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SCATTERING THEORY FOR WAVE EQUATIONS
WITH LONG-RANGE PERTURBATIONS

By

Hirokazu IwasuITA

Introduction.

In this paper we are concerned with the existence and completeness of modi-
fied wave operators for the wave equation with long-range perturbations :

P+ Lu=0, L= =3} 2, a’(2)da, + V(z) in R"(n23).
7 k=1

Scattering theory for the Schriodinger operators — 4+ V with long-range pertur-
bations has been extensively investigated and already reached a satisfactory stage,
while few have been known about long-range scattering for classical wave equa-
tions. It is well known (cf., e.g.,, Reed-Simon and Mochizuki [14]) that the
Schrédinger and classical wave equations are related by the invariance principle
of Kato and Birman theory in short-range scattering and it has been expected
that also in long-range scattering the invariance principle allows us to treat clas-
sical wave equations.

In the present paper we first prove the invariance principle for modified wave
operators intertwining L and —4 which is applicable to the wave equation. As
for the invariance principle in long-range scattering, several authors have studied
it for modified wave operators intertwining —4+ V and —4 which are known to
exist (cf., e.g., Matveev [11], Chandler-Gibson [2] and Kitada [9]). Our approach
is quite different from those of the above authors, however similar to that of
Mochizuki [14] We employ a spectral representation theory to justify the inva-
riance principle directly, which means, with no knowledge of the existence of time
dependent modified wave operators for the Schriodinger operator L. This method
is influenced by Ikebe-Isozaki [4] However an L2-estimate of an integral operator
plays a crucial role in place of the stationary phase method (see [Proposition 4.4).
The invariance principle assures the existence and completeness of modified wave
operators for the wave equation in the square integrable space, from which we
construct modified wave operators in the energy spaces by modifying the results
of Reed-Simon [17], based upon two-Hilbert-space scattering theory of Kato 81
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§1. Assumptions and statement of the main results.

Consider the following Schrodinger operators in R"(#>2):

Li=—4=-3% &,
j=1

Li=—da+Vie)=~ %, 0s,(@*(@)ia, )+ Vi),

where axj=a/axj and the coefficients @?*(x) and V(x) are supposed to satisfy the
following

AssumpTION 1.1. (A) The real symmetric matrix A(zx)=(a’*(z)) is a C* and
everywhere positive function of x over R™ such that for some positive constant
0<1,

(1.1 192(a7*() — 37%)| < Co(L+| )11

for any non-negative multi-index a=(ay, ---, an) and 1<j, k<n, where ¢’* is Kro-
necker’s delta and |a|=a,+::-+an, 05=0z" 03" .
(V) V(z) is a non-negative C*(R™)-function such that
|05 V()| <Ca(l+|2|) 7'
for any non-negative multi-index a, where é is the same constant as in (A).
Under Assumption 1.1 the formal differential operators L;(j=0, 1) have the

unique selfadjoint realizations in L*(R"), which will be denoted by L; again. Then
note that L; have no point spectrum.

Let ¢(2) be a real C*(R.)(R.=(0, oo0)) function such that ¢'(2)=(d¢/dA)()>0
for 2¢R.. In order to formulate our main results we require time dependent
modifiers X, .(¢, ¢) associated with L, and ¢(1), which are real C*((R™\{0})XR.)-
functions possessing the following properties: Given any compact set B in R™\{0},
we can find a positive constant T such that if £eB, t>T and |a|>0, then

1.2) 10: X4,2(6, DISCa(1+8)'72,

where ¢ is given as in Assumption 1.1 and the positive constant C, is independent
of £eB, and the functions W, .(&, )= xtd(|&|?)+X;,.(, t) solve the equations

0 Wy,o(8, )=x¢& AW Wy, (&, D)6+ V(P W€, 1))
for £eB and ¢>T, respectively, where V;="%0;,, -, 0¢,)

DerFiNiTION 1.2. For time dependent modifiers Xy, .(§, ¢), define

e X4,+Oy=F e~ Xs.+DFou] for ue L*(R™),
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where F, is the Fourier transform:

(Fou)(5)=ﬁ(6)=(2ﬂ)""”g el u(z)d.

