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ON TRACES OF SOLUTIONS OF LINEAR ELLIPTIC
SYSTEMS AND THEIR APPLICATION TO
THE DIRICHLET PROBLEM

By

J. CHABROWSKI

The purpose of this article is to investigate the Dirichlet problem with L2-
boundary data for elliptic systems of the form

N =n
(1) LiCurs -+ yun)= =2, 2 Da(Afi()Dytes)
N = N .
+2 5 By@)Dats+ L Colwluy=Fiz) (=1, N),
(2) u(x)=¢«x) on 0QE=L,---,N)
in a bounded domain QC R, with the boundary 9Q of the class C? where ¢;(i=
1,---,N) are given functions in L?(0Q) and D“zéi_' In recent years the Dirich-

let problem with L*-boundary data for elliptic equations has attracted attention of
several authors (see [2], [3], [8] and [9]), where all historical references can be
found). The main difficulty in solving the Dirichlet problem with the boundary
data in L* arises from the fact that not every function in L%*0Q) is the trace of
some function belonging to W**Q). Therefore the Dirichlet problem in the L2-
framework requires a proper formulation of the boundary condition (2). The
central result of this work is to give proper meaning to the boundary condition
(2) and then solve the Dirichlet problem in a suitable Sobolev space.

The plan of the paper is as follows. Section 1 is devoted to prelimanaries.
Section 2 deals with problem of traces for solutions of (1) in W4%Q). In particular,
we obtain a sufficient condition for a solution in WiXQ) to have an L3-trace on
boundary (see Theorem 2). The result of Section 2 provide the suitable basis for
the approach to the Dirichlet problem adopted in this work. In Section 3 we
discuss the existence theorem of the Dirichlet problem which is based on an energy
estimate. The arguments which we give here are based partially on the references
[1], [2] and [7] however they are considerably modified in order to deal with systems.
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1. In order to simplify notation we set
N n N
Gi(x, u, Du) =j§1 ag B;'j(x)Dauj +j§ Cq;j(x)%j—fi(.’b‘)

(i=1,---,N), where u=(u,,---,un), Du=(Du,,---,Duy) and Du; denotes the gra-
dient of the component #;.

Throughout we shall make the following assumptions :

(A) The system (1) is elliptic in @, that is, there is a positive constant r
such that

N n
2 2 Al zzrlal

1, f=1 a,f=

for all 2=(19)eR.~» and xeQ. The coefficients As¥(x) belong to C'(Q) and more-
over

(3) For each a and B Afi=A% (i, j=1,---,N) in Q.

(B) The coefficients By and C;; belong to L*(Q) and finally f: are in L*Q)
(i=1,-.--,N).

In the sequel we use the notion of a weak solution involving the Sobolev
spaces WLiQ) and W*'*(Q).

A vector function {#;} (i=1,---,N) is said to be a weak solution of (1) in @
if w;e W(Q) (¢:=1,---,N) and
(4) g[jﬁi §= A(@)Dy; D+ Gz, 4, Du)v,-]dx=0
((=1,...,N) for every vector function {v;} (¢t=1,---N) in W"*Q) with compact
support in Q.

It follows from the regularity of the boundary 6@ that there is a number
00>0 such that for 6e(0, d,] the domain

Q:;=QN{zr; min |x—y|>d}
YeaQ

with the boundary 0Q;, possesses the following property: to each z,€0Q there
is a unique point zs(xo)=ax—0v(x,), Where v(x,) is the outward normal to 0@ at
z,- The above relation gives a one-to-one mapping, of class C' of dQ on 0Q;.
The inverse mapping to z, — xs(x,) is given by the formula z,=z;+dvs(x,), where
vs(x;) is the outward normal to 0@ at x,.

