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GAPS BETWEEN COMPACTNESS DEGREE AND COMPACTNESS
DEFICIENCY FOR TYCHONOFF SPACES

By
Takashi KIMURA

1. Introduction.

In this paper we assume that all spaces are Tychonoff. For a space X, dim X denotes
the Cech-Lebesgue dimension of X (see 3D

J. de Groot proved that a separable metrizable space X has a metrizable compactifica-
tion o X with dim («X\ X)) <0 iff X is rim-compact (see [4]). A space X is rim-compact if
each point of X has arbitrarily small neighborhoods with compact boundary. Modified the
concept of rim-compactness, he defined the compactness degree of a space X, cmp X, induc-
tively, as follows.

A space X satisfies cmp X= —1 iff X is compact. If # is a non-negative integer, then
cmp X<# means that each point of X has arbitrarily small neighborhoods U with
cmp Bd U<z—1. We put cmp X=# if cmp X<# and cmp X £#n— 1. If there is no integer
n for which cmp X<#, then we put cmp X=oo.

By the compactness deficiency of a Tychonoff space (resp. a separable metrizable space)
X we mean the least integer »# such that X has a compactification (resp. a metrizable com-
pactification) aX with dim (aX\ X)=#. We denote this integer by def* X (resp. def X).
We allow 7 to be oo.

Thus, with this terminology, J. de Groot’s result above asserts that cmp X <0 iff def X
<0 for every separable metrizable space X. The general problem whether cmp X< iff
def X<# for arbitrary separable metrizable space X has been known as J. de Groot’s con-
jecture, and was unsolved for a long time.

However, in 1982 R. Pol constructed a separable metrizable space X such that
cmp X=1 and def X=2. In the class of separable metrizable spaces, another example X
with the property that cmp X#def X seems to be still unknown but Pol’s example above.

On the other hand, in the class of Tychonoff spaces, M. G. Charalambous has
already constructed a space X such that cmp X=0 and def* X=# for eachn=1, 2, - -, .
J. van Mill [6] has constructed a Lindeléf space X such that cmp X=1 and
def* X=oo.

In this paper we construct a countably compact space X such that cmp X=m and
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def* X=n for m, ne NU {00} with m<n.

2. Lemmas and the main result.

We begin with the following inductive conception, which is closely related to cmp X.

DEFINITION 2.1. For a subset A of a space X we define

ind (4, X)=-1iff A is empty,

ind (A, X)<n iff each point of A has arbitrarily small neighborhoods
Uin X with ind (Bdxy UNA, X)<n-1,

ind (4, X)=n iff ind (4, X)<nand ind (4, X)§n—-1,

ind (4, X)=o iff ind (4, X)<# for all n.

The following lemma readily follows from induction.
LEMMA 2.2. For a closed subset A of a space X cmp A<cmp X.

LEMMA 2.3. Let AcBcXcCY. Then

(1) ind (4, X)<ind (B, X),
(2) ind (4, X)<ind 4, Y).

PROOF. (1) is easy by induction.

(2). We proceed by induction on ind (4, Y)=#. Obviously, (2) holds for n=—1. Let
n=>0 and assume that (2) holds for every % with 2<#n. Suppose that ind (4, Y)=#. For
each xe A and each neighborhood U of x in X there are neighborhoods U and V' of xin Y
such that U=U'NX, V'CcU and ind (Bdy V'NA, Y)<n—1. Let V=V'NX. The induc-
tion hypothesis implies that ind (Bdy V'NA, X)<ind (Bdy V'NA, Y)<n—1. Since
Bdxy VNACBdy V'NA, by (1), we have ind (Bdx VNA, X)<n—1. Hence we have
ind (A, X)<n, therefore ind (4, X)<ind (4, Y).

For every space X we set R(X) = {x € X |x has no neighborhood with compact closure}.
LEMMA 2.4. For every space X we have cmp X<ind (R(X), X)+1.

