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LINK GRAPHS OF TILED ORDERS OVER
A LOCAL DEDEKIND DOMAIN

By

Hisaaki FUJITA

Introduction

Let $R$ be a local Dedekind domain with the maximal ideal $\pi R$ and the quotient ring $K$,

and let $\Lambda=(\Lambda_{ij})$ be a tiled R-order in $(K)_{n}$ (the full $n\times n$ matrix ring over $K$ ) between $(R)_{n}$

and $(\pi R)_{n}$ (i.e., $(R)_{n}\supset\Lambda\supset(\pi R)_{n}$). In [2, Theorem], we have obtained a procedure of deter-
mining the link graph of $\Lambda$ from the quiver of the $R/\pi R$-algebra $A=\Lambda/(\pi R)_{n}$ . As noted in
[2, Remark (4)], there exist tiled R-orders $\Lambda$ and $\Gamma$ with the same link graph, but the quiver

of $A=\Lambda/(\pi R)_{n}$ is different from that of $B=\Gamma/(\pi R)_{n}$ . In this note, we shall clarify the rela-
tionship between such $\Lambda$ and $\Gamma$, by proving the following

THEOREM. Let $\Lambda$ and $\Gamma$ be basic tiled R-orders between $(R)_{n}$ and $(\pi R)_{n}$ . Then the follow-
ing statements are equivalent.

(1) $\Lambda$ is isomorphic with $\Gamma$ as rings.
(2) The link graphs of $\Lambda$ and $\Gamma$ are equal except for the numbering of the vertices.
(3) $\Gamma=u\Lambda u^{-1}$ for some regular element $u\in(R)_{n}$ .

It should be noted that the main part of the proof of the theorem follows from purely

graph theoretic facts and that the result is surprisingly simple. After proving the main
theorem, we shall consider the number of $\Lambda_{ij}\prime s$ with $\Lambda_{ij}=\pi R$ and characterize hereditary

basic tiled R-orders. Finally, we shall add some examples.

We shall use the same definitions and notations as in [2].

1. Some graph theoretic results

Let $Q=(Q_{0}, Q_{1}, d, r)$ be a quiver satisfying the conditions:
(A1) There is at most one arrow between any two vertices.
(A2) Q. has no loops and no oriented cycles.

Let $\mathcal{D}=\mathcal{D}(Q)$ (resp. $a=a(q)$ ) denote the subset of $Q_{0}$ consisting of non-domains
(resp. non-ranges) in Q.. Since $Q$ has no loops and no oriented cycles, $\mathcal{D}\neq\phi$ and $ a\neq\emptyset$ .
Then, from Q., we can construct a new quiver $\tilde{Q}=(\tilde{Q}_{0},\tilde{Q}_{1},\tilde{d,}\tilde{r})$ satisfying (A1) as follows:
$\tilde{Q}_{0}=Q_{0}$ and $\alpha\in\tilde{Q}_{1}$ if and only if $\alpha\in Q_{1}$ or else $ d\tilde{(}\alpha$ ) $\in \mathcal{D}$ and $\tilde{r}(\alpha)\in$ (R. We consider $Q$ as a
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subquiver of $\tilde{Q}$ .
It should be noted that there are quivers $Q,,$ $Q^{\prime}$ satisfying (A1), (A2) and $\tilde{Q}=\tilde{Q}^{\prime}$ , but

$Q\neq Q^{\prime}$ (cf. [2, Example 2.3]).

Let $Q^{\prime}=(Q_{0^{\prime}}, Q_{1}^{\prime}, d^{\prime}, r^{\prime})$ be another quiver satisfying (A1), (A2) and $\tilde{Q}=\tilde{Q}^{\prime}$ , and put
$\mathcal{D}^{\prime}=\mathcal{D}(Q^{\prime})$ and $a^{\prime}=\alpha(Q^{\prime})$ . We shall study some relationship between $Q$ and $Q^{\prime}$ .

LEMMA 1. Suppose that $Q\neq Q^{\prime}$ . Then,
(1) Dna)’ $=\phi$ and $\alpha\cap a’=\phi$ .
(2) If $i\in \mathcal{D}$ and $ j\in\alpha$, then $i\rightarrow j\in Q_{1}^{\prime}$ and $i\neq j$ .

