NOTES ON $P_{\kappa}\lambda$ AND $[\lambda]^{\kappa}$

By

Yoshihiro Abe

This paper consists of notes on some combinatorial properties. § 1 deals with λ -ineffability and the partition property of $P_k\lambda$ with λ ineffable. In § 2 we combine the flipping property and a filter investigated by Di Prisco and Marek to characterize huge cardinals.

We work in ZFC and the notations are standard. $P_k \lambda = \{x \subset \lambda : |x| < \kappa\} [\lambda]^{\kappa} = \{x \subset \lambda : |x| = \kappa\}, D_{\kappa} \lambda = \{\{x, y\} : x, y \in P_{\kappa} \lambda \text{ and } x \subseteq y\}.$

§ 1 $P_{\kappa}\lambda$ when λ is ineffable.

 κ is called λ -ineffable if for any function $f: P_{\kappa}\lambda \longrightarrow P_{\kappa}\lambda$ such that $f(x) \subset x$ for all $x \in P_{\kappa}\lambda$, there is a subset A of λ such that the set $\{x \in P_{\kappa}\lambda : A \cap x = f(x)\}$ is stationary. We abbreviate the following statement to $Part^*(\kappa, \lambda)$;

"For any function $F: D_{\epsilon}\lambda \longrightarrow 2$, there is a stationary homogeneous set H i.e. $|F''([H]^2 \cap D_{\epsilon}\lambda)| = 1$."

If Part* (κ, λ) , then κ is λ -ineffable. We shall show the converse is true when λ is ineffable.

LEMMA 1. $X \subset P_{\kappa}\lambda$ is closed unbounded iff $\{\alpha < \lambda : X \cap P_{\kappa}\alpha \text{ is closed unbounded in } P_{\kappa}\alpha\}$ contains a closed unbounded subset of λ . Hence S is stationary in $P_{\kappa}\lambda$ if $\{\alpha < \lambda : S \cap P_{\kappa}\alpha \text{ is stationary in } P_{\kappa}\alpha\}$ is a stationary subset of λ .

THEOREM 2. Suppose that λ is ineffable. If Part*(κ , α) for all $\alpha < \lambda$, then Part*(κ , λ).

PROOF. Let $F: D_{\kappa}\lambda \longrightarrow 2$ and $F_{\alpha} = F \upharpoonright D_{\kappa}\alpha$ for every $\alpha < \lambda$. By our assumptions, there is a stationary subset A_{α} of $P_{\kappa}\alpha$ such that

$$F''([A_{\alpha}]^2 \cap D_{\kappa}\alpha) = \{k_{\alpha}\}, k_{\alpha} \in \{0, 1\}.$$

Since λ is ineffable, we can find an $A \subset P_{\kappa} \lambda$ so that

$$S = \{\alpha < \lambda : A_{\epsilon} = A \cap P_{\epsilon}\alpha\}$$
 is stationary in λ .

A is stationary by Lemma 1.

Let t, $u \in [A]^2 \cap D_{\epsilon}\lambda$. Since S is unbounded in λ , there is a member of S, α such that both t and u are in $[A_{\alpha}]^2 \cap D_{\epsilon}\alpha$. Hence $F(t) = F(u) = k_{\alpha}$. So, A is a stationary homogeneous set for F.

DEFINITION. κ is λ -almost ineffable if for any function $f: P_{\kappa}\lambda \longrightarrow P_{\kappa}\lambda$ such that $f(x) \subset x$ for all $x \in P_{\kappa}\lambda$, there is a subset A of λ such that the set $\{x \in P_{\kappa}\lambda: A \cap x = f(x)\}$ is unbounded.

THEOREM 3. Suppose that λ is almost ineffable. Then κ is λ -almost ineffable iff κ is α -almost ineffable for all $\alpha < \lambda$.

PROOF. \longrightarrow is proved by the same argument as the lemma in Magidor [9] p.p. 281.

