REMARKS ON HYPERBOLIC POLYNOMIALS

By

Seiichiro WAKABAYASHI

1. Introduction.

In the study of hyperbolic partial differential operators, it is important to investigate properties of the characteristic roots. Bronshtein [2] proved the Lipschitz continuity of the characteristic roots of hyperbolic operators with variable coefficients, and he studied the hyperbolic Cauchy problem in Gevrey classes (see [3]). Ohya and Tarama [7] extended the results in [2] and, also, studied the Cauchy problem.

In this paper we shall give an alternative proof of Bronshtein's results, which seems to be simpler. Also, we shall prove the inner semi-continuity of the cones defined for the localization polynomials of hyperbolic operators (see Theorem 3 below). In studying singularities of solutions the inner semi-continuity of the cones plays a key role (see [8], [9], [10]). We note that our method can be applicable to the mixed problem.

Let $p(t, x, y) = t^m + \sum_{j=1}^m a_j(x, y) t^{m-j}$ be a polynomial in t, where the $a_j(x, y)$ are defined for $x = (x_1, \dots, x_n) \in X$ and $y \in Y$, X is an open convex subset of \mathbb{R}^n and Y is a compact Hausdorff topological space. We assume that

- (A-1) $p(t, x, y) \neq 0$ if $\text{Im } t \neq 0$ and $(x, y) \in X \times Y$,
- (A-2) $\partial_x^{\alpha} a_j(x,y)$ ($|\alpha| \le k, 1 \le j \le m$) are continuous and there are C>0 and δ with $0 < \delta \le 1$ such that

$$|\partial_x^{\alpha} a_j(x,y) - \partial_x^{\alpha} a_j(x',y)| \leq C|x-x'|^{\delta}$$

if $|\alpha| = k$, $x, x' \in X$ and $y \in Y$, where k is a nonnegative integer and $\partial_x^{\alpha} = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n}$.

THEOREM 1. Assume that (A-1) and (A-2) are satisfied. Then, for any open subset U of X with $U \subseteq X$ there is C = C(U) > 0 such that

$$|\lambda_i(x,y)-\lambda_i(x',y)| \leq C|x-x'|^r$$
 for $1\leq j\leq m$, $x,x'\in U$ and $y\in Y$,

where $p(t, x, y) = \prod_{j=1}^{m} (t - \lambda_j(x, y)), \lambda_1(x, y) \leq \lambda_2(x, y) \leq \cdots \leq \lambda_m(x, y), \text{ and } r = \min(1, (k+\delta))$

 $|m\rangle$. Here $U \subseteq X$ means that \bar{U} is a compact subset of X.

REMARK. Under the assumptions (A-1) and (A-2)' below Bronshtein [2] proved the above theorem. Theorem 1 was announced by Ohya and Tarama [7] who proved it by the same argument as in [2].

THEOREM 2. Assume that

(A-1)' $p(t, x, y) \neq 0$ if Im t < 0 and $(x, y) \in X \times Y$

and (A-2) are satisfied. Then, for any open subset U of X with $U \in X$ there is C = C(U) > 0 such that

$$(1.1) |\partial_t^j \partial_x^\alpha p(t,x,y)| / |p(t,x,y)| \le C |\operatorname{Im} t|^{-j-|\alpha|/r_j}$$

if $0 \le j \le m-1$, $|\alpha| \le k$, $-1 \le \text{Im } t < 0$ and $(x, y) \in X \times Y$, where $r_j = \min(1, (k+\delta)/(m-j))$. Moreover, if $\delta = 1$ and $\partial_x^{\alpha} a_j(x, y)$ ($|\alpha| = k+1$) are continuous, then (1.1) holds for $|\alpha| \le k+1$.

REMARK. The above theorem was announced by Ohya and Tarama [7] under the assumptions (A-1) and (A-2).

Let us assume that (A-1)' is valid and that

(A-2)' $\partial_x^{\alpha} a_j(x,y)$ $(|\alpha| \leq m)$ are continuous.

Define the localization polynomial $p_{(t,x,y)}(\tau,\xi)$ of p at $(t,x,y) \in \mathbb{R} \times X \times Y$ as

$$p(t+s\tau, x+s\xi, y) = s^{\mu}(p_{(t,x,y)}(\tau, \xi) + o(1))$$
 as $s \to 0$,

where $p_{(t,x;y)}(\tau,\xi) \neq 0$ in $(\tau,\xi) \in \mathbb{R}^{n+1}$. Then $p_{(t,x;y)}(\tau,\xi)$ is a homogeneous polynomial of degree μ . Moreover, it follows from Rouché's theorem and Lemma 2.4 below that

$$p_{(t,x;y)}(\tau,\xi)\neq 0$$
 if $\operatorname{Im} \tau\neq 0$ and $\xi\in \mathbb{R}^n$

(see, e.g., Hörmander [5]). We denote by $\Gamma(p_{(t,x;y)},\vartheta)$ the connected component of the set $\{(\tau,\xi)\in \mathbf{R}^{n+1}; p_{(t,x;y)}(\tau,\xi)\neq 0\}$ which contains $\vartheta=(1,0)\in \mathbf{R}^{n+1}$. For some properties of hyperbolic polynomials and $\Gamma(p_{(t,x;y)},\vartheta)$ we refer to Atiyah, Bott and Gårding [1].

THEOREM 3. Assume that (A-1)' and (A-2)' are sartisfied, and let $(t_0, x^0, y_0) \in \mathbb{R} \times X \times Y$. Then, for any compact subset M of $\Gamma(p_{(t_0, x^0; y_0)}, \vartheta)$ there is a neighborhood \mathcal{U} of (t_0, x^0, y_0) in $\mathbb{R} \times X \times Y$ such that $M \subset \Gamma(p_{(t, x; y)}, \vartheta)$ for $(t, x, y) \in \mathcal{U}$.

REMARK. In [9] we proved the above theorem when the $a_j(x, y)$ are sufficiently smooth.

In the rest of this paper we shall prove the above theorems.

2. Preliminaries.

Let $p(t) = t^m + \sum_{j=1}^m a_j t^{m-j}$ be a polynomial in t, where $a_j \in C$.