PrROOF. We shall apply induction with respect to ind (R(X), X)=n. Obviously, the
lemma holds for n=—1. Let n=>0 and assume that the lemma holds for every & with 2<#n.
Suppose that ind (R(X), X) =n. We shall prove that cmp X<n+ 1. To prove this, we only
consider points of R(X), because X\ R(X) is locally compact and open in X. Let x e R(X)
and U a neighborhood of x in X. Then we take a neighborhood V of x in X such that VC U
and ind (Bdy VNR(X), X)<n—1. Since R(Bdy V)CcBdx VNR(X), by lemma 2.3, we
have ind (R(Bdy V), Bdx V) <ind (Bdx VNR(X), X)<n-—1. By induction hypothesis, we
have cmp Bdy V<#x. Hence we have cmp X<n+1.
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As usual, an ordinal « is the space of all ordinals less than o with order topology. For
each ordinal o we denote by [0, o] the long segment for «. That is, [0, a]=(aX [0, 1))
U {a} as the set, where [0, 1) is the half-open unit interval, with order topology with
respect to an order < as follows; for (8, %), (y,s)eax[0,1) (B, t)<(y,s) iff (B<y) or
(B=7y and ¢<s) and for all (8, H)eax[0,1) (B, t)<a.

Then the space [0, «] is compact and connected. For ordinals «;, 1<7<n, we have
dim IT}_, [0, @;]=ind II}_, [0, o;]=n. For any points 8, y €[0, o] with 8<y we define [, y]
={0€[0, a]|B<6<y}. Similarly, we define [, y), (8, y] and (B, ¥).

LEMMA. 2.5. Let m=1 and Ym=(w1 X [O) wl]m+1) U({(wh Wy, wl)} X [Oy wl]m—l) be
the subspace of (w;+1) X [0, w,)™*'. Then cmp Y,,=m.

PROOF. Since R(Y,,)= {(w;, w1, w1)} X [0, 1]}, we have ind (R(Y,), Y,)=m—1.
By Lemma 2.4, cmp Y,,<m. Thus we only show that cmp Y,,=>m. We proceed by induc-
tion on m.

Step 1. Suppose that m=1.
Let {y} =R(Y) = {(wy, w1, w))} and U=((w;+1) %1, 0;])NY:. Then U is a

neighborhood of y in Y;. Assume that there is a neighborhood V of y in Y; such that Vc U

and Bd V is compact. Let p:(w;+1) X [0, w;]?>=>w,+1 be the projection. Then we have
p(BdV) Cw,. Since p(BdV) is compact, we can take an ordinal o <w, such that p(BdV)
C a.. On the other hand, there is an ordinal f< w,; such that (y, w;, w;) € V for every y with

B<y<w,;. Pick up an ordinal y with max {«, 8} <y<w;. Then yép(BdV), (»,0,00 ¢V

and (y, wy, w;) € V. This contradicts the connectedness of {y} x [0, w;]?. Thus BdV is not
compact for every neighborhood V of y in Y; with VC U. Hence cmp Y,=1.

Step 2. Assume that cmp Y,=k for every k with 2<m.

Let Z=((w;+1) X [0, 0] %[0, 1) NY,, U=((w;+1) X[0, @] %x[0,1/2))NY,, and
x=(w,, wy, ***, w1, 0). Then Z is closed in Y,, and U is a neighborhood of x in Z. For each
neighborhood V of x in Z with VC U we set

t=sup {s€[0, 1]|(wy, wy, - - -, w1, 5)€ V}.

