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GAPS BETWEEN COMPACTNESS DEGREE AND COMPACTNESS
DEFICIENCY FOR TYCHONOFF SPACES

By

Takashi KIMURA

1. Introduction.

In this paper we assume that all spaces are Tychonoff. For a space $X,$ $\dim X$ denotes
the $\check{C}ech$-Lebesgue dimension of $X$ (see [3]).

J. de Groot proved that a separable metrizable space $X$ has a metrizable compactifica-
tion $\alpha X$ with $\dim(\alpha X\backslash X)\leq 0$ iff $X$ is rim-compact (see [4]). A space $X$ is rim-compact if
each point of $X$ has arbitrarily small neighborhoods with compact boundary. Modffied the
concept of rim-compactness, he defined the compactness degree of a space $X$, cmp $X$, induc-
tively, as follows.

A space $X$ satisfies cmp $X=-1$ iff $X$ is compact. If $n$ is a non-negative integer, then
cmp $X\leq n$ means that each point of $X$ has arbitrarily small neighborhoods $U$ with
cmp Bd $U\leq n-1$ . We put cmp $X=n$ if cmp $X\leq n$ and cmp $X\not\leq n-1$ . If there is no integer
$n$ for which cmp $X\leq n$ , then we put cmp $ X=\infty$ .

By the compactness deficiency of a Tychonoffspace (resp. a separable metrizable space)
$X$ we mean the least integer $n$ such that $X$ has a compactification (resp. a metrizable com-
pactification) $\alpha X$ with $\dim(\alpha X\backslash X)=n$ . We denote this integer by def* $X$ (resp. def $X$ ).

We allow $n$ to be $\infty$ .
Thus, with this terminology, J. de Groot’s result above asserts that cmp $X\leq 0$ iffdef $X$

$\leq 0$ for every separable metrizable space $X$. The general problem whether cmp $X\leq n$ iff
def $X\leq n$ for arbitrary separable metrizable space $X$ has been known as J. de Groot’s con-
jecture, and was unsolved for a long time.

However, in 1982 R. Pol [7] constmcted a separable metrizable space $X$ such that
cmp $X=1$ and def $X=2$ . In the class of separable metrizable spaces, another example $X$

with the property that cmp $X\neq defX$ seems to be still unknown but Pol’s example above.
On the other hand, in the class of Tychonoff spaces, M. G. Charalambous [1] has

already constmcted a space $X$ such that cmp $X=0$ and def* $X=n$ for each $n=1,2,$ $\cdots,$
$\infty$ .

J. van Mill [6] has constmcted a Lindelof space $X$ such that cmp $X=1$ and
def* $ X=\infty$ .

In this paper we constmct a countably compact space $X$ such that cmp $X=m$ and
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def* $X=n$ for $m,$ $n\in N\cup\{\infty\}$ with $m<n$ .

2. Lemmas and the main result.

We begin with the following inductive conception, which is closely related to cmp $X$.

DEFINITION 2.1. For a subset $A$ of a space $X$ we define

ind $(A, X)=-1$ iff $A$ is empty,
ind $(A, X)\leq n$ iff each point of $A$ has arbitrarily small neighborhoods

$U$ in $X$ with ind $(Bd_{X}U\cap A, X)\leq n-1$ ,

$ind(A, X)=n$ iff $ind(A, X)\leq n$ and $ind(A, X)fn-1$ ,

ind $(A, X)=\infty$ iff ind $(A, X)\not\leq n$ for all $n$ .

The following lemma readily follows from induction.

LEMMA 2.2. For a closed subset $A$ of a space $X$ cmp $A\leq cmpX$.

LEMMA 2.3. Let $A\subset B\subset X\subset Y$. Then

(1) ind $(A, X)\leq ind(B, X)$ ,

(2) ind $(A, X)\leq ind(A, Y)$ .

PROOF. (1) is easy by induction.
(2). We proceed by induction on ind $(A, Y)=n$ . Obviously, (2) holds for $n=-1$ . Let

$n\geq 0$ and assume that (2) holds for every $k$ with $k<n$ . Suppose that ind $(A, Y)=n$ . For
each $x\in A$ and each neighborhood $U$ of $x$ in $X$ there are neighborhoods $U^{\prime}$ and $V$ of $x$ in $Y$

such that $U=U^{\prime}\cap X,$ $V\subset U^{\prime}$ and ind $(Bd_{Y}V\cap A, Y)\leq n-1$ . Let $V=V\cap X$. The induc-
tion hypothesis implies that ind (Bd $YV^{\prime}\cap A,$ $X$ ) $\leq ind(Bd_{Y}V\cap A, Y)\leq n-1$ . Since
$Bd_{X}V\cap A\subset Bd_{Y}V\cap A$ , by (1), we have ind $(Bd_{X}V\cap A, X)\leq n-1$ . Hence we have
ind $(A, X)\leq n$ , therefore ind $(A, X)\leq ind(A, Y)$ .

