, g.:c€C} : (X, V)’
—(Y, V) satisfying the following conditions:

(i) [glls]l=[t1[F].

(ii) [8] and [t] are isomorphisms in Appro-C.

(iii) all (X¢, Vo), oo (Y5, V) and gy s are some (Xa, Ua), Par.ar (Yo, V)
and qy,», respectively.

(iv) all g. are composition of some po: o and fo.

PROOF. Since B is cofinite, there exists an increasing function g: B—A
such that

(1) g>f and

) (oo wDactrs, o5 FoPgws, ren) <Vp  for b’>b.

We put go=fopew. s> : Xegv—=Ys» for beB. Then by (2) g’={g, g;: b B} :
(¥, U)—(Y, &v) forms an approximative system map and f=:g"’.

We put C={(a, b)e AXB:a>g(b)} and define an order “>” in C as fol-
lows: ¢’=(a’, b')>c=(a, b) iff both a’>a and b’>b. Then (C, >) forms a
cofinite directed set. Let X:=X,, U.=U,, Y.=Y, and @V'.=cv, for c=
(a, b)eC. Let pi,c=pa',a and gi,=qvy,» for ¢’=(a’, b’)>c=(a, b). It is easy
to show that (¥, U)’ and (¥, V)" form approximative inverse systems. We
put ge=foPa, s : Xe=Xo—Y,=Y¢ for c=(a, b)eC. By (2) g={l¢, g.:c€C}:
(X, U)—(Y, <)’ forms an approximative special system map.

We define s={s, s.:c€C} : (¥, U)—(¥, U)’ as follows: Define s:C—A
by s(c)=a for c=(a, b) and s.=1lx,: Xy=X,—X.=X, for c=(a, b). Then
clearly s forms an approximative system map.

We will now show the s induces an isomorphism in Appro-C. To do so
take any increasing function d: A—B. Then gd: A—A is an increasing func-
tion. By (1.1) there exists an increasing function e¢: A—A such that ¢>gd and
e>1,. We define an increasing function u: A—C by u(a)=(e(a), d(a)) and we
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PUt Ua=Pecar.a’ Xucary=Xeay—X, for a=A. Then u={u, u,:acA}: (&, U)
—(%, U) forms an approximative system map. It is easy to show that us=:
lex, ¢ and su=:1x ¢,. Hence s induces an isomorphism in Appro-C.

We define t={t, t.: c=C} : (Y, V)—>(Y, &)’ as follows: Define t:C—B by
t(c)=b for ¢=(a, b) and t,=1y,:Y (n=Y,—Y (=Y, for ¢c=(a, b). Then ¢ forms
an approximative system map. In the same way as for s, we see that ¢ forms
an isomorphism in Appro-C. Since #f=:tg’=:gs, it is easy to show that
[t1[f1=[g]l[s]. Hence g is the required one. MW

(2.16) THEOREM. Let f: (X, U)—(Y, V) be an approximative system map
in C. Then f induces an isomorphism in Appro-C iff it satisfies the following

condition :

(ISO) For each admissible pair (a, b) of f there exist an admissble pair
(a’, b")>(a, b) and a map k:Yy—X, in C such that

(ISO1)  (par.a> BfvPar, ro)) <V,

(ISO2) Fk~'U >V, and

(ISO3)  (gs,6, [oDa, rerry R) <5tV

PrROOF. First we assume that £ induces an isomorphism in Appro-C. Then
there exists an approximative system map h={h, h,:a<s A} : (Y, V)—=(x, U)
in C such that [A]J[f]1=[lcx o] and [FI[A]=[l(y,o,]. By the definition of
composition and (2.7) there exist l-refinement functions s: A—A, t: B—B of
(2, U), (Y, &), respectively, and increasing functions u: A—A, v: B—B such
that u>1,, v>13,

(1) pu)(p(s)hf))=: p(u)lcx v, and

2) qW)qW)(Fh)=:qW)lqy, .

We show (ISO). Take any admissible pair (a, b) of f. By (AI3) and (2.5)
there exist a;>a and b,>b such that pgl Us>stU,g, and g5, sVe>st V. By
(2) there exists b,>hftv(b,), v(b;) such that

(3)  (Geoevp, oS tocop P revcoTog, s evcods Tog,5) <Vpye
By (AM2) there exists a,>ftv(b,), f(b,), a; such that
@) (fobay rvrs Qoy.5fv,Pag o) <Vp and
(B)  (foDas £ Qevcvp. 1S 1o pPasg, i) <V
By (1) there exists a;>fhsu(a,), u(a,) such that
(6) (Day as Dsucas, aghsucagfrsucaplag rrsucag) <Uay
By (AM2) there exists b,>b,, hsu(a,) such that
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(T)  (Bseooy Qo nreodyys Psucag, revwp Rsucag@og nsucag) <U reocoyd-

By (AM2) there exists a,>a,, f(bs) such that

8)  (frsucapPay, rrsucagds Qog nsucagpfogPay, 1c09) <Vhsucag-

From (3)-(8) it is not difficult to show that the admissible pair (a,, b;) of f and
the map ~=psucay, allsucapog nsucap 2 Yo, X satisfy (ISOL)-(ISO3) for (a, b).
Hence we have (ISO).

Next we assume (ISO) and show that f induces an isomorphism in Appro-
C. We use the same notations as in the proof of (2.15). Since f satisfies (ISO),
g in (2.15) satisfies the following Claim 1:

Claim 1. g satisfies the following condition :

(ISO)’ For each ceC there exist m(c)>c¢ and a map kuco.c: Y mer—Xe
satisfying

(ISOLY  (pmcor.cr RBmcer,c8meer) <Umcers

(AS02)" k7o, Ue>Vmcor-

(ISO3)"  (@mcer.er Bckmeer, o) <st Ve

Let w:C—C be a 3-refinement function of (¥, U) and put k.=
Divcer. cBmwees, weey L Y mwcer—Xe for ceC. By straightforward computations and
(ISO1Y-(ISO3)” we have Claim 2:

Claim 2. k={mw, k.:ceC} (Y, V) —(¥, U) forms an approximative
system map in C.

Claim 3. [k][g]l=[lcx.v»] and [gllk]=[1cy, @y ]

Take any l-refinement function 7:C—C of (¥, U)’ and any ceC. Since
(Dmwiicer, o Prwticer, cRmwiicor, witcor&mwiicer) <Ue by (ISO), p’(D)lcx, vy =:p'G)(p'()
(kg)) and hence [l(x,4]=[k][g]. In the same way as above we have
[lg,ay]1=[g][k]. Thus we have Claim 3.

By Claims 2 and 3 [g] is an isomorphism in Appro-C. Hence [f] is an
isomorphism in Appro-C by (2.15). ®

(2.17) COROLLARY. Let g={l,, go:ac A} : (X, U)—(Y, V) be an approxi-
mative special system map in C. Then g induces an isomorphism in Appro-C iff
it satisfies the following condition:

(ISO)! For each a< A there exist a’>a and a map k:Y o—X, in C such
that

(ISO1)"  (par,as REa)<Ua,

(IS02) kU, >NV, and

(ISO3) (gar,a, 8ak)<stV,. N
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(2.18) COROLLARY. Let f:(X, U)—(Y, V) be an approximative system map

in C. Then f induces an isomorphism in Appro-C iff it satisfies the following
two condition :

(MO) For each as A there exist an admissible pair (a,, by) of f with a,>a
and a map k:Yy—X, in C such that

(MOl) (pal.a.y kfblpal,f(bl))<cua and

MO2)  =7'U >W,,.

(EP) For each admissible pair (a, b) of F there exist by>b and a map
m:Y,—X, in C such that

(EPL)  (gs,,0, foDa. rerm)<st V.

PROOF. Trivially (ISO) implies (MO) and (EP). We assume (MO) and (EP),
and show (ISO). Take any admissible pair (a, b) of f. Then there exists
a;>a such that pz} ., U.>st*U,,. By (MO) there exist an admissible pair
(a,, by) of f with a,>a, and a map k2:Y,—X,, in C such that

(1) (Pag.ay Rfo,Payg r6) <Uq, and
2) kU, >V,

There exist b,>b;, b such that gz} ,“V,>stV,,, and a;>a,, f(b;) such that
) (fo,Pag rvr Qog00 05 Pag, 1e0g3) <V, and
(4)  (foDag rvys oy 0 05Dasg, £cop) <V

By (EP) there exist b;>b, and a map m:Y,—X,, in C such that
(B)  (Gvg, 095 [P0 reopym)<St V.

There exist b,>b, such that ¢z}, m'Us,>Vs,, and a,>a,, f(by) such that
(6) (SFogDay revp» Qogvsf0,Day rcop) <V,

From (1)-(6) it is not difficult to show that the admissible pair (a,, b,) and the
map ¥=pa,, oMo, 0, - ¥ 5, X, satisfy (ISO1)-(ISO3) for (a, b). Thus (MO) and
(EP) imply (ISO) and hence by (2.15) we have (2.18). =

We say that an approximative system map f={f, fp: b= B} : (X, U)—~(Y, V)
is commutative provided that it satisfies the following condition :

(CAM) For each b, b’ B with b’>b there exists a> f(b), f(b’) such that
foba, rer=0qv ,vf o Da, reor>

(2.19) COROLLARY. Let f:(Xx, U)—(Y, V) be an approximative commutative
system map in C. Then f induces an isomorphism in Appro-C iff it satisfies the
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following :

(MO)Y For each ac A there exist an admissible pair (a,, b)) of f with a,>a
and a map k:Yy—X, satisfying (MOL).

(EP) For each admissible pair (a, b) of f there exists by>b and a map
m:Y,—Xq such that

(EPL)Y  (gs,,0) foba. renm)<Vo.