THuEOREM 1.3 (Invariance principle). Let ¢(2) be a real-valued C*(R.)-function
such that ¢'(2)>0 for any 2eR.. Under Assumption 1.1 therve exist time dependent
modifiers X, +(5, t) such that the modified wave operators

(1.3) 2:(H(L1), p(Lo)=s-lim eitéiveTiso=iXy.=® in LXR")
exist and are unitary from L*R"™ onto L*(R™) with the intertwining property. Fur-
thermore 2.(¢(Ly), ¢(Lo)) are independent of ¢, that is
‘Qi(¢(L1)a ¢(L0>)=Qi(Lh LO)!
where Q.(L,, L) are obtained from (1.3) when ¢(4)=2.

REMARK. The condition on ¢(2) in is weaker than that of Mat-
veev [11] or Kitada [9] where it is assumed in addition to ours that ¢’/(2)=0 on

R, . ,

We now consider the following wave equations in R"(#>3): For j=0, 1,
(1.4); du+ Hin=0,
where each H; is the positive square root of L;: H;=~'L;. Since D=~ 2
satisfies the condition in we have

THEOREM 1.4. Under Assumption 1.1 there exist time dependent modifiers
X:(&, t) such that the modified wave operators intertwining H, and H,,

Qi — S'].lm e:i:itHle¥itHo—iXi(L) Zn LZ(R‘I’L)

t—0

exist and are complete.

On the basis of we consider the wave equations in the energy
spaces along the ideas of Reed-Simon [17]. Let j=0 or 1. Let [9D(H;)] be the
closure of 9(H,), the domain of H; in the norm ||H ;+|l, where || - || denotes the
norm in L*R™. Let 4; be the Hilbert space defined by

I =[DHHIDLNR")
equipped with norm

H(Z‘)Hfa[fHHqu2+||bl|2,

and define

0 I
Aj=i( ) , DA)=9HYDD(H)),
—Hy 0
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where
DHH={ue[D(H})]; HueD(H,)}

and we are denoting both H; and its extension to [9(H,)] by H 7. Then (1.4);is
written in the vector form :

The operator /; is selfadjoint in 4, and generates a unitary group of the solution
operator U,(?):

cos(H ;t) H;‘ sin (H ;t)
U;t)=e~it =( ) )

-—Hj sin(Hjt) COS(H/t)
Define

T_l(Hj i)
Tve\g, i)

Then T is a unitary operator from S to LA RMPL}R™ and satisfies

H, o0
TjAjT;l=
0 —H,

and thus

e—itHj 0
TjUj(t)T_;l:( 0 ) .

e'qu
Let J be the identification operator between .4, and .9, defined by
f= T;lTo .

Let J5(t) (¢>0) be the modified identification operators between Ho and 9, defined
by

—1X ()

e—iX+® 0
Ji®= T;‘( 0 T,,
e

where e7**:+® are given in [Theorem 1.4. Then J#() and J#() are unitary and
related by

JE@)=JJ:@).

Further it follows directly from the definitions that Ji(¢) commute with U,(¥). We
are now in a position to state
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THEOREM 1.5. Suppose that Assumption 1.1 is fulfilled. Let Ut) (j=0, 1)
and Ji(t) be as above. Then the modified generalized wave operators

W(J)=s-lim U(F)/5 () U(£2)

exist on 9(, to 9. and are complete. Furthermove W.(]) are isometries intertwining
Uy(t) and U,\().

Proor. Since

U(F)]OUs(£2)
=TT, U1($t)Tl_l)(Tlfxi(t)Tffl)(ToUo(it)To_l)To
giitng*iiHo—iX:(‘) 0
= Tfl( ) TO ’
0 oFitH 1 pit Ho—iX £ (1)

the assertion of the theorem follows from [Theorem 1.4 and the unitarity of T
(7=0, 1). Q.E.D.

We now restrict our consideration to the perturbed equation (1.5); with the
coefficients on which we impose the following

ASSUMPTION 1.6. a/*(z)(1<j, k<n) satisfy (A) in Assumption 1.1 and V(x)

satisfies
(V) V(z) is a non-negative C°(R"™)-function such that

(1.6) V(z)=0(|x|™?) as |z|—co.