Let p: (w;+1) X [0, ,]" "' =(w,+1) X I [0, w1];~ [0, w1]lms1 be the projection and
A=p(({(w1, w1, -+, w1)} X[0,1])N V). For each xe ({(wy, w1, -+, w)} x[0, 1NNV we
take oy <w,, 1=0, 1, ---, m, and an open subset U, of [0, 1] such that xe V,=((w;+1)
N\ o) XI5 [, 1] X U;)NZC V. Since ({(wy, wy, -+ -, wy)} X [0, 1]) N V is Lindelof, we
can take a countable subset {x(n) [#e N} such that {V,u|neN} covers ({(w;, wy, -+,
w)} x[0,1)NV. Let o;=sup {ay|neN} for each i=0,1, ---, m. Then o;<w; and
(w1 + 1) N ag) XII7Z, [y, ] XA)NZC V. Let W=Z\Cl,V. Then, similarly, we can take
an ordinal B;<w; for each 7=0,1, ---, m such that (((ew;+1)\ Bo) XII~; [B;, w,] X B)
NZc W, where B=p({(w,, w1, -, w1)} xX[0, 1])NW). Let us set y;=max {«;, B;} for
each =0, 1, ---, m. Then (((w;+1)\ypo) X7, [y; w1] X {t})NZ is homeomorphic to
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Y,.—1 and contained in Bd; V as a closed subset. By Lemma 2.2, we have cmp Bd; V>m—1,
therefore cmp Y,,>cmp Z>m. Hence we have cmp Y,,=m. This completes the proof of
Lemma 2.5.

Let n>2 and Z,=II17%, [0, w;]\ {(w;, ws, - - -, w,+1)} be the subspace of "%} [0, w;].

Since 1172, [0, ;) is pseudocompact, by Glicksberg’s theorem, we have BII7; [0, w;)
=H:’+21 [0, w;], where BY is the Stone-Cech compactification of a space Y. Thus gZ,=
172} [0, w;]. Namely, Z, has the only compactification 1%} [0, w;].

LEMMA. 2.6. Let X contain Z, as a closed subset. Then for every perfect image Y of X we
have dim Y>n.

PROOF. Letf:X—Y be a perfect surjection and Bf.X—B8Y the Stone extension
of f. Then ClyxZ, is a compactification of Z,. As described above, ClzxZ, is homeomorphic
to I1"*} [0, w;]. Let 2= (w., w3, * -, wy+1). Then ClxZ,=2Z,U {z} andze X\ X.

Claim 1. For each {=2,3, ---, n+1, there is an ordinal o;<w; such that gf(4,)
NAf(B;) =¢, where

A,~=H;;; [e), ;] % {e;} XH” i+1 [, ;]
and
B=1Z; [, wj] X {w;} XTT24 (o, w)].

Proof of Claim 1. Since f is perfect, 8f (2) € 8 (Z,) (see [3, 3.7.15]). Thus for each
a<w; we take an ordinal o () <w; such that

Bf (T2} [l (@), ;] % {a} X124, [o(a), w.])n
Bf (U2} [ (@), wi] X {w;} X TI12L 1 (ar), wi]) = .

Let o/=sup {a!(a) la<w;}. If j<i, then ai<w;.
We define, by downward induction on ¢, an ordinal

2 1—1 i+1 +1
=max {af, -, ai ,a (@), -, ar (an+1)}.

Then o;<w; for each 1=2, 3, ---, n+1. Since a,'Za{:(aj), we have Bf (A;) NBf (B;) =¢.

Claim 2. dim Y>u.

Proof of Claim 2. Assume that dim Y=dim 8Y <#. Since 8f (A4;) and Bf (B;) are dis-
joint closed subsets of Y for each i=2, 3, - - -, n+1, we take a partition L, in 8Y between
Bf(A;) and Bf(B;) such that N} L;=¢(cf.[2,3.3.6]). Let X =I"*} [a;, w;] and
M=8f"Y(L))NX'. Then M, is a partition in X' between A, and B; such that N} M;=¢.
Since X’ is compact, for each i=2, 3, - - -, n+1, we take a finite collection {#]0<j<m;}
of ordinals such that

(1) a=pi<- << <p"=w,
@) NiZ StM;, @)=¢, St(M;, @NSt(A; @)=¢ and St(M;, @) NSt(B;, @)=4,
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where @= {1125} [B197%, BTG @), - -+, jm+ D)) ellly {1, -+, m}}).