LEMMA 2.1. Let $q(t) = \sum_{j=1}^{m} b_j t^{m-j}$, and write $p(t) + q(t) = \prod_{j=1}^{m} (t - \alpha_j(b_1, \dots, b_m))$, where the $\alpha_j(b_1, \dots, b_m)$ are continuous functions of $(b_1, \dots, b_m) \in \mathbb{C}^m$. Then there is a positive constant C(m), depending only on m, such that

$$(2.1) \quad |\alpha_j(b_1, \dots, b_m) - \alpha_j^0| \leq C(m) \max_{1 \leq k \leq m} (|b_k|^{1/k} + |b_k|^{1/m} |\alpha_j^0|^{1-k/m}), \quad 1 \leq j \leq m,$$
where $\alpha_j^0 = \alpha_j(0, \dots, 0).$

PROOF. There is an integer k_0 with $1 \le k_0 \le m$ such that $\alpha_j^0 \notin \{z \in C; (k_0 - 1)A \le |z - \alpha_i^0| < k_0 A\}$ for $2 \le j \le m$, where A > 0 is determined latter. Therefore, we have

$$|p(z)| - |q(z)| \ge (A/2)^m - \sum_{j=1}^m |b_j||z|^{m-j}$$
 if $|z-\alpha_1^0| = (k_0-2^{-1})A$.

It is easy to see that there is C'(m)>0, depending only on m, such that

$$(A/2)^m > m|b_j|(|\alpha_1^0| + (k_0 - 2^{-1})A)^{m-j}$$

if $1 \le j \le m$, $A \ge C'(m)(|b_j|^{1/j} + |b_j|^{1/m}|\alpha_i^0|^{1-j/m})$ and $b_j \ne 0$. Thus, Rouché's theorem shows that (2.1) with $C(m) = (m-2^{-1})C'(m)$ holds for j=1. Q. E. D.

In the proofs of theorems, we shall use Nuij's approximations (see [6]) and need the following

LEMMA 2.2. Let $p(t) = \prod_{j=1}^{m} (t - \alpha_j^0)$, where $\alpha_1^0 \le \alpha_2^0 \le \cdots \le \alpha_m^0$. Then one can write $(1+s(d/dt))^{m-1}p(t) = \prod_{j=1}^{m} (t-\alpha_j(s))$ for $s \in \mathbb{R}$, where $\alpha_1(s) \le \alpha_2(s) \le \cdots \le \alpha_m(s)$ and $\alpha_j(0) = \alpha_j^0$. Moreover, there are positive constants $c_1(m)$ and $c_2(m)$ such that

$$(2.2) \alpha_j(s) - \alpha_{j-1}(s) \ge c_1(m)|s| for s \in \mathbf{R} \text{ and } 2 \le j \le m,$$

$$(2.3) 0 < \pm (\alpha_j^0 - \alpha_j(s)) \leq c_2(m)|s| for \pm s > 0 and 1 \leq j \leq m.$$

PROOF. The first part of the lemma is obvious. Consider the case where s>0. Similarly, one can prove the lemma in the case where s<0. Assume that for a fixed l with $1 \le l \le m-1$ there is $c_1(l)>0$ such that

$$\alpha_i^l(s) - \alpha_{i-1}^l(s) \ge c_1(l)s \quad \text{for } s > 0 \text{ and } 2 \le j \le l,$$

where $(1+s(d/dt))^{l-1}p(t)=\prod_{j=1}^m(t-\alpha_j^l(s))$ and $\alpha_i^l(s)\leq \alpha_i^l(s)\leq \cdots \leq \alpha_m^l(s)$. Put

$$f(t,s) = (1+s(d/dt))^{l} p(t)/(1+s(d/dt))^{l-1} p(t)$$

$$(=1+s\sum_{j=1}^{m} (t-\alpha_{j}^{l}(s))^{-1}).$$

If s>0, $1 \le h \le m$ and $\alpha_{h-1}^l(s) < t < \alpha_h^l(s)$, then

$$1+ms(t-\alpha_1^l(s))^{-1} < f(t,s) < 1+s(t-\alpha_1^l(s))^{-1}$$
 when $h=1$.

$$1 + (m-h+1)s(t-\alpha_h^l(s))^{-1} + s(t-\alpha_{h-1}^l(s))^{-1} < f(t,s)$$

$$< A_h + s(t-\alpha_h^l(s))^{-1} + s(t-\alpha_{h-1}^l(s))^{-1} \quad when \ 2 \le h \le m,$$

where $\alpha_0^l(s) = -\infty$ and $A_h = 1$ if h = 2 and $A_h = 1 + (h-2)s(\alpha_{h-1}^l(s) - \alpha_{h-2}^l(s))^{-1}$ if $3 \le h \le m$. Therefore, we have

(2.5)
$$\begin{cases} \alpha_{h-1}^{l}(s) < \alpha_{h}^{l+1}(s) < \alpha_{h}^{l}(s), \\ \alpha_{1}^{l}(s) - ms < \alpha_{1}^{l+1}(s) < \alpha_{1}^{l}(s) - s \quad when \ h = 1, \\ \alpha_{h}^{l}(s) - 2^{-1}(X_{h} + (m - h + 2)s - [(X_{h} - (m - h + 2)s)^{2} + 4sX_{h}]^{1/2}) \\ < \alpha_{h}^{l+1}(s) < \alpha_{h}^{l}(s) - F(X_{h}, 2s/A_{h})/2 \quad when \ 2 \leq h \leq m, \end{cases}$$

where $X_h = \alpha_h^l(s) - \alpha_{h-1}^l(s)$ and $F(u, v) = u + v - (u^2 + v^2)^{1/2}$, if s > 0 and $\alpha_{h-1}^l(s) < \alpha_h^l(s)$. It is obvious that $\alpha_1^{l+1}(s) \le \alpha_1^l(s) \le \alpha_2^{l+1}(s) \le \cdots \le \alpha_m^{l+1}(s) \le \alpha_m^l(s)$ for $s \ge 0$. Since $(X_h - (m-h+2)s)^2 + 4sX_h = (X_h - (m-h)s)^2 + 4(m-h+1)s^2 \ge (X_h - (m-h)s)^2$, (2.5) gives

$$(2.6) 0 \leq \alpha_h^l(s) - \alpha_h^{l+1}(s) \leq (m-h+1)s for s \geq 0 and 1 \leq h \leq m.$$

Moreover, it follows from (2.4) and (2.5) that

(2.7)
$$\alpha_{h+1}^{l+1}(s) - \alpha_h^{l+1}(s) \ge \begin{cases} s & (h=1), \\ sF(c_1(l), 2c_1(l)/(h-2+c_1(l)))/2 & (2 \le h \le l), \end{cases}$$

since $F(u_1, v_1) \ge F(u_2, v_2)$ for $u_1 \ge u_2 \ge 0$ and $v_1 \ge v_2 \ge 0$. (2.7) shows that (2.4) is valid, replacing l with l+1, where $c_1(l+1) = \min\{1, F(c_1(l), 2c_1(l)/(l-2+c_1(l)))/2\}$ (>0). This proves (2.2). With $c_2(m) = m(m-1)$ (2.3) follows from (2.6). Q. E. D.