ProOF. We will show that (MO) and (MO)’ are equivalent. Trivially (MO)
implies MO)’. We assume (MO)’ and show (MO). Take any a= A and then
by (MO)’ there exist an admissible pair (a;, b,) of f and a map k:Y,—X,
such that a,>a and

(l> (,bal,a; kfblpal.f(bl))<cua-

By (AI3) there exists b,>b; such that gz}, 2 'U,>V,,. By (CAM) there exists
a,>a,, f(by) such that

(2)  fo,Pag rv=0bg 0, 05Pay, revp-

From (1) and (2) the admissible pair (a., b,) and the map r=*kg,,,», satisfy (MOI1)
and (MO2) for a. Hence (MO) and (MO)’ are equivalent. In a similar way we
can show that (EP) and (EP)’ are equivalent. Hence by (2.18) we have (2.19). m

(2.20) COROLLARY. Let f: (X, U)—(Y, V) be an approximative commutative
system map in C. Then f induces an isomorphism in Appro-C iff it satisfies the
following condition :

(ISO)” For each admissible pair (a, b) of f there exist an admissible pair
(@, b)>(@, b) and a map k:Yy—Xs such that (par,a» Bfvhar,rr)<Ua and
(@v,00 foPa, rR)<Vp. W

(2.21) REMARK. If f satisfies (MO), then [f] is a monomorphism in Appro-C.
If f satisfies (EP), then [f] is an epimorphism in Appro-C. ®

(2.22) REMARK. Grothendieck introduced the notion of pro-categories (see
MS [18, pp. 1-17]) and used it in algebraic geometry. Artin and Mazur used
it to study etale homotopy. It plays a fundamental role in shape theory (see
MS [18]). Artin and Mazur showed the re-indexing theorem (see MS [18,
p. 12]) in pro-categories which corresponds to (2.15). In pro-categories Morita
showed the diagonal theorem (see MS [18, p. 112]) which corresponds to
(2.16).
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§3. Approximative resolutions of spaces.

In this section we introduce the notion of an approximative resolution of a
space. Mardesic introduced the notion of a resolution of a space. Our
notion improves his notion.

We say that a space X is an approximative polyhedron, in notation AP,
provided that for each Ue&Co.»(X) there exist a polyhedron P and maps
f:X—P, g: P-X such that (gf, 1x)<?¥U. AP denotes the full subcategory of

TOP consisting of all APs. Mardesic introduced this notion and showed
that

(3.1) LEMMA. (i) Any ANR and any polyhedron are APs.
(ii) Let X be a paracompact space with dim X=n<oco. If X is LC™ ! (see
[11]) then X is an AP. m

Let ={Xa, po'.a, A} be an inverse system in TOP. Let p={p,:a<A}
be a collection of maps p,: X—X,, acA. We say that p: X—xX is a system
map provided that p,=p,, 4pa for a’>a. We say that a system map p: X—X
is a resolution of X (see [15]) provided that it satisfies the following two
conditions :

(R1) Let P be an AP, cVeCon(P) and f: X—P a map. Then there exist
a€A and a map f,: X,—P such that (f, fopo)<V.

(R2) Let P be an AP and V& Cou(P). Then there exists &V’ e Cov(P) with
the following property: If a=A and f, f': X,—P are maps such that
(fPa, f/Pa)<V’, then there exists a’>a such that (fpar ¢, fDar. o) <V.

(3.2) LEMMA (Mardesic [15]). p:X—>X is a resolution of X iff (R1) and
(R2) are fulfilled for all polyhedra P, or equivalently for all ANRs P. m

Let (2, U)={(Xa, Ua), Pa’,a, A} be an approximative inverse system in
TOP. We say that p={p,:ac A} : X—(X, U) is an approximative resolution
of X provided that p: X—>X¥={X,, par.a, A} is a system map and it satisfies
the following two conditions :

(AR1) For each U Cov(X) there exists a= A such that pz!U,<U.

(AR2) For each a< A there exists a’>a such that p,, o( X, )Cst(pa(X), Uy).

(3.3) THEOREM. p: X—(X, U) is an approximative resolution iff p: X—X is
a resolution.

(3.4) THEOREM. p:X—X is a resolution iff it satisfies the following two
conditions :
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(Bl) For each U&Cow(X) there exist acA and U’'&Cov(X,) such that
pU <U.

(B4) For each ac A and for each U&Cov(X,) there exists a’>a such that
Par, o Xa )Tst(Pa(X), U).

We can easily show (3.3) by (3.4). The author has proved (3.4). Our
proof was a slight modification of Mardesic [15]. After that Mardesic
gave another simple proof of (3.4). His proof is already published and therefore
we omit our proof. Recently Morita [23] showed that resolutions and proper
inverse systems (see [21]) are equivalent.

Bacon introduced the notion of complements. We say that a system
map p: X—X is a complement of X provided that it satisfies (B1) and the
following condition :

(B2) For each a= A and for each open set V in X, with p,(X)CV, there
exists a’>a such that p, (X )CV.

Mardesic considered the following condition :

(B3) For each a= A and for each open set V in X, with 2.(X)CV, there
exists a’>a such that p, (X, )CV.

(3.5) LEMMA. (i) (B2) is stronger than (B3), and (B3) is stronger than (B4).
(ii) (B3) and (B4) are equivalent, when all X, are normal (Hausdorff) spaces.

PROOF. Since the first assertion in (i) is trivial, we show the second one
in (i). Take any a= A and any U Cov(X,). Since U is an open covering,
D X)Cst(pa(X), U). By (B3) there exists a’>a such that p,:, o( X )Cst(pa(X), V).
Then (B4) holds and hence we have (i).

We show (ii). Take any a< A and open set V in X, such that p,(X)CV.
Since X, is normal, by Theorem 1 of MS [18, p. 324] W={V, Xo—p.(X)} is a
normal open covering of X,. Since st(p.(X), W)=V, by (B4) there exists
a’>a such that pgr o(Xo )CTst(pa(X), W)=V. Then (B3) holds and hence we
have (ii). m

(3.6) COROLLARY (Mardesic [15]). (i) Any complement is a resolution.

(i) When all X, are normal spaces, p: X—X is a resolution iff it satisfies
(Bl) and (B3). m

Now we construct approximative resolutions from resolutions.

(3.7) PROPOSITION. Let q={gs:bs B} : X—>Y={Y%s, qv.», B} be a resolution.
Then there exist an approximative resolution p={p,:acA}:X— (¥, U)=
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{(Xe, Ud), Dar.a, A} and an increasing function s: A—B satisfying the following
conditions:

(i) A is cofinite, dirvected and antisymmetric.

(ii) Xo=Ysas Da=0sca> for a€A and Po' oa=qsca’>,5ca> fOr a’>a.

(iii) For any beB and any VECov(Y,) there exists ac A such that s(a)=b
and U ,=V.

PROOF. Let F(B)={(b, &V):be B and Ve Cov(Y,)} and M(B)={KCF(B): K
is finite and K+ @}. The set A=M(B) is ordered by inclusion and trivially
satisfies (i). Take a function t: A—B such that

(1) t(a)=b for a={, V)} = A.

Since A is cofinite, by (1) and (1.1) there exists an increasing function s: A—B
such that

(2) s>t and s(a)=b for a={(b, V)} = A.

We put Xo=Ywy Pa=0qsa> for ac A and par,a=¢sca’>, scay fOr a’>a. Since
s is an increasing function, X={X,, pa'.s, A} forms an inverse system. From
the definitions (ii) is trivial and p={p,:ac A} : X—X forms a system map.

Claim 1. p:X—% is a resolution of X.

We show (R1). Take any AP P, any V& Cov(P) and any map f:X—P.
By (R1) for q there exist b B and a map f,: Y,—P such that (f, fugp)<<V.
Put a={(®, {Y:})}=A and then X,=VY, and p,=¢, by (2). When we put
h=fy: X,=Y—P, (f, hpo)<V. This means (R1) for p.

We show (R2). Take any AP P and any VeCow(P). There exists
QV’eCov(P) satisfying property (R2) for ¢ and <. Take any a= A and maps
f, f': X,—P such that (fpa, f'Pa)<V’. Then (fgsar ['qscar)<V’. By the
choice of <V’ there exists b’>s(a) such that (fgy.scar f Qs sca)<V. Put a’=
aU{®’, {Yy}}< A and then s(a”)>s({(d’, {Yy}D})=0b" by (2). Thus (fgsca’>, sca>
f'@scars, sca)) <V, that is, (fPa,a) f'Par,a)<V. This means (R2) for p. Hence
p is a resolution.

We define coverings as follows: Take any a={(b;, V,), -, (bp, V)} = A.
Since s(a)>s({(bs, V)})=b; by (2), we may put U.=¢5{a>,5, V1A Nq5lar, 0,V
ECov(X,).

Claim 2. (¥, U)={(Xa, Ua), Da’.a, A} forms an approximative inverse
system.

We show (AIl)—(AfS). (AIl) is trivial. We show (Al2). Take any a¢’>a
and put a’=a\U{(bn+1, V1), -5 (bm, V). Then
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p;’l. aCUa.:q;(la’ ), s(a)(q;(la), blcvl/\ "'/\q.s_(la). bncvn)
:q;(la'), blCVI/\ /\q;(la’x b,,CVn>Qs_(la’), blcvl/\
NGslars, anVn/\ e /\q.s_(la’),bmcvm:qja'-

This means (AlI2). We show (Al3). Take any a€A and any UeCon(X,).
Put a’=a\U{(s(a), U)}=A. Then

Uar =qsla. 0, V1N NGslars, 0,V AGslars, scaxU <Gslars, scarU =Dz}, o U.
This means (AI3). Hence we have Claim 2.
By 3.3), Claims 1 and 2 p: X—(%¥, U) is an approximative resolution. For

each b€ B and cVeCov(Y,) we put a={(b, V)} € A. By definition s(a)=b and
Ua=<V. Then p satisfies (iii). W

(3.8) PROPOSITION. Let X={X,, par.a, A} be an inverse system. If all X,
are compact metric spaces, and A is infinite and cofinite, then there exist coverings

Ugo of X such that (X, U)={(X., Ua), Pa'.a,» A} forms an approximative inverse
system.

PROOF. Since X, is compact metric, there exist coverings <V, ; of X,,
i=1, 2, ---, such that

(1) V. :>NV, 44y for i=1, 2, -+, and

(2) for each <V’&Cov(X,) there exists 7 such that V’'>cy, ..

