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REMARKS ON HYPERBOLIC POLYNOMIALS

By

Seiichiro WAKABAYASHI

1. Introduction.

In the study of hyperbolic partial differential operators, it is important to in-
vestigate properties of the characteristic roots. Bronshtein [2] proved the Lipschitz
continuity of the characteristic roots of hyperbolic operators with variable coeffi-
cients, and he studied the hyperbolic Cauchy problem in Gevrey classes (see [3).
Ohya and Tarama [7] extended the results in and, also, studied the Cauchy
problem.

In this paper we shall give an alternative proof of Bronshtein’s results, which
seems to be simpler. Also, we shall prove the inner semi-continuity of the cones
defined for the localization polynomials of hyperbolic operators (see
below). In studying singularities of solutions the inner semi-continuity of the
cones plays a key role (see [8], [O], [10]). We note that our method can be appli-
cable to the mixed problem.

Let p¢, z, y)=t"+ 2™, @iz, y)t™~7 be a polynomial in ¢, where the a,(x, y) are
defined for x=(z,, ---, 2zz)€eX and yeY, X is an open convex subset of R" and Y is
a compact Hausdorff topological space. We assume that

(A-1) pl, z,v)#0 if Im¢t=+0 and (x,y)e XX Y,
(A-2) ozai(x,y) (la|=k,1=7=m) are continuous and there are C>0 and & with
0<6=1 such that

|0zai(x, y)—dzaix’, y)| =Clz—2’|°
if la|=k, x,2’€¢X and yeY, where k is a nonnegative integer and 0;=

(0/0xy)™ + - (0]0xn) ™.

THEOREM 1. Assume that (A-1) and (A-2) are satisfied. Then, for any open
subset U of X with UeX there is C=C(U)>0 such that

2z, ¥)— 2", PYI=Cle—2'|"  for 1=j=m, x,2’eU and yeY,

where p(t, z, y)=1T- ¢ —2(z, ¥)), Lz, =2z, V)= - - =2n(x, ¥), and r=min (1, (k+35)
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/m). Here UeX means that U is a compact subset of X.

ReEMARK. Under the assumptions (A-1) and (A-2)’ below Bronshtein [2] proved
the above theorem. was announced by Ohya and Tarama [7] who
proved it by the same argument as in

THEOREM 2. Assume that
(A-1Y p(t, z, v)#0 if Imt<0 and (z, y)eXXY
and (A-2) are satisfied. Then, for any open subset U of X with UeX there is
C=C(U)>0 such that

(1.1) 6103 0(2, , ¥)I/| 6@, x, y)| =C|Im ¢|==1*/71

if 0=j=m—1, |a|=k, —1=Im¢<0 and (x, y)e XX Y, where r;=min (1, (k+8)/(m—})).
Moreover, if 6=1 and dzai(z,y) (la|=k+1) are continuous, then (1.1) holds for |a|
=k+1.

ReEMARK. The above theorem was announced by Ohya and Tarama under
the assumptions (A-1) and (A-2).
Let us assume that (A-1) is valid and that

(A-2)Y odsa,x,y) (la|=m) are continuous.
Define the localization polynomial pe: .p(7, &) of p at (¢, z,y)e RXXXY as

p+st, x+56, ¥)=5"(Pe,ap(r, E)+0o(1))  as s—0,

where p,z.4(7, £)Z0 in (¢, £)e R™*'. Then P, z.4,(r, §) is a homogeneous polynomial
of degree p. Moreover, it follows from Rouché’s theorem and below
that

Dasa(e, €)+0  if Imr£0 and ée R

(see, e.g., Hormander [5]). We denote by I'(pc,».,9) the connected component
of the set {(zr,&)eR™!';pu.».u(r, &)#0} which contains 9=(1,0)e R**'. For some
properties of hyperbolic polynomials and I'(p¢,z.4, 9) We refer to Atiyah, Bott and
Garding [1]

THEOREM 3. Assume that (A-1) and (A-2) are sartisfied, and let (t,, z° yo)€
RXxXXXY. Then, for any compact subset M of ['(DPcywyy, ) there is a neighbor-
hood U of (to, 2°% yo) in RXXXY such that MCTI'(pu.z.4,, ) for (¢, z, y)eU.