LEMMA 2.3. If $p(t) \neq 0$ for Im t < 0, then

$$(1+s(d/dt))p(t)\neq 0$$
 for $\text{Im } t<0$ and $\text{Im } s\leq 0$.

PROOF. Let $p(t) = \prod_{j=1}^{m} (t - \alpha_j)$, where Im $\alpha_j \ge 0$. Then we have

$$(1+s(d/dt))p(t)=p(t)(1+s\sum_{j=1}^{m}(t-\alpha_{j})^{-1})$$
.

It is obvious that $\text{Im } (t-\alpha_f)^{-1} > 0$ and $\text{Im } s^{-1} \ge 0$ if Im t < 0, $s \ne 0$ and $\text{Im } s \le 0$. This proves the lemma (see [6]). Q. E. D.

LEMMA 2.4. Let $(t_0, x^0, y_0) \in \mathbf{R} \times X \times Y$, and assume that (A-1)' and (A-2) are satisfied. If $\partial_t^h p(t_0, x^0, y_0) = 0$ for $0 \le h < l$ and $\partial_t^l p(t_0, x^0, y_0) \ne 0$, then

$$\partial_t^j \partial_x^{\alpha} p(t_0, x^0, y_0) = 0$$
 when $j < l$ and $|\alpha| < (l-j)r'$,

where $r' = \min(1, (k+\delta)/l)$.

PROOF. The lemma is well-known if (A-2)' is satisfied (see, e.g., [5]). And we can prove the lemma similarly. Assume that there are j_0 and α^0 such that $j_0 < l$, $|\alpha^0| < (l-j_0)r'$ and $\partial_t^{j_0} \partial_x^{\alpha_0} p(t_0, x^0, y_0) \neq 0$. Then we have $r'' \equiv \min\{|\alpha|/(l-j)\}$;

 $\partial_t^j \partial_x^\alpha p(t_0, x^0, y_0) \neq 0$, j < l and $|\alpha| \leq k \} < r'$ (≤ 1). Write r'' = b/a, where a and b are positive integers and mutually prime. Note that $1 \leq b < a$. It is easy to see that $p(t_0 + s^{r''}\tau, x^0 + s\xi, y_0) = q(\tau, \xi)s^{l\tau''} + o(s^{l\tau''})$ as $s\downarrow 0$, where $q(\tau, \xi) = c\tau^l + \sum_{0 < j \leq l/a} c_j(\xi)\tau^{l-aj}$, $c = \partial_t^l p(t_0, x^0, y_0)/l! \neq 0$ and $c_j(\xi) = \sum_{|\alpha| = bj} \partial_t^{l-aj} \partial_x^\alpha p(t_0, x^0, y_0) \cdot \xi^\alpha/((l-aj)!\alpha!)$. By assumption there is $\xi^0 \in \mathbb{R}^n$ such that all $c_j(\xi^0)$ do not vanish. So there is $\tau_0 \in \mathbb{C} \setminus \{0\}$ such that $q(\tau_0, \xi^0) = 0$. Then we have $q(\tau, \pm \xi^0) = 0$ if $\tau^\alpha = (\pm 1)^b \tau_0^\alpha$. On the other hand, (A-1)' implies that $q(\tau, \pm \xi^0) \neq 0$ if $\text{Im } \tau < 0$. This gives $\alpha = b = 1$, which contradicts $\alpha > 1$.

Q. E. D.

LEMMA 2.5. Let M be an arcwise connected subset of $\mathbb{R}^{n'}$, U a Hausdorff topological space and $S=\{s\in C; |s|\leq s_0 \text{ and } \mathrm{Im} s\leq 0\}$. Let f(s,w,u) be a continuous function on $S\times M\times U$ which satisfies the following conditions; (i) f(s,w,u) is analytic in s if $\mathrm{Im} s<0$, (ii) there is a dense subset U' of U such that $f(s,w,u)\neq 0$ for $s\in S\cap \mathbb{R}$, $w\in M$ and $u\in U'$, (iii) $f(s,w,u)\neq 0$ if $|s|=s_0$, and (iv) there is $w^0\in M$ such that $f(s,w^0,u)\neq 0$ if $\mathrm{Im} s<0$. Then

$$f(s, w, u) \neq 0$$
 if $\operatorname{Im} s < 0$.

PROOF. Assume that there are $(s_1, w^1, u_1) \in S \times M \times U$ such that $\operatorname{Im} s_1 < 0$ and $f(s_1, w^1, u_1) = 0$. Since $f(s, w^1, u_1) \not\equiv 0$ in s, applying Rouché's theorem (or a variant of the Weierstrass preparation theorem), we may assume that $u_1 \in U'$. Let $\{w(\theta)\}_{0 \le \theta \le 1}$ be a continuous curve in M satisfying $w(0) = w^1$ and $w(1) = w^0$. Then it follows from the conditions (i)-(iii) that there is a continuous function $s(\theta)$ defined on [0,1] such that $s(0) = s_1$ and $f(s(\theta), w(\theta), u_1) = 0$ for $\theta \in [0,1]$. Observe that $\operatorname{Im} s(\theta) < 0$ and $|s(\theta)| < s_0$ for $\theta \in [0,1]$. Therefore we have $f(s(1), w^0, u_1) = 0$, which contradicts the condition (iv). This proves the lemma. Q. E. D.

The following lemma is elementary (see, e.g., [10]).

Lemma 2.6. Let V_l be the vector space of all homogeneous polynomials with real coefficients in ξ of degree l. Then there are $p_1(\xi), \dots, p_{\nu}(\xi) \in V_1$ such that $\{p_1(\xi)^l, \dots, p_{\nu}(\xi)^l\}$ is a basis of V_l , where $\nu = \dim V_l$.