PROOF. (1) Assume that there is $i\in \mathcal{D}\cap \mathcal{D}^{\prime}$ . For each $1\in a$ , there is $i\rightarrow j\in\tilde{Q}_{1}=\tilde{Q}_{1}^{\prime}$ .
Since $i\in \mathcal{D}^{\prime}$ , there are no arrows in $Q_{1}^{\prime}$ starting from $i$ . Hence $necessarilyj\in\alpha’$ . So $\alpha\subset a^{r}$ .
Similary $\alpha^{\prime}\subset O$ . Hence $a=\alpha’$ . In a similar way, we obtain $\mathcal{D}=\mathcal{D}^{\prime}$ . Thus we conclude that
$Q=Q^{\prime}$ , a contradiction. Therefore $\mathcal{D}n\mathcal{D}^{\prime}=\phi$ . A similar argument shows $ a\cap\alpha’=\phi$ .

(2) Let $i\in D$ and $j\in a$ . Then, there is $i\rightarrow j$ in $\tilde{Q}_{1}=\tilde{Q}_{1}^{\prime}$ . If there is no $i\rightarrow j$ in $Q_{1}^{\prime}$ , then
necessarily $i\in \mathcal{D}^{\prime}$ and $j\in a$

’ which contradict to (1). Therefore $i\rightarrow j\in Q_{1}^{\prime}$ and so $i\neq j$ by (A2).

LEMMA 2. Let $p$ be a path fromj to $i$ in $\tilde{Q}=\tilde{Q}^{\prime}$ with $i\in \mathcal{D}andj\in a$
’ (or $ i\in \mathcal{D}^{\prime}andj\in\alpha$ ).

Then $p$ is in Q. if and only if $p$ is in $Q^{\prime}$ .

PROOF. Suppose that $p$ is in Q. and not in $Q^{\prime}$ . Then there exists $\alpha\in Q_{1}$ such that $\alpha$ ap-
pears on $p,$ $d^{\prime}(\alpha)\in \mathcal{D}^{\prime}$ and $r^{\prime}(\alpha)\in \mathcal{O}^{\prime}$ . When $i\in \mathcal{D}$ and $j\in \mathcal{O}^{\prime}$ , it follows from Lemma 1 (2)–
that there is an arrow $d^{\prime}(\alpha)\rightarrow j\in Q_{1}$ . Then $Q$ has an oriented cycle $J^{\rightarrow}$

$\rightarrow d’(\alpha)$ , which con-
tradicts to (A2). When $i\in \mathcal{D}^{\prime}$ and $;\in a$ , there is an arrow $i\rightarrow r^{\prime}(\alpha)\in Q_{1}$ and so $ r^{\prime}(\alpha)\rightarrow\cdots\rightarrow i\wedge$

is in $Q$, a contradiction. Therefore, in each case, if $p$ is in $Q_{\theta}$ then $p$ is in $Q^{\prime}$ . A similar argu-
ment shows the converse.

Put $S=\{i\in Q_{0}|$ there exist $ b\in\alpha$
’ and $a\in \mathcal{D}$ such that $i$ occurs in the path from $b$ to $a$ in

(RJ- Note that $i\in S$ whenever $i\in a’\cap \mathcal{D}$ .

LEMMA 3. Let $p$ be a path fromj to $i$ in $\tilde{Q}=\tilde{Q}^{\prime}$ . Assume that either (1) $i\in Sandj\in S$ or (2)
$i\not\in S$ and it S. Then $p$ is in Q. if and only if $p$ is in $Q^{\prime}$ .

PROOF. (1) There exist $b_{I},$ $b_{2}\in a^{l}$ and $a_{1},$ $a_{2}\in \mathcal{D}$ such that $i$ (resp. j) occurs in some
path of $Q$ (and $Q^{\prime}$ , by Lemma 2) from $b_{I}$ (resp. $b_{2}$) to $a_{1}$ (resp. $a_{2}$). Thus we obtain a path
$p^{\prime}:b_{2}\rightarrow\cdots\rightarrow j\rightarrow p\rightarrow i\rightarrow\cdots\rightarrow a_{1}$ in $\tilde{Q}$ . Hence by Lemma 2, $p$ is in qep’ is in $Q\Leftrightarrow p^{\prime}$ is in
Q.’ $\Leftrightarrow p$ is in $Q^{\prime}$ .