Let x, denote an arbitrary point of 0Q,;. For fixed d¢(0, do] let

A=0Q:N{x; |x—xs| <é},

B,={x; x=:’53+5va(.’fa), i‘aGAs},
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and
dSa IA 1A
( 5) s—>0 IB |

where |A| denotes the #—1 dimensional Hausdorff measure of a set A. Mikailov
proved that there is a positive number 7, such that

as
(5) rozfd—sf<ro
and

dsS;
(6) ]'I!_I;'t;l dso(xa) 1

uniformly with respect to z,;€0Q;.
Let 7(x)=dist (x, 0Q) for xe@. According to Lemma 1 in [5], p. 382, the

distance 7(x) belongs to C¥(Q—Q,,) if §, is sufficently small. Denote by p(z) the
extension of the function 7(x) into @ satisfying the following properties: p(z)=7(z)
for 2eQ—Qs,, peC¥Q), p(x);—i-ao in Qs 17r@)=p(z)=77(x) in Q for some posi-
tive constant y,, 0Qs;={x; p(x)=4} for de(0, d] and finally 0Q={x; p(x)=0}.

2. We commence with a theorem which plays the crucial role in our treat-
ment of the Dirichlet problem. In this theorem we use the surface integrals

(iutzs@piras.  and §|u(x)|2de

9Q s

for a solution #=(#,,---,ux) in Wi3(Q), where the values u(xs;(x)) on 0Q and u(x)
on 0Q; are understood in the sense of trace ([4], chapter 6). It follows from
Lemma 4 in [1] that both integrals are absolutely continuous on [d;, do] for every

0<0:<0-

THEOREM 1. ‘Let {w;} i=1,---,N be a solution of (1) belonging to Wii(Q);
then the following conditions are equivalent

(1) Slu(x)lzdsx is bounded on (0, 8],
aqa
(1) §1Du(x)lzr(x)dx<oc.

Proor. To show I=> 11 we use as test functions in (4)
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{ui(x)(p(x)—& for zeQs,
= 0 for zeQ-—Qs,

and on substitution in (4) we obtain

=1 a,
3

,i %, Ae)DyuyDaaiip— 6)dx+§ 5" % A(o)DgusuiDapds

3

+§Gi(x. %, Du)ui(p—0)dz=0, i=1,---,N.

é

Let us denote the first two integrals on the left side by 7% and K;, respectively.
It follows from (A) that

N
7§|Du(x)]2(p(x)—5)dx§ LT
3
Using (3) and integrating by parts we obtain

N 1N ==
% K=\ 2, % A@)Di)Dapdz
i=1 Qa-l a,f=1

+—12—S % 5 Ago)Diwa)D.odz
s

—2 {2 3 Afwyut,DapDipdS.
2 anJJ 1a,f=1

iﬂ Dy(Ai¥(x)Dap)usu;dzx .

=1
It then follows with the help of Young’s inequality that

S|Du12(p—5)dx§c(g|u;2dx+S|u|2ds,+S| flrdz),

[} Qs @, Qs
where |f |2=i; f%, C>0 depends on », y and the bounds of the coefficients A,
D;A3#, Bg, and C;; and the implication 1> 11 easily follows.

To prove “Il - 1” we first note that implies that Slu(x)]zdx<oo (Lemma

Q
4 in [1]). From the first part of the proof we have

N n
%§ % 5 AtjuaD.pDipds
3

1, =1 a,f=1
3

N n N n
=_L§ % 3 DAD.owuido -+ S 2, 5 AuDpuDao—0)da
3 ’ ’ te -Qﬂ
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+S_§Gi<x, u, Diyuio—d)dz
Q;Zl
and (I) follows from the ellipticity condition and assumptions (A) and (B).
As an immediate consequence we obtain

Corollary 1. Let {u;} i=1,---,N be a solution of (1). If one of conditions (I)
or (II) holds then there exist functions ¢;€ L*(0Q) (i=1,---N) and a sequence {d.}
tending to zevo such that

lim (25 ())g(@)dSa = | $i(@)o()dS.
%% 59

for each geL*(0Q).
Indeed, we note that

Sui(x)zdspSui(x,,(x»z‘i%dso
Q; aQ dSe

hence by (5) and (2) Sui(x,s(x))zdsx is bounded on (0, do].
3Q

Consequently the result follows from the weak compactness of bounded sets in
L*9Q).