We remark that the hypothesis V(z)eC°(R™) is put for the sake of simplicity
and V(z) may have certain local singularities (see, e.g., Phillips [16]). It will be
easily seen that the same results as in Theorems M.4 and hold with the time
dependent modifiers X:(&, #) solving the equations

0. X (&, B)=F{|&]l —VE-A(xt/|8| +V: X (&, 1))} -
We use the same notation as before.
THEOREM 1.7. Suppose that Assumption 1.6 is satisfied. Then I(o and I(,
are setwise equal with equivalent norms, and the modified wave operators
Wt—_—S'ltim Ul(it)fg:(t)UO(it)

exist and coincide with Wy(J). Hence W. are complete and intertwine Udt) and

U.(@).
By the intertwining property and unitarity of W., we have the following
result partially extending Phillips [16].
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COROLLARY 1.8. Let 9° and 9" be the incoming and outgoing subspaces
relative to Uyt) on 9, defined by

t={fedlo; U@®)f=0 for |z|< ¢, =t>0}
(see Lax-Phillips [10], p.99). Define

§:= W:t@(:)t .

Then - and D' are the incoming and outgoing subspaces relative to U,(t).

§ 2. Spectral representations for L,.

In this section we shall establish the spectral representations for L=L, under
Assumption 1.1. We start with

LEmMMA 2.1. There exists a real C*(R" X (R\{0}))-function K(xz, o) satisfying
the following requirements :

(1) For any compact set 3 in R\{O} there exists a constant R>0 such that if
o€l and |x| >R, then
(2.1) (VK )z, 0)- A(x)(V-K)z, o)+ V(z)=0".

(2) Kz, 0)=—K(x, —0) for a<0.

Q) 16:0:(K(z, o)—olz)| <Cu(1+|z|)'~"-(|2| >1)
Sfor any non-negative multi-index a, non-negative integer k and ocX, a compact set

in R\{0}, where the constant C.. is independent of ceX.

This lemma can be proved in a similar method as in Theorem I. 16 of Isozaki
(5] and so we may omit the proof.

As for the function K(x, o) introduced in Lemma 2.1, we shall find it con-
venient to rewrite K(z, ¢) as follows:

(2.2) K(z, 0)=0r+Y(x, o) for r=|z|>1.
Then Lemma 2.1 implies that
(2.3) 10205Y (%, )| <Cor(14|z|)t-11-2

for any |a|>0 and integer £>0, where C,; is independent of ¢ in a compact set
in R\{0}.

DeFINITION 2.2. Let Y(z, o) be as above.

Define a C=-function olz, &) of
z€R"™ and t=0+ir with ¢e R\{0} and reR by '

o(z, £)=—i(er+ Y(z, a))+”;1 log 7 for r=|z|>1.




Scattering Theory for Wave Equations with Long-Range Perturbations 91

ProposiTION 2.3. Let o(z, &) be as in \Definmition 2.2 Then for any r=o+ic
with ce R\{0} and +€[0, 1], we have

&t = V(@) +(Vop)(@, £)- A(@)Poo)w, £)—dap(z, &)
=0(lz|")+ (2, £)+7q(x, &)

as |x|—oo, where the functions p(xz, &) and q(x, &) satisfy when |x|—co and |a|=0,
1

ozp(w, £)=0(|z|'~'"1-%),
0:9(z, £)=0(|z|~'"'=?)

uniformly in o€, a compact set in R\{0} and -.

Proor. A straightforward calculation yields the following identities :

2=V +Vz0)- AWzp)—dap

= {(PK)- AT K) + V—o?) + 3;:’ 3 ”2;21 Trace(A)+

n—1
2r

Z -ﬁkazjajk'!'p(x, v '{) +TQ('I'" ’C) >

e, @:zk% (Trace(A) —n®) —i% (3.,a7){kd+02, Y } +
+iX 35,95, Y,

q9(z, £)=t(@—1)—2ic(®—-1)—-2i%- AV, Y,

where £=(%,, - -+, Bn)=x/|x| and @=0(x)=2%-A(x)Z. Hence the assertion is easily
deduced from [2.1), and the above identities. Q.E.D.

We introduce the weighted L*-spaces to state the radiation condition. For a
real number s, LAG) denotes the Hilbert space of all measurable functions # such
that

lf5, 6= (1 + |2 ()] de

is finite. If s=0 or G=R", we often omit the corresponding subscript.