Since A is cofinite, P(a)={a’€A:a’<a} is a finite set for a=A. Put
P(a)=\{a,, a,, -, a,} and define Ue=Ppara; Va2 Apata,Va,.n for acA.
We show that U, have all the required properties. We show (AlI2). Take any
a’>a and put P(a’)=P(a)U{@ns1, -+, am}. By (1)

;}.aq-]azp;'l.alq/al,n/\"'/\p;'l.ancvan,n>p;'l,alcva1.m/\"'
/\p;’l,ancvan,m>p;’l,alcual.m/\"'/\p;’l,amcvam,m
=Ugr.
This means (AI2).
We show (AI3). Take any a= A and any U Cov(X,). By (2) there exists
n’ such that U><, ,-. Since A is infinite, there exists a’>a such that the
cardinality of P(a’)=m=n’. Put P(a’)=|{a, a,, -*-, an-1}. Then we have that
Ugr= ;’1.acva,m/\p;'l,alq]al,m/\"'/\p;.'l,am_lcvam_l,m
<p;'l,acva,m<p2’l,acva,n’<p;'1,a.cU°

This means (AI3). Hence (¥, U) forms an approximative inverse system.
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(3.9) LEMMA. Let p: X—»%={Xq, Pa',a, A} be a resolution of X. If all X,
are compact metric, and A is infinite and cofinite, then there exist coverings U,
of X, such that p:X—(X, U)={(Xq, Ua), Pa’,a, A} forms an approximative

resolution of X.

(3.10) LEMMA. Let p={p.;acA}: X—(X, U) be an approximative resolu
tion. If A’ is a cofinal subset of A, then py={pa:a€A’}: X>(X, U)s forms

an approximative resolution of X.
(3.9) follows from (3.3) and (3.8). (3.10) follows from (2.12) and (3.3). ®

Let C be a subcategory of TOP. Let X be a collection of spaces. We say
that a resolution p: X—% and an approximative resolution p:X—(X, U) are
a C-resolution and an approximative C-resolution provided that X is an inverse
system in C, respectively. We say that p: X—2% and p: X—(X, U) are rigid
for X provided that they satisfy the following condition :

(R1)* For any map f: X—P, where P X, there exist a€ A and a map
h:X,—P with f=hP,.

When X=O0bC, we say that they are rigid for C. When we take ANR, AP
and POL as C, we have POL-resolutions, approximative AP-resolutions, rigid-
ness for ANR and so on.

We quote some results on resolutions and inverse limits.

(3.11) LEMMA (Bacon [4] and Mardesic [15]). (i) Any space X admits a
polyhedral complement p: X—X.
(ii) Any space admits an ANR-resolution which is rigid for ANR. ®

Let X be a subset of a space M. Let U(X, M) be the inverse system
consisting of all neighborhoods of X in M and inclusion maps as bonding
maps. Let p: X—U(X, M) be the system map consisting of all inclusion maps.
We say that p: X—U(X, M) is the complete neighborhoods system of X in M.
By (3.4) we easily show that

(38.12) LEMMA. If either X is P-embedded in M or M is hereditarily para-
compact, then the complete neighborhoods system p : X—U(X, M) is a resolution. M

(3.13) LEMMma (Mardesic [15]). Let X be an inverse system of compact spaces.
Then any inverse limit p: X—X is a resolution. W

(3.14) LEMMA (Freudenthal [9], Eilenberg-Steenrod [7] and Mardesic [14]).
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(1) Any compact metric space X is an inverse limit of a finite polyhedral
inverse sequence X.

“(ii) Any compact space X is an inverse limit of a finite polyhedral inverse
system 2.

In (i) and (ii) we can achieve that dimensions of all spaces in X<dimX. =

The following theorem gives existences of various approximative resolutions
of spaces.

(3.15) THEOREM. (i) Any space X admits an approximative POL-resolution
p . X—(x, V).

(ii) Any space admits an approximative ANR-resolution, which is rigid for
ANR.

'(iii) Any compact space X admits an approximative POL ;-resolution p: X—
(2, U).

(iv) Any compact metric space X admits an approximative POL-resolution
D X—(2, U) such that X is an inverse sequence.

In (i), (i) and (iv) we can achieve that dimensions of all spaces in
X =dim X.

PROOF. We show (i). Let Covy(X)={U&Cov(X): order of U<dim X+1}.
Since Covy(X) is cofinal in Cov(X), by the same way as in Bacon [4] we can
show (i) in (3.11) with the property: Dimensions of all spaces in £ =dim X.
Thus by (3.6) and (3.7) we have the required polyhedral resolution. Hence we
have (i). (ii) follows from (3.7) and (ii) in (3.11). (iii) and (iv) follows from
(3.7) and (3.14). m

(3.16) REMARK. MS introduced resolutions for pairs and showed (i)
in (3.11) for pairs. Mardesic characterized resolutions for pairs in a way
similar to (3.4) and showed (ii) in (3.11) for pairs. Since (3.7) is true for
resolutions for pairs, (3.15) holds for pairs (see Watanabe [28]).

' (3.17) ExaMPLE. Let PM be the full subcategory of TOP consisting of all
paracompact M-space (see Arhangelski [2, 3] and Morita [20]). Nagata
gave a characterization of these spaces as follows: A space X is a paracom-
pact M-space iff X embeds as a closed subset in MXC, where M is metric and
C is compact. Metric spaces and compact spaces are paracompact M-spaces.
AR(PM) and ANR(PM) denote the full subcategories of TOP consisting of all
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absolute retracts and all absolute neighborhood retracts for PM, respectively:
Mardesic and Sostak [17] showed that

(1) any paracompact M-space X embeds as a closed set in an Me AR(PM),

(ii) if X is a closed subset of an M< AR(PM), then any neighborhood U
of X in M contains an open neighborhood Ve ANR(PM) of X in M, and °

(iii) any X ANR(PM) has the homotopy type of a polyhedron.

Modifying their proof of (iii) (see the proof of (5.7) in §5) we easily show
that

(iv) any X< ANR(PM) is an AP.

Let X be a paracompact M-space. By (i) X is a closed subset of an
Me AR(PM). Since X is P-embedded in M, by (3.12) the complete neighborhoods
system p: X—U(X, M) is a resolution. Let AU(X, M) be the. inverse system
consisting of all neighborhoods Ve ANRMPM) of X in M. By (i) AUX, M)
is a cofinal inverse sub-system of U(X, M). Then p induces an ANR(PM)-
resolution p: X—> AU(X, M). By (3.7) p induces an approximative ANR(PM)-
resolution p: X—(AU(X, M), U) consisting of ANR(PM)-neighborhoods of X in
M and inclusion maps. Obviously p: X—AU(X, M) and p: X—>(AU(X, M), U)
are rigid for ANR(PM).

Let X be a metric space. By the Kuratowski-Wojdislawski [Theoreml (see
Hu [11]) we may assume that X is a closed subset of an AR M. By (3.6) and
(3.12) the complete neighborhoods system p:X—U(X, M) is a resolution. Let
OU(X, M) be the inverse system of all open neighborhoods of X in M. Then
p induces an ANR-resolution p:X—OU(X, M) and an approximative ANR-
resolution p: X—(OU(X, M), U). Obviously these are rigid for ANR.

Let X be a compact space with weight m. Then X is embedded in I™.
Here I™ is the product space of m-copies of the unit interval I=[0, 1]. By
(3.6) and (3.12) the complete neighborhoods system p: X—U(X, I™) is a resolu-
tion. We say that a subset K of I™ is a prism provided that K is homeomorphlc
to PXI™, where P is a finite polyhedron. We easily show that

(v) any prism is an ANR(COM) and an AP.

Let 2U(X, I™) be the inverse system consisting of all prism neighborhoods of
X in I™. Then p induces an ANR(COM)-resolution p:X—PU(X, I™) and an
approximative ANR(COM)-resolution p: X—>PU(X, I™), U). These are rigid
for ANR(COM)). S ‘
When X is compact metric, X is embedded in the Hilbert cube Q=I=. In
this case p: X—0U(X, Q), p: X—=0OUX, Q), U), p: X—»PU(X, Q) and p: X—
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(PU(X, Q), U) are ANR-resolutions and approximative ANR-resolutions, which
are rigid for ANR. =

These special resolutions and approximative resolutions for special spaces
are usefull in the sequel.

§4. ApproXimative resolutions of maps.

In this section we introduce the notion of an approximative resolution of a
map and study its fundamental properties. Mardesic introduced the notion
of resolutions of maps. Our notion improves his notion.

Let X, Y be spaces and f: X—Y a map. Let p={p.:a€A}: X—(X, U)=
{(Xa, Ua), ba.ar A} and g={gp: b€ B} : Y (Y, W)={(Ys, W), qv'.5, B} be ap-
proximative resolutions. Let f={f, f,:b€B}, f’'={f', fs:beB}: (¥, U)>
(9, V) be approximative system maps. We say that f:(X, U)—~(%, V) is an
approximative resolution of f with respect to p and g provided that for each

beB (gof, fobrm)<Vo.

(4.1) LEMMA. Let q:Y—(¥, V) be an approximative AP-resolution. If
f, f': (X, U)—(Y, V) are approximative resolutions of f with respect to p and
q, then f=:f".

To prove (4.1) we need (4.2), which follows from (Al2), (Al3) and (1.1).

(4.2) LEMMA. Let (€, U)={(Xa, Ua), Da'.a» A} be an approximative inverse
system. Let V4heCov(X,) for acA. Then there exists an increasing function
s: A—A such that s>1,4 and pste,, aUe>Usay for a€A. R

PrOOF OF (4.1). Since ¢ is an approximative AP-resolution, all Y, are
APs. By (3.3) p: X—X is a resolution. For each b€ B there exists V{ECov(Y))
satisfying the property of (R2) for p and <V,. By (4.2) there exists an
increasing function ¢: B—B such that t>1p and

) gy, Vs>V, for be B.