3. Proof of Theorem 1.

Put

$$\tilde{p}(t, x, y, z) = (1 + z^r \partial_t)^{m-1} p(t, x, y)$$
 for $z \in \mathbb{C}$ with $\text{Im } z \leq 0$,

where $1^r=1$. By Lemma 2.2 the equation $\tilde{p}(t, x, y, z)=0$ has only real roots for $(x, y) \in X \times Y$, if $z \ge 0$ or $z \in \mathbb{R}$ and r=1. Moreover, if $z \ge 0$ or $z \in \mathbb{R}$ and r=1, then we have

(3.1)
$$\tilde{\lambda}_{j}(x, y, z) - \tilde{\lambda}_{j-1}(x, y, z) \ge c_{1}(m)|z|^{r}, \quad 2 \le j \le m,$$

$$(3.2) |\lambda_j(x,y) - \tilde{\lambda}_j(x,y,z)| \leq c_2(m)|z|^r, 1 \leq j \leq m.$$

for $(x, y) \in X \times Y$, where $\tilde{p}(t, x, y, z) = \prod_{j=1}^{m} (t - \tilde{\lambda}_j(x, y, z))$ and $\tilde{\lambda}_1(x, y, z) \leq \tilde{\lambda}_2(x, y, z) \leq \cdots$ $\leq \tilde{\lambda}_m(x, y, z)$. If $z \leq 0$ and r < 1, then Lemma 2.3 gives

(3.3)
$$\tilde{p}(t+z^r, x, y, z) \neq 0 \quad \text{when Im } t < |z|^r \sin r\pi.$$

Write

$$a_j(x+z\xi,y) = \sum_{|\alpha| \leq k} z^{|\alpha|} \xi^{\alpha} \partial_x^{\alpha} a_j(x,y) / \alpha! + \tilde{a}_j(x,\xi,y,z),$$

where $z \in \mathbb{R}$, $\xi \in \mathbb{R}^n$, $x \in X$, $x + z \xi \in X$ and $y \in Y$. Then the condition (A-2) implies that there is A > 0 such that

$$|\tilde{a}_{j}(x,\xi,y,z)| \leq A|z|^{mr}|\xi|^{mr}$$

if $z \in \mathbb{R}$, $\xi \in \mathbb{R}^n$, $x \in X$, $x + z \xi \in X$ and $y \in Y$. Let U be an open subset of X such that $U \subseteq X$, and put

$$P(t, x, \xi, y, z) = (1 + z^r \partial_t)^{m-1} (t^m + \sum_{j=1}^m t^{m-j} \sum_{|\alpha| \le k} z^{|\alpha|} \xi^{\alpha} \partial_x^{\alpha} a_j(x, y) / \alpha!)$$
.

From Lemma 2.1 and (3.1) it follows that there are $\delta_0 > 0$ and $\delta_1 > 0$ such that $P(t, x, \xi, y, z) = 0$ has only simple roots for $(x, \xi, y) \in \Omega(U; \delta_1)$ if $0 < z \le \delta_0$ or $z \in [-\delta_0, \delta_0] \setminus \{0\}$ and r = 1, where $\Omega(U; \delta_1) = \{(x, \xi, y) \in U \times \mathbb{R}^n \times Y; |\xi| \le \delta_1\}$. Since the $\tilde{a}_j(x, \xi, y, z)$ are real-valued, $P(t, x, \xi, y, z) = 0$ has only real roots for $(x, \xi, y) \in \Omega(U; \delta_1)$ if $0 \le z \le \delta_0$ or $-\delta_0 \le z \le \delta_0$ and r = 1. Therefore, we can write

$$P(t+z^r, x, \xi, y, z) = \prod_{i=1}^{m} (t - \Lambda_i(x, \xi, y, z))$$

for $(x, \xi, y) \in \Omega(U; \delta_1)$ and $0 \le z \le \delta_0$, where $\Lambda_1(x, \xi, y, z) \le \Lambda_2(x, \xi, y, z) \le \cdots \le \Lambda_m(x, \xi, y, z)$. It follows from Lemma 2.1 that there is c > 0 such that

$$(3.5) |\Lambda_j(x,\xi,y,z) - \tilde{\lambda}_j(x+z\xi,y,z)| \leq cz^r$$

if $(x, \xi, y) \in \Omega(U; \delta_1)$ and $0 \le z \le \delta_0$. Moreover, by Lemma 2.1, (3.3) and (3.4) we have $P(t+z^r, x, \xi, y, z) \ne 0$ for $(x, \xi, y) \in \Omega(U; \delta_1)$, Im t < 0 and $z \in [-\delta_0, \delta_0]$, if necessary, modifying δ_0 and δ_1 . Let $t \in \mathbb{R}$, $z \in (0, \delta_0/2]$ and $(x, \xi, y) \in \Omega(U; \delta_1)$, and write

$$P(t+(z+s\zeta)^r+z^{r-1}s\tau, x, \xi, y, z+s\zeta) = s^{\mu}(P_{(t,z;x,\xi,y)}(\tau,\zeta)+o(1))$$
 as $s\downarrow 0$

where $P_{(t,z;x,\ell,y)}(\tau,\zeta) \not\equiv 0$ in (τ,ζ) . Then $P_{(t,z;x,\ell,y)}(\tau,\zeta)$ is a homogeneous polynomial in (τ,ζ) of degree μ and satisfies

$$(3.6) P_{(t,z;x,\xi,y)}(\tau,\zeta)\neq 0 if \text{ Im } \tau<0 \text{ and } \zeta\in \mathbf{R}.$$

In fact, $P(z^{r-1}\tilde{t}+\tilde{z}^r,x,\xi,y,\tilde{z})$ is analytic in (\tilde{t},\tilde{z}) and microhyperbolic with respect to $(-1,0)\in \mathbb{R}^2$ near $(\tilde{t},\tilde{z})=(z^{1-r}t,z)$. This verifies (3.6) (see, e.g., Lemma 8.7.2 in [5]), which easily follows from Lemma 2.4 and Rouché's theorem. Note that

 $P_{(t,z;x,\xi,y)}(\tau,\zeta)$ can be defined and satisfies (3.6) when r=1 and z=0. Put $f(s,\zeta,(t,x,\tau,\xi,y,z))=P(t+(z+s\zeta)^r+z^{r-1}s\tau,x,\xi,y,z+s\zeta)$ for $s\in \mathbb{C}$ with $\mathrm{Im}\,s\leq 0$ and $|s|\leq s_0,\tau\in [1/2,2],\ \zeta\in [0,1],\ t\in \mathbb{C}$ with $\mathrm{Im}\,t\leq 0,\ (x,\xi,y)\in \Omega(U;\delta_1)$ and $z\in (0,\varepsilon]$, where $s_0\leq \delta_0/2$ and $\varepsilon\leq \delta_0/2$. If r<1, then it is easy to see that (i) f is analytic in s for $\mathrm{Im}\,s<0$, (ii) $f(s,\zeta,(t,x,\tau,\xi,y,z))\neq 0$ when $\mathrm{Im}\,t<0$ and $s\in \mathbb{R}$, (iii) for any T>0 there is $\varepsilon>0$ such that $f(s,\zeta,(t,x,\tau,\xi,y,z))\neq 0$ when $|s|=s_0,\ |t|\leq T$ and $z\in (0,\varepsilon]$, and (iv) $f(s,0,(t,x,\tau,\xi,y,z))\neq 0$ when $\mathrm{Im}\,s<0$. In fact, the assertions (i), (ii) and (iv) are obvious. Since $\lim_{|t|\to\infty}t^{-m}P(t,x,\xi,y,z)=1$, the assertion (iii) is also obvious. Therefore, it follows from Lemma 2.5 that