DerINITION 2.4. Let o(x, £) be as in Definition 2.2. A solution of the equa-
tion

(2.4) (L=tDu=f

is said to satisfy the radiation condition if
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ueli_,_,, and - A(x)(Va+Vzp)(@, £)ueLisnn(2),

where Q={xeR"; |x|>1} and p, v are positive constants satisfying #<» and p+
v<2,

PROPOSITION 2.5. Let t>0 and 0<pu<vy, p+v<2. Let u be a solution of (2.4)
with feLl.,,, satisfying the radiation condition. Then there exist positive constants
C and R independent of k, f and u such that

|I(Vx+(VzP)( ©, K)) u“%—-l+v)/2.E(R)Sc{llu”%-—l—#)/z-*-”f”%l-i-h)/Z} N

where E(R)={xeR"; |x|>R)}.

SKETCH OF THE PROOF. Putting 0=F:+zp)(z, x))u and np=Im Vyp(zx, £)/Im
oro(x, k) with 9,=%-F,, we have of [6] with —44p and B replaced by —d4p
—V and », respectively, which we denote by [2.3). Similarly the identity
of [6] holds with —d4p, p(x, £¥) and B replaced by —d.p—V, p(x, £)+rq(x, £) given
in Proposition 2.3 and », respectively. We denote this identity by [2.4). The
integrals containing p(x, x) or its derivatives in [2.4) can be estimated in the same
way as in [6] The integrals containing rg(x, x) or its derivatives except for the
term rq(x, £)-Af can be estimated by use of Lemma 2.6 mentioned below. As
for the integral containing rq(x, «)0- A8, shift it from the right-hand side of 2.3y
to the left and estimate it together with the second integral term in the left-hand
side of [2.3). Then we have the inequality by the same manipulation as in [6].

Q.E.D.

LEmMMA 2.6. Let >0 and feLl, for some positive y<(v—pn)/2. Then the
solution u of (2.4) satisfying the radiation condition belongs to L?, and satisfies for
some constant C independent of =, u and f

(2-5) T”u”r/zSC{H“H(r—z)n""”f”r/z} .

Proor. Multiply by 7'a(r=|x|) and integrate the result over {|x|>R}
(R>0). Integration by parts gives

—Sm:R (% A(z) Pot0) 77 dS +S ) - A2) {r’ (%i+l7,)ﬁ}dx+

|z
+S r’(V(x)lulz—fczluP)dx:S v fiids .
|z|I<R |Ti<R
Taking the imaginary part we obtain

2afg Rr’lulzdx—glxl=kr’ Im {z- A(x)(Pzp)(z, ©)}|u|?dS

1z1<



Scattering Theory for Wave Equations with Long-Range Perturbations 93
= —-Sm_RrT Im (% A(@){(Fz+ (Pop)(x, £))u}ildS

[, 7L 1m (- Aw) (P} —Im ( fi) | da.
Noting that
o~ Im {Z- A(2)(Pzp)(z, £)}=@(x)+0(|z|*) as |z|—>oco0
and the right-hand side is non-negative for sufficiently large |z|, we have for

sufficiently large R

oo 7 1000 <Clldl el 111
Iz|<R

+-§];T{S|x|=lzrv|£ ’ A(x)(V-”+ (pr)(x, K))u|2d3}1/2

X{szzf”""zds}m ,

where we have used the inequality y<(v— »)/2 and the elliptic estimate

WPanells <C{llulls + 11 f1ls}, seR .

The radiation condition allows us to let R—co. Dividing the both sides by |lull,,z

we are led to the estimate [2.5). Q.E.D.
With the aid of [Proposition 2.5 we now have the limiting absorption principle :

THEOREM 2.7. Let R.=(L—«*"" and let p, v be positive constants satisfying
p<Lv and p+v<2.

(1) For ceR\{0} there exists a strong limit
S'lrigl Rori:= R

as a bounded operator from LY., to Li_,_,,. Further R.f for felLl.,, is con-
tinuous in o€ R\{0} in the L_,_,,-topology.

(2) For aeR\{0} and feLi..,, u=R.f is the unique solution of

(L—e®u=f,

satisfying the rvadiation condition.

