# HOMOGENEOUS TUBES OVER ONE-POINT EXTENSIONS

By

## Noritaka KOYAMA and Jun-ichi MIYACHI

### Introduction

Let A be a finite dimensional algebra over a field k, and M a finite dimensional left A-module. We denote by R=R(A, M) the one-point extension of A by M, namely,

$$R = \left[ \begin{array}{cc} A & M \\ 0 & k \end{array} \right].$$

V. Dlab and C. M. Ringel looked into the indecomposable representations of tame hereditary algebras [3]. As a result, they found that stable tubes, in particular homogeneous tubes, play an important role in their Auslander-Reiten quivers. Here a connected component  $\Gamma$  of the Auslander-Reiten quiver is called a stable tube if  $\Gamma$  is of the form  $\mathbb{Z}A_{\infty}/n$  for some  $n \in \mathbb{N}$ , and called a homogeneous tube if  $\Gamma$  is a stable tube with n=1 [6]. Recently, in case of the base field being algebraically closed, C. M. Ringel generalized their results in terms of the one-point extension, and gave conditions on A and M that make R(A, M) have stable separating tubular families [6].

We are interested in stable tubes, and in this paper we characterize broader parts of DTr-invariant R-modules in terms of the one-point extension, and construct the homogeneous tubes which contain them.

Throughout this paper, we deal only with finite dimensional algebras over a field k, and finite dimensional (usually left) modules. We denote by P(X), the projective cover of X, and by E(Y), the injective hull of Y. The k-dual  $\operatorname{Hom}_k(-, k)$  is denoted by D, and the A-dual  $\operatorname{Hom}_A(-, A)$  (resp. the R-dual  $\operatorname{Hom}_R(-, R)$ ) is denoted by  $-^*$  (resp.  $-^*$ ). Further we freely use the results of [1], [2] and [5], and denote DTr by  $\tau$ .

## 1. The Auslander-Reiten Translation over One-point Extensions

In this section, we calculate the Auslander-Reiten translation of R(A, M)-modules. Given R = R(A, M), it is well known that the category of left R-modules is equivalent to the category  $\mathfrak{M}({}_{A}M_{k})$ . Recall that the category  $\mathfrak{M}({}_{A}M_{k})$  of representations of the bimodule  ${}_{A}M_{k}$  has as objects the triples  $({}_{k}U, {}_{A}X, \phi)$  with an A-homomorphism  $\phi: {}_{A}M \otimes {}_{k}U \rightarrow {}_{A}X$ , and a morphism from  $({}_{k}U, {}_{A}X, \phi)$  to  $({}_{k}U', {}_{A}X', \phi')$  is given by a pair  $(\alpha, \beta)$  of a k-linear map  $\alpha$ :

 $_kU\rightarrow_kU'$ , and an A-homomorphism  $\beta$ :  $_AX\rightarrow_AX'$ , satisfying  $\beta\phi=\phi'(1\otimes\alpha)$ . After this, we write  $(\dim_kU,X,\phi)$  for  $(U,X,\phi)$  and we will call  $V=(\dim_kU,X,\phi)$  just an R-module.

Now, for an R-module  $V=(n, X, \phi)$ , we consider the following commutative diagram with exact rows:

(A) 
$$0 \longrightarrow \operatorname{Ker} v \xrightarrow{\iota} Y \xrightarrow{v} P(\operatorname{Cok}\phi) \xrightarrow{\varepsilon} \operatorname{Cok}\phi \longrightarrow 0$$

$$\downarrow \chi \downarrow \zeta \qquad \downarrow \varphi \qquad \qquad$$

This construction is as follows. In the bottom row morphisms are canonical. Since  $P(\operatorname{Cok} \phi) \stackrel{\varepsilon}{\to} \operatorname{Cok} \phi \to 0$  is the projective cover, we can take  $\rho \in \operatorname{Hom}_A(P(\operatorname{Cok} \phi), X)$  such that  $\varepsilon = \pi \rho$ . For the pair  $(\phi, \rho)$ , we take the pull-back  $(Y; \mu, \nu)$ . Then this square is exact, and Ker  $\nu$  is isomorphic to Ker  $\phi$ .