(3.7)
$$P(t+(z+s\zeta)^r+z^{r-1}s\tau, x, \xi, y, z+s\zeta)\neq 0$$

if r < 1, Im s < 0, $|s| \le s_0$, $\tau \in [1/2, 2]$, $\zeta \in [0, 1]$, $\text{Im } t \le 0$, $|t| \le T$, $(x, \xi, y) \in \Omega(U; \delta_1)$ and $z \in (0, \varepsilon]$. Next let us consider the case where r = 1. From (3.6), for any $(t_0, x^0, \xi^0, y_0) \in \mathbb{R} \times U \times \mathbb{R}^n \times Y$ with $|\xi^0| \le \delta_1/2$ there is c > 0 such that

$$P_{(t_0,0;x^0,\xi^0,y_0)}(1,\zeta)\neq 0$$
 if $\zeta\in[0,c]$.

Therefore, there are $s_0>0$, $\varepsilon>0$ and a neighborhood V of y_0 in Y such that

$$(3.8) P(t+(z+s\zeta)+s\tau,x,\xi,y,z+s\zeta)\neq 0$$

if $|s|=s_0$, $\tau \in [1-\varepsilon, 1+\varepsilon]$, $\zeta \in [0, c]$, $|t-t_0|<\varepsilon$, $(x, \xi, y) \in X \times \mathbb{R}^n \times V$, $|x-x^0|<\varepsilon$, $|\xi-\xi^0|<\varepsilon$ and $z \in [0, \varepsilon]$. For we can write

$$P(t+(z+s\zeta)+s\tau, x, \xi, y, z+s\zeta) = \sum_{j=0}^{\mu_0} s^j P_j(t, x, \xi, y, z, \tau, \zeta) + o(s^{\mu_0})$$
as $s \to 0$.

where $P_{\mu_0}(t_0, x^0, \xi^0, y_0, 0, \tau, \zeta) = P_{(t_0,0;x^0,\xi^0,y_0)}(\tau, \zeta)$. Since $P_j(t_0, x^0, \xi^0, y_0, 0, \tau, \zeta) \equiv 0$ for $j < \mu_0$, we have (3.8). Similarly, it follows from Lemma 2.5 that (3.7) is valid if r=1 and $\operatorname{Im} s < 0$, $|s| \le s_0$, $\tau \in [1-\varepsilon, 1+\varepsilon]$, $\zeta \in [0, c]$, $\operatorname{Im} t \le 0$, $|t-t_0| < \varepsilon$, $(x, \xi, y) \in X \times \mathbb{R}^n \times V$, $|x-x^0| < \varepsilon$, $|\xi-\xi^0| < \varepsilon$ and $z \in [0, \varepsilon]$. Since \overline{U} and Y are compact, for any T>0 there are positive constant c, s_0 , ε and δ_1 such that (3.7) holds if $r \le 1$, $\operatorname{Im} s < 0$, $|s| \le s_0$, $\tau \in [1-\varepsilon, 1+\varepsilon]$, $\zeta \in [0, c]$, $\operatorname{Im} t \le 0$, $|t| \le T$, $(x, \xi, y) \in \Omega(U; \delta_1)$ and $z \in (0, \varepsilon]$. This implies that $P_{(t,z;x,\xi,y)}(1,\zeta) \ne 0$ if $t \in \mathbb{R}$, |t| < T, $z \in (0,\varepsilon)$, $(x,\xi,y) \in \Omega(U; \delta_1)$ and $\zeta \in [0,c]$. In fact, if there are $t_0 \in \mathbb{R}$, $z_0 \in (0,\varepsilon)$, $(x^0,\xi^0,y_0) \in \Omega(U; \delta_1)$ and $\zeta_0 \in [0,c]$ such that $|t_0| < T$ and $P_{(t_0,z_0;x^0,\xi^0,y_0)}(1,\zeta_0) = 0$, then Rouché's theorem gives a contradiction to the fact that (3.7) is valid when $r \le 1$, $\operatorname{Im} s < 0$, $|s| \le s_0$, $\tau \in [1-\varepsilon,1+\varepsilon]$, $\zeta \in [0,c]$, $\operatorname{Im} t \le 0$, $|t| \le T$, $(x,\xi,y) \in \Omega(U;\delta_1)$ and $z \in (0,\varepsilon)$. This proves the assertion.

Now we can prove Theorem 1. It is obvious that

$$0 = P(\Lambda_{j}(x, \xi, y, z + s\zeta) + (z + s\zeta)^{r}, x, \xi, y, z + s\zeta)$$

$$= s^{\mu}(P_{(\Lambda_{j}(x, \xi, y, z), z; x, \xi, y)}(z^{1-r}s^{-1}(\Lambda_{j}(x, \xi, y, z + s\zeta) - \Lambda_{j}(x, \xi, y, z)), \zeta) + o(1)) \quad as \quad s\downarrow 0,$$

where μ depends on (x, ξ, y, z) and j, if $(x, \xi, y) \in \Omega(U; \delta_1)$, $\zeta \in [0, c]$ and $z \in (0, \varepsilon)$. Therefore, we have

$$(3.9) \partial_{s} \Lambda_{j}(x,\xi,y,z+s\zeta)|_{s=0} < z^{r-1}$$

when $(x, \xi, y) \in \Omega(U; \delta_1)$, $\zeta \in [0, c]$ and $z \in (0, \varepsilon)$. It follows from (3.2), (3.5) and (3.9) that there is C > 0 such that

$$(3.10) \lambda_j(x+z\xi,y)-\lambda_j(x,y) \leq Cz^r if (x,\xi,y) \in \Omega(U;\delta_1) \text{ and } z \in [0,\varepsilon].$$

Replacing $x+z\xi$ and x with x and $x+z\xi$ in (3.10), respectively, we have, with some constant C'>0,

$$|\lambda_j(x^1, y) - \lambda_j(x^2, y)| \le C' |x^1 - x^2|^r$$
 if $x^1, x^2 \in U$ and $y \in Y$.

This proves Theorem 1.