Take any l-refinement function u: B—B of (¢, V) and any b= B. Since f and
f’ are approximative resolutions of f, we have that (quewyf, furcwrPruc) <Vurw
and (Gueor fo SutorDrutor) <Vuewr  Then (fucwrsDrutwss [uronD s uew) <StVurco-
Since u is a-l-refinement function,

(2)  (Queery, evr futemrP rutrys Guecws, e f uewdP st uecs) <Vecos-
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Take any a>fut(b), f'ut(). (1) and (2) imply that
B) (queewr.sSutwrPa, rutrdas Quicwr, s wecrPa, 5 uscwrba) <V
By (3) and the choice of <V} there exists a’>a such that

@) (Guews,ofutmrPar, utcoys Guecod, o f utewrdDar, 17 uted) <V

(4) means that q(ut)f=:qut)f’. Hence by (2.7) f=:f’. m

(4.3) THEOREM. Let p: X—(X, U) and q:Y—(Y, V) be approximative re-
solutions. If q is an approximative AP-resolution, then for any map f: X—Y
there exists an approximative resolution f: (X, U)—(Y, V) of f with respect to
p and q.

To prove (4.3) we need (4.4).

(4.4) LEMMA. Let (¥, U)={(Xq, Ua), Pa’.a, A} be an approximative inverse
system. Let UgECov(X,) for each acA. Then there exist Ui Cov(X,) for

ac A such that (€, U")={(Xa, UYL), pa',a, A} forms an approximative inverse
system and Ui<U NU, for as A.

ProOF. |T| denotes the cardinality of a set 7. Let Pla)={a’'€A:a’<a}
for each ae A. For each positive integer n we put A,={acA:|P(a)|=n}.
Since A is cofinite, A=\U{A;:71=1, 2, ---} and AiNA;=@ for i#].

Inductively we construct UjieCov(X,) for ac An)=U{A;:i=1, 2, ---, n}
satisfying the following condition :

(Pr) Ui<UNUy and pgt, ,UL>UY for a’, ac A(n) with a’>a.

First for any as A, we put U4=U, AU, Then clearly (P) holds. Next,
we assume that for as A(n—1) U/ are already defined satisfying (P,_,). Take
any a€A,. Put B(a)=P(a)NA(n—1) and C(a)=P(a)—A(n—1). We define
Uy as follows:

(1) Ve=(A{pab UL : b€ Ba)H AN {2V ANUs) : bEC(a)}).

Since aeC(a), by (1) Ui<U, AU, We need to show the second property
in (P,). Take any a’, ac A(n) with a’>a. Then there are four cases: (i)
a’, acA(n—1), (ii) a’€A, and e A(n—1), (iii) a’€ A(n—1) and a= A, and
(iv) a’, ac A,. In the case (i) (P,.,) implies the required condition. In the
case (ii) a€B(a’). Then by (1) UL <pzt ,UZ We consider the case (ii).
Since a’>a, P(a’)DP(a). Since a€ A,, |P(a’)|=||P(a)|=n. Since a’€ A(n—1),
|P(a”)||=n—1. This is a contradiction. Hence (iii) does not happen. We con-
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sider the case (iv). Since a’>a, P(a’)DP(a). Since a’, acA,, |P(a’)|=|P(a)l
=n. Thus P(a’)=P(a). Since B(a’)=B(a) and C(a’)=C(a), from (1) we have
that p3! ,UZ=a%. This is the required condition. Hence we have (FP,).

By the inductive construction we obtain the coverings U7 for all a€ A.
Since (¢, V) satisfies (All1)-(Al3), by (P,) we easily show that (¥, U”) satisfies
(AID)-(AI3). =

Note. In the proof of (4.4) when A is antisymmetric, B(a)=P(a)—{a} and
C(a)={a}. Then our proof is reduced to a simple one. However we do not
assume the antisymmetric condition for A.

PROOF OF (4.3). By (3.3) p: X—X is a resolution. Then it satisfies (R1)
and (R2). Since each Y, is an AP, there exists cV;&Con(Y;) satisfying the
property in (R2) for p and &,. By (4.4) there exist V€ Cov(Y3) such that
(Y, c¥”) is an approximative inverse system and

(1) stVI<W,AV; for be B.

By (R1) for p there exist a function ¢t: B—»A and maps g,: X:w»—Y, for bEB
such that

(2) (gof, Gobier)<Vy for be B.
By (AI3) for (¥, U) there exists a function f:B—A such that f>t and
() Prim.ex(@0 ' Vp)>U sy for bE B.
Claim. f={f, f»:bEB}: (X, U)—(¥, <V) is an approxXimative system map.

Here fy=gsDsw. e 2 Xry— Y for b€ B.
We need to show (AMI1) and (AM2). (AM) follows from (3). We show

(AM2). Take any b’>b. (2) implies that
4) (gof, foDra) <V and (gof, Sy Drar ) <V
By (Al2) for (¢, <v”) and (4)
5) (of, qv.ofoDrer ) <Vs.
Take any a>f(b), f(b’). By (1), (4) and (5)
(6) (foPa.swsPas qor.0Sv Da. s >Pa) <tV V.
By the choice of ¢V, and (6) there exists a’>a such that
(7) (fobar, s Qor.0SoPar, s 63) <V

(7) means (AM2) for f. Hence we have our Claim.



Approximative shape I 41

4 (1) and (4) imply that (gof, fsbrw) <V, for be B. This means that £ is an
approximative resolution of f with respect to p and q. ®

The next assertion follows from (3.3), (3.8), (3.13) and (4.3).

(4.5) COROLLARY. Let X={X,, par.a, A} and Y={Ys, qv .5, B} be inverse
systems of compact metric spaces. Let p: X—X and q:Y—%Y be inverse {imits.
If A, B arev‘ infinite, cofinite sets and all Y, are APs, then there exist coverings
Yo Cov(X,) and Vys Cov(Yy) such that p: X—(X, U)={(Xaq, Ua), Pa’,a, A} and
q:Y Y, W)={(Ys, V), qv.5, B} are approximative resolutions with the prop-
erty: For any map f: X—Y there exists an approximative resolution of f with
respect to p and q. W

Let g:Y—Z be a map. Let r: Z—(Z, %) be an approximative resolution.
Let g: (Y, V)—(Z, W) be an approximative system map. In a straightforward
manner we can show the following :

(4.6) LEMMA. If f:(¢, U)—(Y, V) and g: (Y, U)—(Z, W) are approxi-
mative resolutions of f and g with respect to p, q, and with respect to q, T,
respectively, then r(u)(gf): (X, U)—(Z, W) is an approximative resoluton of gf
with respect to p and r for each l-refinement function u of (&, W). M

Mardesic introduced the notion of resolution for maps. Let f:X—Y
be a map. Let p={po:acA}: X>X={X,, Par.a, A} and g={g:bEB}: Y >Y
={Ys, g».», B} be resolutions. Let f={f, f,:b= B} be a collection consisting
of a function f:B—A and of maps f»: X;m—Y, for beB. We say that
(f, p, @) is a resolution of f provided that it satisfies the following two con-
ditions :

(RM1) For each b’>b there exists a>f(b’), f(b) such that fips, rr=
Gv oS Pa, revr>e

(RM2) ¢qvf=fobrwy for be B.

Sometimes we say that f:2X—% is a resolution of f with respect to p and gq.

(4.7) LEMMA (Mardesic and Haxhibeqiri [10]). (i) Any map f: XY
admits an ANR-resolution.
(i) Any map f admits a polyphedral resolution. W

(4.8) LEMMA. Let (f, p, q) be a resolution of f. Then there exist approxi-
mative resolutions p’: X— (%€, U), q':Y—(Y, V)’ and an approximative resolution
F (¢, U)Y—(T, V) of f with respect to p’ and q’ satisfying the following :
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(i) p’ and q’ are constructed from p and q in the same way as in (3.7),
respectively.

(ii) (', p’, q’) is a resolution of f.

(iii) Each map in £’ is a map in f

PROOF. Let F(A), F(B), M(A) and M(B) be the same as in the proof
of (3.7). By (3.7) there exist approximative resolutions p’={p, :a’eM(A)}:
X— (X, U)Y = {(Xa, Ua), Par.ar, M(A)}, @ = {qy :0’EM(B)}:Y = (Y, V) =
{(Yy, Vi), goesr, M(B)} and increasing functions s:M(A)—A, t:M(B)—B
satisfying (i)-(iii) in (3.7), respectively.

We define f'={f’, fi : 0’ M(B)} : (X, U)'—(Y, V)’ as follows: Take any
b’eM(B). Since fiwy: Xpiwn—=Y =Yy, [l Vi ECov(Xyser>). By (iii) of
(3.7) there exists f’/(b’)e M(A) such that

(L) s(f/@N=rt®") and Uy w>=S e Vi

Then we have a function f’:M(B)—M(A). By (ii) of (3.7) and (1) X% ()=
Xspraoy=Xsiw> and Y=Y, Thus we may define a map fo=fiw>: X7 o
=Xsi0>—Y i =Y} for b'e M(B).

Claim. £’ satisfies (AM1), (RM1) and (RM2).

(1) implies that f/~'Vy = fib WV =U% . This means (AMI1) for /. We
show (RM2). Take any b”, b’eM(B) with b”>b’. Since t is increasing,
tb”)>t(b’"). By (RM2) for f there exists an a>ft(b”), ft(b’) such that

(2) geom, t(b’)ft(b’)pa, _ft(b'):ft(b' )pa, Seeh')e

Put a’'=f'(0)Uf/b")J{(a, {X.})}=M(A). Since s is increasing, (2) in the
proof of (3.7) and (1) imply that s(a’)>sf’(b”)=ftd"), s(a’)>sf’(b")=ft(b") and
s(a’)>a. By (@)

) Geam.canfranbscars, reaon=Ftw>Psca’s, recor >
(1), (3) and (i) in (3.7) imply that gio foDar, s on=FtDa, s > This means
(RM2) for f’. We show (RM1). By (RM1) for £ and (1) fips w>r=Sfiw Dss o
=fiwPri0y=qiw > =qyf. This means (RMI) for £’. Hence we have the Claim.
Since (AM2) follows from (RM2), Claim means that £’ has the required
properties. H

We say that an approximative resolution is commutative provided that it
satisfies condition (RM1). By (4.7) and (4.8) we have the following :

(4.9) THFOREM. For any map f: X—Y there exist approximative ANR- or
POL-resolutions p: X—(€, U), q:Y—(Y, V) and a commutative approximative
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resolution f: (%, U)—(Y, ) of f with respect to p and q such that (f, p, q) is

a resolution of f. M

(4.10) EXAMPLE. Let X and Y be paracompact M-spaces. By (3.17) we
have approximative ANR(PM)-resolutions p={p,:ac A} : X>(AUX, MX), U)=
{Ua, Ua), bar,as A} and q={g, : bE B} : Y (AU, MY), V)={(Vs, V), g» .5, B}.
Here MX and MY are AR(PM)s containing X and Y as closed subsets, respec-
tively. All U, and all V, are ANR(PM)-neighborhoods of X and Y in MX and
MY, respectively, and all p,, Par,a, @, gor,» are inclusion maps.

