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NOTES ON P:2 AND [1]*

By
Yoshihiro ABE

This paper consists of notes on some combinatorial properties. §1 deals with
-ineffability and the partition property of PiA with 2 ineffable. In §2 we combine
the flipping property and a filter investigated by Di Prisco and Marek to characte-
rize huge cardinals.

We work in ZFC and the notations are standard. Pud={zCi: |z|<s} A=
{xca: |z|=x}, Dia={x, y}:z, yeP:2 and xSy}

§1 P.2 when 2 is ineffable.

£ is called 2-ineffable if for any function f: P.A—> P.2 such that f(z)Cx
for all xeP.a, there is a subset A of 2 such that the set {zeP.2: ANx=f(x)} is
stationary. We abbreviate the following statement to Part*(«, 2);

“For any function F:D.2—> 2, there is a stationary homogeneous set H i.e.
[F"(HPN D) =1.""

If Part*(x, 2), then & is A-ineffable. We shall show the converse is true when
A is ineffable.

LeMMA 1. XcP.iis closed unbounded iff {e<2: XN P.a is closed unbounded
in P.a} contains a closed unbounded subset of 2. Hence S is stationary in P2 if
{a<2:SN P.a is stationary in P.a} is a stationary subset of .

THEOREM 2. Suppose that A is ineffable. If Part*(x, a) for all a<4, then
Part*(«, 2).

Proor. Let F:DJ—2 and F,=F!D.a for every a<A. By our assumptions,
there is a stationary subset A, of P.a such that
F'[A N Da)y={k.}, k.€{0, 1}.
Since 2 is ineffable, we can find an Ac P2 so that

S={a<2:A,=ANP.a} is stationary in A
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A is stationary by Lemma 1.

Let ¢, ue[A?ND.2. Since S is unbounded in 2, there is a member of S, a such
that both ¢ and # are in [A.)*ND.a. Hence F#)=F(u)=*k,. So, A is a stationary
homogeneous set for F.

DEFINITION. « is Z-almost ineffable if for any function f:P.— P.2 such
that f(z)Cx for all xeP.4, there is a subset A of 2 such that the set {zeP.a:
ANz=f(x)} is unbounded.

THEOREM 3. Suppose that 2 is almost ineffable. Then & is 2-almost ineffable
iff £ is a-almost ineffable for all a< 4.

ProOOF. —— is proved by the same argument as the lemma in Magidor [9]
p-p. 281.
(«—) Let f: P.2— P.aand f(x)cz for all zeP.2. Considering a function f|P.«a
and using a-ineffability, we get an A,Ca for every a<A such that

X, ={xeP.a: f(x)=xNA.} is unbounded in P.a.
Using now the almost ineffability of 2, there is an Ac2 so that
S={a<i:A.=ANa} is unbounded in A

Let X={zxeP.a: f(x)=xNA}. If aecS and reP.a, then zNA.=xNANa=xNA.
Hence X,c XN P.a for every aecS. This gives

{a<2: XNP.a is unbounded in P.a} is unbounded in A

Thus X is unbounded in P.A.

CoroLLARY 4. The following are equivalent for k<2 with 1 ineffable.

(a) Part*(x, a) for all a<a.

(b) Part*(k, 2).

(c) « is Z-ineffable.

(d) « is a-ineffable for all a<a.

(e) « is a-almost ineffable for all a<A.
(f) « is 2-almost ineffable.

(g) & is a-supercompact for all a<a.

Proor. (a)—(b) is Theorem 1. (b)—(c) is Theorem 2 in Magidor [9].
(c)—>(d) is the lemma also in [9]. (d)—(e) is trivial. (e)e—=(f) is Theorem
3. (e)—>(g) is by Carr’s result: If r is 2°~"-shelah, then r is a-supercompact.
(¢ is a-shelah if « is a-almost ineffable.) See [3].
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On the coding of P.4, there are works of Zwicker and Shelah [12]. The
author can not answer this question.

QUEsTION 5. Is there a function #:1——> P2 such that for any stationary
subset A of 4, #/A is stationary in P.A.