The following proposition is proved in a similar manner as in Propositions

2.3 and 2.4 of [6]

ProposiTiON 2.8. (1) Let p, v satisfy 0<pu<v and p+v<2. For any se R\{0}
and feLl.,, there exists a sequence {rn} tending to infinity such that
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(2.6) lim S 1o (r*|ul>+7"|(Vs+ Vz0)(x, 0)u|H)dS=0,

m-+00

where u=R,f and r=|\z|.
(2) Let p, v satisfy 0<p<y, p+v<2, p<o and p+2(1—08)<v. Let {rn} be any
sequence satisfying with these p and v. Then

(F (o, 7m)fUE)= —w\/ 2 4efTnE (R, f)rn) if £0>0
T

converges to F(o)f stromngly in L¥S"') and
T Ref = Reof, N=NF O e

Furthermore F (o) is independent of the choice of the sequence {rn} specified by
\&. D).

(3) Let fi, v satisfy 0<fi<v<l and f+v<min {25, 1}. Then the operator ¥ (o)
initially defined on L3 ..,. can be extended to a bounded operator from L%i.. 2 to
L¥(S™") which will be denoted by F(o) again. For feLi . ,,. and $eL*S""), we
have

(EZ«'(a)f, ¢)L2(sn—1)=11ni_1:130(97(0: 7’m)f, ‘zb)LZ(S"-l) ’

wheve {r.) is the sequence specified by when p=4f and v=5.
Making use of [Proposition 2.8, we now arrive at the goal of this section.

THEOREM 2.9. (1) Let 0<9<min {25, 1}. For feLt.s,., define
(F o, B)=[F(0)f)Z) if (o, Z)e R XS .

Then F. can be extended to unitary operators from L*(R™) to L*R.XxS"'), which
will be denoted by F. again.
(2) For any bounded Borel function a(2) on R and feL*R™), we have

L) f=TFta(a)F +f

=s-limS
N—xje

where e.n=(1/N, N), e-.x=(—N, —1/N).

F (o) a(o*(F <)o, - )do in L*(R"),

+

§3. Asymptotic behaviour of certain integrals.

This section is devoted to preliminaries for calculations carried out in later
sections.
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ProrosiTiON 3.1. Consider the integral
I(t):Sge“””’a(x, t)dz(2: a domain in R™).
Assume that the phase function ¥(x, t) satisfies the following . ¥(x, t) is a real
C(Q X R.)-function such that
3.1) |02 (z, 1)|<C(1+18) for |a]=0, xeR and t>0.
Moreover, therve exist constants C>0 and T >0 such that
(3.2) (V.U (x, )| >Ct for xeR and t>T.

Suppose that the amplitude function a(z, t) is in C*(2XR.) and there exists a sub-
domain Q,€Q such that for t>0, a(z, )=0 if 2¢Q,. Then for any integer N>0
there exists a positive constant Cy such that

[ I(@#)|<Cx sup |0za(x, £)|(1+8)~% for ¢>T.
xedq

la|<N

Proor. Let L, be the differential operator defined by

Lo=3 (1+|7.0 , t)]Z)-l(% — (@5, )z, t)iax‘,> .

Then the formal adjoint L} of L, is given by

L= 3 (1L+|7:¥(z, )@ ¥) (@, 1)ida;+Clx, 1),
j=1

(3.3)
Clx, t)=A+ V¥ (=, L‘)Iz)‘l-i-ijzy__']l 0z [(L+ VY (=, 8)|7)1(02,¥)(x, 2)].

It follows from [3.1) and [(3.2) that
3.4) |0:C(z, D] <C,(1+08)! for xef2 and ¢>7T.

Since eV =L, integration by parts shows that for any integer N>0,
(3.5) I(t):S " @[ a(x, £)da.
Q2

The assertion of the proposition is easily deduced from (3.1)-(3.5). QED.
The following proposition is proved in Ikebe-Isozaki and prepared just for

[Theorem 4.10|.

ProrosITION 3.2. Consider the integral

1= e*s=0a(o, Hdz(0: a domain of BV
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Assume that the phase function S(x, t) is divided into two parts S(x) and Si(xz, t):
S(xz, £)=So(x)+S\(x, t) and they satisfy the following conditions
(i) So(z) is a real C(Q)-function such that

|03Se(2)| <C. for |a| >0 and zeQ.

(i) There exists a unique critical point x,€Q of So(x): (FzSo)(x0)=0.
(iii) The Hessian matrix A, of So(x) at x=uzx, is non-singular.
(iv) Si(zx, t) is a real C*(Q X R.,)-function such that for some 6>0,

102S\(z, £)|<Cut™? if |a|=>0, z€R and t>0.