 (\longleftarrow) Let $f: P_{\mathfrak{r}}\lambda \longrightarrow P_{\mathfrak{r}}\lambda$ and $f(x) \subset x$ for all $x \in P_{\mathfrak{r}}\lambda$. Considering a function $f \upharpoonright P_{\mathfrak{r}}\alpha$ and using α -ineffability, we get an $A_{\alpha} \subset \alpha$ for every $\alpha < \lambda$ such that

$$X_{\alpha} = \{x \in P_{\kappa}\alpha : f(x) = x \cap A_{\alpha}\}$$
 is unbounded in $P_{\kappa}\alpha$.

Using now the almost ineffability of λ , there is an $A \subset \lambda$ so that

$$S = {\alpha < \lambda : A_{\alpha} = A \cap \alpha}$$
 is unbounded in λ .

Let $X = \{x \in P_{\epsilon}\lambda : f(x) = x \cap A\}$. If $\alpha \in S$ and $x \in P_{\epsilon}\alpha$, then $x \cap A_{\alpha} = x \cap A \cap \alpha = x \cap A$. Hence $X_{\alpha} \subset X \cap P_{\epsilon}\alpha$ for every $\alpha \in S$. This gives

 $\{\alpha < \lambda : X \cap P_{\kappa}\alpha \text{ is unbounded in } P_{\kappa}\alpha\}$ is unbounded in λ .

Thus X is unbounded in $P_{\kappa}\lambda$.

Corollary 4. The following are equivalent for $\kappa < \lambda$ with λ ineffable.

- (a) Part*(κ , α) for all $\alpha < \lambda$.
- (b) Part*(κ , λ).
- (c) κ is λ -ineffable.
- (d) κ is α -ineffable for all $\alpha < \lambda$.
- (e) κ is α -almost ineffable for all $\alpha < \lambda$.
- (f) κ is λ -almost ineffable.
- (g) κ is α -supercompact for all $\alpha < \lambda$.

PROOF. (a) \longrightarrow (b) is Theorem 1. (b) \longrightarrow (c) is Theorem 2 in Magidor [9]. (c) \longrightarrow (d) is the lemma also in [9]. (d) \longrightarrow (e) is trivial. (e) \longleftrightarrow (f) is Theorem 3. (e) \longrightarrow (g) is by Carr's result: If κ is $2^{\alpha^{<\kappa}}$ -shelah, then κ is α -supercompact. (κ is α -shelah if κ is α -almost ineffable.) See [3].

On the coding of $P_{\kappa}\lambda$, there are works of Zwicker [14] and Shelah [12]. The author can not answer this question.

QUESTION 5. Is there a function $t: \lambda \longrightarrow P_{\kappa}\lambda$ such that for any stationary subset A of λ , t''A is stationary in $P_{\kappa}\lambda$.

It is, of course, true if $\kappa = \lambda$. In fact let $t = id. |\kappa$. The question is interesting when λ is ineffable.

PROPOSITION 6. If λ is ineffable and there is a $t: \lambda \longrightarrow P_{\kappa}\lambda$ such that t''A is stationary for any stationary subset A of λ , then κ is λ -ineffable.

PROOF. Suppose that $f: P_{\epsilon}\lambda \longrightarrow P_{\epsilon}\lambda$ and $f(x) \subset x$ for all $x \in P_{\epsilon}\lambda$. Let $A_{\alpha} = \{\beta < \alpha : \beta \in f(t(\alpha))\}$. Since λ is ineffable, there is a stationary subset S of λ and $A \subset \lambda$ so that $A_{\alpha} = A \cap \alpha$ for all $\alpha \in S$.

B=t''S is stationary and for any $x \in B$ there is an $\alpha_x \in S$ such that $x=t(\alpha_x)$. Hence $f(x) \cap \alpha_x = A \cap \alpha_x$.

Let $B' = \{x \in B : f(x) \neq A \cap x\}$ and $\delta_x =$ the least ordinal in $f(x) \Delta(A \cap x)$. $\delta_x \in x$ for all $x \in B'$.

Soppose that B' is stationary. There is an ordinal $\delta < \lambda$ such that $C = \{x \in B' : \delta_x = \delta\}$ is stationary.

$$\forall x \in C(f(x) \cap (\delta+1) \neq A \cap (\delta+1)).$$

So,

$$\forall x \in C(\alpha_x < \delta).$$

$$|\{\alpha_x: x \in C\}| \geq |C| = \lambda^{<\epsilon} \geqslant \lambda.$$

Thus there is an $x \in C$ such that $\delta < \alpha_x$.