PROPOSITION 1.1. Let  $V = (n, X, \phi)$  be a non-projective indecomposable R-module. Then  $\tau_R V$  is isomorphic to the R-module  $(\dim_k \operatorname{Hom}_A (M, \tau_A(\operatorname{Cok} \phi) \oplus I_V) - n, \tau_A(\operatorname{Cok} \phi) \oplus I_V, \tilde{\phi})$  with some  $\tilde{\phi}$ . Here  $I_V$  is the injective A-module  $D(Q^*)$  where Q is the direct summand of P(Y) such that  $P(Y) = Q \oplus P(\operatorname{Ker} \varepsilon)$ .

PROOF. It is easy to see that an indecomposable projective R-module has the form (0, P, 0) with an indecomposable projective A-module P, or the form  $(1, M, 1_M)$ . Applying  $-^{\#}$ ,  $(0, P, 0)^{\#} \simeq (\dim_k P^*, \operatorname{Hom}_A(P, M), \eta(P))$  where  $\eta(P)$  is the canonical isomorphism  $(\eta(P) (m \otimes f))(p) = f(p)m, m \in M, f \in P^*$  and  $p \in P$ , or  $(1, M, 1_M)^{\#} \simeq (0, k, 0)$ . (For right R-modules, we use the similar notations.) Now the minimal projective presentation of V has the following form:

$$\begin{bmatrix} 0 \\ \downarrow \\ P(Y) \end{bmatrix} \longrightarrow \begin{bmatrix} M^n \\ \downarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ M^n \oplus P(\operatorname{Cok} \phi) \end{bmatrix} \longrightarrow \begin{bmatrix} M^n \\ \downarrow \phi \\ X \end{bmatrix} \longrightarrow 0$$

$$\begin{bmatrix} \mu \alpha \\ \nu \alpha \end{bmatrix}$$

$$(\phi, -\rho)$$

where  $\alpha$  is the projective cover  $P(Y) \stackrel{\alpha}{\to} Y \to 0$ , and each row is exact. According to the difinition of the transpose, applying  $-^{\#}$  to the above, we obtain the following diagram with exact columns:

$$\begin{bmatrix} 0 \\ \eta(P(\operatorname{Cok}\phi)) \end{bmatrix}$$

$$(P(\operatorname{Cok}\phi)^* \otimes_A M \longrightarrow k^n \oplus \operatorname{Hom}_A(P(\operatorname{Cok}\phi), M))$$

$$\downarrow (\upsilon\alpha)^* \otimes 1 \qquad \qquad \kappa \downarrow$$



Here  $\kappa = (\kappa_1, \kappa_2)$  where  $\kappa_1$ :  $k^n \to \operatorname{Hom}_A(P(Y), M)$  and  $\kappa_2$ :  $\operatorname{Hom}_A(P(\operatorname{Cok}\phi), M) \to \operatorname{Hom}_A(P(Y), M)$  with  $\kappa_1((a_i)) = \sum_{i=1}^n a_i \mu_i \alpha$ ,  $\kappa_2(f) = f \upsilon \alpha$  where  $\mu_i$  is the composition of  $\mu$  and the i-th projection, and  $\xi$  is the induced morphism. We obtain  $Tr_R \ V \simeq (\dim_k (Tr_A(\operatorname{Cok}\phi) \oplus Q^*), \operatorname{Cok} \kappa, \xi)$ . Consequently  $\tau_R \ V \simeq (\dim_k D(\operatorname{Cok}\kappa), \tau_A(\operatorname{Cok}\phi) \oplus I_V, \widetilde{\phi})$  with some  $\widetilde{\phi}$ . To complete the proof, it is sufficient to show  $\dim_k D(\operatorname{Cok}\kappa) = \dim_k \operatorname{Hom}_A(M, \tau_A(\operatorname{Cok}\phi) \oplus I_V) - n$ . Since  $\operatorname{Hom}_A(M, \tau_A(\operatorname{Cok}\phi) \oplus I_V) \simeq D((Tr_A(\operatorname{Cok}\phi) \oplus Q^*) \otimes_A M)$ , we will show  $\dim_k \operatorname{Cok}\kappa = \dim_k ((Tr_A(\operatorname{Cok}\phi) \oplus Q^*) \otimes_A M) - n$ . This follows from the following two facts: (1)  $\operatorname{Im} \kappa_1 \cap \operatorname{Im} \kappa_2 = 0$  and (2)  $\kappa_1$  is a monomorphism.

