ON JOINT NUMERICAL RANGES AND JOINT NORMALOIDS IN A C*-ALGEBLA

by

K. R. Unni and C. Puttamadaiah

The notion of the joint numerical range of a finite system of elements in a unital complex Banach algebra was introduced by Bonsall and Duncan (p. 23, [2]), and also proved that it is a convex compact subset of C^n . Later Mocanu [5] extended this definition to a C*-algebra and obtained several interesting results in this set up. The result (Lemma 5, p. 43, [3]) that if a and b are single elements in unitial Banach algebras A and B respectively, then the numerical range V((a, b)) of $(a, b) \in A + B$ is equal to the convex hull of $V(a) \cup V(b)$, is also valid in case of a C*-algebra. The purpose of this paper is to generalize this result to an n-tuple of elements in a C*-algebra. It is also proved, on contrary to the expentation that the generalization of a well known result that a single element a in a C*-algebra is normaloid if and only if $||a^k|| = ||a||^k$ for all positive integers k, is not true for a finite system of elements in a C*-algebra.

1. Joint numerical range

If A and B are unital C*-algebra with unit elements e_1 and e_2 respectively, then

$$A+B=\{(a, b): a \in A, b \in B\}$$

with componentwise addition, multiplication, scalar-multiplication, and conjugation together with the norm

$$||(a, b)|| = \max\{||a||, ||b||\}$$

is a unital C*-algebra with the unit element (e_1, e_2)

If $a=(a_1, a_2, \dots, a_n)$ and $b=(b_1, b_2, \dots, b_n)$ are *n*-tuples of elements of A and B respectively, then a+b is given by $a+b=((a_1, b_1), (a_2, b_2), \dots, (a_n, b_n))$. where $(a_i, b_i) \in a+b$, $1 \le i \le n$. Throughout we shall consider complex C*-alsebras only.

A linear functional f on a unital C*-algebra is positive if $f(a*a) \ge 0$ for all

Received March 27, 1984. Revised September 2, 1985.

 $a \in A$. It is known that f is positive if and only if f is bounded and ||f|| = f(e) ([1], p. 40 [4], prop. 3. 3. p. 24 [9] and cor. 4. 5. 3, p. 215, Th. 4. 8. 16 [7]). A positive functional f such the f(e)=1 is called a state on A.

DEFINITION 1.1. For an *n*-tuple $a=(a_1, \dots, a_n)$ of elements in a unital C*-algebra, the joint numerical range V(a) is defined by

$$V(\alpha) = \{(s(\alpha_1), \dots, s(\alpha_n)) \in \mathbb{C}^n, s \in S_A\},$$

where S_A is the set of all states on A. We note that V(a) is a compact convex subset of C^n .

LEMMA 1.2. If P and Q are convex sets in a vector space, then

$$Co(PUQ) = \bigcup_{0 \le l \le 1} \lambda P + (1 - \lambda)Q$$

This is (Theorem 1.25, p. 16 [8]).

LEMMA 1.3. Let A and B be unital C*-algebras. Then a functional $F \in S_{A+B}$ if and only if it can be represented in the form

$$F(a, b) = \lambda f(a) + \mu g(b)$$

for all $(a, b) \in A + B$, where $f \in S_A$, $g \in S_B$ and $\lambda, \mu \ge 0$ with $\lambda + \mu = 1$.

PROOF. Suppose $f \in S_A$, $g \in S_B$. If λ and μ are such that λ , $\mu \ge 0$, $\lambda + \mu = 1$, then set

$$F(a, b) = \lambda f(a) + \mu g(b),$$

Clearly F is a linear functional on A+B such that $F(e_1, e_2)=1$. Since $f(a*a)\geq 0$, and $g(b*b)\geq 0$,

$$F((a, b)^* (a, b)) = F((a^*, b^*), (a, b))$$

$$= F(a^*a, b^*b)$$

$$= \lambda f(a^*a) + \mu g(b^*b) \ge 0.$$

Thus $F \in S_{A+B}$.