For every space $X$ we set $R(X)=$ {$x\in X|x$ has no neighborhood with compact closure}.

LEMMA 2.4. For every space $X$ we have cmp $X\leq ind(R(X), X)+1$ .

PROOF. We shall apply induction with respect to ind $(R(X), X)=n$ . 0bviously, the
lemma holds for $n=-1$ . Let $n\geq 0$ and assume that the lemma holds for every $k$ with $k<n$ .
Suppose that ind $(R(X), X)=n$ . We shall prove that cmp $X\leq n+1$ . To prove this, we only
consider points of $R(X)$ , because $X\backslash R(X)$ is locally compact and open in $X$. Let $x\in R(X)$

and $U$ a neighborhood of $x$ in $X$. Then we take a neighborhood $V$ of $x$ in $X$ such that $V\subset U$

and ind $(Bd_{X}V\cap R(X), X)\leq n-1$ . Since $R(Bd_{X}V)\subset Bd_{X}V\cap R(X)$ , by lemma 2.3, we
have ind $(R(Bd_{X}V), Bd_{X}V)\leq ind(Bd_{X}V\cap R(X), X)\leq n-1$ . By induction hypothesis, we
have cmp $Bd_{X}V\leq n$ . Hence we have cmp $X\leq n+1$ .
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As usual, an ordinal $\alpha$ is the space of all ordinals less than $\alpha$ with order topology. For
each ordinal $\alpha$ we denote by $[0, \alpha]$ the long segment for $\alpha$ . That is, $[0, \alpha]=(\alpha\times[0,1))$

$\cup\{\alpha\}$ as the set, where $[0,1$ ) is the half-open unit interval, with order topology with
respect to an order $<$ as follows; for $(\beta, t),$ $(\gamma, s)\in\alpha\times[0,1)(\beta, t)<(\gamma, s)$ iff $(\beta<\gamma)$ or
( $\beta=\gamma$ and $t<s$) and for all $(\beta, t)\in\alpha\times[0,1)(\beta, t)<\alpha$ .

Then the space $[0, \alpha]$ is compact and connected. For ordinals $\alpha_{i},$
$1\leq i\leq n$ , we have

$\dim\Pi_{i=1}^{n}[0, \alpha_{i}]=ind\Pi_{i=1}^{n}[0, \alpha_{i}]=n$ . For any points $\beta,$ $\gamma\in[0, \alpha]$ with $\beta<\gamma$ we define $[\beta, \gamma]$

$=\{\delta\in[0, \alpha]|\beta\leq\delta\leq\gamma\}$ . Similarly, we define $[\beta, \gamma$), $(\beta, \gamma$ ] and $(\beta, \gamma)$ .

LEMMA. 2.5. Let $m\geq 1$ and $Y_{m}=(\omega_{1}\times[0, \omega_{1}]^{m+1})\cup(\{(\omega_{1}, \omega_{1}, \omega_{1})\}\times[0, \omega_{1}]^{m-1})$ be
the subspace of $(\omega_{1}+1)\times[0, \omega_{1}]^{m+1}$ . Then cmp $Y_{m}=m$ .

PROOF. Since $R(Y_{m})=\{(\omega_{1}, \omega_{1}, \omega_{1})\}\times[0, \omega_{1}]^{m-1}$ , we have ind $(R(Y_{m}), Y_{m})=m-1$ .
By Lemma 2.4, cmp $Y_{m}\leq m$ . Thus we only show that cmp $Y_{m}\geq m$ . We proceed by induc-
tion on $m$ .