(1) Assume Im  $\kappa_1 \cap \text{Im } \kappa_2 \neq 0$ . Then there exists  $(a_i) \in k^n$  and  $f \in \text{Hom}_A$   $(P(\text{Cok }\phi), M)$  such that  $f \circ \alpha = \sum_{i=1}^n a_i \mu_i \alpha \neq 0$ . Since the following diagram is push-out, we have  $\delta \in \text{Hom}_A$  (X, M) such that  $\delta \phi = (a_i)$ .

$$P(Y) \xrightarrow{\upsilon\alpha} P(\operatorname{Cok}\phi)$$

$$\downarrow^{\rho}$$

$$M^{n} \xrightarrow{\phi} X$$

This means that V has a projective direct summand  $(1, M, 1_M)$ . It's a contradiction.

(2) Similarly.

COROLLARY 1.2. Let  $V=(n, X, \phi)$  be a non-projective indecomposable R-module. Then

- (1) If  $\phi$  is an epimorphism,  $\tau_R V$  is isomorphic to  $(\dim_k \operatorname{Hom}_A (M, E(\operatorname{top}(\operatorname{Ker} \phi))) n, E(\operatorname{top}(\operatorname{Ker} \phi)), \tilde{\phi}).$
- (2) If  $\phi$  is a monomorphism,  $\tau_R V$  is isomorphic to  $(\dim_k \operatorname{Hom}_A (M, \tau_A(\operatorname{Cok} \phi)) n, \tau_A(\operatorname{Cok} \phi), \tilde{\phi})$ .
- (3) If  $\operatorname{proj.dim}_A \operatorname{Cok} \phi = 1$ ,  $\tau_R V$  is isomorphic to  $(\dim_k \operatorname{Hom}_A (M, \tau_A(\operatorname{Cok} \phi) \oplus E(\operatorname{top} (\operatorname{Ker} \phi))) n$ ,  $\tau_A(\operatorname{Cok} \phi) \oplus E(\operatorname{top} (\operatorname{Ker} \phi))$ ,  $\tilde{\phi}$ ).

PROOF. By Proposition 1.1.

### 2. Homogeneous Tubes

In this section, we characterize some  $\tau_R$ -invariant modules by using the previous proposition. And we construct homogeneous tubes which contain them.

LEMMA 2.1. Let  $V=(n, X, \phi)$ ,  $(n \neq 0)$  be a non-projective indecomposable R-module. Then the Auslander-Reiten sequence which has the end-term V has the following form:

$$0 \longrightarrow \begin{bmatrix} M^{m-n} \\ \downarrow & \begin{bmatrix} \tilde{\phi}_1 \\ \tilde{\phi}_2 \end{bmatrix} \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} \begin{bmatrix} M^{m-n} \oplus M^n \\ \downarrow & \begin{bmatrix} \tilde{\phi}_1 & \psi_1 \\ \tilde{\phi}_2 & \psi_2 \\ 0 & \phi \end{bmatrix} \xrightarrow{\begin{bmatrix} 0 & 1 \\ 0 & \psi \end{bmatrix}} \begin{bmatrix} M^n \\ \downarrow & \phi \\ X \end{bmatrix} \longrightarrow 0$$

$$\begin{bmatrix} 10 \\ 01 \\ 00 \end{bmatrix}$$

with some  $\tilde{\phi}_1$ ,  $\tilde{\phi}_2$ ,  $\psi_1$  and  $\psi_2$ , where  $m = \dim_k \operatorname{Hom}_A (M, \tau_A(\operatorname{Cok} \phi) \oplus I_V)$ .