REMARK. In we proved the above theorem when the a,(x,y) are suffi-
ciently smooth.
In the rest of this paper we shall prove the above theorems.
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2. Preliminaries.

Let p(t)=t"+ X7, a;t™7 be a polynomial in #, where a;eC.

LemMmA 2.1. Let q@t)=X7, b;t™ 7, and write pt)+q(t)= 11"y ¢—aib, - - -, bu)),
where the a;(by, - - -, bn) are continuous functions of (by, ---,bn)eC™. Then there is
a positive constant C(m), depending only on m, such that

2.1)  ayby, - - -, bn)—a§j| =C(m) max, cxzm(|be| %+ |be| V™3| *™), 1=j=m,
where o5=a;(0, ---,0).

Proor. There is an integer k2, with 1=ky=m such that aj¢{zeC;(k,—1)A=
|z—al| <koA} for 2=j=m, where A>0 is determined latter. Therefore, we have

| ()| — lg()| = (A/2)™ — Zi=lbillz™7 if |z—ad|=(ke—271)A.
It is easy to see that there is C’'(m)>0, depending only on =, such that
(A/2)™ >mlbjl(le3] + (ko —271) A)™=7
if 1=j=m, A=C'm)(|b;|""7+|b;|"™|a]*~9™) and b;#0. Thus, Rouchés theorem

shows that (2.1) with Com)=(m—2"")C’'(m) holds for j=1. Q.E.D.

In the proofs of theorems, we shall use Nuij’'s approximations (see [6]) and
need the following

LEMMA 2.2. Let p(t)=[]7, (t—a?), where }=a}=---=a%. Then one can write
A +s(@/at)™='p) =17t — as(s)) for se R, where a\(S)=ax(s)=<- - San(s) and a;(0)=aj.
Moreover, there are positive constants ci(m) and c.(m) such that

(2.2) ai(s)—aj-1(s)=ci(m)|s] for seR and 2=j=m,
(2.3) 0< £ (aj—aj(s))=ca(m)|s| Sfor +s>0 and 1=j=m.

Proor. The first part of the lemma is obvious. Consider the case where
s>0. Similarly, one can prove the lemma in the case where s<0. Assume that
for a fixed / with 1=/=m—1 there is ¢,(/)>0 such that

(2.4) ai(s)—ai-()=c(l)s  for s>0 and 2=j=I,
where (1+s(d/de))~'p(t) =117, (¢t —al(s)) and al(s)=al(s)=---=ak(s). Put

F @, 5)=Q+s(d/de)yp@)/[(L+s(d]de))—"p()
(=1+sX7, F—aj(s)™).

If s>0, 1=A=m and a}_,(s)<t<ak(s), then
1+ms@t—al(s)) 1< f(t, s)<1+s(t—al(s))! when h=1,
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1+m—h+1Ds@t—ak(s)) ' +s@t—ah_,(s)) "' < f(L, s)
<Ap+s@t—ak(s) ' +s{t—al_,(s))™? when 2=h=m,

where al(s)=—oco and Ar=1 if =2 and Ar=1+(r—2)s(a}_(s)—al_(s))! if 3=A=
m. Therefore, we have

ah-(s)<ak(s)<ak(s),

al(s)—ms<at*'(s)<al(s)—s when h=1,

i (8) =2 Xn+(m—h+2)s—[(Xn—(m—h+2)s)*+4sXr]"?)
<ak(s) < a(s)— F(Xn, 25/ An)/2 when 2=h=m,