It is, of course, true if x=2. In fact let £=id.|r. The question is interesting
when 2 is ineffable.

ProrosiTiON 6. If 2 is ineffable and there is a ¢#: 42— P.A such that #’A is
stationary for any stationary subset A of A, then « is A-ineffable.

ProoF. Suppose that f:P.A-—> P2 and f(zx)Cx for all ze P.A. Let A.={f<a:
Be f(#(a))}. Since 2 is ineffable, there is a stationary subset S of 2 and Ac2 so
that A,.=ANa for all aeS.

B=t""S is stationary and for any xeB there is an a,€S such that x=#(as).
Hence f(x)Naz=ANas.

Let B’={zeB: f(x)+*ANx} and é,=the least ordinal in f(x)4d(ANx). dex for
all zeB'.

Soppose that B’ is stationary. There is an ordinal 6<A such that C={zxeB’:
0r=0} is stationary.

VeeC(f(z)N(G+1)xANG+1)).
So,
VzeClaz<9).
Haz: zeCH >|Cl=1%>2.
Thus there is an xeC such that d<a,.

Hence {zeB: f(x)=ANx} is stationary.

REMARK. #’A is a stationary subset which splits into 1 disjoint stationary
subsets. Gitik constructed a model of ZFC in which there is a stationary set that
can not be splitted into 2 disjoint stationary subsets in [6].

§2 [4]° when & is huge.

Let j: V—> M be a huge embedding with critical point # and j(x)=2 in this
section.

At first we recall a filter on [1]° investigated by Di Prisco and Marek in [5].
1t is analogous to the closed unbounded filter on PA.
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DeriNiTION. For XC P2, define Ay, the basic set generated by X, as follows:
Ax={xe[2]":x is the union of an increasing k-chain of elements of X}. Define
F. . by

AcF,,, iff there is a closed unbounded Xc P, such that AxC A.

THEOREM (Di Prisco, Marek, Baumgartner)
F. . is the least x-complete, normal, fine filter on [A]*. If U is the normal ultra-
filter on [4]° induced by j, then every set in F. ; is in U. In this case F.  is not
x-complete.

Xc[2]" is unbounded if Vxe[A'IyeX(xcy). X is F, ; stationary if XNY=0
for all YeF,, ;.

ProrosiTiON 1. Any XeF,,; is unbounded.

Proor. There is a Cc P that is closed unbounded and CyxcX. Let ae[i]
and f:x — a be a bijection, x,=f"’a for all a<x. We can find, using induction,
y.€C such that y.Dx.U{y,: <a} for every a<s.

{yala<e}cC is a k-chain and z=\J{z,: a<c}C\U{y.:a<r}=yeCrc X.

Next proposition shows the situation is different from P.A.

ProrosiTION 2. If ¢ is huge, there is a F, ;-stationary set that is not un-
bounded.

PrOOF. (2)*={xe[2]": the order type of x is x} is in U. Clearly (2)* is not
unbounded.

Moreover, we shall show that there is a F, ;-stationary set S such that for
any xz, y in S, x¢y. Thus, partition property may not be directry extended to [
as for P.A.

DEFINITION. f is a w-Jonsson function over a set x iff f:“x — x and when-
ever yCz and |y|=|z|, f/""y==x.

LemmA 3. Let U be the normal ultrafilter on [4]" induced by j and f is a
w-Jonsson function over 4. Then {xe[A]": f|"x is w-Jonsson over xz}eU.

Proor. The same argument as a normal ultrafilter on P2 can be carried out.
Let e: V—> N=VW U and Xce'’2 with |X|=|e’’2]=A. Since Y=e(X)c2 and
|Y|=2a, f"*Y=2. So,

Va<idse’Y(a=f(s)).
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This implies
Vace'’2Ase Y (a=e(f)(e(s))).
Since e(s)=e’’se"X,

e(f)’*X=e'"2.

Hence e(f)[“e’’2 is w-Jonsson over e’’A.
Thus {z: f|“r is w-Jonsson over z}eU.

THEOREM 4. There is an AeU such that for every pair z, y in A, zq¢y.