PROOF. By Proposition 1.1, the Auslander–Reiten sequence has the following form:

$$0 \longrightarrow \begin{bmatrix} M^{m-n} \\ \downarrow \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \end{bmatrix} \xrightarrow[(\alpha_1 \ \alpha_2)]{} \begin{bmatrix} M^{m-n} \oplus M^n \\ \downarrow E \end{bmatrix} \xrightarrow{\beta} \begin{bmatrix} M^n \\ \downarrow \phi \\ X \end{bmatrix} \longrightarrow 0$$

with some E, and some  $\phi_1$ ,  $\phi_2$ ,  $\alpha_1$ ,  $\alpha_2$  and  $\beta$ . Since the R-homomorphism

$$\left[\begin{array}{c}0\\\downarrow\\X\end{array}\right]\longrightarrow\left[\begin{array}{c}M^n\\\downarrow\phi\\X\end{array}\right]$$

is not a splitable epimorphism, it factors through  $((0\ 1), \beta)$ , and E has X as a direct summand.

THEOREM 2.2. Let  $V = (1, X, \phi)$  be a non-projective indecomposable R-module.

- (I) If  $\phi$  is an epimorphism, the following two statements are equivalent.
  - (1)  $\tau_R V \simeq V$ .
  - (2) (a)  ${}_{A}X \simeq E \text{ (top (Ker <math>\phi))}.$ 
    - (b)  $\dim_k \operatorname{Hom}_A(M, X) = 2$ .

- (II) If  $\phi$  is not an epimorphism, the following two statements are equivalent.
  - (1)  $\tau_R V \simeq V$ .
  - (2) (a)  ${}_{A}X \simeq \tau_{A}(\operatorname{Cok} \phi)$ .
    - (b)  $\dim_k \operatorname{Hom}_A(M, X) = 2$ .
    - (c) In the commutative diagram(A), Im  $\iota \subset rad Y$ .

PROOF. (I) (2)  $\rightarrow$  (1) By Proposition 1.1,  $\tau_R V \simeq (1, X, \tilde{\phi})$  with some  $\tilde{\phi}$ . Then, by Lemma 2.1, the Auslander-Reiten sequence which has the end-term V has the following form:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$0 \longrightarrow \begin{bmatrix} M \\ \downarrow \tilde{\phi} \\ X \end{bmatrix} \longrightarrow \begin{bmatrix} M \oplus M \\ \downarrow \chi \oplus X \end{bmatrix} \stackrel{(0 \ 1)}{\longrightarrow} \begin{bmatrix} M \\ \downarrow \phi \\ X \end{bmatrix} \longrightarrow 0$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

with some  $\psi$ . If  $\phi$  and  $\tilde{\phi}$  are linearly independent over k, this extension splits. It's a contradiction. Hence  $\tau_R V \simeq V$ . (1)  $\to$  (2) Obviously.

(II) By the after remark, the proof is similar to (I).

COROLLARY 2.3. Let  $V=(1, X, \phi)$  be a non-projective indecomposable R-module.

- (I) If  $\phi$  is a monomorphism, the following two statements are equivalent.
  - (1)  $\tau_R V \simeq V$ .
  - (2) (a)  ${}_{A}X \simeq \tau_{A}(\operatorname{Cok} \phi)$ .
    - (b)  $\dim_k \operatorname{Hom}_A(M, X) = 2$ .
- (II) If  $\phi$  is not an epimorphism and proj.dim<sub>A</sub> Cok  $\phi = 1$ , the following two statements are equivalent.
  - (1)  $\tau_R V \simeq V$ .
  - (2) (a)  $\phi$  is a monomorphism.
    - (b)  ${}_{A}X \simeq \tau_{A}(\operatorname{Cok} \phi)$ .
    - (c)  $\dim_k \operatorname{Hom}_A(M, X) = 2$ .