(2.5)

where Xp=ak(s)—at_,(s) and F(u,v)=u+v—(u*+0v?)"2, if s>0 and a}_,(s)<ak(s). It
is obvious that al*'(s)=al(s)=a*(s)=-- - =alf'(s)=al(s) for s=0. Since (Xp—(m—
h+2)s)t+4sXn=(Xn—(m—h)s)*+4(m—h+1)s*=(Xn—(m—h)s)?, (2.5) gives

(2.6) 0=ai(s)—at'(s)=(m—h+1l)s  for s=0 and 1=h=m.
Moreover, it follows from [(2.4) and [2.5) that

(h=1),
2.7 ahti(s)—akt(s)=

sF(ci(0), 2a:(D(h—2+c ()2 2=h=D),
since F(u,, v\)= F(u,, v;) for u,=u,=0 and »,=v.=0. shows that is valid,
replacing / with /41, where c¢,(/+1)=min {1, F(c.(/), 2¢:({)/(—2+c.:()))/2} (>0).
This proves (2.2). With c.(m)=m(@n—1) (2.3) follows from [2.6) Q.E.D.
LemMmA 2.3. If p(&)#0 for Im¢<0, then

A+s(d/d) p&)+0  for Imt<0 and Ims=0.

Proor. Let p(#)=T[I™, (¢—a;), where Im «;=0. Then we have

(L+s(d[d)p() =pE)1+sXTer (E—ap)™).

It is obvious that Im (¢{—a;)"'>0 and Ims~*=0 if Im#<0, s%0 and Ims=0. This
proves the lemma (see [6). , Q.E.D.

LemMMA 2.4. Let (¢, 2° yo)e RXX XY, and assume that (A-1) and (A-2) are
satisfied. If op(te, x° yo)=0 for 0=h<! and o p(t,, x°, y,)+0, then

Moz p(to, 2°, y0)=0 when j<Il and |a|<{—j),
where v =min (1, (k+0)/]).
Proor. The lemma is well-known if (A-2)’ is satisfied (see, e.g., [5]). And

we can prove the lemma similarly. Assume that there are j, and «° such that
Jo<<l, a®|<{—jo)r' and o{0xp(ts, x° vo)#0. Then we have 7’=min{|a|/(—));
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iosp(to, 2°, y0)#0, j<I and |a|=k}<¥ (=1). Write »”=b/a, where a and b are
positive integers and mutually prime. Note that 1=0<a. It is easy to see that
Do+5"", 2045, yo) =q(z, £)s +0o(s"") as sl0, where g(r,&)=ctl+ Nocizua c(E)cH,
c=0;p(to, 2° yo)/I!0 and c¢;(&)= 2 a1=p; 0~ *05 D(t0, 2°, Yo) E°/(({—aj)lat). By assump-
tion there is £&°¢ R™ such that all ¢;(¢°) do not vanish. So there is 7,€ C\{0} such that
g(zo, £°)=0. Then we have g(r, +&°=0 if *=(x1)’c% On the other hand, (A-1)
implies that g(r, +£°+0 if Im<0. This gives e=b=1, which contradicts a>1.
Q.E.D.

LemMA 2.5. Let M be an arcwise connected subset of R, U a Hausdorff to-
pological space and S={seC;|s|=s, and Ims=0}. Let f(s,w,u) be a continuous
Junction on SXMXU which satisfies the following conditions; (1) f(s,w,u) is ana-
Iytic in s if Ims<O0, (ii) there is a dense subset U’ of U such that f(s,w,u)+0 for
seSNR, weM and uelU’, (iii) f(s,w, u)=+0 if |s|=S,, and (iv) there is w’e M such
that f(s,u®, u)+0 if Ims<0. Then ‘ '

f(s, w, u)*+0 if Ims<0.

Proor. Assume that there are (s;,w!, #:)eSXMXU such that Ims; <0 and
f(si, w', ,)=0. Since f(s,w', u,)%0 in s, applying Rouché’s theorem (or a variant
of the Weierstrass preparation theorem), we may assume that w«,€U’. Let
{w()}osos: be a continuous curve in M satisfying w(0)=w' and w(l)=w’. Then it
follows from the conditions (i)-(iii) that there is a continuous function s(¢) defined
on [0, 1] such that s(0)=s, and f(s(8), w(d), #,)=0 for §¢[0,1]. Observe that Im s(8)
<0 and [s(8)|<s, for 6€[0,1]. Therefore we have f(s(1),w® #,)=0, which contra-
dicts the condition (iv). This proves the lemma. ' Q.E.D.