Hence $\{x \in B : f(x) = A \cap x\}$ is stationary.

REMARK. t''A is a stationary subset which splits into λ disjoint stationary subsets. Gitik constructed a model of ZFC in which there is a stationary set that can not be splitted into λ disjoint stationary subsets in [6].

$\S 2 \quad [\lambda]^{\kappa}$ when κ is huge.

Let $j: V \longrightarrow M$ be a huge embedding with critical point κ and $j(\kappa) = \lambda$ in this section.

At first we recall a filter on $[\lambda]^{\epsilon}$ investigated by Di Prisco and Marek in [5]. It is analogous to the closed unbounded filter on $P_{\epsilon}\lambda$.

DEFINITION. For $X \subset P_{\epsilon}\lambda$, define A_X , the basic set generated by X, as follows: $A_X = \{x \in [\lambda]^{\epsilon} : x \text{ is the union of an increasing } \kappa\text{-chain of elements of } X\}$. Define $F_{\epsilon,\lambda}$ by

 $A \in F_{r,\lambda}$ iff there is a closed unbounded $X \subset P_r\lambda$ such that $A_X \subset A$.

Тнеокем (Di Prisco, Marek, Baumgartner)

 $F_{\epsilon,\lambda}$ is the least κ -complete, normal, fine filter on $[\lambda]^{\epsilon}$. If U is the normal ultrafilter on $[\lambda]^{\epsilon}$ induced by j, then every set in $F_{\epsilon,\lambda}$ is in U. In this case $F_{\epsilon,\lambda}$ is not κ^+ -complete.

 $X \subset [\lambda]^r$ is unbounded if $\forall x \in [\lambda]^r \exists y \in X(x \subset y)$. X is $F_{s,\lambda}$ stationary if $X \cap Y \neq 0$ for all $Y \in F_{s,\lambda}$.

Proposition 1. Any $X \in F_{r,\lambda}$ is unbounded.

PROOF. There is a $C \subset P_{\kappa} \lambda$ that is closed unbounded and $C_X \subset X$. Let $\alpha \in [\lambda]^{\kappa}$ and $f : \kappa \longrightarrow a$ be a bijection, $x_{\alpha} = f'' \alpha$ for all $\alpha < \kappa$. We can find, using induction, $y_{\alpha} \in C$ such that $y_{\alpha} \not\supseteq x_{\alpha} \cup \{y_{\beta} : \beta < \alpha\}$ for every $\alpha < \kappa$.

 $\{y_{\alpha}|\alpha < \kappa\} \subset C \text{ is a } \kappa\text{-chain and } x = \bigcup \{x_{\alpha} : \alpha < \kappa\} \subset \bigcup \{y_{\alpha} : \alpha < \kappa\} = y \in C_X \subset X.$

Next proposition shows the situation is different from $P_s\lambda$.

PROPOSITION 2. If κ is huge, there is a $F_{\kappa,\lambda}$ -stationary set that is not unbounded.

PROOF. $(\lambda)^{\epsilon} = \{x \in [\lambda]^{\epsilon} : \text{ the order type of } x \text{ is } \kappa\} \text{ is in } U$. Clearly $(\lambda)^{\epsilon}$ is not unbounded.

Moreover, we shall show that there is a $F_{*,\lambda}$ -stationary set S such that for any x, y in S, x
in y. Thus, partition property may not be directry extended to $[\lambda]^{*}$ as for $P_{*}\lambda$.

DEFINITION. f is a ω -Jonsson function over a set x iff $f: {}^\omega x \longrightarrow x$ and whenever $y \subset x$ and |y| = |x|, $f''{}^\omega y = x$.

LEMMA 3. Let U be the normal ultrafilter on $[\lambda]^r$ induced by j and f is a ω -Jonsson function over λ . Then $\{x \in [\lambda]^r : f \upharpoonright^\omega x \text{ is } \omega\text{-Jonsson over } x\} \in U$.