4. Proof of Theorem 2.

From Lemma 4.1.1 in [4] it follows that there is C>0 such that

$$|\partial_t^j p(t, x, y)|/|p(t, x, y)| \leq C|\operatorname{Im} t|^{-j}$$

if Im t < 0, $x \in X$ and $y \in Y$. Therefore, it suffices to prove (1.1) for j = 0. In fact, the Gauss theorem implies that $\partial_t^j p(t, x, y)$ satisfies (A-1)'. First let us consider the case where r = 1. Write

$$(1+i)p(t, x, y) = p_1(t, x, y) + ip_2(t, x, y)$$
,

where p_h (h=1,2) are polynomials in t with real coefficients for $(x,y) \in X \times Y$. Then the Hermite theorem implies that $p_h(t,x,y) \neq 0$ if $\mathrm{Im}\, t \neq 0$, $x \in X$ and $y \in Y$. From (A-1)' it follows that $|p_h(t,x,y)| \leq 2^{1/2} |p(t,x,y)|$ if $\mathrm{Im}\, t < 0$ and $(x,y) \in X \times Y$. In fact, it is obvious that $|t-\bar{\alpha}|/|t-\alpha| \leq 1$ if $\mathrm{Im}\, t < 0$ and $\mathrm{Im}\, \alpha \geq 0$. Therefore, it suffices to prove Theorem 2 in the case where p satisfies (A-1) and (A-2). Assume that p satisfies (A-1) and (A-2). Then, with the notations in § 3, similarly we have $P(t+s,x,\xi,y,s\zeta) \neq 0$ if $\mathrm{Im}\, s < 0$, $|s| \leq s_0$, $\zeta \in [-c,c]$, $\mathrm{Im}\, t \leq 0$ and $(x,\xi,y) \in \Omega(U;\delta_1)$. So there is c>0 such that $P(t,x,\xi,y,z) \neq 0$ if $-2 \leq \mathrm{Im}\, t < 0$, $(x,\xi,y) \in \Omega(U;\delta_1)$, $z \in C$ and $|z| \leq c |\mathrm{Im}\, t|$. Since $P(t,x,\xi,y,z)$ is a polynomial in (t,z), it follows from Lemma 4.1.1 in [4] that there is C>0 such that

$$|\partial_t^j \partial_z^h P(t, x, \xi, y, z)|_{z=0}/|P(t, x, \xi, y, 0)| \leq C |\operatorname{Im} t|^{-j-h}$$

if $-1 \le \text{Im } t < 0$ and $(x, \xi, y) \in \Omega(U; \delta_1)$. It is obvious that

$$\partial_t^j \partial_z^h ((1+z\partial_t)^{m-1} p(t, x+z\xi, y) - P(t, x, \xi, y, z))|_{z=0} = 0$$

for $0 \le h \le m-1$. So we have, inductively,

$$|\partial_t^j \partial_z^h p(t, x + z\xi, y)|_{z=0} / |p(t, x, y)| \le C |\operatorname{Im} t|^{-j-h}$$

if $-1 \le \text{Im } t < 0$, $(x, \xi, y) \in \Omega(U; \delta_1)$ and $0 \le h \le m-1$. It is obvious that (4.1) holds for j=0 and h=m if $\partial_x^a a_j(x,y)$ ($|\alpha|=m$) are continuous. Therefore, Theorem 2 immediately follows from Lemma 2.6 if r=1. Next consider the case r<1. Put

$$\begin{split} &P(t, x, \xi, y) = t^{m} + \sum_{j=1}^{m} t^{m-j} \sum_{|\alpha| \le k} \xi^{\alpha} \partial_{x}^{\alpha} a_{j}(x, y) / \alpha!, \\ &f(s, \xi, (t, x, y, \nu)) = P(t + s^{r} + \nu \omega s^{r} |\xi|^{r}, x, s\xi, y) \end{split}$$

for Im $t \le 0$, Im $s \le 0$, $(x, \xi, y) \in X \times \mathbb{R}^n \times Y$ and $\nu > 0$, where $\omega = \exp[i(r-1)\pi/2]$ and $1^r = 1$. Let $(t_0, x^0, y_0) \in \mathbb{R} \times X \times Y$. Then we have the following: (i) $f(s, \xi, (t, x, y, \nu))$ is analytic in s if Im s < 0. (ii) For any open subset U of X with $U \subseteq X$, there are positive constants ν_U , δ_0 and δ_1 such that $f(s, \xi, (t, x, y, \nu_U)) \ne 0$ if $s \in [-\delta_0, \delta_0]$, Im t < 0 and $(x, \xi, y) \in \Omega(\overline{U}; \delta_1)$. (iii) There are positive constants c, s_0 and ϵ and a neighborhood V of y_0 in Y such that $s_0 \le \delta_0$, $c \le \delta_1$ and $f(s, \xi, (t, x, y, \nu_0)) \ne 0$ if $|s| = s_0$, $(t, x, \xi, y) \in \mathbb{C} \times X \times \mathbb{R}^n \times V$, $|t - t_0| \le \epsilon$, $|x - x^0| \le \epsilon$ and $|\xi| \le c$, where $\nu_0 = \nu_U$ with $U = \{x \in X; |x - x^0| < \epsilon\}$. (iv) $f(s, 0, (t, x, y, \nu)) \ne 0$ if Im s < 0. In fact, we have

$$p(t+s^r+\nu\omega s^r|\xi|^r, x+s\xi, y)\neq 0$$

if Im $t < \nu |s|^r |\xi|^r \sin(1-r)\pi/2$, $s \in \mathbb{R}$ and $x + s \xi \in X$. Since

$$|\tilde{a}_j(x,s\xi,y)| \leq A|s|^{mr}|\xi|^{mr}$$

for $(x, \xi, y) \in X \times \mathbb{R}^n \times Y$, $s \in \mathbb{R}$ and $x + s \xi \in X$, where $p(t, x + \xi, y) - P(t, x, \xi, y) = \sum_{j=1}^m \tilde{a}_j(x, \xi, y) t^{m-j}$, the assertion (ii) easily follows from Lemma 2.1. Write

$$P(t_0 + s^r \tau, x^0, s\xi, y_0) = s^{\mu_0}(P_{(t_0, x^0, y_0)}(\tau, \xi) + o(1))$$
 as $s \to 0$,

where $P_{(t_0,x^0,y_0)}(\tau,\xi)\neq 0$ in (τ,ξ) . Then we have $\mu_0\leq mr$ and

$$P_{(t_0,x_0,y_0)}(\tau,\xi) = \sum_{jr+|\alpha|=\mu_0} \tau^j \xi^\alpha \partial_t^j \partial_x^\alpha p(t_0,x_0,y_0)/(j!\alpha!)$$

if $\mu_0 < mr$. Therefore, it follows from Lemma 2.4 that $P_{(t_0,x^0,y_0)}(1,0) \neq 0$. One can also prove that $P_{(t_0,x^0,y_0)}(\tau,\xi) = P_{(t_0,x^0,y_0)}(\tau,0)$ if $\mu_0 < mr$. We can write

$$\begin{split} P(t+s^{r}\tau,\,x,\,s\xi,\,y) &= \sum_{\mu \leq \mu_{0}} s^{\mu} f_{\mu}(t,\,x,\,y\,\,;\,\tau,\,\xi) + o(s^{\mu_{0}}) \qquad \text{as } s \to 0 \,, \\ f_{\mu}(t_{0},\,x^{0},\,y_{0}\,;\,\tau,\,\xi) &\equiv 0 \qquad \text{for } \mu < \mu_{0} \,, \\ f_{\mu_{0}}(t_{0},\,x^{0},\,y_{0}\,;\,\tau,\,\xi) &= P_{(t_{0},\,x^{0},\,y_{0})}(\tau,\,\xi) \,. \end{split}$$