Step 1. Suppose that $m=1$ .
Let $\{y\}=R(Y_{1})=\{(\omega_{1}, \omega_{1}, \omega_{I})\}$ and $U=((\omega_{1}+1)x(1, \omega_{1}]^{2}$) $\cap Y_{1}$ . Then $U$ is a

neighborhood of $y$ in $Y_{1}$ . Assume that there is a neighborhood $V$ of $y$ in $Y_{1}$ such that $V\subset U$

and Bd $V$ is compact. Let $p;(\omega_{1}+1)\times[0, \omega_{1}]^{2}\rightarrow\omega_{1}+1$ be the projection. Then we have
$p(BdV)\subset\omega_{1}$ . Since $p(BdV)$ is compact, we can take an ordinal $\alpha<\omega_{1}$ such that $p(BdV)$

$\subset\alpha$ . On the other hand, there is an $ordina1\beta<\omega_{1}$ such that $(\gamma, \omega_{I}, \omega_{1})\in V$ for every $\gamma$ with
$\beta<\gamma<\omega_{1}$ . Pick up an ordinal 7 with $\max\{\alpha, \beta\}<\gamma<\omega_{1}$ . Then $\gamma\not\in p(BdV),$ $(\gamma, 0, O)\not\in V$

and $(\gamma, \omega_{1}, \omega_{1})\in V$. This contradicts the connectedness of $\{\gamma\}\times[0, \omega_{1}]^{2}$ . Thus Bd $V$ is not
compact for every neighborhood $V$ of $y$ in $Y_{1}$ with $V\subset U$. Hence cmp $Y_{1}=1$ .

Step 2. Assume that cmp $Y_{k}=k$ for every $k$ with $k<m$ .
Let $Z=((\omega_{1}+1)\times[0, \omega_{1}]^{m}\times[0,1])\cap Y_{m},$ $U=((\omega_{1}+1)x[0, \omega_{1}]^{m}\times[0,1/2))\cap Y_{m}$ and

$x=(\omega_{1}, \omega_{1}, \cdots, \omega_{1},0)$ . Then $Z$ is closed in $Y_{m}$ and $U$ is a neighborhood of $x$ in $Z$. For each
neighborhood $V$ of $x$ in $Z$ with $V\subset U$ we set

$t=\sup\{s\in[0,1]|(\omega_{1}, \omega_{1}, \cdots, \omega_{1}, s)\in V\}$ .
Let $p:(\omega_{1}+1)\times[0, \omega_{1}]^{m+1}=(\omega_{1}+1)\times\Pi_{i=1}^{m+1}[0, \omega_{1}]_{i^{\rightarrow}}[0, \omega_{1}]_{m+1}$ be the projection and
$A=p((\{(\omega_{1}, \omega_{1}, \cdots, \omega_{1})\}\times[0,1])\cap V)$ . For each $x\in(\{(\omega_{1}, \omega_{1}, \cdots, \omega_{1})\}\times[0,1])\cap V$ we
take $\alpha_{ix}<\omega_{1},$ $i=0,1$ , –, $m$ , and an open subset $U_{x}$ of $[0,1]$ such that $x\in V_{x}=((\omega_{1}+1)$

$\backslash \alpha_{0x})\times\Pi_{i=1}^{m}[\alpha_{\dot{u}}, \omega_{1}]\times U_{\chi})\cap Z\subset V$. Since $(\{(\omega_{1}, \omega_{1}, \cdots, \omega_{1})\}\times[0,1])\cap V$ is Lindel\"of, we
can take a countable subset $\{x(n)|n\in N\}$ such that $\{V_{x\langle n)}|n\in N\}$ covers $(\{(\omega_{1},$

$\omega_{1},$
$\cdots$ ,

$\omega_{1})\}\times[0,1])\cap V$. Let $\alpha_{i}=\sup\{\alpha_{\iota x(n)}|n\in N\}$ for each $i=0,1,$ $\cdots,$ $m$ . Then $\alpha_{i}<\omega_{1}$ and
$(((\omega_{1}+1)\backslash \alpha_{0})x\Pi_{i=1}^{m}[\alpha_{i}, \omega_{1}]\times A)\cap Z\subset V$. Let $W=Z\backslash C1_{Z}V$. Then, similarly, we can take
an ordinal $\beta_{i}<\omega_{1}$ for each $i=0,1,$ $\cdots,$ $m$ such that $(((\omega_{I}+1)\backslash \beta_{0})\times\Pi_{i=1}^{m}[\beta_{i}, \omega_{1}]\times B)$

$\cap Z\subset W$, where $B=p(\{(\omega_{1}, \omega_{1}, \cdots, \omega_{1})\}\times[0,1])\cap W)$ . Let us set $\gamma_{i}=\max\{\alpha_{i}, \beta_{i}\}$ for
each $i=0,1,$ $\cdots,$ $m$ . Then $(((\omega_{1}+1)\backslash \gamma_{0})X\Pi_{i=1}^{m}[\gamma_{i}, \omega_{1}]\times\{t\})\cap Z$ is homeomorphic to
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$Y_{m-1}$ and contained in $Bd_{Z}V$as a closed subset. By Lemma 2.2, we have cmp $Bd_{Z}V\geq m-1$ ,

therefore cmp $Y_{m}\geq cmpZ\geq m$ . Hence we have cmp $Y_{m}=m$ . This completes the proof of
Lemma 2.5.