PROOF. The same argument as a normal ultrafilter on $P_{\epsilon}\lambda$ can be carried out. Let $e: V \longrightarrow N \simeq V^{[\lambda]^{\epsilon}}/U$ and $X \subset e''\lambda$ with $|X| = |e''\lambda| = \lambda$. Since $Y = e^{-1}(X) \subset \lambda$ and $|Y| = \lambda$, $f''^{\omega}Y = \lambda$. So,

$$\forall \alpha < \lambda \exists s \in {}^{\omega} Y(\alpha = f(s)).$$

This implies

$$\forall \alpha \in e^{\prime\prime} \lambda \exists s \in {}^{\omega} Y(\alpha = e(f)(e(s))).$$

Since $e(s) = e''s \epsilon^{\omega} X$,

$$e(f)^{\prime\prime\omega}X=e^{\prime\prime}\lambda$$
.

Hence $e(f) \upharpoonright^{\omega} e'' \lambda$ is ω -Jonsson over $e'' \lambda$. Thus $\{x : f \upharpoonright^{\omega} x \text{ is } \omega$ -Jonsson over $x\} \in U$.

THEOREM 4. There is an $A \in U$ such that for every pair x, y in A, $x \subset y$.

PROOF. Let f be a ω -Jonsson function over λ and $A = \{x \in [\lambda]^k : f \upharpoonright^{\omega} x \text{ is } \omega$ -Jonsson over $x\} \in U$.

Suppose $y \subseteq x \in A$. Since |x| = |y|, $f''^{\omega}y = x$. But $f''^{\omega}y \subset y$.

§ 3 Flipping properties and huge cardinals, partition properties of $P_s\lambda$.

Flipping properties were first studied by Abramson, Harrington, Kleinberg and Zwicker in [1] and turned out to be another form of large cardinal property. Di Prisco and Zwicker [4] extended this line to supercompactness. More precisely, they gave a new type of flipping properties equivalent to λ -ineffability and λ -mildly ineffability. We shall introduce an analogous type properties and discuss the relationship with huge cardinals.

DEFINITION. If $t: \lambda \longrightarrow P([\lambda]^s)$, we call t' a flip of $t(t' \sim t)$ if $t': \lambda \longrightarrow P([\lambda]^s)$ and for all $\alpha < \lambda$, $t'(\alpha) = t(\alpha)$ or $t'(\alpha) = [\lambda]^s - t(\alpha)$. Flip $(\kappa, \lambda) \equiv \forall t: \lambda \longrightarrow P([\lambda]^s) \exists t' \sim t$ such that $\Delta t'(\alpha)$ is $F_{\kappa, \lambda}$ -stationary. Inef $(\kappa, \lambda) \equiv$ for any function $f: [\lambda]^s \longrightarrow [\lambda]^s$ such that $f(x) \subset x$ for all $x \in [\lambda]^s$, there is a subset A of λ such that the set

$$\{x \in [\lambda]^{\kappa}: A \cap x = f(x)\}\$$
is $F_{\kappa,\lambda}$ -stationary.

THEOREM 1. (i) Flip(κ , λ) iff Inef(κ , λ).

- (ii) If Flip(κ , $2^{\lambda^{\kappa}}$), then there is a huge embedding j such that κ is the critical point and $j(\kappa) = \lambda$.
- (iii) If $j: V \longrightarrow M$ is a huge embedding with the critical point κ such that $j(\kappa) = \lambda$, then $\text{Flip}(\kappa, \lambda)$.

PROOF (i) Assume that $\operatorname{Flip}(\kappa, \lambda)$ and $f:[\lambda]^{\kappa} \longrightarrow [\lambda]^{\kappa}$ such that $f(x) \subset x$ for all $x \in [\lambda]^{\kappa}$. Define $t: \lambda \longrightarrow P([\lambda]^{\kappa})$ by

$$t(\alpha) = \{x \in [\lambda]^{\kappa} : \alpha \in f(x)\}.$$

Let $t' \sim t$ be such that $\Delta t'(\alpha)$ is $F_{\epsilon, \lambda}$ -stationary.