Proor. Let f be a w-Jonsson function over 2 and A={xe[A]": f“z is w-
Jonsson over x}jeU.
Suppose yExeA. Since |z|=ly|, f/"“y=z. But f“yCy.

§3 Flipping properties and huge cardinals, partition properties of P.A.

Flipping properties wrer first studied by Abramson, Harrington, Kleinberg and
Zwicker in [1] and turned out to be another form of large cardinal property. Di
Prisco and Zwicker [4] extended this line to supercompactness. More precisely,
they gave a new type of flipping properties equivalent to 2-ineffability and A-mildly
ineffability. We shall introduce an analogous type properties and discuss the
relationship with huge cardinals.

DeriNiTION. If #:21—— P([A]"), we call ¢ a flip of #(#'~¢) if ¢t :2—> P(2]9)
and for all a<i, #(a)=Ha) or t'(a)=[2]"—t(a). Flip(e, )=Vt:2— P([A]")At'~t
such that Af’(“) is F, ;-stationary. Inef(x, A)=for any function f:[2]" — [4]" such
that f(x)ac<x for all xze[4], there is a subset A of 2 such that the set

{xe[A): ANzx=f(x)} is F,,;-stationary.

TueoREM 1. (i) Flip(x, 2) iff Inef(x, 2).
(ii) If Flip(x, 2%°), then there is a huge embedding j such that « is the critical
point and j(x)=A.
(iii) If j: V—> M is a huge embedding with the critical point x such that j(x)=2,
then Flip(«x, A).

Proor (i) Assume that Flip(x, ) and f:[2]* — [4A]" such that f(x)cz for
all xe[2]". Define ¢: 41— P([A]) by

Ha)={xe[A]": ac f(x)}-



160 Yoshihiro ABE

Let #/~¢ be such that az(!f’(a) is F,, ;-stationary.

Put A=U{f(x):xe£f’(a)}. We shall show that if xc;ﬁl‘t’(a) then xNA=f(x).
Obviously f(z)cxnNA. If aexNA, then there is a yepf!lt’(ﬁ) so that a€ f(y). Since
ac f(y), yet(a) and acy. Hence #'(a)=#a). Now aexeﬁéllt’(ﬁ) and #(a)=#a). This
gives zet(a). Hence ae f(x).

Conversely, let ¢:2— P([2]"). Define f:[2)* — [1]° by
flx)={aex:ret{a)}.

There is a subset A of A1 such that B={zxe[A]":xzNA=f(x)} is F. ,-stationary.
Define ¢/ : 2 — P([2]") by #(a)=Ha) if acA and #(a)=[11"—Ha) if adA.

Suppose reS and acx. If acA, then acf(x) hence xet(a)=t'(a). If a¢A, then
adf(x) hence zé¢t(a). So zxet'(a). Now we have shown Sggt’(a), which must be
F.,,-stationary.

(ii)) Let y=2* and {A.:a<y} be an enumeration of P([1]"). Define ¢:y —>
P([yT) by Ha)={ze[y]":xzN2eA.}. Let t’~t be such that 4¢'(a) is F,,,-stationary.

A filter U on [1]" is defined by A.eU iff (a)=t(a). We shall show in fact U
is a normal ultrafilter. The fact that for any «eeP.r the set {zxe[y]":acCx} is a
member of F, , is often used.

(1) Aq€ U/\AaCAp - Ape U.

There is a xeef’zt’@) such that {a, Blcx. Since zet/(a)=#a), xNicA,CA;. Thus
zet(B). Hence t'(B)=t(B).

(2) U is k-complete.

Suppose {B.:a<dé}cU (6<x) and f:6 —> 7y such that B,=Ay,, for all a<d. Let
A=(p-

There is a xedt’(§) such that {p}U f’écz. For all a<4, zet'(f(a))=tf(a)), so
erAf(a,. Hence xN2ieA,. This shows zet(y) and ¢'(y)=t(y).

(3) For any a<ai, {ze[A]":acx}eU.
Let Ag={xe[A) :acx}. PB)={zelr] :acxnNi}={xe[r]":aex}eF,,. There is a
xeeélf’(é) such that xe#(B) and Bex. Hence xz€#’(8) and #(8)=%(p).