The amplitude function a(x, t) is assumed to satisfy the following :
(v) There exists a subdomain 2,€2 such that for t>0, a(x, t)=0 if x4%Q,.
(vi) a(zx, t) is a C(QXR.)-function such that

|0% a(x, D|<Cy for |a]=>0.

Under the conditions (1)~(vi) we conclude the following :

(1) We can find constants T>0 and C>O0 such that for any t>T there exists
a unique critical point x(t)eQ of S(x, t): FxS)(x(t), t)=0 and |x(@t)—x, <Ct°.

(2) We have the following asymptotic expansion as t—>oo:

I®)=(2r)"|det Aq| =12~ 2/ 4e!STW- Dz, t)+ R(L),
IR(#)| <Ct="*=% for t large,

where o is the signature of A, and C is a constant independent of t large.

§4. Invariance principle; proof of Theorem 1.3.

In this section we shall prove [Theorem 1.3 We verify the theorem only for
Q.(¢(Ly), ¢(Lo)) since 2_(¢(L,), ¢(Lo)) can be treated in a similar manner.

Let 5(r) be a C*(R.)-function such that 0<y<1, 5»(#»)=0 if <1 and 5»»)=1 if
r>2. Set for any ¢(o, )eCo(R.*XS" ")

4.1) vy(x, 0)=e "D 2m)" 2n(r)e" " P g(a, ) (r=|z|),
(4.2) 96(®, 0)=(—da+ V(z)—0*)vy(z, o)
=ayx, o)e ? ™,
where p(z, ¢) is introduced in
LemMA 4.1. Let ¢(o, £)eCo(R.XS"") and vy(z, o), a)x, o) be given by (4.1),
4.2). Then

| &+ A(x) (Ve + (Pzp)(x, o))vx, o) <CA+|x]|)-t-0- "D
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0% ay(z, 0)| <Cp(1+|2])~1-% for any integer k=>0.

Proor. For |z| large we have with Co=e~"=9/4(2r)~"*
T AWz +Vzp)vy=Coe " Z- (A=)l ¢ ,
a¢=CO{_02+ V— (VzP)‘A(VzP>+AAP+2(VzP)‘(A_I)(Vx¢)} .
The assertion is easily deduced from Proposition 2.3 and the fact
Vep=0(|z|™") as |x|—>oco. Q.E.D.
PROPOSITION 4.2. Let ¢(o, £)eCy(R.xS™ ") and vz, o), g4x, 0) be defined
by 4.1), 4.2). Then
F(o)*dlo, - )=—ivy( -, o) +iR-ag, -, 0).

Proor. Let 4, o be given as in (3) of Proposition 2.8 [Lemma 4.1 and Theo-
rem 2.7 show that g4(x, o)eL? .;,,, and

vy(+, O)=Rogy( -, ).
For fel%.;,. let u=®R,f and {rn} be the sequence specified by with these
Z, 9, f and . By Green’s formula we have

S (ug,— f)dx
1Z1<T,

=Sm:r (% A{(Pat (Top))u} 0, — uk - AVs+ (Vap))Bs

+0(| 2|72 PldS+i(F (0, m)fs $)pLacsn-1y .
Letting m—>co we obtain

Z(g(o-)fs ¢)= _(fv v¢)+(us g‘/’) ’
where we have used (1) and (3) of [Proposition 2.8 The assertion follows from
the above identity. Q.E.D.

We now choose arbitrary numbers g, 0, such that 0<¢,<o:<co. Let X be
an open interval defined by Y=(a,, 02).

LEMMA 4.3. Let ¢(2) be the function given in Theorem 1.3. Let (o, %)eCy
XxS™"Y) and g,(x, o) be defined by (4.2). Tnen

Sw et R_ (- ,,)d,,H___()_

lim
{—oo 0

Similarly as in Lemma 3.4 of Mochizuki [13], this lemma is derived as a
corollary of the following
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ProrosiTiON 4.4. Consider the integral

oo

I(x, s, t)___r_(n..l)/zg e—i(028+¢(02)t—K(l‘,ﬂ))a(o.’ x)da (7’=|x|)
0

for s, te R, and xe R™\{0}, where K(x, d) is the function introduéed in Lemma 2.1
and functions ¢(R), a(e, x) are assumed to possess the following properties with an
interval X=/(0,, 0:)(0<0,<g:<0):

(1) ¢Q) is a real C*(R.)-function such that for some constant m>0,
4.3) &' A =>m if ot<i<ol.
(i) alo, x) is a C-function supported in ¥ X{xeR"; |x|=>1} and satisfies

(4.4) |0% a(o, x)|<Cc(1+|x|)~'"? for any integer k>0,

where 0 is the same constant as in Assumption 1.1.