To prove the converse, first we shall observe that if D is a unital C*-algebra with unit element e and P is a linear functional on D such that $P(x^*, x) \ge 0$, $x \in D$, then

$$|P(x)| \le P(e)||x||$$
, $x \in D$ (p. 40 [4] and Prop. 3. 3, p. 29 [9]).

Now let $F \in S_{A+B}$. setting h(a) = F(a, 0), $a \in A$, it follows that h is a linear functional on A such that $h(a*a) \ge 0$, $a \in A$. Since e_1 is a unit element in A,

$$(1) |h(a)| \le h(e_1)||a||, \ a \in A.$$

Analogously, if K(b)=F(0, b), then K is a linear functional on B with $K(b*b) \ge 0$, and

(2)
$$|K(b)| \le K(e_2) |||b||, b \in B.$$

Clearly

(3)
$$F(a, b) = h(a) + K(b), (a, b) \in A + B$$

and

$$(4) 1 = F(e_1, e_2) = h(e_1) + K(e_2)$$

- (i) If $h(e_1)=0$, then the inequality(1) implies that h(a)=0 for $a \in A$. From (4) it follows that $K(e_2)=1$ showing $K \in S_B$. Then from (3) F(a, b)=K(b).
 - (ii) Similarly, if $K(e_2)=0$, F(a, b)=h(a) with $h \in S_A$.
- (iii) If $h(e_1)=\lambda\neq 0$ and $K(e_2)=\mu\neq 0$, then $\lambda+\mu=1$. By Setting $f(a)=(1/\lambda)h(a)$ and $g(b)=(1/\mu)K(b)$, we get $f\in S_A$, $g\in S_B$ and $F(a,b)=\lambda f(a)+\mu g(b)$ by (3). This completes the proof.

We now prove our main Jesult.

THEOREM 1.4. Let A and B be unital C*-algebras. If $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$ are n-tuples of elements of A and B respectively, then

$$V(a+b) = V((a_1, b_1), \dots, (a_n, b_n))$$

$$= \{(s(a_1, b_1), \dots, s(a_n * b_n)) \in C^n : s \in S_{A+B}\}$$

$$= \text{Co}(V(a) \cup V(b)).$$

PROOF: Suppose $\lambda \in \text{Co}(V(a) \cup V(b))$. Then $\lambda = t\mu + (1-t)\nu$, $\mu = (\mu_1, \dots, \mu_n) \in V(a)$ and $\nu = (\nu_1, \dots, \nu_n) \in V(b)$ and $0 \le t \le 1$ using Lemma 1.2. Then $\mu_1 = f(a_i)$, and $\nu_i = g(b_i)$ for some $f \in S_A$ and $g \in S_B$, $1 \le i \le n$. Since $f \in S_A$ and $g \in S_B$, by Lemma 1.3, there exists $F \in S_{A+B}$ such that

$$F(a_i, b_i) = t f(a_i) + (1-t) g(b_i)$$
 for all $(a_i, b_i) \in A + B$.

Now

$$t\mu + (1+t)\nu = t(\mu_1, \dots, \mu_n) + (1-t)(\nu_1, \dots, \nu_n)$$

= $((t\mu + (1-t)\nu_1), \dots, ((t\mu_n + (1-t)\nu_n))$
= $(Fa_1, b_1), \dots, F(a_n, b_n)) \in V(a+b)$

Hence

$$Co(V(a) \cup V(b)) \subset V(a+b)$$
.

Conversely, suppose $\eta \in V(a+b)$. Then $\eta = \eta_1, \dots, \eta_n$ with $\eta_i = F(a_i, b_i)$ for some $F \in S_{A+B}$, $1 \le i \le n$. Since $F \in S_{A+B}$, by Lemma 1.3, we can find $f \in S_A$ and $g \in S_B$ and

