OPTIMUM PROPERTIES OF THE WILCOXON SIGNED RANK TEST UNDER A LEHMANN ALTERNATIVE

By

Taka-aki SHIRAISHI

1. Introduction.

Let X_{1}, \cdots, X_{n} be a random sample from an absolutely continuous distribution function $F(x)$. The problem is to test the null hypothesis $H: F(x)=G(x)$ where $G^{\prime}(x)=g(x)$ is assumed to be symmetric about zero. When $G(x)$ is a logistic distribution function, Hajek and \tilde{S} idák [\[1\]](#page-4-0) reviewed that the Wilcoxon signed rank test is locally most powerful among all rank tests against the location alternative $A: F(x)=G(x-\theta)$ for $\theta>0$ and showed that the test is asymptotically optimum under the contiguous sequence of alternatives $A_{n} : F(x)=G(x-\Delta/\sqrt{n})$ for some 4 > V.

In this paper, we consider the alternative of the contaminated distribution

(1.1)
$$
K: F(x)=(1-\theta)G(x)+\theta\{G(x)\}^2 \quad \text{for } 0<\theta<1.
$$

The alternative K was introduced by Lehmann [\[2\]](#page-4-1) for a two-sample problem. In order to get an asymptotic optimum property, we consider the sequence of alternatives

$$
(1.2) \t K_n: F(x)=(1-4/\sqrt{n})G(x)+(4/\sqrt{n})\{G(x)\}^2 \t for 4>0,
$$

which is included in K and approaches the null hypothesis H as $n\rightarrow\infty$. In the following Section, we shall show that the Wilcoxon signed rank test is locally most powerful among all rank tests under K and is asymptotically most powerful under K_{n} . Further in Section 3, we shall compare the Wilcoxon signed rank test with the one-sample t -test by the asymptotic relative efficiency under the contiguous sequence of alternatives of general contaminated distributions

(1.3)
$$
K'_n: F(x) = (1 - \frac{1}{\sqrt{n}})G(x) + \frac{1}{\sqrt{n}}H(G(x)) \quad \text{for } 1 > 0.
$$

2. Optimum properties.

Taking the absolute values of observations, let R_{i} be the rank of $|X_{i}|$ among the observations $\{|X_{i}|; i=1, \dots, n\}$ and define sign $X=1$ for $X>0$, 0 for $X=0$ and Received April 8, 1985. Revised June 27, 1985.

58 Taka-aki SHIRAISHI

-1 otherwise. Note that Pr {sign $X_{i}=0$ }=0 since we consider only absolutely continuous distribution. Then we can describe the Wilcoxon signed rank statistic as the following.

$$
(2.1) \t\t T=\sum_{i=1}^n(\text{sign }X_i)R_i.
$$

At first, we investigate the property of " locally most powerful".

THEOREM 1. The Wilcoxon signed rank test based on T defined by (2.1) is locally most powerful for H versus K defined by (1.1) among all rank tests.

Proof. Putting sign $\underline{X} = (\text{sign } X_{1}, \cdots, \text{sign } X_{n})$ and $\underline{R} = (R_{1}, \cdots, R_{n})$, we get for any vector $\mathbf{v}=(v_{1}, \dots, v_{n})$ such that $v_{i}=1$ or -1 and any permutation $\mathbf{r}=(r_{1}, \dots, r_{n})$ of $(1, \dots, n)$, under H, Pr $\{\text{sign } \underline{X}=\underline{v}\}=1/2^{n}$ and Pr $\{\underline{R}=\underline{r}\}=1/n!$. Here since the likelihood function of (X_{1}, \cdots, X_{n}) under K is given by

(2.2)
$$
p_{\theta}(x) = \prod_{i=1}^{n} \{ (1-\theta)g(x_i) + 2\theta G(x_i)g(x_i) \},
$$

the joint probability of sign vector sign \underline{X} and rank vector \underline{R} is expressed by

$$
\beta(\theta) = P_{\theta} {\text{sign } \underline{X} = \underline{v}, \underline{R} = \underline{r}}
$$
\n
$$
= \int \cdots \int_{\text{sign } \underline{X} = \underline{v}, \underline{R} = \underline{r}} p_{\theta}(x) dx
$$
\n
$$
= 1/(2^n \cdot n!) + \sum_{j=1}^n \int \cdots \int_{\text{sign } \underline{X} = \underline{v}, \underline{R} = \underline{r}} \prod_{k=1}^{j-1} g(x_k) \prod_{k=j+1}^n \{(1-\theta)g(x_k) + 2\theta G(x_k)g(x_k)\}
$$
\n
$$
\times [\{(1-\theta)g(x_j) + 2\theta G(x_j)g(x_j)\} - g(x_j)] d\underline{x},
$$

It follows that

$$
\beta'(0) = \sum_{j=1}^n \left\{ \dots \int_{\text{sign } \underline{X} = \underline{v}, \underline{R} = \underline{r}} \{-1 + 2G(x_j) \} \prod_{k=1}^n g(x_k) dx \right\}.
$$