Put $A = \bigcup \{f(x) : x \in \Delta t'(\alpha)\}$. We shall show that if $x \in \Delta t'(\alpha)$ then $x \cap A = f(x)$. Obviously $f(x) \subset x \cap A$. If $\alpha \in x \cap A$, then there is a $y \in \Delta t'(\beta)$ so that $\alpha \in f(y)$. Since $\alpha \in f(y)$, $y \in t(\alpha)$ and $\alpha \in y$. Hence $t'(\alpha) = t(\alpha)$. Now $\alpha \in x \in \Delta t'(\beta)$ and $t'(\alpha) = t(\alpha)$. This gives $x \in t(\alpha)$. Hence $\alpha \in f(x)$.

Conversely, let
$$t: \lambda \longrightarrow P([\lambda]^r)$$
. Define $f: [\lambda]^r \longrightarrow [\lambda]^r$ by
$$f(x) = \{\alpha \in x : x \in t(\alpha)\}.$$

There is a subset A of λ such that $B = \{x \in [\lambda]^r : x \cap A = f(x)\}$ is $F_{r, \lambda}$ -stationary. Define $t' : \lambda \longrightarrow P([\lambda]^r)$ by $t'(\alpha) = t(\alpha)$ if $\alpha \in A$ and $t'(\alpha) = [\lambda]^r - t(\alpha)$ if $\alpha \notin A$.

Suppose $x \in S$ and $\alpha \in x$. If $\alpha \in A$, then $\alpha \in f(x)$ hence $x \in t(\alpha) = t'(\alpha)$. If $\alpha \notin A$, then $\alpha \notin f(x)$ hence $x \notin t(\alpha)$. So $x \in t'(\alpha)$. Now we have shown $S \subset \Delta t'(\alpha)$, which must be $F_{s,\lambda}$ -stationary.

(ii) Let $\gamma = 2^{i \epsilon}$ and $\{A_{\alpha} : \alpha < \gamma\}$ be an enumeration of $P([\lambda]^{\epsilon})$. Define $t : \gamma \longrightarrow P([\gamma]^{\epsilon})$ by $t(\alpha) = \{x \in [\gamma]^{\epsilon} : x \cap \lambda \in A_{\alpha}\}$. Let $t' \sim t$ be such that $\Delta t'(\alpha)$ is $F_{\epsilon, \gamma}$ -stationary.

A filter U on $[\lambda]^{\epsilon}$ is defined by $A_{\alpha} \in U$ iff $t'(\alpha) = t(\alpha)$. We shall show in fact U is a normal ultrafilter. The fact that for any $\alpha \in P_{\epsilon,\gamma}$ the set $\{x \in [\gamma]^{\epsilon} : \alpha \subset x\}$ is a member of $F_{\epsilon,\gamma}$ is often used.

 $(1) \quad A_{\alpha} \in U \land A_{\alpha} \subset A_{\beta} \longrightarrow A_{\beta} \in U.$

There is a $x \in \Delta t'(\xi)$ such that $\{\alpha, \beta\} \subset x$. Since $x \in t'(\alpha) = t(\alpha)$, $x \cap \lambda \in A_{\alpha} \subset A_{\beta}$. Thus $x \in t(\beta)$. Hence $t'(\beta) = t(\beta)$.

(2) U is κ -complete.

Suppose $\{B_{\alpha}: \alpha < \delta\} \subset U \ (\delta < \kappa)$ and $f: \delta \longrightarrow \gamma$ such that $B_{\alpha} = A_{f(\alpha)}$ for all $\alpha < \delta$. Let $A_{\eta} = \bigcap_{i} B_{\alpha}$.

There is a $x \in \Delta t'(\xi)$ such that $\{\eta\} \cup f''\delta \subset x$. For all $\alpha < \delta$, $x \in t'(f(\alpha)) = t(f(\alpha))$, so $x \in A_{f(\alpha)}$. Hence $x \cap \lambda \in A_{\eta}$. This shows $x \in t(\eta)$ and $t'(\eta) = t(\eta)$.

(3) For any $\alpha < \lambda$, $\{x \in [\lambda]^{\kappa} : \alpha \in x\} \in U$.

Let $A_{\beta} = \{x \in [\lambda]^{\kappa} : \alpha \in x\}$. $t(\beta) = \{x \in [\gamma]^{\kappa} : \alpha \in x \cap \lambda\} = \{x \in [\gamma]^{\kappa} : \alpha \in x\} \in F_{\kappa, \gamma}$. There is a $x \in \Delta t'(\xi)$ such that $x \in t(\beta)$ and $\beta \in x$. Hence $x \in t'(\beta)$ and $t'(\beta) = t(\beta)$.