Let $n\geq 2$ and $Z_{n}=\Pi_{i=2}^{n+1}[0, \omega_{i}]\backslash \{(\omega_{2}, \omega_{3}, \cdots, \omega_{n+1})\}$ be the subspace of $\Pi_{i=2}^{n+1}[0, \omega_{t}]$ .
Since $\Pi_{i=2}^{n+1}[0, \omega_{j}$ ) is pseudocompact, by Glicksberg’s theorem, we have $\beta\Pi_{i=2}^{n+1}[0, \omega_{i}$ )

$=\Pi_{i=2}^{n+1}[0, \omega_{t}]$ , where $\beta Y$ is the Stone-\v{C}ech compactification of a space $Y$. Thus $\beta Z_{n}=$

$\Pi_{i=2}^{n+1}[0, \omega_{i}]$ . Namely, $Z_{n}$ has the only compactification $\Pi_{i=2}^{n+1}[0, \omega_{t}]$ .

LEMMA. 2.6. Let $X$ contain $Z_{n}$ as a closed subset. Then for every perfect image $Y$ of $X$ we
have $\dim Y\geq n$ .

PROOF. Let $f:X\rightarrow Y$ be a perfect surjection and $\beta f:\beta X\rightarrow\beta Y$ the Stone extension
of $f$. Then $C1_{\beta X}Z_{n}$ is a compactification of $Z_{n}$ . As described above, $C1_{\beta X}Z_{n}$ is homeomorphic
to $\Pi_{i=2}^{n+1}[0, \omega_{i}]$ . Let $z=(\omega_{2}, \omega_{3}, \cdots, \omega_{n+1})$ . Then $C1_{\beta X}Z_{n}=Z_{n}\cup\{z\}$ and $z\in\beta X\backslash X$.

Claim 1. For each $i=2,3,$ $\cdots,$ $n+1$ , there is an ordinal $\alpha_{i}<\omega_{i}$ such that $\beta f(A_{i})$

$\cap\beta f(B_{i})=\phi$ , where

$A_{i}=\Pi_{j=2}^{i-I}[\alpha_{j}, \omega_{j}]\times\{\alpha_{i}\}\times\Pi_{j=i+1}^{n+1}[\alpha_{j}, \omega_{j}]$

and

$B_{i}=\Pi_{j=2}^{i-1}[\alpha_{j}, \omega_{j}]\times\{\omega_{i}\}x\Pi_{j=i+1}^{n+1}[\alpha_{j}, \omega_{j}]$ .
Proof of Claim 1. Since $f$ is perfect, $\beta f(z)\not\in\beta f(Z_{n})$ (see [3, 3.7.15]). Thus for each

$\alpha<\omega_{j}$ we take an ordinal $\alpha_{i}^{j}(\alpha)<\omega_{i}$ such that

$\beta f(\Pi_{i=2}^{j-1}[\alpha_{i}^{j}(\alpha), \omega_{t}]\times\{\alpha\}\times\Pi_{i=j+1}^{n+1}[\alpha_{i}^{j}(\alpha), \omega_{i}])\cap$

$\beta f(\Pi_{i=2}^{j-1}[\alpha_{i}^{j}(\alpha), \omega_{i}]\times\{\omega_{j}\}\times\Pi_{i=j+I^{l\alpha}i}^{n+1j}(\alpha), \omega_{i}])=\phi$ .
Let $\alpha_{i}^{j}=\sup\{\alpha_{i}^{j}(\alpha)|\alpha<\omega_{j}\}$ . If $j<i$, then $\alpha_{i}^{j}<\omega_{t}$ .
We define, by downward induction on $i$, an ordinal

$\alpha_{i}=\max\{\alpha_{i}^{2}, \cdots, \alpha_{i}^{i-1}, \alpha_{i}^{i+1}(\alpha_{i+1}), \cdots, \alpha_{i}^{n+1}(\alpha_{n+1})\}$ .