The following lemma is elementary (see, e.g., [10]).

LemMA 2.6. Let V; be the vector space of all homogeneous polynomials with
real coefficients in & of degree I. Then theve arve pi(€),---,p,(8)eV: such that
{D1(E), -+, p(E)Y is a basis of Vi, where yv=dim V. .

3. Proof of
Put
b, z,y, 2)=A+2"0)"pt, z,v) for zeC with Im 2=0,

where 1"=1. By [Lemma 2.2 the equation p(¢, z, v, 2)=0 has only real roots for
(z,y)eXXY, if 220 or zeR and r=1. Moreover, if 2=0 or zeR and =1, then
we have
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3.1) (@, y, 2)—A5-1(x, ¥, 2) = ci(m)| 2|, 2
1

J
8.2) |25(z, y) —A5(x, y, )| = calm) |2, J

m,
m

A IIA
IA A

for (z, y)e XX Y, where p(t, 2, v, 2)=[17- (t— (=, v, 2)) and Ai(=z, v, 2)<X(x, ¥, 2)=- - -
=im(z,¥,2). If 20 and r<1, then Lemma 2.3 gives

3.3) pit+2", z, vy, 2)+0 when Imt<|z|"sinrr.
Write

aj(x'f‘zf, ?/)= Zlalsk zlalsaa;aj(x’ y)/a! +dj(.'1}, Ev Y, Z) ’

where zeR, ¢eR" zeX, x+26eX and yeY. Then the condition (A-2) implies that
there is A>0 such that

3.4 | ,(z, &, v, 2)| = Al2|™|&|™
if zeR, teR", zeX, x+26e¢X and yeY. Let U be an open subset of X such that
UeX, and put

P, z,& v, 2)=(1+4270)" (" + D71 1™ Xa1 s 27'€°053a,(, v)/al) .

From [Lemma 2.1 and it follows that there are §,>0 and 4,>0 such that
P(t, z,¢&,v,2)=0 has only simple roots for (x, &, y)e2(U;4é,) if 0<2=4, or ze[—do, do]
\{0} and =1, where Q(U;d)={(x, & v)eUXR"XY;|£|<4,}. Since the @ (z,¢,y, 2)
are real-valued, P(¢, z, £, y, 2)=0 has only real roots for (z, ¢, v)e2(U;é,) if 0=2=4,
or —6,=2=0d, and r=1. Therefore, we can write

P@+2",2,6,y,2)=[17 ¢—45x, &, v, 2))
for (z,¢,v)e2(U;é,) and 0=2=6,, where A\(z, &, y, 2)S Az, &, 9, 2)< -+ - < An(x, &, v, 2).
It follows from [Lemma 2.1 that there is ¢>0 such that
(3-5) |AJ(xv 6’ Y, z)—zj(a" +Z€, Y, z)l éczr

if (x, &, v)e2(U;46,) and 0=z=4d, Moreover, by Lemma 2.1, (3.3) and we
have P(¢t+2",x,¢,vy,2)+0 for (x,&,v)e2(U;a,), Im¢<0 and ze[—d,, 6o, if necessary,
modifying d, and 4;,. Let teR, z€(0,d0/2] and (x, &, ¥)e2(U;4d,), and write

P(t+(z+sC)r+zT—lsr' Z, 5! Y, Z+SC) =SF(P(t,z;.’L‘.€.Il)(T, C) +0(1)) as Slo ’

where Py izen(t,0)#0 in (7,{). Then Py ,.ze(r, ) is a homogeneous polynomial
in (z,{) of degree p and satisfies

(3.6) , P siz.e(7, §)#0 if Imr<0 and (eR.