The main objective of this section is to prove that 1:1,m uxs(x))=di(x) (=

1,---,N) in L*Q). To show this we define

A, u@)=5 31 Aif@)ufa)Dup(@)Dap(a)

j= a 1

-

@G=1,-- -N)'. We need the following lemma.

Lemma 1. Let {u} (i=1,---,N) be a solution in WiXQ) of (1) satisfying one
of the conditions (I) or (II) and let ¢={¢:} (i=1,---,N) be functions in L*(0Q)
determined by Corollary 1. Then

(7) %Sm(xa(x), w(z(@))g(x)dSe = SAi(x, $(@))g(z)dS,
3Q Q
(i=1,---N) for each geL*0Q).

Proof. 1t follows from (5) and (I) that the integrals
gAi(xa, u(x;))2dSy G=1,---,N)
Q

are bounded on (0, §,]. Hence there exist functions ¥;e¢ L*(0Q) (i=1,.---,N) and a
sequence {9,} tending to zero such that
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i { Ao, o)) = [P e(edS-

7Q
(z=1,.--,N) for each geL*09Q). To prove (7) we shall prove that §A¢(x5, u(xs))
Q
g(x)dSz (i=1,--.,N) are continuous on [0, d,] and that

(8) Vix)=Adz, ¢(=))  (=1,---,N)

almost everywhere on 0Q. Since SAi(xa, u(x;))g9(x)dS; are continuous on [d;, do]

Q
for each 0<d,<d,, it suffices to prove the continuity of these integrals at §=0.

On the other hand we observe that the elements of C'(Q) restricted to Q are
dense in L*0Q), so we may assume that g=® on 6Q with ®e¢C'(®Q). Taking

{‘P(x)(p —(#)—0d) on @,
vi(x =
on Q - Q6 ’

(i=1,.--,N) as test functions in (4) and integrating by parts we obtain

§Ai(x, () (x)dS s = — j}'f % D{ABD.p®)uydz

] ]

1

HE 2

Ag;DﬁujDaq)(p—a)deeri(x, u, Du)O(o—d)da
Qs

((=1,---,N). The desired continuity easily follows from (6). In order to prove
(8) we note that for each geC(Q) we have

[4itzs,, w@so(@)as:— | Adz, g@Doas.
Q Q

n

=||Akzs,, w@)o@as:~ [ £ 5 As@uyz)Dep@)o()as.

50 an=1 a,p=1

+|| £ & 4@ )Dp@)Dao2)o(2)dS— | Adz, §2)o(2)dS.
)

=1 ap=1 Py
=T:+K; (¢=1,---,N)

We may also assume that {4,} is a subsequence appearing in Corollary 1. Using
the Schwarz inequality we have

ITUS sup | % Az Depl@s)Daolws) — T, Aff@)Dep(a)Dyo()

x[ { lu(x.,)]”dej‘m[ Swzds,]”szz.
Q

3Q
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Consequently by the uniform continuity of é} A (x)Dap(x)Dp(x) (¢, j=1,--+,N)
on @, ’

lim 7,=0  (i=1,---,N).

ﬂu—)o
On the other hand by the weak convergence of wi(z;) to ¢; in L*0Q) we see that

lim K;=0 (i=1,---,N)

3,0
and this completes the proof.
We are now in a position to prove that l‘i’m u(xs(x))=¢i(x) in L*(0Q).
—0
For 6¢(0, 6,] we define the mapping z*: @—@Q;,. by
x for zeQ;,
x(x)=

?Ja'l";—(-%"—?/a) for re@—Q;,

where y; denotes the nearest point on 9Q; to x. Thus x*x)=ux;.:(x) for each

x€0Q. Moreover z° is uniformly Lipschitz continuous. Note that if e WLi(Q),
then u(x’)e W'¥(Q).

Theorem 2. Let {u;} (i=1,---,N) be a solution in WLiQ) of (1) satisfying
one of the conditions (I) or (II). Let ¢; (i=1,---,N) be functions in L*0Q) deter-
mined by Covollary 1. Then

lai_{gl wi(zs(x))=di(x) (t=1,.---,N) in L*0aQ).