Let f: X—Y be a map. We have an extension F:MX—-MY of f. Take
any be B. By (ii) of (3.17) there exists g(b)e A such that F~(V,)DU . By
(Al2) there exists f(b) A such that f(b)>g() and (Fprw, gw) *Vs>U ruye
Thus we have a function f:B—A and maps fo=Fprw, g :Uswm—Vs for
be B. We have a commutative approximative resolution f={f, f,:bsB}:
(AU(X, MX), U)—(AUY, MY), V) of f with respect to p and g. Obviously
this is also a resolution of f. We consider a special case of this method in
§0. m

(4.11) EXAMPLE. Let C be the Cantor set and /=[0, 1] be the unit interval.
Let f:C—I be an onto map. Then in §0 we noticed that we have no expan-
sion of f with respect to some inverse limits p:C—C and ¢:I—J4. By (3.13)
p and g are resolutions of C and I. Hence f has no resolution with respect
to p and q.

In the same way as in §0 we can show that if (f/, p’, ¢’) is an POL-
resolution of f, then almost all spaces, appearing in p’, have dimensions =1.
This is curious, because dimC=0. In fact when we embed C in I, by (4.10)
we have a resolution £ of f with respect to some p’ and q such that almost
all spaces, appearing in p’, are 1-dimensional polyhedra.

On the other hand by (4.5) we can choose coverings U;=Co»(X;) and
V;eCov(Y;), which make approximative resolutions p:C—(X, U)={(X;, U,),
Di,jy N} and q:I—=(Y, V)={¥ 4, V), ¢i,5, N}. Hence by (4.3) for any map
f:X—=Y we have an approximative resolution f: (¥, U)—(Y, &V) of f with
respect to pand q. B

The above observations ((4.10) and (4.11)) explain the difference between
(4.3) and (4.9), that is, the difference between approximative resolutions and
resolutions. Approximative resolutions for maps have many advantages over
resolutions for maps.
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(4.12) REMARK. Mioduszewski studied approximative expansions of
maps into inverse sequences of polyhedra. His discription is neither simple nor
categorical. However he essentially proved (4.5) for compact metric spaces. In
the latter section we shall show that our treatment is natural and categorical.

§5. The approximative shape category.

In this section we introduce the approximative shape category and some
natural functors.

Let X, Y and Z be spaces. Let p: X—(¥, U), q:Y—>(Y, V) and r:Z—
(Z, W) be approximative AP-resolutions. Let f:X—Y and g:Y—Z be maps.
By (4.3) there exists an approximative resolution f: (%, U)—(Y, V) of f with
respect to p and q. By (4.1) its equivalence class [f] is unique, that is, [f]
does not depend on the choice of approximative resolutions of f with respect
to p and q. Therefore we denote it by [f],, From (4.6) we have the
following :

(6.1) LEmmA. (1) [gler[flp.«=[8f15.-

(ii) [1xJs p=[lex,v>].

(iii) If f:X-Y is a homeomorphism, theu [fl,, is an isomorphism iu
Appro-AP. ®

We define E(X)={p:p is an approximative AP-resolution of X}. For
PEE(X) and q=E(Y) we define E(p, q)=(Appro-AP)(&X, V), (Y, V). We
define E(X, Y)=U{E(p, q@):pcE(X) and g E(Y)} (disjoint sum). We define
a relation on E(X, Y) as follows: Let m, m’€ E(X, Y). There are p, p’< E(X)
and q, ¢’ E(Y) such that me E(p, q) and m’e E(p’, q’). We say that m is
equivalent to m’, in notation m=m’, provided that [ly],m=m'[lx], , In
Appro-AP. By (5.1) we can show the following:

(5.2) LEMMA. The above relation = is an equivalence relation on E(X,Y). m

{m)> denotes the equivalence class of me FE(X, Y) by the relation =. Put
EX,Y)Y={m):meEX,Y)}. We define the composition <n){m) for
meEX,Y)and neEY, Z) as follows: <{n){m)=<{n[lyly ¢m> where pcs E(X),
q, ¢’ <€EY), reE(Z), meE(p, q) and neE(q’, r’). By (2.10) and (5.1) we
can show the following:

(5.3) LEMMA. (i) The above composition is well defined.
(ii) <m){[1xlp pr=<{m>=<[1ylq,<m> for me E(X, Y).
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(iii) <wHEndimd)=KwXnd)Xm) for meEX,Y), neEY,Z) and we
E(Z, K).

(iv) <[flp.o=<[f1p.a>-

(v) <[glarXUf1p.o>=<XLgfls.r>, where reE(Z). ®m

We define a function @(p, q): E(p, ¢)—<E(p, q)> for p E(X) and g E(Y)
as follows: @(p, q)(m)=<{m) for me E(p, q).

(5.4) LEMMA. For peE(X) and qEX) O(p, q): E(p, q)—<E(X,Y)> is
bijective.

PrROOF. Take any m’eE(p’, q’) for p’€E(X) and ¢’€E(Y). We put
m=[1yly.¢n'[1xly - Then meE(p, @) and [lylyem=[lrle o [Lrlegn'[Lx],.»
=[1yly.em [1x]p po=m'[1x],p ,» by (5.1). This means that <{m)>=<{m’> and
hence @(p, q) is onto. Trivially it follows from (ii) of (5.1) that @(p, q) is
injective. MW

Now, we define the approximative shape category, in notation ASh, as
follows: Objects of ASh are all spaces. For spaces X and Y ASh(X, V)=
(E(X,Y)>. The composition of morphisms is defined in the above. Since
E(p, q) is a set, ASh(X, Y) forms a set by (5.4) and the axiom of substitution
in set theory. Note that <E(X, Y)> forms a set, but E(X) and E(X, Y) do not
form sets. By (5.3) ASh forms a category. We call morphisms in ASh approxi-
mative shape morphisms, or approximative shapings.

We define an approximative shape functor AS:TOP—ASh as follows: For
each space X we put AS(X)=X. For a map f:X—=Y we put AS(f)=<[f1s o
for some pE(X) and q€EX). By (5.3) AS is well defined and forms a
functor.

(5.5) LEMMA. Let X be an ANR(PM) or a polyhedron. For each U & Cov(X)
there exists U’'€E&ov(X) satisfying

(x) any two U’-near maps f, g:Y—X are U-homotopic, where Y is an
arbitrary space.

Proor. We show also (iv) in (3.17). Let X be an ANR(PM). By Nagata
and by the Kuratowski-Wojdislawski [Theoreml (see [11]) we may assume
that X is a closed subset of CxI?, where C is a convex set in a normed vector
space M and 7 is an arbitrary cardinal. Take any U, U, Cov(X) With st?*U,<U.
Since X is an ANR(PM), there exist a neighborhood U of X in CXI® and a
retraction »:U—X. By Theorem 4 of Mardesic and Sostak there exists
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an open paracompact neighborhood V of X in U with the property; each point
x of V has a neighborhood K(x)CV such that K(x) is convex in MXR". Here
R is the real line. By a theorem of Palais [25, p. 5] there exist a simplicial
complex K, maps h:V—|K|, k:|K|—V and a r~’U,;-homotopy H':UxI-U
such that Hi=1, and H!=kh. Since (rkhw, 1x)<U, X is an AP. Here w:X
—V is the inclusion map. By Theorem 4 of MS [18, p. 292] there exists a
subdivision L of K such that st(L)<k-r-'vU,. Here st(v, L) denotes the open
star at a vertex v in L, st(L)={st(v, L):v is a vertex of L} and st(L)=
{sttv, L):v is a vertex of L}. By Theorem 9 and Remark 1 of MS [18, pp.
302-303] there exist maps 7:|K|=|L|—=|L|n, j:|L|n—|L|=]|K| and a
“(L)-homotopy H?:|K|XI—|K| such that H{=1, and Hi=ji. |L|. denotes
the realization of L with the metric topology. By Theorem 11 of MS [18, p.
304] |L|n is an ANR and then by Theorem 11 of Hu [11, p. 111] there exists
We Cov(| L| ) satisfying (x) for |L|n and j~'s¢(L). From the above facts it is
easy to show that W=(hw) 'WeCov(X) satisfies the required condition (x).
Obviously the above argument also contains a proof for polyhedra. m

(5.6) LEMMA. Any space X admits an approximative ANR-resolution p: X—
(%, U) and an approximative POL-resolution p : X—(X, U) with the property:
(x%) any two Ug-near maps f, g:Y—Xq are homotopic for a€ A, where Y

is an arbitrary space.