In fact, P(z"'{+%", z, & v, ) is analytic in (f, 2) and microhyperbolic with respect
to (—1,0)eR? near (f,2)=(2'""t,z). This verifies (see, e.g., Lemma 8.7.2 in
[5]), which easily follows from Lemma 2.4 and Rouché’s theorem. Note that
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Py zzen(t, Q) can be defined and satisfies when =1 and z=0. Put f(s,¢,
t, z, 7,8y, 2)=Plt+E+s0) +2""st,x, & vy, z2+sC) for seC with Ims=0 and [s|=
So, 7€[1/2, 2], £€[0,1], teC with Im =0, (x, &, v)eR2(U;d,) and z€(0, e], where so=00/2
and ¢=d,/2. If r<1, then it is easy to see that (i) f is analytic in s for Im s<0,
Gi) (s, ¢ ¢ x, 7, & v,2)#0 when Im#<0 and seR, (iii) for any T>0 there is ¢>0
such that 7(s,&, (& x,7, & v,2)0 when |s|=s,, |¢|=T and z€(0,¢], and (iv) f(s,0,
(¢, x, 7,8 9,2)%0 when Ims<0. In fact, the assertions (i), (ii) and (iv) are obvious.

Since limy ..t ™P(t =, & v,2)=1, the assertion (iii) is also obvious. Therefore, it
follows from [Lemma 2.5 that

(3.7 P@+(z+s0)" +2""st, 0, &, y, 2+50)#0

if <1, Ims<0, |s|=s,, t€[1/2,2], £€[0,1], Im¢=0, ||=T, (x,& v)e2(U;d,) and ze
(0,¢]. Next let us consider the case where r=1. From [3.6), for any (%, «° £°, o)
eRXUXR"XY with |£°|=6,/2 there is ¢>0 such that

P(to,o;xo,éo,yo>(1, C)#O Zf CG[O’ c:l .
Therefore, there are s,>0, ¢>0 and a neighborhood V of y, in Y such that
(3.8) P@+(z+s)+sr,x, &, v, 2+sL)+0

if [s|=so, re[l—¢ 14, L€[0,c, |[t—2to|<e, (z, & ¥)eXXR"XV, |z—2z°|<e, [§—8°<e
and ze¢[0,¢]. For we can write

P+ (z+sC)+st, 2, &, y, 2+50) =242 s Ps(t, 2, €, v, 2, 7, ) +0(s")
as s—0,

where P, (ts, 2% &%, ¥o, 0, 7, ) =Py 000,00,49(t, £).  Since Py(to, 2° €° 90, 0, 7, £)=0 for j<
o, we have [3.8). Similarly, it follows from Lemma 2.5 that is valid if r=1
and Im s<0, |s|=s,, te[l—¢, 1+¢], Ce[0,c], Im¢=0, [t—il<e, (z,§,1)eXXR"XV,
lz—2°|<e, |E—E&°|<e and z€[0,¢]. Since U and Y are compact, for any 7'>0 there
are positive constant ¢, S, ¢ and 6, such that holds if =1, Im s<0, |s|=s,,
€[l—e, 1+¢], €0, c], Im¢=0, {{|=T, (x,& v)e2(U;éd,) and ze€(0,¢]. This implies
that Py z.ze0(l, 00 if 2eR, |t|<T, 2€(0,¢), (x, & v)e2(U;a:) and Le[0,c]. In fact,
if there are #feR, z,€(0,¢), (z° &° v0)e2(U;d,) and {,el0, c] such that |£|<T and
Py zpa0,e0,00(1, £o)=0, then Rouché’s theorem gives a contradiction to the fact that
is valid when r=1, Ims<O0, [s|=s,, te[l—e¢ 14¢], L€[0,c], Im¢=0, |¢|=T,
(z,&,v)eRQU;d,) and ze(0,e]. This proves the assertion.
Now we can prove [Theorem 1. It is obvious that