(2) Suppose that $p$ is in $Q^{\prime}$ and not in Q. Then there is $a\in \mathcal{D}$ which occurs in $p$ . By (A2),

we can take $ b\in\alpha$
’ such that there is a path $b\rightarrow\cdots\rightarrow j$ in $Q^{\prime}$ or $j=b$ . Thus we obtain a path

$b\rightarrow\cdots\rightarrow j\rightarrow\cdots\rightarrow a$ in Q.’ and so in Q. by Lemma 2. Hence $j\in S$ , a contradiction. If $p$ is in $Q$

and not in $Q^{\prime}$ , we can similarly deduce $i\in S$ , a contradiction. This completes the proof.
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LEMMA 4. (1) If $i\in Sandj\not\in S$, then there is a path fromj to $i$ in $Q$ and no paths fromj to
$i$ in $q^{\prime}$ .

(2) If $i\not\in Sandj\in S$, then there is a path from $j$ to $i$ in $q^{\prime}$ and no paths from $j$ to $i$ in Q.

PROOF. (1) Since $i\in S$ , there is a path $b\rightarrow\cdots\rightarrow i\rightarrow\cdots\rightarrow a$ in $Q$ with $b\in\alpha^{\prime}$ and $a\in \mathcal{D}$ .
Take a path $j\rightarrow\cdots\rightarrow x$ in $Q^{\prime}$ with $x\in \mathcal{D}^{\prime}$ (or $j=x$). Then $x\not\in S$ by Lemma 1 (2). Hence

$j\rightarrow\cdots\rightarrow x$ is in $Q$ from Lemma 3 (2). Since $x\in \mathfrak{Q}^{\prime}$ and $b\in ffl^{\prime},$ $x\rightarrow b\in Q_{1}$ from Lemma 1 (2).

Thus we obtain a path $j\rightarrow\cdots\rightarrow x\rightarrow b\rightarrow\cdots\rightarrow i$ in Q.

Assume that there is a path from $j$ to $i$ in $Q^{\prime}$ . Take a path $y\rightarrow\cdots\rightarrow j$ in $Q^{\prime}$ with $y\in a$
’

(or $j=y$). Since $i\rightarrow\cdots\rightarrow a$ is in $q^{\prime}$ by Lemma 2, we obtain a path
$y\rightarrow\cdots\rightarrow j\rightarrow\cdots\rightarrow i\rightarrow\cdots\rightarrow a$ in $Q^{\prime}$ and so in Q. Hence $j\in S$ , a contradiction.

(2) is proved by a similar way.

Though the following proposition deviates from the main subject, we state it here
along the above results (cf. [2, Proposition 2.4]).

PROPOSITION 5. Let Q. and $q^{\prime}$ be quivers satisfying (A1), (A2) and $\tilde{Q}=\tilde{Q}^{\prime}$ . If $Q$ is discon-
nected, then $Q=Q^{\prime}$ .

PROOF. Let $cu$ and Vbe subquivers of $q$ such that $q=u\cup v$ (i.e., there are no arrows
between the vertices of $u$ and those of V). Since $cu$ and V also satisfy (A2), there are
$i\in u_{0}\cap \mathcal{D}$ and $j\in V_{0}\cap \mathcal{O}$ . Take $x\in a^{r}$ and $y\in \mathcal{D}^{\prime}$ such that there are paths $p_{1}:x\rightarrow\cdots\rightarrow i$ (or

$i=x)$ and $p_{2}:j\rightarrow\cdots\rightarrow y$ (or $j=y$ ) in Q.’. It follows from Lemma 2 that $p_{1}$ and $p_{2}$ are in $q$.
Hence $x\in \mathcal{U}_{0}$ and $y\in V_{0}$ . Since $y\in \mathcal{D}^{\prime}$ and $x\in a’$ , it holds that $q=q^{\prime}$ by Lemma 1 (2). This
completes the proof.

2. Proof of the theorem

Since (1) $\Rightarrow(2)$ and (3) $\Rightarrow(1)$ are clear, we shall prove (2) $\Rightarrow(3)$ . Let $Q=Q(A)$ and
$Q^{\prime}=Q(B)$ be the quivers of $R/\pi R$-algebras $A=\Lambda/(\pi R)_{n}$ and $B=\Gamma/(\pi R)_{n}$ respectively.
Since $\Lambda$ and $\Gamma$ are basic tiled R-orders between $(R)_{n}$ and $(\pi R)_{n},$ $Q$ and $Q^{\prime}$ satisfy the condi-
tions (A1) and (A2). It follows from [2, Theorem] that the link graph of $\Lambda$ is given by $\tilde{Q}$ .
Using a permutation matrix in $(R)_{n}$ if necessary, we may assume $\tilde{Q}=\tilde{Q}^{\prime}$ . Let $S$ denote
the set { $i\in Q_{0}|i$ occurs in some path from $b$ to $a$ or $i=b=a$ for some $ b\in\alpha$