PrOOF. By (3.15) there exists an approximative ANR-resolution p:X—
(€, UN={(Xq, UL), Par.a', A} of a space X. Since all X, are ANRs, by (5.5)
there exist U”eCov(X,) with property (x) for U;. By (4.4) we make coverings
U,eCov(X,) such that (%, U)={(Xa, Ua), Pa',a» A} forms an approximative
inverse system and U, <U,AU%L for acA. By B.3) p: X—(x%, U) is an
approximative resolution. Since U,<U%, it has the required property. In the
same way we construct a required approximative POL-resolution. ™

We recall that H: TOP—-HTOP and S: HTOP—Sh are the homotopy functor
and the shape functor, respectively. Then H(f) denotes the homotopy class of
the map f, and H(X)={X,., H(pa',o), A} is an inverse system in HTOP. H(p)
={H(p,) :ac A} : X—H(X) is a morphism of inverse systems from X to H(ZX)
(see MS [18, p.4]). We say that H(p): X—H(&¥) is an HTOP-expansion (see
MS [18]) provided that it satisfies the following two conditions:

(E1) For each ANR P and a map h: X—P there exist a€ A and a map
he : Xo— P such that hA~h,p,.
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(E2) For each a= A and for maps h, h’: X,—P< ANR such that hp,=h"p,
there exists a’>a such that hp,  o=h'par, q-

(6.7) LEMMA (Mardesic [15]). If p={ps:acA}: X—>X={X,, par.qa, A} is
a resolution of X, then H(p)={H(p,):ac A} : X—>H(X)={X,, H(par. o), A} is a
HTOP-expansion. m

Let r: Z—(g, W)€ E(Z). Let f={f, fr:beB}, f'={f’, fi:beB}: (¥, V)
—(Y, V) and g: (Y, U)— (I, W) be approximative system maps.

(5.8) LEMMA. If <V and W satisfy property (xx) in (5.6), we have the
following :

(i) H(f)={f, H(fy):be B} : H)—>H) is a morphism of inverse systems
in HPOL.

(ii) If f=:f’', then Hf) and H(f’) are equivalent, i.e., H(f)~H(f’) (see
[18, p. 6]).

(iii) If f is an approximative resolution of [ with respect to p and q, then
H(q)H(f)=H(f)H(p).

(iv) For each l-refinement function u of (I, W) H@r(u)gf))~ H(g)H(f).

PROOF. We show (ii). It is sufficient to show that f=:f’ implies H(f)~
H(f’). We assume that f=:f’. Take any b= B. Then there exists a> f(b),
J’(b) such that (fypa, rwys fiPa, 7)) <Vo. By property (xx) of (5.6) H(f)H(Pa, 7o)
=H(f)H(pa. s ). This means that H(f)~H(’). Hence we have (ii). In a
similar way we can show the other claims. ®m

Since we have (5.6), hereafter we consider only approximative POL-resolu-
tions of spaces with property (xx) of (5.6). By (56.7) H(p): X—H(x%), H(q):Y
—H(%Yy) are HPOL-expansions. By (i) of (5.8) H(f) is a morphism of inverse
systems. Then H(f) determines an equivalence class aH(f) given by the
equivalence relation ~, that is, aH(f): H&)—H(¥Y) is a morphism of pro-HPOL
(see MS [18]). aH(f) determines a shape morphism saH(f): X—Y (see MS [18]).

Let [f]=[f’]. Since f=:f’, by (ii) of (5.8) H(f)~H(f’), that is, aH(f)=
aH(f’). Thus we may define a([f])=aH(f). From (iv) of (5.8) we have that
a(fgDa([f D=a([gl(f]). Since H(l x,a»): H(X)—H(X) is the identity, &([1 x,v,])
=a(lgx). Let f:(X, U)—>(Y, V) be an approximative resolution of f with
respect to p and q. By (ii) of (5.7) aH(f): HX)—H(Y) is a morphism in
pro-HPOL with aH(f)aH(p)=aH(q)aH(f). Thus saH(f) is the shape morphism
induced by f. Hence sa([f], o=SH(f).
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Let ([FI>=([f"I>eCEX,Y)). Let [fl€E(p, q) and [f"]J€E(p", q").
Since [f1=[f"], [lrle[f1=0f"11x1p.p~ Thus a([lyleLa(fN=a(f"])
@([1x],, p). Since @([1x], ,) and a([lylg,) are morphisms in pro-HPOL
induced by identities, then &([f]) and &([f”]) induce the same shape morphism,
i.e., sa([f1)y=sa(f"]).

Now we define a functor ASS:ASh—Sh as follows: For each space X
ASS(X)=X and for {[f])e<EX, Y)>=ASh(X, Y) ASSK[fI))=sa((f]). From
the above facts we easily show that it is well defined and forms a functor
with SeH=ASS-AS. We summarize results in this section as follows:

(5.9) THEOREM. ASh forms a category and AS:TOP—ASh, ASS:ASh—Sh
are functors with the following commutative diagram:

TOP H > HTOP
Jas Is
ASh ASS >Sh. =m

We say that X and Y have the same approximative shape type, in
notation ASh(X)=ASh(Y), provided that X and Y are isomorphic in ASh.
ASh(X)<ASh(Y) denotes that X is dominated by Y in ASh.

(5.10) CorOLLARY. (i) If X is dominated by Y in TOP, then ASh(X)<
ASh(Y).
(i) If X is homeomorphic to Y, then ASh(X)=ASh(Y). m

§6. The Tychonoff functor and the completion functor.

In this section we investigate the influence of the Tychonoff functor and
the completion functor on ASh.

Let C and D be full subcategories of TOP. Let F:C—D be a covariant
functor. Let j:C—TOP and j’: D-TOP be the inclusion functors. Let Z:;—
j’F be a natural transformation. We say that ¢ is dense provided that for
each XeObC the image of ty:j(X)=X—;'F(X)=F(X) is a dense subset of
F(X). Let K be a subcategory of TOP. We say thatt is rigid for K provided
that it satisfies the following condition:

(R)* For each X€Ob(, each K€Ob K and each map f: X—K there exists
a map f’: F(X)—K such that f'tyx=f.
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(6.1) LEMMA. Let t:j—j'F be dense and rigid for POL. Let XeObC and
X={X., Dara, A} be an inverse system in C. Then p={p,:acA}:X—>X isa
resolution of X iff F(p)={F(p,):asA}: F(X)->F(&)={F(X,), F(pa'.a), A} is a
resolution of F(X).

To prove (6.1) we need the following which is easy to show.

(6.2) LEMMA. Let k:X—Y and f, g:Y—Z be maps. Let k(X) be dense in
Y. For each W Cou(Z) if (fk, gk)<W, then (f, g)<stW. R

PrOOF OF (6.1). First we assume that p: X—¥ is a resolution. Then it
satisfies (R1) and (R2) for polyhedra. We show that F(p) satisfies (R1) and
(R2) for polyhedra.

We show (R1). Let PcObPOL and U&Cov(P). Let f/:F(X)—P be a
map. Take U’ECov(P) such that stU’'<vU. By (R1) for p there exist acA
and a map g:X,—P such that (gps, f'tx)<U’. Since t is rigid for POL,
there exists a map g’: F(X,)—P such that g'tx,=g. Since gp.,=g'F(pa)tx,
(g’F(p)tx, ftx)<U’. Thus by (6.2) (g’F(ps), f)<stU’<U. Hence we have
(R1).

We show (R2). Let P=ObPOL and Ue&Cow(P). Take U’'&Cov(P) such
that stU’<U. By (R2) for p there exists V& Cov(P) satisfying the property
in (R2) for p, P and U’. Take any a€A and maps [/, g’:F(X,)—P such
that (f'F(pa), & F(pa))<V. Since F(p)tx=tx,bar (f'tx,Da> &'lx,pa)<V. By
the choice of <V there exists a’>a such that (f'tx,Pa'.a) &'tz Dar.a)<U’.
Since tx Par.a = F(Dar.a)txgr (F'F(par,adtxgs & F(Par,adtx,)<U’. By (6.2)
(f'F(Par.a)s &' F(Par,a))<stU’<U. Hence we have (R2).

Since F(p) satisfies (R1) and (R2) for polyhedra, by (3.1) it is a resolution.

Next, we assume that F(p) is a resolution. Thus it satisfies (R1) and (R2)
for polyhedra. We show that p satisfies (R1) and (R2) for polyhedra.

We show (R1). Let P€ObPOL and U&Cov(P). Let f: X—P be a map.
Since ¢ is rigid for POL, there exists a map f’: F(X)—P such that f=f’tx.
By (R1) for F(p) there exists a€A and a map g’:F(X,)—P such that
(g'F(pa), fHI<U. Thus (g'F(pa)tx, f'tx)<U, and hence (g’tx, pa, /)<U. This
means that g’ty, :X,—P has the required one. Hence we have (R1).

We show (R2). Let P€ObPOL and UCov(P). There exists Ve Cov(P)
satisfying the condition (R2) for F(p), P and 4J. Take W<&Cow(P) such that
stW<<Y. Take any a=A and maps f, g:X,—P such that (fpa, gps) <.
Since ¢ is rigid for POL, there exist maps f’, g’: F(X,)—P satisfying f=f"tx,
and g=g'tx,. Since fp.=f'F(pa)tx and gpo=g F(pu)tx, (f'F(paltx, 8" F(pa)tx)
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<W. By (6.2) (f'F(pa), g’ F(pa))<stW<<V. By the choice of <V there exists
a’>a such that (f'F(pa.a), & F(par,a))<U. Since F(par altx, =lx,Pa'.a
(fPar.a» 8Par.a)<U. Hence we have (R2).

Since p satisfies (R1) and (R2) for polyhedra, by (3.1) it is a resolution. W

(6.3) LEMMA. Let t:j—j'F be dense and rigid for POL. If X€ObC is an
AP, then F(X) is also an AP.

PROOF. Take any U, U,ECov(F(X)) such that stU,<U. Since X is an
AP, there exist a polyhedron P and maps f: X—P, g: P—X such that (gf, 1x)
<t#(WU,). Since t is rigid for POL, there exists a map f’: F(X)—P such that
f=f"tx. Since (txgf’tx, lrcx tx)<U;, by (6.2) (txgf’, lpcxy) <stU,<U. Hence
F(X) is an AP. =

Hereafter we assume that ¢ is dense and rigid for POL with the following
two conditions :

(*) POL is a subcategory of C.

(¥#x) For each polyhedron P F(P)=P and tp: P—F(P) is the identity map.