0=P(Ayx, & vy, 2+C)+(z2+sC), =, & v, 2+5C)
=sy(P(Aj(x,E.y,z),z;a:,E.U)(zl—Ts_l(Aj(xo £, Z+SC)
— Az, &, 9,2),0)+0(1))  as sl0,
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where p depends on (x,& v,2) and j, if (x,& v)eQ(U;d,), C€[0,c] and ze€(0,e).
Therefore, we have

(3' 9) aKAj(xy S, ?/, Z+SC)|S:0<zr_l

when (z, &, y)e2(U; d,), C€[0,c] and ze(0,¢). It follows from [(3.2), [3-5) and [(3.9)
that there is C>0 such that

(3.10) Ax+2¢, y)— iz, y)=Cz2" if (z,& 9)eU;d,) and z€[0,¢].

Replacing x +2¢ and x with x and xz+2¢ in [(3.10), respectively, we have, with some
constant C’ >0,
|25z, y)—25(x% )| =C'|x' — 22" if x', x%cU and yeY.

This proves [Theorem 1

4. Proof of
From Lemma 4.1.1 in it follows that there is C>0 such that

[6{p(t, =, )|/ 19, 2z, y)| =C|Im ¢|~7

if Im#<0, reX and yeY. Therefore, it suffices to prove for j=0. In fact,
the Gauss theorem implies that o{p(¢, xz,y) satisfies (A-1)’. First let us consider
the case where r=1. Write

(1+Z)p(t’ x, ?/)=p1(t; z, 'y)+lp2(t, Z, y) ’

where pn (2=1,2) are polynomials in ¢ with real coefficients for (z,y)eXXY.
Then the Hermite theorem implies that pa(¢, x, y)#0 if Im¢+0, xreX and yeY.
From (A-1) it follows that [pn(¢, x, y)|=2"%|p(¢, z,v)| if Im¢<0 and (z,y)eXXY.
In fact, it is obvious that |¢t—a|/[t—a|=1 if Im¢<0 and Ima=0. Therefore, it
suffices to prove in the case where p satisfies (A-1) and (A-2). Assume
that p satisfies (A-1) and (A-2). Then, with the notations in § 3, similarly we
have P(t+s,x, £, v, s0)%0 if Ims<0, |s|=s,, {e[—c,c], Im¢=0and (z, & v)e2(U ;o).
So there is ¢>0 such that P{, x, &, v,2)#0 if —2=Im?<0, (z, & v)e2(U;é,), zeC
and |z|=c|Im¢|. Since P(¢, z, &, y, 2) is a polynomial in (¢, 2), it follows from Lemma
4.1.1 in that there is C>0 such that

la{alep(t, .’L‘, E’ '!/, Z)IZ=O/IP(t9 x’ fr '.l/; O)I éCIIm tl-j-h
if —1=Im¢<0 and (x, ¢, v)e2(U;d,). It is obvious that
040x(1+20.)™'p(¢, x+ 26, y)— P, , &, ¥, 2))|2=0=0

for 0=A=m—1. So we have, inductively,
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4.1 |0102p(¢, 2 +2€, Y)|e=o/ |6(¢, 2, y)| =C|Im £[=7 71

if —1=Im¢<0, (x,&, v)eQ2(U;6,) and 0=2=m—1. It is obvious that (4.1) holds
for j=0 and A=m if 062a;(x,y) (Ja|=m) are continuous. Therefore,
immediately follows from [Lemma 2.6 if »=1. Next consider the case r<1. Put