This verifies the assertion (iii). From Lemma 2.5 it follows that $f(s, \xi, (t, x, y, \nu_0)) \neq 0$ if $\operatorname{Im} s < 0$, $|s| \leq s_0$, $(t, x, \xi, y) \in \mathbb{C} \times X \times \mathbb{R}^n \times V$, $\operatorname{Im} t \leq 0$, $|t-t_0| \leq \varepsilon$, $|x-x^0| \leq \varepsilon$ and $|\xi| \leq c$. Therefore, there are positive constants ε' and δ' such that $P(t, x, s\xi, y) \neq 0$ if $(t, x, \xi, y) \in \mathbb{C} \times X \times \mathbb{R}^n \times V$, $|\operatorname{Re} t - t_0| \leq \varepsilon'$, $-\varepsilon' \leq \operatorname{Im} t < 0$, $|x-x^0| \leq \varepsilon$, $|\xi| \leq 1$, $s \in \mathbb{C}$ and $|s|^r \leq \delta' |\operatorname{Im} t|$. In fact, we have $\{(t, s\xi); |\operatorname{Re} t - t_0| \leq \varepsilon', -\varepsilon' \leq \operatorname{Im} t < 0, s \in \mathbb{C} \text{ and } |s|^r \leq \delta' |\operatorname{Im} t|\} \subset \{(t+s^r(1+\nu_0\omega c^r|\hat{\xi}|^r), cs\hat{\xi}); |t-t_0| \leq \varepsilon, \operatorname{Im} t \leq 0, \operatorname{Im} s \leq 0, \operatorname{Im} t + \operatorname{Im} s < 0, |s| \leq s_0$

and $\hat{\xi} = \pm \xi$ } if $\xi \in \mathbb{R}^n$, $|\xi| \leq 1$, $3\varepsilon' \leq \varepsilon$, $\delta' < (c^{-r} + \nu_0)^{-1}$ and $\delta' \varepsilon' \leq c^r s_0$. Applying Lemma 4.1.1 in [4] to the polynomial $P(t, x, s\xi, y)$ in s, we have

$$(4.2) |\partial_s^j P(t, x, s\xi, y)|_{s=0}/|P(t, x, 0, y)| \leq C|\operatorname{Im} t|^{-j/r}$$

if $(t, x, \xi, y) \in \mathbb{C} \times X \times \mathbb{R}^n \times V$, $|\text{Re } t - t_0| \leq \varepsilon'$, $-\varepsilon' \leq \text{Im } t < 0$, $|x - x^0| \leq \varepsilon$, $|\xi| \leq 1$. Since $\partial_s^j P(t, x, s\xi, y)|_{s=0} = \partial_s^j p(t, x + s\xi, y)|_{s=0}$ for $j \leq k$, (4.2) and Lemma 2.6 prove the first part of theorem 2. Then the second part of Theorem 2 is obvious.

5. Proof of Theorem 3.

Write

(5.1)
$$p(t_0 + s\tau, x^0 + s\xi, y_0) = s^{\mu}(p_{(t_0, x^0; y_0)}(\tau, \xi) + o(1)) \quad \text{as } s \to 0,$$

and put $\alpha = p_{(t_0, x^0; y_0)}(1, 0) \ (\in \mathbb{C} \setminus \{0\})$ and

$$p_1(t, x, y) + ip_2(t, x, y) = \bar{\alpha}(1+i)p(t, x, y)$$
,

where $p_j(t, x, y)$ (j=1, 2) are polynomials in t with real coefficients. Then it follows from the Hermite theorem that $p_j(t, x, y)$ (j=1, 2) satisfy (A-1), and that

$$p_j(t_0+s\tau, x^0+s\xi, y_0) = s^{\mu}(\bar{\alpha}p_{(t_0,x^0;y_0)}(\tau,\xi)+o(1))$$
 as $s \to 0$.

Thus we have $\Gamma(p_{(t_0,x^0;y_0)},\vartheta)=\Gamma(p_{j(t_0,x^0;y_0)},\vartheta)$ (j=1,2). On the other hand, $\Gamma(p_{(t_0,x^0;y_0)},\vartheta)$ is equal to at least one of $\Gamma(p_{j(t_0,x^0;y_0)},\vartheta)$ (j=1,2). Therefore, it suffices to prove the theorem under the assumptions (A-1) and (A-2)'. Assume that p satisfies (A-1) and (A-2)'. Put

$$P(t, x, \xi, y, s, \nu) = (1 + s\nu |\xi| \partial_t)^{m-1} (t^m + \sum_{i=1}^m t^{m-i} \sum_{|\alpha| \le m} s^{|\alpha|} \xi^{\alpha} \partial_x^{\alpha} a_i(x, y) / \alpha!)$$
.

Then, for any $U \subseteq X$ and any $\nu > 0$ there is $\delta_0 \equiv \delta_0(U, \nu) > 0$ such that

(5.2)
$$P(t, x, \xi, y, s, \nu) \neq 0$$

if Im $t\neq 0$, $(x,\xi,y)\in U\times \mathbb{R}^n\times Y$, $|\xi|\leq 2$ and $s\in [-\delta_0,\delta_0]$. In fact, we have

$$\begin{array}{l} (1+s\nu|\xi|\partial_t)^{m-1}p(t,\,x+s\xi,\,y) - P(t,\,x,\,\xi,\,y,\,s,\,\nu) = \sum_{j=1}^m \tilde{a}_j(x,\,\xi,\,y,\,s,\,\nu)t^{m-j}\,,\\ \tilde{a}_j(x,\,\xi,\,y,\,s,\,\nu) = o(s^m|\xi|^m) \end{array}$$

if $(x, \xi, y) \in U \times \mathbb{R}^n \times Y$, $|\xi| \leq 2$, $s \in [-1, 1]$ and $x + s \xi \in X$. Thus Lemmas 2.1 and 2.2 give (5.2), applying the same argument as in § 3. Since $\mu \leq m$ in (5.1), we have

$$P(t_0 + s\tau, x^0, \xi, y_0, s, \nu) = s^{\mu} \{ (1 + \nu |\xi| \partial_{\tau})^{m-1} p_{(t_0, x^0; y_0)}(\tau, \xi) + o(1) \} \qquad \text{as } s \to 0.$$