 λ , $\mu \ge 0$ with $\lambda + \mu = 1$ such that

$$F(x, y) = \lambda f(x) + (1 - \lambda) g(y)$$

for all $(x, y) \in A + B$. Therefore, in particular

$$F(a_{i}, b_{i}) = \lambda f(a_{i}) + (1 - \lambda) g(b_{i}), (a_{i}, b_{i}) \in A + B.$$

$$\eta = (\eta_{1}, \dots, \eta_{n}) = (F(a_{1}, b_{1}), \dots, F(a_{n}, b_{n}))$$

$$= ((\lambda f(a_{1}) + (1 - \lambda) g(b_{1}), \dots, (\lambda f(a_{n}) + (1 - \lambda) g(b_{n})))$$

$$= \lambda (f(a_{1}), \dots, f(a_{n})) + (1 - \lambda) (g(b_{1}), \dots, g(b_{n})) \in Co(Va) \cup V(b)).$$

Thus

$$V(a+b) = \text{Co}(V(a) \cup V(b)).$$

2. Joint Normaloids

DEFINITION 2.1. Let A be a C*-algebra with unit element e. Then for an n-tuple $a = (a_1, \dots, a_n)$ of elements in A, the joint spectrum $\sigma(a)$ of a is defined by

$$\sigma(\alpha) = \{(\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n : \sum_{i=1}^n (a_i - \lambda_i) A \neq A \text{ or } \sum_{i=1}^n A(a_i - \lambda_i) \neq A\}$$

 $\sigma(a) \subset V(a)$ (Theorem 12, p. 24, [2], also see [5]).

The Cartesian product $A^n = A \times A \times \cdots \times (n \text{ times})$ becomes an algebra with involution if we define all the operations componentswise. In particular, if $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$ are elements of A^n , we have

$$a^* = (a_1^*, \dots, a_n^*),$$

 $ab = (a_1b_1, \dots, a_nb_n)$

and a norm is defined by

$$||a|| = (\sum_{i=1}^{n} ||a_i||^2)^{1/2}.$$

If $z=(z_1, \dots, z_n)$ C^n , we set $|z|=(\sum_{i=1}^m |z_i|^2)^{1/2}$.

Definition 2.2. The joint numerical radius and joint spectral radius of $a \in A^n$ defined by

$$V(a) = \sup\{|\lambda| : \lambda \in V(a)\}$$

and

$$r(\alpha) = \sup \{ |\eta| : \eta \in \sigma(\alpha) \}$$

respectively. It is easy to see that $r(a) \le v(a) \le ||a||$.

Definition 2.3. The joint approximate spectrum $\pi(a)$ of $a=(a_1, \dots, a_n) \in A^n$ is

defined to be the set of all *n*-tuples of complex numbers $\lambda = (\lambda_1, \dots, \lambda_n)$ such that there exists a sequence U_k of unit vectors in A satisfying

$$||(a_i-\lambda_i)U_k|| \rightarrow 0$$
 as $K\rightarrow \infty$, for $i=1, 2, \dots, n$.

DEFINITION 2.4. We say that $a=(a_1, \dots, a_n)$ A^n is jointly normaloid if r(a) = ||a||.

THEOREM 2. 5. The joint numerical radius has the following properties:

- (i) $v(a) < \infty$, $v(a) \ge 0$ and v(a) = 0 if and only if $a = 0 \in A^n$.
- (ii) $v(\alpha a) = |\alpha| v(a)$ for all scalars α
- (iii) $v(a+b) \le v(a) + v(b)$ for all $a, b \in A^n$
- (iv) $v(a) = v(a^*)$ for all $a \in A$.

Proof is easy, and hence omitted.

LEMMA 2.6. Let $a=(a_1, \dots, a_n)$ be *n*-tuple of elements in A. If $\lambda=(\lambda_1, \dots, \lambda_n) \in V(a)$ with $|\lambda_i|=||a_i||, 1 \le i \le n$, then $\lambda \in \pi(a)$.

This is Theorem 3 of Mocanu [5].

In the following we prove the invalidity of the generalization of a well known characterisation that a single element $a \in A$ is normaloid if and only if $||a^k|| = ||a||^k$ for all positive integers k. For simplicity of exposition we shall consider the case n=2 and the general result follows on the similar lines.