REMARK. In case of  $\tau_R V \simeq V$ , X is indecomposable. Otherwise, X decomposes as  $X = X_1 \oplus X_2$ ,  $X_1$ ,  $X_2 \neq 0$ , we have  $\dim_k \operatorname{Hom}_A(M, X_1) = \dim_k \operatorname{Hom}_A(M, X_2) = 1$ , and the Auslander-Reiten sequence which has the end-term V has the following form:

$$\begin{array}{c}
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \\
0 \longrightarrow \begin{bmatrix} M \\ \downarrow & \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \end{bmatrix} \longrightarrow \begin{bmatrix} M \oplus M \\ \downarrow & \begin{bmatrix} \phi_1 & b_1 \phi_1 \\ \phi_2 & b_2 \phi_2 \\ 0 & \phi_1 \\ 0 & \phi_2 \end{bmatrix} \end{bmatrix} \xrightarrow{\begin{pmatrix} 0 & 1 \\ \downarrow & \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \end{bmatrix}} \longrightarrow \begin{bmatrix} M \\ \downarrow & \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \end{bmatrix} \longrightarrow 0$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \\
\begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

with  $b_1$ ,  $b_2 \in k$ . But it is easy to see that this sequence splits. It's a contradiction, therefore  ${}_{A}X$  is indecomposable.

If  $\tau_R V \simeq V$ , V belongs to some homogeneous tube  $\mathcal{C}$  [4]. Next we will state the construction of the homogeneous tube  $\mathcal{C}$ . Here we denote V(s) the module in  $\mathcal{C}$  which has the quasi-length s [5].

THEOREM 2.4. Let  $V=(1, X, \phi)$  be a non-projective indecomposable R-module. And assume  $\tau_R V \simeq V$ . Then V is quasi-simple, and  $V(s)=(s, X^s, \Phi(s))$ , where  $\Phi(s)=$ 

pendent of  $\phi$ . Further the Auslander-Reiten sequence which has the end-term V(s) has the following form:



where I(s) = (E(s)/0), J(s) = (0 | E(s)) with E(s) the unit matrix of degree s.

PROOF. It is easy to see that V is quasi-simple. We prove the rest parts by the induction on s. First, by Lemma 2.1, the Auslander-Reiten sequence which has the end-term V has the following form:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$0 \longrightarrow \begin{bmatrix} M \\ \downarrow \phi \\ 0 \longrightarrow \begin{bmatrix} X \end{bmatrix} \longrightarrow \begin{bmatrix} M \oplus M \\ \downarrow \phi \\ X \oplus X \end{bmatrix} \xrightarrow{(0 \ 1)} \begin{bmatrix} M \\ \downarrow \phi \\ X \end{bmatrix} \longrightarrow 0$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

with some  $\psi$ . If  $\psi$  is linearly dependent of  $\phi$ , this sequence splits. Consequently it must be linearly independent of  $\phi$ . Here it is easy to see that the arbitrary  $\psi$  which is linearly independent of  $\phi$  makes the isomorphic extension. Second, assume that the form of V(s) and the form of the Auslander-Reiten sequence which has the end-term V(s-1) are checked. Then the Auslander-Reiten sequence which has the end-term V(s) is decided except  $\theta$  as the following form. But routine calculations show that we can take  $\theta=0$ .



Recently Ringel considered the stable separating tubular families, and he made  $\mathbf{P}_1 \mathbf{k}$ -family of stable tubes [6]. In connection with it, we show the following.

PROPOSITION 2.5. Let  $V=(1, X, \phi)$  be a non-projective indecomposable R-module. Assume  $\tau_R V \simeq V$ ,  $\phi$  a monomorphism,  $\operatorname{End}_A(X) = k$ , and k an infinite field. Then we can make

|k|-family of homogeneous tubes. (| | means the cardinal number.)