(4) U is an ultrafilter.

Obviously $\phi \notin U$. So we have to show only that if $A \notin U$, then $[\lambda]^s - A \in U$. Suppose that $A_{\alpha} \notin U$. $t'(\alpha) = [\gamma]^s - t(\alpha)$. Let $[\lambda]^s - A_{\alpha} = A_{\beta}$. There is a $x \in \Delta t'(\xi)$ such that $\{\alpha, \beta\} \subset x$. Since $x \in t'(\alpha) = [\gamma]^s - t(\alpha)$, $x \cap \lambda \notin A_{\alpha}$. Hence $x \cap \lambda \in A_{\beta}$ and $x \in t(\beta)$. Thus $t'(\beta) = t(\beta)$.

(5) U is normal.

Suppose that $\{B_{\alpha}: \alpha < \lambda\} \subset U$. Let $f: \lambda \longrightarrow \gamma$ be such that $B_{\alpha} = A_{f(\alpha)}$ for all $\alpha < \lambda$,

and $\Delta B_{\alpha} = A_{\beta}$.

Note that $X = \{x \in P_{\epsilon \gamma} : \forall \alpha \in x \cap \lambda(f(\alpha) \in x)\}$ is a closed unbounded subset of $P_{\epsilon \gamma}$. Let $C = A_X = \{y \in [\gamma]^{\epsilon} : \exists D \subset X(D \text{ is a } \kappa\text{-chain, } y = \bigcup D)\}$. Then $C \in F_{\epsilon, \gamma}$.

If $y \in C$ and $\alpha \in y \cap \lambda$, there is an $x \in D$ such that $\alpha \in x \cap \lambda$ and $x \subset y$. Hence $f(\alpha) \in x \subset y$. Now we have got that for any $y \in C$, if $\alpha \in y \cap \lambda$ then $f(\alpha) \in y$.

There is a $y \in \Delta t'(\xi)$ such that $y \in C$ and $\beta \in y$. For all $\alpha \in y \cap \lambda$, $f(\alpha) \in y$ and $y \in t'(f(\alpha)) = t(f(\alpha))$, hence $y \cap \lambda \in A_{f(\alpha)}$.

If $t'(\beta) = [\gamma]^{\epsilon} - t(\beta)$, $y \cap \lambda \notin A_{\beta} = \Delta B_{\alpha}$. So, there is an $\alpha \in y \cap \lambda$ such that $y \cap \lambda \notin B_{\alpha} = A_{f(\alpha)}$. Contradiction. Hence $t'(\beta) = t(\beta)$.

(iii) Let U be the normal ultrafilter on $[\lambda]^{\epsilon}$ induced by $j, t: \lambda \longrightarrow P([\lambda]^{\epsilon})$. Define $t': \lambda \longrightarrow P([\lambda]^{\epsilon})$ as follows. $t'(\alpha) = t(\alpha)$ if $t(\alpha) \in U$, and $t'(\alpha) = [\lambda]^{\epsilon} - t(\alpha)$ if $t(\alpha) \notin U$. Then $t' \sim t$ and for all $\alpha < \lambda$, $t'(\alpha) \in U$. Hence $\Delta t'(\alpha) \in U$. Every member of U is $F_{\epsilon, \lambda}$ -stationary.

Next the author tried to express the partition property of $P_{\star}\lambda$ in the form of a flipping propertie. (Though it does not seem successful.)

Propposition 2. The followings are equivalent.

- (a) Part*(κ , λ).
- (b) For any $t: P_{\kappa}\lambda \longrightarrow P(P_{\kappa}\lambda)$, there are $t' \sim t$ and a stationary set X such that if $\{x, y\} \in D_{\kappa}\lambda \cap [X]^2$ then $y \in t'(x)$.

PROOF. (a) \longrightarrow (b). Define $F: D_{\kappa}\lambda \longrightarrow 2$ by F(x, y) = 0 if $y \in t(x)$ and F(x, y) = 1 otherwise. Let X be a stationary homogeneous set for F. When $F''([X]^2 \cap D_{\kappa}\lambda) = \{0\}$, t' = t. If $F''([X]^2 \cap D_{\kappa}\lambda) = \{1\}$, let $t'(x) = P_{\kappa}\lambda - t(x)$ for all $x \in X$.