’ and $a\in \mathcal{D}$ }, and
define

$u=\left(\begin{array}{ll}u_{1} & 0\\0 & u_{n}\end{array}\right)$ where $u_{i}=\left\{\begin{array}{l}1 if i\not\in S\\\pi if i\in S\end{array}\right.$ $(1\leqq i\leqq n)$ .

Then, using the following lemma and Lemmas 3, 4, it is easily verified that $\Gamma=u\Lambda u^{-1}$ .

LEMMA 6. There is a path from $j$ to $i$ in $q(A)lf$ and only $\iota f\Lambda_{ij}=R$ .



296 Hisaaki FUJITA

PROOF. It is well-known that there is a path from $j$ to $i$ in $Q(A)$ iff $e_{i}Ae_{j}\neq 0$ . Since
$\Lambda_{ij}=R$ iff $e_{i}Ae_{j}\neq 0$ , the lemma is proved.

One could give a direct proof of the lemma as an elementary excercise (cf. [2, Lemma
2.2]).

3. The number of $A_{ij}\prime s$ with $A_{ij}=\pi R$

Let $\Lambda=(\Lambda_{ij})$ be a tiled R-order between $(R)_{n}$ and $(\pi R)_{n}$ , and let $d(\Lambda)$ denote the
number of $\Lambda_{ij}\prime s$ with $\Lambda_{ij}=\pi R$ .

COROLLARY 7. $Und\ell r$ the same assumption of the theorem, if $\Lambda$ is isomorphic with $\Gamma$,

then $d(\Lambda)=d(\Gamma)$ .

PROOF. This follows from the definition of $u$ in the proof of the theorem.

Of course, the converse of the corollary does not hold (see Example 11), however, we
should note the following proposition. A part of it follows from [3], but we shall give
another proof in our context.

PROPOSITION 8. Let $\Lambda=(\Lambda_{ij})$ be a basic tikd R-order between $(R)_{n}$ and $(\pi R)_{u}$ and put
$A=\Lambda/(\pi R)_{n}$ . Then the following statements are equivaknl.

(1) $\Lambda$ is hereditary.
(2) $Q(A)$ is given by $i_{1}\rightarrow i_{2}\rightarrow\cdots\rightarrow i_{n}$ .
(3) If $i\neq j,$ $\Lambda_{ij}=R$ iff $\Lambda_{ji}=\pi R$ .
(4) $d(\Lambda)=n(n-1)/2$ .

PROOF. (1) $\Rightarrow(2)$ (cf. [3, Appendix, Theorem]) Since the link graph of $\Lambda$ is connected
(cf. [2, Remark (2)]), it follows from [5, IV] (or [4, Prop. 11]) and [1, \S 2] that the link
graph of $\Lambda$ is given by a cycle. Hence, by [2, Theorem], $Q(A)$ is given by $i_{1}\rightarrow i_{2}\rightarrow\cdots\rightarrow i_{n}$ .

(2) $\Rightarrow(1)$ This follows from [2, Example 3.3].
(2) $\Rightarrow(3)$ This follows from Lemma 6.
(3) $\Rightarrow(2)$ By Lemma 6, for any $i\neq j$, there is a path in $Q(A)$ from $i$ to $j$ or else $j$ to $i$ .

Hence $Q(A)$ is connected. If there were arrows $j_{1}\rightarrow i\leftarrow j_{2}(j_{1}\neq j_{2})$ in $Q(A)_{1}$ , then there would
be a path, e.g., $j_{1}\rightarrow\cdots\rightarrow j_{2}$ in $Q(A)$ , which would contradict to $j_{1}\rightarrow i\in Q(A)_{1}$ . Therefore
$Q(A)$ is given by $i_{1}\rightarrow i_{2}\rightarrow\cdots\rightarrow i_{n}$ .

Since $\Lambda$ is basic, if $i\neq j$ and $\Lambda_{ij}=R$ , then $\Lambda_{ji}=\pi R$ . Hence $d(\Lambda)\geqq n(n-1)/2$ . Hence
(3) $\approx(4)$ holds.