Then $\alpha_{i}<\omega_{i}$ for each $i=2,3,$ $\cdots,$ $n+1$ . Since $\alpha_{i}\geq\alpha_{i}^{j}(\alpha_{j})$ , we have $\beta f(A_{i})\cap\beta f(B_{i})=\phi$ .
Claim 2. $\dim Y\geq n$ .
Proof of Claim 2. Assume that $\dim Y=\dim\beta Y<n$ . Since $\beta f(A_{j})$ and $\beta f(B_{i})$ are dis-

joint closed subsets of $\beta Y$ for each $i=2,3,$ $\cdots,$ $n+1$ , we take a partition $L_{i}$ in $\beta Y$ between
$\beta f(A_{i})$ and $\beta f(B_{i})$ such that $\bigcap_{i=2}^{n+1}L_{i}=\phi(cf. [2,3.3.6])$ . Let $X^{\prime}=\Pi_{i=2}^{n+1}[\alpha_{i}, \omega_{i}]$ and
$M_{i}=\beta f^{-1}(L_{i})\cap X^{\prime}$ . Then $M_{i}$ is a partition in $X^{\prime}$ between $A_{i}$ and $B_{j}$ such that $\bigcap_{i=2}^{n+1}M_{i}=\phi$ .
Since $X^{\prime}$ is compact, for each $i=2,3,$ $\cdots,$ $n+1$ , we take a finite collection $\{\beta_{i}^{j}|0\leq j\leq m_{i}\}$

of ordinals such that

(1) $\alpha_{i}=\beta_{i}^{0}<\cdots<\beta_{i}^{j}<\cdots<\beta_{i}^{mi}=\omega_{j}$ ,

(2) $\bigcap_{i=2}^{n+1}$ St $(M_{i}, O)=\phi$ , $St(M_{i}, a)\cap St(A_{j}, a)=\phi$ and St $(M_{i}, O)\cap St(B_{i}, O)=\phi$ ,
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where $a=\{\Pi_{i=2}^{n+1}[\beta_{i}^{j(i)-1}, \beta_{i}^{j(i)}]|(j(2), \cdots,j(n+1))\in\Pi_{i=2}^{n+I}\{1, \cdots, m_{i}\}\}$ .
Then for each $i=2,3,$ $\cdots,$ $n+1$ , there is a continuous mapping $f_{i}:[\alpha_{i}, \omega_{j}]\rightarrow[0,1]=I_{i}$ such
that $f_{i}(\beta_{i}^{j})=j/m_{i}$ and $f_{i}([\beta_{i}^{j-1}, \beta_{i}^{j}])=[(j-1)/m_{j},j/m_{i}]$ . Let $g=\Pi_{i=2}^{n+1}f_{i}:\Pi_{i=2}^{n+1}[\alpha_{i}, \omega_{i}]\rightarrow\Pi_{i=2}^{n+1}I_{i}$

be the product mapping defined by $g((t_{j})_{i=2}^{n+I})=(f_{i}(t_{i}))_{i=2}^{n+1}$ . Since St $(M_{i}, a)$ is a partition in
$X^{\prime}$ between $A_{i}$ and $B_{j}$ , there are disjint open subsets $U_{i}$ and $V_{i}$ of $X^{\prime}$ such that $A_{i}\subset U_{i}$ ,

$B_{i}\subset V_{i}$ and $X^{\prime}\backslash St(M_{i}, a)=U_{i}\cup V_{i}$ . Let $K_{i}^{j}=I_{2}\times\cdots\times I_{i-1}\times tj$ } $\times I_{i+1}\times\cdots\times I_{n+1}$ for each
$i=2,3,$ $\cdots,$ $n+1$ and each $j=0,1$ . Let $N_{i}=g(X^{\prime}\backslash U_{i})\cap g(X^{\prime}\backslash V_{i})$ for each $i=2,3,$ $\cdots$ ,

$n+1$ . Then $N_{i}$ is a partition in $\Pi_{i=2}^{n+1}I_{i}$ between $K_{i}^{0}$ and $K_{i}^{1}$ , and $\bigcap_{i=2}^{n+1}N_{i}=\phi$ . This is a con-
tradiction (cf. [2, 1.8.1]).

Now we constmct a space, which is mentioned in the introduction.