(b) \longrightarrow (a). Put $t(x) = \{y : F(x, y) = 0\}$. There are $t' \sim t$ and a stationary set X such that if $x \subseteq y \in X$ then $x \in t'(y)$.

Let $X_1 = \{x \in X : t'(x) = t(x)\}$ and $X_2 = \{x \in X : t'(x) = P_x \lambda - t(x)\}$. Either X_1 or X_2 is stationary and both of them are homogeneous set for F.

We add easy obervations at the end of this paper.

DEFINITION. A stationary coding set for $P_{\kappa}\lambda$ (an "SC") consists of a stationary set $A \subset P_{\kappa}\lambda$ together with a 1:1 function $c:A \longrightarrow \lambda$ (called the coding function) satisfying that for each $x, y \in A$

$$x \subseteq y \longleftrightarrow c(x) \in y$$
.

PROPOSITION 3. If Part* (κ, λ) , then an SC exists. (This is also seen in Zwicker [14]. The author considered this property without a word an "SC".)

PROOF. Let F(x, y) = 0 if $c(x) \in y$ and F(x, y) = 1 otherwise, for any 1:1 func-

tion $c: P_s \lambda \longrightarrow \lambda$.

DEFINITION. $X \subset P_{\kappa}\lambda$ is prestationary iff for any choice function on X is constant on some unbounded set $S \subset X$.

This definition makes sense. In fact,

LEMMA 4. (Menas in [10]) There is a prestationary set that is not stationary.

LEMMA 5. If X is prestationary, then $\{x \in X : a \subset x\}$ is also prestationary for all $a \in P_x \lambda$.

Definition. wPart*(κ , λ) iff any partition of $P_{\kappa}\lambda$ has a prestationary homogeous set.

THEOREM 6. If wPart* (κ, λ) , then κ is almost λ -ineffable.

PROOP. Magidor's proof of Theorem 2 in [9] can be carried out. What we really need is a homogeneous set H such that for any choice function f there is an unbounded subset T of H so that

 $\forall x \in T \exists y \in T(x \subseteq y \text{ and } f(x) \geqslant f(y)).$

References

- [1] Abramson, F. G. Harrington, L. A. Kleinberg, E. M. and Zwicker, W. S. Flipping properties: a unifying thread in the theory of large cardinals, Ann. Math. Logic 12 (1977), 37-58.
- [2] Carr, D. M. The minimal normal filter on P_rλ, Proc. Amer. Math. Soc. 86 (1982), 216-320.
- [3] Carr, D. M., The structure of ineffability properties of $P_{\kappa}\lambda$, tr appear.
- [4] Di Prisco C., and Zwicker, W., Flipping properties and supercompact cardinals, Fund. Math. 69 (1980), 31-36.
- [5] Di Prisco C., and Marek, W., A filter on [λ]*, Proc. Amer. Math. Soc. 90 (1984), 591-598.
- [6] Gitik, M., Nonsplitting subset of $P_x(\pi^+)$, J. Sym. Logic 50 (1985), 881-894.
- [7] Jech, T. J., Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 7 (1973), 165-198.
- [8] Kanamori A., and Magidor M., The development of large cardinals axioms in set theory, Higer set theory, Lecture Notes in Mathematics, 699, Springer-Verlag, Berlin and New York, 99-276.
- [9] Magidor M., Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc. 42 (1974), 327-359.
- [10] Menas, T. K., On strong compactness and supercompactness, Ann. Math. Logic 7 (1974), 327-359.
- [11] Menas T. K., A combinatorial property of Prl, J. Sym. Logic 41 (1976), 225-234.

- [12] Shelah S., The existence of coding sets, to appear.
- [13] Solovay R. M., Reinhaldt W. N., and Kanamori A., Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1978), 379-419.
- [14] Zwicker W., P_rλ combinatorics I: stationary coding sets rationalize the club filter, Contemporary Mathematics 31 (1984), 243-259.

Fukushima Technical College Taira, Kamiarakawa, Nagao 30 Iwaki, 970