Let $|X|^{(i)}$ be the *i*-th order statistic among the absolute values $\{|X_{i}|; i=1, \dots, n\}$. Since $|X|^{(i)}$, sign X and R are mutually independent under H from II 1.3 theorem of Hájek and Šidák [\[1\],](#page-4-0) we can get

$$
\beta'(0) = 1/(2^n \cdot n!) \cdot \sum_{j=1}^n E\{-1 + 2G(v_j|X|^{(r_j)})\}
$$

= $1/(2^n \cdot n!) \cdot \sum_{j=1}^n E[v_j\{2G(|X|^{(r_j)})-1\}]$
= $1/(2^n \cdot n!) \cdot \sum_{j=1}^n v_j r_j/(n+1)$,

which implies the result.

Next we shall show the asymptotic optimum property. Corresponding to (2.2) , the joint density of (X_{1}, \cdots, X_{n}) under K_{n} defined by [\(1.2\)](#page-0-0) is given by

$$
q_{d}(\underline{X}) = \prod_{i=1}^{n} [\{(1 - \Delta/\sqrt{n}) + 2\Delta G(X_i)/\sqrt{n}\} g(X_i)]
$$

THEOREM 2. The asymptotic power of the Wilcoxon signed rank test is equal to that of the most powerful test for H versus K_{n} when Δ and $G(u)$ are known, having critical region $\{\underline{x};\log\{q_{\Lambda}(\underline{x})/p(\underline{x})\}\geq t_{n\alpha}\}.$

PROOF. Taylor's series expansion of the logarithm of the likelihood ratio yields

 (2.3)

$$
L_{d} = \log \{q_{d}(X)/p(X)\}
$$

= $\log \left[\prod_{i=1}^{n} \{(1 - A/\sqrt{n}) + 2AG(X_{i})/\sqrt{n}\}\right]$
= $(A/\sqrt{n}) \sum_{i=1}^{n} \{2G(X_{i}) - 1\} - A^{2}/(2n) \cdot \sum_{i=1}^{n} \{2G(X_{i}) - 1\}^{2}$
+ $A^{3}/(3n\sqrt{n}) \sum_{i=1}^{n} [\{2G(X_{i}) - 1\}^{3}/\{1 + \delta_{i}(A/\sqrt{n})(2G(X_{i}) - 1)\}^{3}],$

where δ_{i} satisfies $0<\delta_{i}<1$. Under the null hypothesis H, the first term of the last expression of [\(2.3\),](#page-2-0) namely $(\Delta/\sqrt{n})\sum_{i=1}^{n}\{2G(X_{i})-1\}$, has asymptotically a normal distribution with mean 0 and variance $\Delta^{2}/3$ by the central limit theorem, the second term converges to $-\Delta^{2}/6$ in probability by the law of large numbers and the third term tends to zero in probability.

Thus we get

$$
(2.4) \tL_d \longrightarrow N(\mu, \sigma^2),
$$

where \longrightarrow denotes convergence in law and

(2.5)
$$
\mu = -4^2/6
$$
 and $\sigma^2 = -2\mu$.

From VI 1.2 corollary of Hajek and Sidak [\[1\],](#page-4-0) the family of densities $\{q_{\rho}(x)\}$ is contiguous to $\{p(x)\}$. So from LeCam's third lemma stated in VI 1.4 of Hajek and Šidák [\[1\],](#page-4-0) under $\{q_{\Delta}(x)\}, L_{\Delta}\longrightarrow N(-\mu, \sigma^{2})$, where μ and σ^{2} are defined by [\(2.5\).](#page-2-1)

Therefore the asymptotic power of the test of level α with critical region $L_{\Delta}>t_{n\alpha}$ under $\{q_{\Delta}(x)\}\$ is

$$
(2.6) \t1 - \Phi(z_{\alpha} - 1/\sqrt{3}),
$$

where $t_{n\alpha}=-\Delta^{2}/6+z_{\alpha}\Delta/\sqrt{3}+o(1)$, $\Phi(\cdot)$ is a distribution function of the standard normal and z_{α} is the upper 100α percentage point of the standard normal distri-

60 Taka-aki SHIRAISHI

bution. On the other hand, let us put $S = \sum_{i\ge 1}^n (\text{sign }X_{i})(2G(|X_{i}|)-1)/\sqrt{n}$, then $T/\{(n+1)\sqrt{|n|}\}-S$ converges to zero in probability under H from V 1.7 theorem of Hájek and Šidák [\[1\].](#page-4-0) Hence $(L_{\Delta}, T/\{(n+1)\sqrt{n}\})$ and (L_{Δ}, S) have asymptotically the same normal distribution. Also it follows under H that (L_{Δ}, S) has asymptotically a bivariate normal distribution with mean $(\mu, 0)$ and singular covariance matrix $\left(\begin{matrix} \sigma^2, & \sigma_{12}\ \sigma_{12}, & \sigma_{2}^2\end{matrix}\right)$, where μ and σ^2 are defined by [\(2.5\),](#page-2-1) $\sigma_{12}=\Delta/3$ and $\sigma_{2}^{2}=1/3$. Hence, from LeCam's third lemma, under $\{q_{\Lambda}(x)\}$, we get that S has asymptotically the normal distribution with mean σ_{12} and variance σ_{2}^{2} . Thus the asymptotic power of the test based on T for H versus K_{n} at level α is given by the expression [\(2.6\).](#page-2-2) This completes the proof.