P(ts x, 59 y):tm_l_ Z;‘n=1 tm—jZIRISIc Eaa;aj(x7 y)/a! ’
f(sy Ey (ty X, y’ y))_—_P(t-}-sT.{_ywSTI&'V, x, SE, y)

for Im#=0, Ims=0, (x,&v)eXXR"XY and v>0, where w=expi(r—1)=/2] and
1"=1. Let (&, z° yo)e RXxXXY. Then we have the following: (i) f(s, &, (&, =, y,v))
is analytic in s if Ims<0. (ii) For any open subset U of X with UeX, there
are positive constants vy, d, and d;, such that f(s, & (¢ o, v, vr))#0 if se[—d,, do),
Im#<0 and (a,¢, y)eQ(U ;0,). (iii) There are positive constants ¢, s, and ¢ and a
neighborhood V of y, in ¥ such that s,=d,, ¢=d, and f(s, &, (¢, x, ¥, vo))#0 if |s|=
So, (£, 2, &, YECXXXR"XV, [t—ty|Ze, |x—2°|=¢ and |&|=c¢, where vo=yy With U=
{zeX;|lz—2z°<e}. (iv) f(s,0,(, 2, v,v)#0 if Ims<0. In fact, we have

PE+s"+vws™ &7, x+ &, )0
if Ime<y|s|"|€]" sin (1 —7)7/2, se R and x+séeX. Since
|a@ (x, &, y)|=Als|™|§]™"

for (z,& y)eXXR"XY, seR and x+séecX, where p(t, z+& yv)—P(t z, & y)=
nm, dgx, & y)t™ I, the assertion (ii) easily follows from Write

P(to+s"t, x° 8§, yo) =5"(Puya0,49(7, §)+0(1))  as s—0,
where Py z0,00(7, £)#0 in (r,&). Then we have p,=mr and
P(to.xo.llo)(ry E): Zj7'+lal=llo ijaa{a;p(to, xoy yo)/(]!a‘)

if po<mr. Therefore, it follows from that P, z04,(1,0)0. One can
also prove that P, z0,59(t, &) =Pya,y(t, 0) if po<mr. We can write

P(t+STT! x, S, y): ZFSFo Spfﬂ(tv Z,Y;57T, E)"_O(s[lo) as s—0 ,
f/l(t(!: xO’ Yo7, E)EO f07’ /J<‘Uo,
f#o(to, xos Yo, T, E)=P(to,x0.ﬂo)<f’ E) .

This verifies the assertion (iii). From it follows that f(s, &, (¢, x, v, vo))
#0 if Ims<0, [s|=s,, ¢, 2,8 ¥)eCXXXR"XV, Im¢=0, |t—t|=¢, |x—2z°|=e and
|¢]=c. Therefore, there are positive constants ¢’ and &’ such that P(Z, z, s&, y)#0
if ¢ 2,6 9eCXXXR"XV, |[Ret—t,|=e/, —e/’=Imi<0, |z—2°|=¢, |§|=1, seC and
|s|]"=0¢’"|Im¢|. In fact, we have {(¢,s€); |Ret—t|=¢/, —¢’=Im¢<0, seC and |s|"=
& Im t}c{(t+s" (L +vowc|E|7), cs&) ; |t—to| ¢, IMm =0, Im s=0, Im¢+Im s<0, |s|=s,
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and é=+¢&} if €eR™, |&|=<1, 3¢'=¢, &/ <(c™"+vo)~! and &<’=c"s,. Applying Lemma
4.1.1 in to the polynomial P(¢, z, s&, v) in s, we have

(4.2) |0JP @, x, 5§, Vsl |P¢, 2,0, y)| =C|Im £] =777

if (4, x,&9)eCXXXR"}XV, |Ret—t,)|=¢/, —¢’=Im?¢<0, |xz—2zx°|=¢, |£|=1. Since
OIP(t, z, SE, Y)lsco=0ip(t, x+5E, y)|s—o for j=<k, (4.2) and prove the first
part of theorem 2. Then the second part of is obvious.

5. Proof of
Write
(5.1) P(to+st, 2°+SE, yo) =5"(Pugoup(t, §)+0(1))  as s—0,
and put a=pq,2»(1,0) (¢C\{0}) and
5@, z, y)+ip:(t, =, y)=a(l+0)p(, 2, v),

where p;(¢, z,v) (j=1, 2) are polynomials in ¢ with real coefficients. Then it follows
from the Hermite theorem that p,(¢, x,y) (j=1, 2) satisfy (A-1), and that

pito+st, 2°+5E, yo) =5"(aPo0we(7, ) +0(1))  as s—0.