From Lemma 2.2 or its proof, it follows that

$$(5.3) \qquad \{(\tau,\xi)\in \mathbf{R}^{n+1}; (\tau-c_2(m)\nu|\xi|,\xi)\in\Gamma_\nu\}\subset\Gamma(p_{(t,x;\nu)},\vartheta)\subset\Gamma_\nu,$$

where $\Gamma_{\nu} \equiv \Gamma_{(t,x,y,\nu)} = \Gamma((1+\nu)\xi \partial_{\tau})^{m-1}p_{(t,x,y)}(\tau,\xi), \vartheta)$. For a compact subset M of

 $\Gamma(p_{(t_0,x^0;y_0)},\vartheta)\cap\{(\tau,\xi)\in \mathbf{R}^{n+1};|\xi|\leq 1\}$ there are $\nu_0>0$ and a compact subset \widetilde{M} of $\Gamma_{(t_0,x^0,y_0,\nu_0)}$ such that $\{(\tau,\xi);(\tau+c_2(m)\nu_0|\xi|,\xi)\in M\}\subset \mathring{M}$, where \mathring{M} denotes the interior of \widetilde{M} . It is easy to see that there are $s_0>0$, $\varepsilon>0$ and a neighborhood V of y_0 in Y such that

$$P(t+s\tau, x, \xi, y, s, \nu_0)\neq 0$$

if $|t-t_0| \le \varepsilon$, $|x-x^0| \le \varepsilon$, $y \in V$, $|s| = s_0$ and $(\tau, \xi) \in \widetilde{M}$. We may assume that \widetilde{M} is convex and $\vartheta \in \widetilde{M}$. So we can apply Lemma 2.5 and obtain

(5.4)
$$P(t+s\tau, x, \xi, y, s, \nu_0) \neq 0$$

If $\operatorname{Im} t \leq 0$, $|t-t_0| \leq \varepsilon$, $|x-x^0| \leq \varepsilon$, $y \in V$, $\operatorname{Im} s < 0$, $|s| \leq s_0$ and $(\tau, \xi) \in \widetilde{M}$. Assume that there are $t_1 \in R$, $x^1 \in X$, $y_1 \in V$ and $(\tau_1, \xi^1) \in \widetilde{M}$ such that $|t_1-t_0| < \varepsilon$, $|x^1-x^0| < \varepsilon$ and $(1+\nu_0|\xi^1|\partial_\tau)^{m-1}p_{(t_1,x^1;y_1)}(\tau_1,\xi^1)=0$. Then there is $\delta'>0$ such that $(\tau_1\pm\delta',\xi^1)\in \widetilde{M}$ and $|(1+\nu_0|\xi^1|\partial_\tau)^{m-1}p_{(t_1,x^1;y_1)}(\tau_1+\lambda,\xi^1)|>c$ for $\lambda \in C$ with $|\lambda|=\delta'$, where c>0. Rouché's theorem implies that there are $s_1>0$ and a function $\lambda(s)$ defined on $[0,s_1]$ such that $|\lambda(s)|<\delta'$ and

$$P(t_1+s \text{ Im } \lambda(s)-is(\tau_1+\text{Re }\lambda(s)), x^1, \xi^1, y_1, -is, \nu_0)=0$$

for $0 < s \le s_1$. This contradicts (5.4). Therefore, we have $\mathring{M} \subset \Gamma_{(t,x,y,\nu_0)}$ if $(t,x,y) \in \mathbb{R} \times X \times V$, $|t-t_0| < \varepsilon$ and $|x-x^0| < \varepsilon$. From (5.3) it follows that $M \subset \Gamma(p_{(t,x;y)}, \vartheta)$ if $(t,x,y) \in \mathbb{R} \times X \times V$, $|t-t_0| < \varepsilon$ and $|x-x^0| < \varepsilon$. This proves the theorem.

We remark that one can easily prove Theorem 3 and, therefore, Theorems 1 and 2 if the coefficients $a_j(x,y)$ satisfy the condition (A-2) with k=m. In fact, one has only to apply the above argument to $P(t,x,\xi,y,s)=(t-\omega s^a)^m+\sum_{j=1}^m(t-\omega s^a)^{m-j}\times\sum_{|\alpha|\leq m}s^{|\alpha|}\xi^\alpha\partial_x^\alpha a_j(x,y)/\alpha!$, where $1<\alpha<1+\delta/m$ (≤ 2), $\omega=\exp\left[i(\alpha-1)\pi/2\right]$ and $(-1)^a=\exp\left[-ia\pi\right]$.

References

- [1] Atiyah, M.F., Bott, R. and Gårding, L, Lacunas for hyperbolic differential operators with constant coefficients, I, Acta Math. 124 (1970), 109-189.
- [2] Bronshtein, M. D., Smoothness of polynomials depending on parameters, Sib. Mat. Zh. 20 (1979), 493-501.
- [3] Bronshtein, M. D., The Cauchy problem for hyperbolic operators with variable multiple characteristics, Trudy Moskov. Mat. Obšč. 41 (1980), 83-99.
- [4] Hörmander, L., Linear Partial Differential Operators, Springer, Berlin-Göttingen-Heidelberg, 1963.
- [5] Hörmander, L., The Analysis of Linear Partial Differential Operators I, Springer, Berlin-Heidelberg-New York-Tokyo, 1983.
- [6] Nuij, W., A note on hyperbolic polynomials, Math. Scand. 23 (1968), 69-72.
- [7] Ohya, Y. and Tarama, S., Le problème de Cauchy à caracteristiques multiples dans la classe de Gevrey (coefficients hölderiens en t), to appear.
- [8] Wakabayashi, S., Analytic singularities of solutions of the hyperbolic Cauchy problem,

Proc. Japan Acad. 59 (1983), 449-452.

- [9] Wakabayashi, S., Singularities of solutions of the Cauchy problem for symmetric hyperbolic systems, Comm. in Partial Differential Equations 9 (1984), 1147-1177.
- [10] Wakabayashi, S., Singularities of solutions of the Cauchy problem for hyperbolic systems in Gevrey classes, Japanese J. Math. 11 (1985), 157-201.

Institute of Mathematics University of Tsukuba Ibaraki 305, Japan