3. Comparison with the t-test under a contiguous sequence of alternatives of general contaminated distributions.

We extend K_{n} defined by [\(1.2\)](#page-0-0) to the contiguous sequence of alternatives of general contaminated distributions K_{n}^{\prime} defined by [\(1.3\)](#page-0-1) and compare the Wilcoxon signed rank test with the t -test based on

(3.1)
$$
U = \sqrt{n-1} \sum_{i=1}^{n} X_i / \sqrt{n} \sum_{i=1}^{n} (X_i - \overline{X})^2.
$$

Then we get

THEOREM 3. Suppose that the derivative of $H(u)$ exists and the derivative $h(u)=H^{\prime}(u)$ is bounded. Then the asymptotic relative efficiency of the Wilcoxon signed rank test with respect to the t-test based on U under K_{n}^{\prime} defined by (1.3) is given by

$$
ARE(T, U) = 3\sigma^2 \left\{ \int_0^1 (2u - 1)h(u) du \right\}^2 / \left\{ \int_{-\infty}^{\infty} th(G(t))g(t)dt \right\}^2
$$

where $\sigma^{2}=\int_{0}^{t^{2}}dG(t)$.

PROOF. From the straight similar way to the proof of [Theorem](#page-2-3) 2, $\sqrt{3}\cdot T/$ $\{(n+1)\sqrt{n}\}\$ has asymptotically a normal distribution with mean $\sqrt{3}\Delta\Big(\frac{1}{2}(2u-1)h(u)du$ and variance 1. Further the similar argument as in the proof of [Theorem](#page-2-3) 2 shows that U defined by [\(3.1\)](#page-3-0) has asymptotically a normal distribution with mean $\Delta\left\{\right.$ th(G(t))dt/ σ and variance 1 under K_{n}^{\prime} . The ratio of squares of the two asymptotic means gives the result.

This asymptotic relative efficiency (ARE) equals the ARE of the two-sample

Wilcoxon test with respect to the two-sample t -test under a contiguous sequence of alternatives of contamitated distributions which is given by corollary 2 of Shiraishi [\[3\].](#page-4-2) So we find that this ARE is 1 for any bounded function $h(u)$ if $G(x)$ is the distribution function from the uniform random variable on a finite interval. In Table 1 of Shiraishi [\[3\],](#page-4-2) we showed the values of this ARE for $H(u)$ x^k , $1-(1-u)^{k}$ with $k=1.1,1.3,1.6,2,3,5,10$ and $G(x)=$ uniform, normal, logistic, double exponential distributions. As the numerical results, ARE's are always nearly equal to 1 irrespective of the form of $H(u)$, $G(x)$ and k chosen.

4. Conclusion.

About the exact power, [Theorem](#page-1-1) ¹ gives an admissibility of the Wilcoxon signed rank test for the alternative of contaminanted distribution $F(x)=(1-\theta)G(x)$ $+\theta H(G(x))$, which includes K defined by [\(1.1\),](#page-0-2) as far as we intend to seek a test having higher exact power among all rank tests. Though we found that there does not exist asymptotically a most powerful rank test under a contiguous sequence of alternatives of contaminated distributions for the two-sample problem from corollary ¹ of Shiraishi [\[3\],](#page-4-2) [Theorem](#page-2-3) 2 shows that the Wilcoxon signed rank test is asymptotically most powerful for K_{n} defined by [\(1.2\)](#page-0-0) which is included by K_{n}^{\prime} . Further we find that the numerical values of ARE of the Wilcoxon signed rank test with respect to the t-test stated by [Theorem](#page-3-1) 3 give no loss of the relative efficiency even against the alternative hypothesis of contaminated distributions discussed in Section 3.

References

- [1] Hájek, J. and Šidák, Z., Theory of Rank Tests. Academic Press, New York, 1967.
- [2] Lemann, E. L., The power of rank tests. Ann. Math. Statist., 24 (1953), 23-43.
- [3] Shiraishi, T., Local powers of two-sample and multi-sample rank tests for Lehmann's contaminated alternative. Ann. Inst. Statist. Math., 37 (1985), 519-527.

Institute of Mathematics University of Tsukuba Sakura-mura, Niihari-gun Ibaraki, 305 Japan