EXAMPLE. 2.7. For $m,$ $n\in N\cup\{\infty 1$ with $m<n$ there exists a countably compact space $X$

such that cmp $X=m$ and $def^{*}X=n$ .
Case 1. $n\in N$.
Let $X=(\omega_{1}\times\Pi_{i=2}^{n+1}[0, \omega_{i}])\cup(\{(\omega_{1}, \omega_{1}, \omega_{1})\}\times[0, \omega_{1}]^{m-I}\times\{(\omega_{1}, \omega_{1}, \cdots, \omega_{1})\})\cup\{(\omega_{1}$ ,

$\omega_{2},$ $\cdots,$ $\omega_{n+1}$)} be the subspace of $(\omega_{1}+1)\times\Pi_{i=2}^{n+1}[0, \omega_{t}]$ .
It is easy to see that $X$ is countably compact.
Since $R(X)=(\{(\omega_{1}, \omega_{1}, \omega_{1})\}\times[0, \omega_{1}]^{m-1}\times\{(\omega_{I}, \omega_{1}, \cdots, \omega_{1})\})\cup\{(\omega_{1}, \omega_{2}, \cdots, \omega_{n+1})\}$ ,

we have ind $(R(X), X)=m-1$ . By Lemma 2.4, we have cmp $X\leq m$ . Since $X$ contains $Y_{m}$

as a closed subspace, by Lemmas 2.2 and 2.5 we have cmp $X\geq m$ . Hence cmp $X=m$ .
Next, since $\beta X=(\omega_{1}+1)\times\Pi_{i=2}^{n+1}[0, \omega_{i}]$ , we have $\dim(\beta X\backslash X)=n$ . Thus $def^{*}X\leq n$ .

For each compactification $\alpha X$ of $X$ there is a parfect surjection $f:\beta X\backslash X\rightarrow\alpha X\backslash X$, and
$\beta X\backslash X$ contains a closed subset homeomorphic to $Z_{n}$ . Thus, by Lemma 2.6, we have
$\dim(\alpha X\backslash X)\geq n$ . Hence $def^{*}X=n$ .

Case 2. $ n=\infty$ .
Let $X=(\omega_{I}\times\Pi_{i=2}^{\infty}[0, \omega_{i}])\cup(\{(\omega_{1}, \omega_{1}, \omega_{1})\}\times[0, \omega_{i}]^{m-1}\times\{(\omega_{1}, \omega_{1}, \cdots)\})\cup\{(\omega_{1},$ $\omega_{2}$ ,

$)\}$ be the subspace of $(\omega_{1}+1)\times\Pi_{i=2}^{\infty}[0, \omega_{i}]$ . Then, similarly, $X$ is countably compact,

cmp $X=m$ and $def^{*}X=n$ .

3. Statements.

We define Cmp $X$ of a space $X$ by the following; Cmp $X=0$ if cmp $X\leq 0$ , and for $n\geq 1$ ,

Cmp $X\leq n$ if each closed subset of $X$ has arbitrarily small neighborhoods $U$with Cmp Bd $U$

$\leq n-1$ . Cmp $X$was defined by J. de Groot for the case $X$ is separable and metrizable.
It can be prove that cmp $X\leq CmpX$ for every space $X$ and cmp $X\leq CmpX\leq defX$ for

every separable metrizable space $X$ (see [4]). For Pol’s example $X$ in [7] shows that cmp $X$

$=1$ and Cmp $X=defX=2$ . Thus it is unknown whether there is a separable

metrizable space $X$ with Cmp $X<defX$. It would be interesting to have a separable

metrizable space $X$ such that cmp $X=k$ , Cmp $X=m$ and def $X=n$ for $k,$ $m,$ $n\in N\cup\{\infty\}$
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with $k\leq m\leq n$ .
Obviously, $def^{*}X\leq defX$ for every separable metrizable space $X$. We do not know

whether there is a separable metrizable space $X$ with $def^{*}X<defX$ as well as the value of
$def^{*}X$ for Pol’s example $X$ in [7].

In Example 2.7 we have constmcted a space $X$ with cmp $X=m$ and $def^{*}X=n$ for $m$ ,
$n\in N\cup\{\infty\}$ with $m<n$ . However, in general, cmp $X$ need not be less than or equal to
$def^{*}X$ [ $5$ , VII.25]. It would be interesting to have a space $X$ such that cmp $X=k$ ,

Cmp $X=m$ and $def^{*}X=n$ for $k,$ $m,$ $n\in N\cup\{\infty\}$ with $k\leq m$ .

Added in proof. The author constmcted a separable metrizable space $X$ such that
def $X$-com $X=n$ for each $n\in N$. Thus in the class of separable metrizable spaces the gap
between cmp $X$ and def $X$ can be arbitrarily large.
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