PROOF. We write the canonical extension

$$0 \longrightarrow M \stackrel{\phi}{\longrightarrow} X \stackrel{\pi}{\longrightarrow} \operatorname{Cok} \phi \longrightarrow 0$$

and let

$$0 \longrightarrow X \stackrel{\lambda}{\longrightarrow} E \stackrel{\mu}{\longrightarrow} \operatorname{Cok} \phi \longrightarrow 0$$

be the Auslander-Reiten sequence. Since  $\pi$  is not a splitable epimorphism, there exists  $\lambda'$  such that  $\pi = \mu \lambda'$ . If necessary, adding some  $a\lambda$  ( $a \in k$ ) to  $\lambda'$ , we can take  $\lambda'$  as a monomorphism. Further, since  $\lambda'$  is not a splitable monomorphism, there exists  $\zeta$  such that  $\lambda' = \zeta \lambda$ . We can also take  $\zeta$  as an automorphism. Now, using  $\lambda'$  above, we can make the following commutative diagram with exact rows and columns, with some  $\phi' \in \operatorname{Hom}_A(M, X)$ :



Notice  $\operatorname{Cok} \phi \simeq \operatorname{Cok} \lambda'$  from the commutative diagram below:

$$0 \longrightarrow X \xrightarrow{\lambda} E \xrightarrow{\mu} \operatorname{Cok} \phi \longrightarrow 0$$

$$\parallel \qquad \zeta \mid \zeta \qquad \downarrow \zeta \qquad \downarrow$$

where each row is exact. Set  $V' = (1, X, \phi')$ , then by Corollary 2.3,  $\tau_R V' \simeq V'$ . It is easy to see  $V \not\simeq V'$ . In this way we can construct |k|-number of  $\tau_R$ -invariant modules.

EXAMPLE. We give an example where  $\operatorname{gl.dim}_A A = \infty$  and there exists a left A-module M such that R(A, M) has homogeneous tubes. Let

$$A = \left\{ \begin{bmatrix} z & 0 & 0 & \alpha & \beta \\ 0 & x & \gamma & 0 & 0 \\ 0 & 0 & y & 0 & 0 \\ 0 & 0 & 0 & y & \delta \\ 0 & 0 & 0 & 0 & x \end{bmatrix} \in M_5(k) \right\}.$$

In other words, A is defined by the following quiver with relations:

$$x \xrightarrow{\delta} y \xrightarrow{\alpha} z$$

with  $\gamma \delta = \delta \gamma = 0 \ (\beta = \alpha \delta)$ .

A is representation-finite, and has the following Auslander-Reiten quiver:



Here, for example,  $\begin{pmatrix} y \\ x z \end{pmatrix}$  means the indecomposable A-module N such that top  $N \simeq S_y$  and soc  $N \simeq S_x \oplus S_z$ , where  $S_-$  means the simple A-module corresponding to the idempotent -. Let  $M = (x) \oplus (z)$ . Then R-modules  $V = \begin{pmatrix} 1, \begin{pmatrix} y \\ x z \end{pmatrix}, \phi \end{pmatrix}$ , where  $\phi$  are inclusions in the sense of Proposition 2.5, are  $\tau_R$ -invariant.

REMARK. (Ringel [6]) Under the additional assumption that  $\operatorname{End}_A(X) = k$ , the homogeneous tube in  $\operatorname{mod} R$  constructed in Theorem 2.4. is an abelian category which is serial, and is closed under extensions in  $\operatorname{mod} R$ .

### References

- [1] Auslander, M., Reiten, I., Representation theory of artin algebras III. Comm. Algebra 3 (1975) 239-294.
- [2] Auslander, M., Reiten, I., Representation theory of artin algebras IV. Comm. Algebra 5 (1977) 443-518.

- [3] Dlab, V., Ringel, C. M., Indecomposable representations of graphs and algebras. Memoirs Amer. Math. Soc. 173 (1976).
- [4] Hoshino, M., DTr-invariant modules. Tsukuba J. Math. 7 (2) (1983) 205-214.
- [5] Ringel, C. M., Finite dimensional hereditary algebras of wild representation type. Math. Z. 161 (1978) 235-255.
- [6] Ringel, C. M., Tame algebras and integral quadratic forms. Springer L. N. 1099 (1984).

Institute of Mathematics University of Tsukuba Ibaraki, 305, Japan