Let XeOb(C. By (3.15) there exists an approximative POL-resolution p=
{pa:ac A} : X—(x, U)={(Xa, Ua), Pa’.a» A}. By (3.3) p: X— is a resolution.
By (6.1) F(p)={F(po):ac A} : F(X)—>F(X)={F(X.), F(pa,a), A} is a resolution.
Since ¢ is a natural transformation, t={1,, ty, :a€ A} : X—>F(X) is a resolu-
tion of ty: X—F(X) with respect to p and F(p). Since F(X,)=X, and ty ,=1lx,
by () and (x*), F(ps'.a)=pa'.a for a’>a. Thus F(X)=X and t=1x. Since
F(p): F(X)-»F(®x)=% is a resolution, by (3.3) F(p): F(X)—(, U) is an
approximative resolution. Thus t=1(x q: (X, U)—(X, U) is an approximative
resolution of ¢y with respect to p and F(p). Hence AS(ty)=<{[1l¢x 41>, Which
is an isomorphism in ASh. We have the following:

(6.4) LEMMA. For XeO0bC ty: X—F(X) induces an isomorphism AS(tyx):X
—F(X) in ASh. =

Let YeObC and let g={gy:bsB}: Y=Y, A)={¥», Vs), q».», B} be an
approximative POL-resolution. Since F(p): F(X)—>(&¥, U) and F(q): F(Y)—
(Y, V) are approximative POL-resolutions, E(p, q)=Appro-AP((¥, U), (Y4, <V))
=FE(F(p), F(q)). Then we may define a bijective function ¥(p, q): E(p, q)—
E(F(p), F(q)) as follows: ¥(p, ¢)([m])=[m] for [m]=E(p, q).

(6.5) LEMMA. T(p, @)([f15.0=LF(f)rp>.Fe for a map f: X->Y in C.
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PrROOF. Let f={f, fy:b= B} : (X, U)—(Y, V) be an approximative resolu-
tion of f with respect to p and q. Thus [f]=[f],., Let u:B—B be a
I-refinement function of (¥, V). For each b=B (quwnrf, fumPrum)<Vuw-
Since F(quw) F(tx=quwrf> F(fuw)=fuw and F(fuw)F(Pru)tx=fuwDsuw bY
(xx), (F(quon)F(fix, fu(b)F(.bfu(b))tX)<CVu(b)- By (6.2) (F(quwy)F(f), fu(b)F(pfu(b)))
<stVyumy. Since u is a l-refinement function, (F(g»)F(f), quw,sfuwrF(Druw))
<, This means that qu)f: (¥, U)—(Y, V) is an approximative resolu-
tion of F(f) with respect to F(p) and F(q). Thus [q(u)f1=LF(f)]rp.r-
Since [q(w)f]=[f] by (2.6), ¥(p, a)X[f1p.d=¥(p, )([(FD=[F1=[q(u)f]=
CF()repy.rep- M

(6.6) COROLLARY. ¥(p, q)[1x1, p)=[lrcx>lrcp repy for approximative POL-
resolutions p, p’ of XObC. m

We define a function F(p, q):ASh(X, Y)—ASh(F(X), F(Y)) as follows:
F(p, @)=9(F(p), F@)¥(p, )P (p, @), where O(p, q): E(X, Y)(EX, Y))=
ASh(X, Y) is defined in (5.4). By (6.6) and the definition = we easily show
that F(p, q)=F(p’, q’) for approximative POL-resolutions p, p’ and ¢, q’ of
X and Y, respectively. Thus we may put F=F(p, q): ASh(X, V) ASh(F(X),
F{X)). Since @(p, q) and ¥(p, q) are bijection, so is F. By (6.6) and the
definition of composition we have that F(n)E(m)=F(nm) for me ASh(X, Y) and
neASh(Y, Z). Hence we have a functor F:ASh(C)—ASh(D), when F(X)=
F(X) for XObC. Here ASh(C) denotes the full subcategory of ASh consist-
ing of ObC. (6.5) means that AS-F=F-AS. By definitions ASS=ASS-F. We
summarize our results as follows:

(6.7) THEOREM. Let C and D be full subcategories of TOP. Let j:C—TOP
and j': D—TOP be the inclusion functors. Let F:C—D and t:j—j;'F be a
functor and a natural transformation, respectively. If t is dense and rigid for
POL with (x) and (%), then F induces a functor F: ASh(C)—>ASh(D) with the
following properties:

(i) The following diagram is commutative :

F
C > D

‘[AS 5 lAS
F
ASh(C) —— ASh(D)

A&k < As




52 Tadashi WATANABE

(i1) AS(ty): X—F(X) is an isomorphism in ASh for XeObC.
(i) F:ASh(X, Y)—ASh(F(X), F(Y)) is bijective for X,Y=ObC. m

Tychonoff spaces are completely regular Hausdorff spaces. A Tychonoff
space is topologically complete provided that it is complete with respect to some
uniformities. TOP,.; and CTOP;.; denote the full subcategories of TOP con-
sisting of all Tychonoff spaces and of all topologically complete Tychonoff
spaces, respectively.

Morita [22] introduced the Tychonoff functor T:TOP—TOP;, ; and showed
the following properties: For each space X there exists an onto map ty: X—
T(X) such that

(T1) if X is a Tychonoff space, then T(X)=X and ixy=1y,

(T2) for any map f:X—>Y tyf=T(f)tx and

(T3) for any Tychonoff space Y and for any map f:X—Y there exists a
unique map g:7T(X)—Y such that gtx=f.

Let j/: TOP;.,—TOP be the inclusion functor. By (T2) t={tx}:lrop—;'T
is a natural transformation. By the above data ¢t and T satisfy all the
assumptions in (6.7). Thus by (6.1) and (6.7) we have the following :

© (6.8) COROLLARY. p:X—X is resolution of a space X iff T(p): T(X)—>T(x)
1s a resolution of T(X). Moreover p is rigid for TOP, s iff so is T(p). M

(6.9) COROLLARY. The Tychonoff functor T :.TOP—TOP; s induces a functor
T : ASh—ASh(TOP, ;) with the following properties:
(i) The following diagram is commutative:

T
TOP TOP,
lAs 5 1AS
T
ASh ASh(TOP, ;)

Ak Sh ASS

(ii) AS(ty): X—T(X) is an isomorphism in ASh for any space X.
(i) T :ASh(X, Y)—AShK(T(X), T(Y)) is bijective for spaces X and Y. W

Let X be a Tychonoff space. Then Co»(X) forms the finest uniformity of
X. Let C(X) be the completion of X with respect to Co»(X). Thus we have
the completion functor C:TOP; ;—CTOP, ; with the following properties: We
may consider X as a dense subset of C{X). Let jy:X—C(X) be the inclusion
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map.

(C1) If X is topologically complete, then C(X)=X and jy=1x.

(C2) jyf=C(f)jx for a map f:X—Y in TOP, ;.

(C3) Let XeObTOP;,; and Y =ObCTOP;,;. For any map f:X—Y there
exists a unique map g:C(X)—Y such that gjy=f.

Let j7:CTOP, ;—TOP; s be the inclusion functor. By (C2) j={/x} :1top,
—7’C forms a natural functor. By the above data j satisfies all the assump-
tions in (6.7). Hence by (6.1) and (6.7) we have the following:

(6.10) COROLLARY. p:X—>X¥ is a resolution of a Tychonoff space X iff
C(p): C(X)—>C(2X) is a resolution of C(X). Moreover p is rigid for CTOP,.; iff
sois C(p). m

(6.11) COROLLARY. The completion functor C:TOP,;;—CTOP, s induces a
functor C: ASh(TOP,.;)—ASh(CTOP, ;) satisfying the following :

(1) The following diagram is commutative :

C
TOP; ; CTOP; s

lAS 5 lAS
ASh(TOP,)—C 5 ASh(CTOP, )

mSh AS

(ii) AS(jx): X—C(X) is an isomorphism in ASh for a Tychonoff space X.
(iii) 5:ASh(X, Y)—ASh(C(X), C(Y)) is bijective for Tychonoff spaces X and
Y. m

(6.13) REMARK. Independently Morita [23] considered (6.8) and (6.10). He
showed only one directions of (6.8) and (6.10). m

8§ 7. The realization functor.

In this section we introduce the realization functor and investigate its
properties.

(7.1) LEMMA. Let q={qy: b= B} :Y—>Y={Y,, q».», B} be a resolution of a
space Y. If Y=ObCTOP;.; and Y,=ObTOP,.; for b= B, then q:Y—Y is an
inverse limit of Y.
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The author has proved (7.1). After a while, independently, Morita
[23] proved it. His paper is already published, and therefore we omit our
proof. m

Let p={ps:acA}: X—(X, U)={(Xs, Ua), Pa’.a,» A} and q={g,:bEB}:Y
—(Y, )={(Ys, Vs), q».», B} be approximative resolutions of spaces X and Y,
respectively.

(7.2) LEMMA. Let f={fy:b= B} be a collection of maps fo: XY, If
Y, Y,eObCTOP;,; for all be B and (fs, qv . ofor)<Vp for b’>b then there exists
a unique map r(f): X—Y such that (fo, qor(f))<stV, for bE B.

ProoF. Take any x=X and any b, B. We put Co(x)=1{gss,/0o(x):bE B
with b>b,}.

Claim 1. C,(x) is a Cauchy net in Y3, with respect to the finest uniformity
Cov(Yp,).

Take any &V, V,ECov(Ys,) with stV,<V. By (Al3) there exists by >b,
such that gz}, V,:>%V,,. There exist V,e<V, and V,=<V such that

(1) qbl.bofbl(X)Evl and St(Vl, CVl)Cvz.

Take any b>b,. By the property of f and the choice of by, (¢s,,5,/5,5 0.5,f0)
<V,. There exists V,=V, such that g, s,/5,(%), g5,5,/5(x)EVs and then by 1)

2)  go.v, folx)ESUV,, V)TV, for each b>b,.

(2) is the required condition. Thus we have Claim 1.
Since Y,, is topologically complete, there exists a unique limit point 7(f),,(x)
of Cp,(x). Then we have a function r(f)s,: X— Yy, It is easy to show that

() guy. 0,7 (Floy=7(f )5, for any bg>b,.