Proof. We begin by showing that 1‘}1101 Ai(xs, u(xs)=Alx, ¢(x)) (G=1,---,N)
in L*0Q). Indeed, for e W' * Q) we have

|Ade, s@r@as.=—{ % 5 DiAgD.owds

6Q Q 1 a
+Sjﬁ 5 A;’f(x)DpujDaWpdx+§Gi(w, u, D) odzx
) =1 a,f=1

ESFi(Uf)dx
G=1,--- N). As Az’ u(z")e W"*Q), we have

SAi(x, #(@) A, u(x"))dSa,=SFi(Ai(x", wW(z®)))d
Q Qe-Q;

+§F¢(Ai(x, w(z)))dz -

3
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We show that

(9) lim SF,-(Ai(x", wW(z)))dz =0
80 Q—Qa
and that
(10) lim SFi(Ai(x, u(x)))dx=laiml|Ai(x", w(z?))|I3,
Qs
so that

1Az, g@)li=lim{ Az, §2)Ada?, u(@*)ds.
Q

=lim||A«=", u(z°)I}3,
as z’(x)=wz;,2(x) on 0Q. Therefore the claim will follow from the uniform con-

vexity of L%*0Q).

Setting
Az, u(z))p(x)—0)  for zeQ,
Ut(-%')={

for 2e@Q—Q;

in equation (4), we have

garzlgFi<Ai<x, u(x))dx=£1r§1{—g 5 ; Di(A2D.0 Az, u(z))u,dz

J=1 a 1

Qs (“F}

+| 5 5 AgDwD.AGw, w@No—d)do+|Gia, u, Du)Adz, u(@)Xp—dds}
¢’ A
N n
=tim{~{ % 3 D(A#D.0A, u@uds

3

~{ & 5 AuDwAa, w(@)Dupda)

N n
=1im{—§ 5 3 DiAtjuDopAlz, w()dz}
-0 Qaj=1 a,f=

1

=lijAi(:c, #(z))*dSs.
F

(*F}

It remains to prove (9). Note that by (A), (B) and the Young inequality we
have

|Fi(Alms, u(zs))| <CL|Du(z)l|u(z)]| + |uza)l|u(z)| +
+ | D)l D) p + | Do)\ |oe(w) | 0+ f (@)l [0e3) | 0],



On traces of solutions of linear elliptic systems 43

for some positive constant C independent of §. Applying Lemmas 2, 3, 4, 5 and

6 from (or Lemmas 8, 9, 10, 11 and 12 in [I]) we easily deduce that (9) holds
and this completes the first part of the proof.

It follows from the continuity of A on @ and the boundedness of wi(x;) in
L?*(0Q) that

lim([ A, w(e)—Ades, w@)|dSe=0 (=1, ,N)
7Q
and therefore

ggoxg[Ai(x, w@)— Az, )| dSe=0  (i=1,-+,N).
Q

Let Aij(x):é,‘_Aﬁ(x)D,,p(x)Dﬂp(x). Since |Dp(x)|=1 on 0Q, the matrix {A(x)} is
positively definite on 8Q. Denote by {A;}(x)} the inverse matrix to {A:;(x)}, where
r€dQ. Consequently for each : and j we have

gglg kﬁz_l A} () A g )esa) — é A;jl(x)Ajk<x)¢k(x)]2ds,,=o
Q

Hence

ljgg[ui(xs) —¢i(x)2dSz= lai_{ong L%_ Ai_;(l')Ajk(x)uk(x&) -
5Q A

— % A7) Au2)g(a)| dS.=0

and this completes the proof.

3. Let us introduce the following function space

W@ =tw; ue W@, (|Dutx)r(@)de+lutz)dw <oo)
Q Q

Theorem 3 justifies the following approach to the Dirichlet problem for the system
Q).

Let ¢=(¢:, -+, pn) With ¢;€ L2(0Q) (i=1,---,N). A weak solution u=(u1, -, ux)
of (1) with i eWt%Q) (i=1,---,N) is a solution of the Dirichlet problem with
the boundary condition (2) if

(11) l}_{?g[ui(xa)—¢i(x)]2d5w=0
7Q
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As it stands this Dirichlet problem need not have a solution, however we
shall prove that the Dirichlet problem for a modified system
(11) Li(ul,---,u,v)-i—lu,;:fi in Q (l=1,,N)
has a unique solution in W!%*Q) provided the real parameter A is sufficiently

large. The existence theorem is based on the following energy estimate.