(4) U is an ultrafilter.
Obviously ¢¢U. So we have to show only that if A4U, then [1]*-AeU. Suppose
that A.4U. V(a)=[r]"—#a). Let [A]*—A.=A;. There is a xeAf’(&) such that
{a, Blcx. Since zet/(a)=[r]"—t(a), xNI¢A.. Hence xNicA; and ze#(8). Thus
#(8)=H(p).

(5) U is normal.
Suppose that {B,:a<i}cU. Let f:2— 7y be such that B,=A;. for all a<3,
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and 4%3“:/15.

aNote that X={zeP.y:VacxNA(f(a)ex)} is a closed unbounded subset of P.y.
Let C=Ax={ye[y]":IDc X(D is a x-chain, y=\UD)}. Then CeF,,,.

If yeC and aeyna4, there is an xeD such that aexnNi and zcy. Hence
f(a)excy. Now we have got that for any yeC, if acyNi then fla)ey.

There is a yeAt’(E) such that yeC and Bey. For all aeyNi, f(a)ey and
yet/(f(a))=t(f(a)), hence YNA€Afia-

If #(B)=[71"—Hp), ynz¢Aﬂ—a£IB,,. So, there is an aeyN2 such that yNi¢B.=
Asw - Contradiction. Hence #(8)=#(8).

(iii) Let U be the normal ultrafilter on [2]° induced by j, #:2—— P([A]").
Define ¢’ : 12— P([2]") as follows. #(a)=#a) if #a)eU, and #(a)=[1] —t(a) if Ha)¢U.
Then #'~¢ and for all a<a, #/(a)eU. Hence 4#(a)eU. Every member of U is
F. ;-stationary. s

Next the author tried to express the partition property of P.2 in the form of
a flipping propertie. (Though it does not seem successful.)

PropposiTION 2. The followings are equivalent.
(@) Part*(x, 2).
(b) For any ¢:P.2—> P(P,2), there are #'~¢ and a stationary set X such that if
{z, y}e DAN[X]? then yet'(x).

Proor. (a)— (b). Define F:D.A—>2 by F(x, y)=0 if yet(x) and F(x, y)=1
otherwise. Let X be a stationary homogeneous set for /. When F//({X1*ND.A)=
{0}, ¢/=¢t. If F/(X)1PND2A)={1}, let #/(x)=P.A-t(x) for all xeX.

(b)—> (a). Put #x)={y:F(x, y)=0}. There are #~¢ and a stationary set X
such that if xEyeX then xet/(y).

Let Xi={zxeX:t(x)=tz)} and X,={xeX:¢¥(x)=P.A—t(x)}. Either X, or X; is
stationary and both of them are homogeneous set for F.

We add easy obervations at the end of this paper.

DerFINITION. A stationary coding set for P.Z (an “SC?”) consists of a stationary
set ACP.21 together with a 1:1 function ¢: A — 2 (called the coding function)
satisfying that for each =z, yecA

zEye>c(r)ey.

ProposiTiON 3. If Part*(«, 1), then an SC exists. (This is also seen in Zwicker
[14]. The author considered this property without a word an “SC”.)

Proor. Let F(z, v)=0 if c¢(x)ey and F(x, y)=1 otherwise, for any 1:1 func-
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tion ¢:PA— 2.

DerFiNITION. XcC P,2 is prestationary iff for any choice function on X is con-
stant on some unbounded set ScX.
This definition makes sense. In fact,

Lemma 4. (Menas in [10]) There is a prestationary set that is not stationary.

LemMA 5. If X is prestationary, then {xeX:aecux} is also prestationary for
all aeP.A.

DErFINITION. wWPart*(«, 2) iff any partition of P.4 has a prestationary homogeous
set.

THEOREM 6. If wPart* (x, 2), then « is almost 2-ineffable.

Proor. Magidor’s proof of Theorem 2 in [9] can be carried out. What we
really need is a homogeneous set H such that for any choice function f there is
an unbounded subset T of H so that

VxeT3AyeT(xEy and f(x)= f(y)).
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