Thus we have I'(DPupo0u9 D=1 (Djtostwg ¥ (7=1,2). On the other hand,
I'( Py, 9) is equal to at least one of I'(Pjugz0u9, F) (7=1,2). Therefore, it suf-
fices to prove the theorem under the assumptions (A-1) and (A-2)’. Assume that

» satisfies (A-1) and (A-2)’. Put
P(t, z,& vy, s, v)=1+s0[§0)" (" + X7t 1777 Xiar1am $'§0za (0, y)[al) .
Then, for any U€ X and any v>0 there is do=d,(U, v)>0 such that
(5.2) P(t, %, ¢, 9,s,v)#0
if Im¢=+0, (x, & y)eUXR*"XY, [£|=2 and se€[—d,, 60]. In fact, we have

(L +sv[§lo)™'p(t, x+5§, v)— P, %,§, v, S, v) = DF-1 85(x, &, v, S, V)™,

ayx, &, vy, s, v)=0(s"§|™)
if (x,& v)eUXR"XY, |£|=2, se[—1,1] and z+séeX. Thus Lemmas 2.1 and 2.2
give [(5.2), applying the same argument as in §3. Since pg=m in [5.1), we have

P(to+s7, 2°% &, Yo, S, v) =5"{(L +v|€]0:)™ Pty z0.5p(T, §) +0(1)} as s—0.
From or its proof, it follows that
(5.3) {(z, §)e R+ (z—colm)|él, )} I (bean DT,
where I',=I¢zy,=L(A+v,%50)" pe.z0r(7,§),9). For a compact subset M of
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I'( Py 20w HN{(z, £) e R**1; || =1} there are »>0 and a compact subset M of
I 40900 SUCh that {(z, E);(T+Cg(m)uo|EI,E)GM}CM, where M denotes the interior

of M. It is easy to see that there are s,>0, ¢e>0 and a neighborhood V of ¥, in
Y such that

P(t+ST, Z, E’ Y, S, VD);&O

if |t—t|=Ze, |z—2°|=¢, yeV, |s|=s, and (¢, &)eM. We may assume that M is con-
vex and 9e¢M. So we can apply and obtain

(5'4) P<t+ST: Z, E! v, S, 1JQ)$O

If Im¢=0, |[t—2)|=Ze, |x—2°|=Z¢, yeV, Ims<0, |s|=s, and (s, £)eM. Assume that
there are #,eR, z'eX, y,eV and (rl,fl)GM such that [¢,—%|<e, |x'—2°| <e and
(L +vo/6"0:)™ Py arup(71, £)=0. Then there is >0 such that (r,20", €%eM and
(L 420|6110)™ Dy atay(zi+2, £ >c¢  for 2eC with |2|=48’, where ¢>0. Rouché’s
theorem implies that there are s,>0 and a function A(s) defined on [0, s;] such that
|A(s)| <&’ and

P(t,+sIm i(s)—is(z; +Re A(s)), x, &, y1, —1S, vo)=0

for 0<s=s,. This contradicts [5.4) Therefore, we have A7I Cl gy if (& xz,9)€
RXXXV, |t—t]|<e and |r—2°|<e. From it follows that McI'(pi.za, 9) if
(t, 2z, Y)eRX XXV, |t—t]|<e and |xr—2°|<e. This proves the theorem.

We remark that one can easily prove and, therefore, Theorems 1
and 2 if the coefficients a;(x, y) satisfy the condition (A-2) with 2=m. In fact, one
has only to apply the above argument to P(t, z, &, v, s)={t—ws*)"+ X7 ¢ —ws®)™ 7
X Diaism S'605a(x, y)|al, where 1<a<l+d/m (=2), w=exp[i(a—1)x/2] and (—1)*=
exp[—iar].
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