Then for each =2, 3, - - -, n+1, there is a continuous mapping f;: [a;, w;]— [0, 1]1=1; such
that £;(B) =j/m; and £,([8}, B =[(i—1)/ms, j/m.). Let g=T012; fi: 12, [a, 011113, I;
be the product mapping defined by g((£;)"*2) = (f:())*,. Since St(M;, Q) is a partition in
X' between A; and B;, there are disjint open subsets U; and V; of X’ such that A;C U,
B,CV,and X'\St(M,, @ =U,U V;. Let Ki=I,x - - - X I;_; X {j} XI;41 %X -+ - x I, for each
1=2,3, -+, n+1 and each j=0, 1. Let N;=g(X'\U)Ng(X'\V;) for each 1=2,3, - -,
n+1. Then N; is a partition in I1"*} I; between K and K}, and N}, N;=¢. This is a con-
tradiction (cf. [2, 1.8.1]).

Now we construct a space, which is mentioned in the introduction.

EXAMPLE. 2.7. For m, n e NU {oo} with m<n there exists a countably compact space X
such that cmp X=m and def*X=mn.

Case 1. neN.

Let X=(cw; X172, [0, w;]) U ({(w1, w1, w1)} X [0, 011" x {(w1, 0y, -+, @)} U {(wy,
Ws, -+, Wy+1)} be the subspace of (w;+1) xII2%} [0, w;].

It is easy to see that X is countably compact.

Since R(X) = ({(w1, w1, w1} X [0, ;)" ' x {(wy, w1, -+, @)}V {(wy, w3, - -, wn+1)},

we have ind (R(X), X)=m—1. By Lemma 2.4}, we have cmp X<m. Since X contains Y,
as a closed subspace, by Lemmas and 2.5 we have cmp X=>m. Hence cmp X=m.

Next, since SX= (w;+1) xII**; [0, w;], we have dim (8X\ X)=n. Thus def*X<n.
For each compactification oX of X there is a parfect surjection fifX\ X—->aX\ X, and
BX\ X contains a closed subset homeomorphic to Z,. Thus, by Lemma 2.6, we have
dim (X \ X)>#%. Hence def*X=n.

Case 2. n=oo,

Let X=(cw; X II{Z, [0, @) U ({(w1, w1, w1)} X [0, ;1771 % {(wy, w1, -~ ) U {(e0, wy,
--+)} be the subspace of (w;+1) XII;Z, [0, w;]. Then, similarly, X is countably compact,
cmp X=m and def*X=n.

3. Statements.

We define Cmp X of a space X by the following; Cmp X=0 if cmp X<0, and for n>1,
Cmp X <n if each closed subset of X has arbitrarily small neighborhoods U with Cmp Bd U
<n—1. Cmp X was defined by J. de Groot for the case X is separable and metrizable.

It can be prove that cmp X<Cmp X for every space X and cmp X<Cmp X<def X for
every separable metrizable space X (see [4]). For Pol’s example X in [7] shows that cmp X
=1 and Cmp X=def X=2. Thus it is unknown whether there is a separable
metrizable space X with Cmp X<def X. It would be interesting to have a separable
metrizable space X such that cmp X=%, Cmp X=m and def X=n for k, m, ne NU {0}
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with 2<m<n.

Obviously, def*X<def X for every separable metrizable space X. We do not know
whether there is a separable metrizable space X with def *X < def X as well as the value of
def*X for Pol’s example X in [7].

In Example 2.7 we have constructed a space X with cmp X=m and def*X=x for m,
neNU {} with m<n. However, in general, cmp X need not be less than or equal to
def*X [5, VII.25]. It would be interesting to have a space X such that cmp X=k&,
Cmp X=m and def*X=un for k, m, ne NU {oo} with 2<m.

Added in proof. The author constructed a separable metrizable space X such that
def X—com X=mn for each neN. Thus in the class of separable metrizable spaces the gap
between cmp X and def X can be arbitrarily large.
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