Claim 2. For each W& Cov(Y,,) there exists b,>b, such that (gs,5,/s, 7(F)s,)
<<V for each b>b,.

Take any VeCov(Y,,). By (AI3) there exists b;>b, such that g, V>
stV,,. Take any b>b, and any x€X. Since r(f)y,(x)=1im Cp,(x), there exists
by(x)>b, such that gy, s, [ (x)Est(r(F)o,(x), Vs,) for each b'>by(x). Then there
exists V,EV,, such that gu,czy, 0, 05¢3(%), 7{Fle(x)EV . By the condition of f
there exist V,, V,&€V,, such that f5,(%), Goycas.55f 020> (X)EV 2 and fo,(x), gs,5,f0(x)
€V, Then r(f)s,(x), o0, 6(x)Est(Vs, Vs,). By the choice of b, there exists
Vecv such that gy, 0,7 (F)o, (%), Gs.0,So(x)EV. Then (goy, 557 (Fsys Gv.0,/) <V and
hence by (3) we have Claim 2.
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Claim 3. 7(f),,: X—Y,, is continuous.
Take any x= X and any neighborhood G of r(f),(x) in Y,,. Since Y,  is
a Tychonoff space, there exist <V, &V, &Cov(Y,,) such that st <V, <<V and

(4)  st(r(fy(x), V)CG.
By Claim 2 there exists b,>b, such that
(B)  (gs,00S 5, ¥(F o)<V, for b>b,.

Since @s,,5,f5,: X— Y5, is continuous, there exists an open neighborhood H of x
in X such that

(6) oy, 00 5, (H)CT5(g0y, 55 5,(x), V).

Take any x’€H. By (5) there exist Vi, V.V, such that g, 5,/5,(x"),
7(Flo(x)EVy and gy, 5,/5,(%), 7(Flo(x)EV, By (6) there exists V€<V, such
that gu,, 00/ 0,(x"), Gby.00S02(X)EV . Thus r(f)o(x"), () (x)EV UV ,Cst(Vs, V1)
CV, for some V,ecV, because stV,<V. By 4) r(f)s(x")Est(r(F)s(x), WV)CG.
This means that »(f),(H)CG. Hence it is continuous.

By 3.3) and (7.1) ¢ :Y—% is an inverse limit. By Claim 3 and (3) there
exists a map »(f): X—Y such that

(7) qur(f)=r(f), for be B.

Claim 4. (f», qor(F))<st<V, for be B.

Take any b,& B. By Claim 2 there exists b,>b, satisfying (gs,, 50/, #{(F)s,)
< Vs, SInce (g, 00/ by f5,) <Ve, by the property of £, by (7) (fo, qogr(F))<st Vs,
Hence we have Claim 4.

Claim 5. If g, h: X—Y are maps such that (g.,g, ¢,h)<<st*<V, for beB,
then g=nh.

We assume that g#h. There exists x=X such that g(x)#h(x). Since
q:Y—%Y is an inverse limit by (7.1), there exists b B such that ¢,g(x)+#gyh(x).
Since Y, is Tychonoff, there exists <V&Cov(Y,) such that st(g,g(x), V)N
st(gph(x), V)=@. By (Al3) there exists 4’>b such that g¢;!,“V>st?*<V,. This
and the assumption imply that (¢,g, ¢,h)<V. Then there exists V&<V such
that ¢,g(x), gsh(x)V. This means that st(g,g(x), V)Nst(gph(x), V)#* @. This
is a contradiction. Hence g=h. We have Claim 5.

From Claims 4 and 5 we have the uniqueness of #»(f). Hence we have
completed the proof. m

(7.3) LEMMA. Let Y, Y,€ObCTOP;.s for b=B. For any approximative
system map f: (X, U)—(Y, V) there exists a unique map r(f): X—Y such that
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(FoD sy, qr(F)<stV, for each be B.

When we apply (7.2) to the collection {fspsw):bs B} of maps, we have
7.3. =

(7.4) LEMMA. Let f: X—Y be a map. Under the same conditions as in (7.3),
if f is an approximative resolution of f with respect to p and q, then r(f)=f.

(7.5) LEMMA. Let f’:(X, U)—(Y, V) be an approximative system map.
Under the same conditions as in (7.3), if [F1=[f'], then r(f)=r{f’).

(7.4) and (7.5) follow from Claim 5 in the proof of (7.2). m

Let k={k, k.:c€C}: Z—(T, W)={(Z., W), k.., C} be an approximative
resolution of a space Z. Let g={g, g.:c=C}: (Y, V)—(T, W) be an approxi-
mative system map.

(7.6) LEMMA. Let Y, Y, Z, Z,ObCTOP, 5. For each l-refinement func-
tion u:C—C of (T, W) r(g)r(f)=rku)gf)).

PrROOF. Take any ceC. Since (QurGgucers Rucor?@)<stWuw» by (7.3),
(ucr@gucor? )y Ruco?@r(F)<stWucor. Since (fgucordsgucers Qguce)? (F))<stVgucor
by (7.3), by (AMI) and (2.2) (Guof sucoPrsucers Gucrdgucert (F)<stWu. Then
(Qucorf gucorPrgucers Ruco(@rE)<st?*Wyce. Since u is a l-refinement function,

we have that
1) (Bucor, cBucorf sucodsgucers ker(@r(F)<stWe.
By (7.3)
) (Rucor. cucorf gucorDsgucer, ker(k(u)(gf))<stW..
By (1) and (2) (kr(@)r(f), kor(k(u)(gf))<st*W. Hence by Claim5 in the proof
of (7.2) r(g)r(F)=r(k(u)(gf)). N
(7.7) LEMMA. Let q:Y—(Y, V) be an approximative AP-resolution. Under

the same conditions as in (7.3) [f 1=[r(f)],.o for each approximative system map
f:(&x, U)—~Y, V).

PrROOF. Take any l-refinement function u of (¥, <) and any b€ B. By
(7.3) (FucorDrucrrs Quen?(F))<st Vupy and then (quew, sfuwDrucw, gor(F)) <V, This
means that gw)f is an approximative resolution of »(f) with respect to p and
g. Thus [7(F)1,.=[qu)f]. Since [fI1=[q)f] by (2.6), [F1=[r(f)l,, W
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We assume that all spaces are completely Tychonoff spaces. Let p, ¢ and
p’ X—(%, UY, q' : Y=, V), k: Z—(I, W) be approximative POL-resolutions.

Let £: (¥, U)—(Yy, V) be an approximative system map. By (7.3) there
exists a unique map r(f): X—Y. By (7.5) r(f) does not depend on representa-
tions of the equivalence class [f]. Thus we may define r([f])=r(f).

Let g: (Y, V)—(T, W) be an approximative system map. (7.6) means that

(i) r({LgDrfH=rgllFD.
By (7.4) we have that
(it) r([1x]s »)=1x.
By (i) and (ii) we can easily show that for an approximative system maps
(X, U)Y—, vy
(i) if <[F1>=<[f'D, then r({{fD=r(F"D.
(iii) means that »([f]) does not depend on representations of the equivalence

class <[f]>. Thus we may define rK[f1]))=r([f]). By (i) and (ii) we easily
show that

(iv) rKLg’DIrFD)=rKLg’IKFI), where g': (Y, V)—(I, W) is an

approximative system map.
By (ii) we have that

(v) r[lxls p2)=1x.

Now we define the realization functor R : ASh(CTOP;,;)»CTOP, ; as follows:
R(X)=X for X=ObCTOP,.; and R(m)=r(d(p, q)"'(m)) for me ASh(CTOP;.;)
(X,Y). Here p: X—(¥,U) and ¢q:Y—(¥, V) are approximative POL-resolu-
tions and @(p, q): E(p, ¢)—ASh(X, Y) is defined in (5.4). By (i) R is well
defined. By (iv) and (v) R forms a functor. (7.4)and (iii) mean that R-AS=1.
(7.7) and (iii) mean that AScR=1. Hence we summarize as follows:

(7.8) THEOREM. There exists a realization functor R : ASh(CTOP;, 5)—CTOP;_;

with the following commutative diagram:

NN

1
ASh(CTOP; ;) ————> ASh(CTOP;;) =

Let P be the full subcategory of TOP consisting of all paracompact spaces.
Note that paracompact spaces are topologically complete Tychonoff spaces.
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(7.9) COROLLARY. (i) R :ASh(CTOP, ;)>CTOP, s is a categorical isomor-

phism.
(i) R induces a categorical isomorphism R :AShP(P)—»P. ®

(7.10) COROLLARY. Let f:X—Y be a map. Let p: X—(X, U) and q:Y—
(Y, V) be approximative AP-resolutions. Let f:(X, U)—(Y, V) be an approxi-
mative resolution of [ with respect to p and q. Then the following assertions
are equivalent:

(i) f satisfies (ISO) in Appro-AP.

(ii) [Ff] is an isomorphism in Appro-AP.

(iii) AS(f) is an isomorphism in ASh.

(iv) CT():CT(X)—»CT({Y) is a homeomorphism.

(7.11) COROLLARY. Spaces X and Y have the same approximative shape type
iff CT(X) and CT(Y) are homeomorphic.

PROOFS OF (7.10) AND (7.11). We show (7.10). (i) and (ii) are equivalent
by (2.16). From the definition of ASh it is easy to show that (ii) and (iii) are
equivalent. By (6.9), (6.11) and (7.8) (iii) and (iv) are equivalent. (7.11) follows
from (6.9), (6.11) and (7.10). =

Shape theory is a generalization of homotopy theory on POL. The principle
of shape theory is to “investigated bad spaces and bad maps by means of the
good category HPOL ”. (7.9) gives us a new description of CTOP,,;. Thus we
can study TOP throughout ASh. The principle of approximative shape theory
is to “ Investigate bad spaces and bad maps by means of the good category POL”.
Our theory and shape theory are similar in ideas. We say that our approxi-
mative shape theory is a shape theory without homotopies. In the papers which
will follow we will show that ASh has richer structures than TOP and has

many applications in topology.
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