THEOREM 2. 7. suppose $a=(a_1, a_2) \in A \times A$. if a is jointly normaloid, then $a_1^2=(a_2^2, a_2^2)$ is also jointly normaloid. If in addition a_1 and a_2 are non-zero, then $r(a^2) \neq r(a)^2$, that is $||a^2|| \neq ||a||^2$.

PROOF: Since a is jointly normaloid, we have r(a)=||a||. There exists $\lambda=(\lambda_1,\lambda_2)\in\sigma(a)$ such that $|\lambda|=r(a)$. Thus

$$|\lambda_1|^2 + |\lambda_2|^2 = ||\alpha_1||^2 + ||\alpha_2||^2$$
.

This shows that

(5)
$$||a_i|| = |\lambda_i| \quad \text{for} \quad i = 1, 2$$

and hence $\lambda \in \pi(a)$ by Lemma 2. 6. Since $\lambda = (\lambda_1, \dots, \lambda_n) \in \pi(a)$, there is a sequence $\{U_k\}$ of unit vectors in A such that

$$||(a_i-\lambda_i)U_k|| \rightarrow 0$$
 as $k\rightarrow \infty$, $i=1, 2$.

From which it follows that

$$||(a_1^2-\lambda_1^2)U_k||\rightarrow 0$$
 as $k\rightarrow \infty$, $i=1, 2$.

Hence

$$\mu = (\lambda_1^2, \lambda_2^2) \in \pi(\alpha^2).$$

Using (5) and the fact that a_1 is a normaloid, we have

$$|\lambda_i^2| = |\lambda_i|^2 = ||\alpha_i||^2 = ||\alpha_i^2||$$

for each i=1, 2 and therefore

$$\begin{aligned} |\mu| &= (|\lambda_1^2|^2 + |\lambda_2^2|^2)^{1/2} \\ &= (||a_1^2||^2 + ||a_2^2||^2)^{1/2} = ||a^2||. \end{aligned}$$

Hence $r(a^2) = ||a^2||$ and a^2 is jointly normaloid. This proves the first part.

Now suppose $a=(a_1, a_2)$ is jointly normaloid and a_1 , a_2 are both non-zero. If possible, suppose $r(a^2)=r(a)^2$, By the first part of the theorem a^2 is jointly normaloid, and hence $||a^2||=||a||^2$. This gives

$$||a_1^2||^2 + ||a_2^2||^2 = (||a_1||^2 + ||a_2||^2)^2$$

That is,

$$(||a_1||^4 - ||a_2||^2) + (||a_2||^4 - ||a_2||^2) + 2||a_1||^2||a_2||^2 = 0.$$

Since the left side of this equation is the sum of three nonnegative terms, we conclude that each term must be zero, in particular either $a_1=0$ or $a_2=0$. This is a contradiction.

References

- [1] Bohnenblust, H. F. and Karlin, S., Geometric properties of the unit sphere in Banach algebra, Ann. of Math. 60 (1955) 217-229.
- [2] Bonsall, F. F. and Duncan, J., Numerical ranges of operators on normed spaces and of elements of normed algebras, Lond. Math. Soc. Lecture Notes-2, 1971.
- [3] Bonsall, F. F. and Duncan, J., Numerical ranges II.
- [4] Lumer, G., Semi-inner-product spaces, Trans. Ame. Math. Soc. 100 (1961) 29-43.
- [5] Mocanu, Gh., The Joint approximate spectrum of a finite system of elements of a C*-algebra, Studia Mathematica, 49 (1974) 253-262.
- [6] Pushpa Juneja, Contributions to the theory of several Hilbert space operators, Ph. D. Thesis, University of Delhi, 1977.
- [7] Rickart, C. E., General theory of Banach algebras, Van Nostrand Co., 1960.
- [8] Valentine, F. A., Convex sets, McGraw-Hill, London 1964.
- [9] Williamson, J.H., Lectures on Representation Theory of Banach algebras and locally compact groups, Matscience Report No. 54 (1967).

Institute of Mathematical Sciences MADRAS-600 113, India. Department of Mathematics University of Mysore MYSORE-570 006, India.