4. Examples

We shall list some examples to which we shall apply the above results.
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EXAMPLE 9. Let

$\Lambda=\left\{\begin{array}{lllll}R & R & \pi R & \pi R & \pi R\\\pi R & R & \pi R & \pi R & \pi R\\R & R & R & R & \pi R\\\pi R & R & \pi R & R & \pi R\\R & R & \pi R & R & R\end{array}\right\}$ and $\Gamma=\left\{\begin{array}{lllll}R & \pi R & \pi R & \pi R & \pi R\\\pi R & R & \pi R & \pi R & \pi R\\R & R & R & \pi R & \pi R\\R & R & R & R & \pi R\\R & R & R & \pi R & R\end{array}\right\}$ .

Then the quiver $Q(A)$ and $Q(B)$ are given by respectively

$3\overline{2\nearrow}^{4}$

and

$1\backslash _{3}\nearrow 4$

$1\underline{\nearrow}5$ $5\nearrow\backslash _{2}$

Hence, by [2, Theorem], the link graphs of $\Lambda$ and $\Gamma$ are given by respectively

$3\overline{\backslash _{2}\nearrow}^{4}$

and

$1\overline{\backslash _{3}\nearrow}^{4}$

$1\underline{\nearrow\backslash }_{5}$ $5\underline{\nearrow\backslash }_{2}$

Put $u^{\prime}=\left\{\begin{array}{l}00100\\00001\\10000\\00010\\10000\end{array}\right\}$ and $\Lambda^{\prime}=u^{\prime}\Lambda u^{\prime-1}$ . Then $\Lambda^{\prime}$ and $\Gamma$ have the same link graph

and $S=\{3,4,5\}$ . So put

$u^{\prime\prime}=\left\{\begin{array}{lllll}1 & & & & 0\\ & 1 & & & \\ & & \pi & & \\0 & & & \pi & \pi\end{array}\right\}$ and $u=u^{\prime}u^{\prime\prime}=\left\{\begin{array}{ll} & 00100\\ & 00001\\0\pi & 000\\000 & 0\pi\\\pi & 0000\end{array}\right\}$ .

Then $\Gamma=u\Lambda u^{-1}$ .
There are tiled $R$-orders with the same link graph, but they are not isomorphic.

EXAMPLE 10. Let
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$\Lambda=\left(\begin{array}{lll}R & \pi R & \pi R\\\pi R & R & \pi R\\\pi R & R & R\end{array}\right)$ and $\Gamma=\left(\begin{array}{lll}R & \pi^{2}R & \pi^{2}R\\\pi^{2}R & R & \pi R\\\pi^{2}R & R & R\end{array}\right)$ .

Then the link graphs of $\Lambda$ and $\Gamma$ are given by

$(1\circ$

$2^{/}-3\sim^{\backslash }$

.

But $\Lambda$ is not isomorphic with $\Gamma$.

EXAMPLE 11. Let

$\Lambda_{1}=\left\{\begin{array}{llll}R & \pi R & \pi R & \pi R\\R & R & \pi R & \pi R\\R & \pi R & R & \pi R\\R & \pi R & \pi R & R\end{array}\right\}$ , $\Lambda_{2}=\left\{\begin{array}{llll}R & \pi R & \pi R & \pi R\\\pi R & R & \pi R & \pi R\\R & R & R & \pi R\\\pi R & R & \pi R & R\end{array}\right\}$ and $\Lambda_{3}=\left\{\begin{array}{llll}R & \pi R & \pi R & \pi R\\R & R & \pi R & \pi R\\R & R & R & \pi R\\\pi R & \pi R & \pi R & R\end{array}\right\}$ .

Then for each $i=1,2,3,$ $d(\Lambda_{i})=9$ and the quiver $Q(A_{i})$ where $A_{i}=\Lambda_{i}/(\pi R)_{4}$ is given by
respectively

$2\backslash \nearrow^{3}$

1 $1\rightarrow 3\leftarrow 2\rightarrow 4$ and $1\rightarrow 2\rightarrow 3$ 4.
$\downarrow$

4
Moreover gl. $\dim\Lambda_{1}=2$ , gl.dim $\Lambda_{2}=3$ and gl. $\dim\Lambda_{3}=\infty(cf.[2, \S 3])$ . Hence these are
mutually non-isomorphic.
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