THEOREM 3. There exist positive constants A,, C and 4 such that if «={wu;}
is a solution in W**Q) of (1,), (2) for 2>, then

S|Du(x)12r(x>dx +S|u(x)lzr(x)dx + sup Slu(x)|2d3x<
Q Q Q;

<c|{ir@rdo+|ig@ras.|,

¢ Q

where f=(fi, - -, fn)-

Proor. Taking

{ui(x)(p(x)—ﬁ) on @,
Z)i(JL‘ =

on Q—QJ!
(i=1,---,N) as test function we obtain
(12) [ 5 AY@D.wDus(p—o)dz+ 4| lul(o—s)dz =
Qaz.j=1 a,f=1 o)
1 n 1 n n .
==\ X Az, u)uidsx+—g 5 3 DA#D.oyuansdn—
2 3Q:=1 2 Q:,;.j=l a,p=1

—S ; Giw, %, Dwyuip—0o)dz.
Qs

It follows from (11), that

30 =

limS if]l Azs, u(xa))m(xa)dsx:Sié Ai(x, ¢(x)p(x)dSz.
oQ &

Hence letting 6—0 in (11) we obtain
(13) SlDulzrdx+2S|ulzpdx<Cl[S| f|2dx+S|¢|2de+Slulzdx],
Q Q Q Q Q

where C,>0 is a constant depending on 7, y and the bounds of the coefficients.
It is obvious that (12) also implies that for every 0<d<d,
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(14) sup Slu{zde<Cz[S]Du|27’dx+(2+1)Su2pdxgl f|2dx],
Q5 Q Q Q

where C,>0 is constant of the same nature as C,. Combining and we
get

SlDulzrdx—HS]ulzpdx—*— Supglu|2d8z<
2 2 0<5$daQ6

Q

< {Ipas. + S[f|2dx+§1u|2dx]
Q
for some positive constant Cs;. Finally note that
. 1
Slul dz<dsup S]u|2dS$+—Slu|2pdx,
3 KJSdaQ,, mdQ

where md:iqnf (x), hence taking d sufficiently small and 2 sufficiently large the
result followéz.
To proceed further we equip W”(Q) with a norm defined by

|[u||%,1,z=S|u|2dx+SIDu|21’dx.
Q Q

THEOREM 5. Let 2>2,. Then for every ¢={¢:;} with $;€L*0Q) (i=1,---,N)
there exists a unique solution of the Dirichlet problem (1,), (2) in W Q).

Proor. The proof is similar to that of Theorem 6 in [2]. Let ¢™=(¢F, -, 9%)

be a sequence of functions with components in C'(0Q) and such that lim S|¢m—¢|2
n—»co 3

dS;=0. Let u, be a solution of the Dirichlet problem
Li(ui, - - - un)+Aui=f; in Q
=¢F on IQ (t=1,---,N)

in W+%Q) ([10], Chap. 5, p.133). Here we may assume that 1, is sufficiently
large that the theorems on the existence of solutions in W' %(Q) are applicable.
It follows from the energy estimate that lim #m=w in W*? and # is a weak solu-

tion of (1,). According to Theorem 2 there exist ¥'=(¥,, --,¥x) with ¥;eL*(0Q)
such that

1}5,1 S (wi(ws)—¥i(2)*dS=0  (i=1,---,N).
7Q

It remains to show that ¢,=%; (1=1,---,N) almost everywhere on 0@, the proof
of which is routine.
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We close by pointing out that the linear function G; can be replaced by a

non-linear function satisfying the Carathéodory conditions and the estimate

|Gz, u, Du)| <C[|u|+|Du|+f(z)],  (i=1,---,N)

where f is a non-negative function in L* Q) and C>0 is a constant. Under this

assumption one can easily prove the existence result analogous to in
41
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