Then there exist positive constants T and C independent of s, t such that if
t>T, then

NIC-, s, DISC(s+8)"1-2 for any s>0.

Proor. We set
(4.5) d=min {s,, mo,}.

Choose a partition of unity {x,};-1,- on R. such that y,(2)=0 for 1>5d/4 and ».()
=0 for 1<3d/4. We set

Iz, s, )y=y(|z|/(s+ )z, s, t) (j=1, 2).

1st Step. We shall estimate Ii(x, s, ?). Putting r=(s+1y we have
L((s+t)y, s, t)={(S+f)|2/|}'(""’/zgje‘i“"‘y"‘”xl(lyl)d(ﬂ, (s+dy)do ;

U, y, s, )=, v, 5, )=Y((s+1)y, 0),

Voo, v, s, H)=as+ o)t —o(s+D|y|,
where Y(x, o) has been introduced in (2.2). Then it follows from (4.3) and [4.5)
that

3
10.¥ o(0, v, s, t)l=|208+20¢’(02)—(S+t)|y1|21 d(s+t)

for (s, v, s)el'={(o, v, 5); 6€2, x:(ly])#0, s>0}. By there exists a constant
T'>0 such that if £>7” and (s, v, s)el’, then

|0, Y((s+28)y, o)l g—j—i— d(s+1).
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Hence we obtain the inequality
, d
10,9 (o, v, s, )| > (s+1)

for (s, y, s)el” and ¢+>T’. We also have for any integer £>0

195% (o, v, s, DISCu(l+s+12), 1% (1u(ly)alo, (s+1)} <Ci

if (s, y, s)eI"’ and ¢>7". Thus we can apply [Proposition 3.1 to obtain for any
$>0, t>7” and large integer N>0

|\L(s+8)y, s, H|<Cn(s+1)¥
uniformly for |y|<5d/4, which gives
(4.6) ILC -y s, DI<Ca(s+8)~
for s>0, £>7’ and N large.

2nd Step. In order to estimate I(x, s, ¢) we need the following

LeMMA 4.5. For any ¢(o, £)eCy(ZxS™1) let A(s, t) be defined by
LAGs, D)= n-/af gtitesscedik @[] /(s-+ D)ao, @)ilo, #)do .

Then there exist constants C>0 and T>T' such that for any s>0 and t>T,
4.7) IlAGs, D@l <C(s+2)~1-2]|¢l|

sxgh1
Hence the operator A(s, t) can be extended to an operator from L*(3 xXS™ ') to L*(R")
with bound C(s+¢t)~'-9,

The proof of the lemma will be given in Section 5. It now follows from the
inequality with ¢(s, )=1 that

o -5 s, BKCls+1)-1-2

for any s>0 and ¢#>7. Combining this with we are led to the assertion of
the lemma. Q.E.D.
The following result stating the asymptotic behaviour of e=$Lv a5 f—oco ig

derived from [Theorem 2.9, [Proposition 4.2 and LCemma 4. 3.

THEOREM 4.6. Let ¢(2) be as in Theorem 1.3. Let uc L*(R™) such that F.u
€CP(R. X S"™"), and define for ¢(o, .i)eC?(R+><S”“)‘

wg (x, ¢)=—i§ e~y (2, 6)do
0

— e—(n—1)xi/4(27z.)—1/277(1,)7;—(n—l)/zgwe_iw(cﬂ)g_K(.z,‘. a)]sb(a.’ .ﬁ) da. R
0
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Then

lim ||e-# Oy —w( -, t; F.u)||=0.

t—oo

ReMRK. When ¢())=¢ 7, wix, t; Fu) corresponds to the asymptotic wave
functions constructed in Mochizuki and the author [6], but in our setting
where the potential V(z) is in a long-range class, K(z, ¢) is not a linear function
of ¢ and therefore w> cannot be described as a modified diverging spherical wave.

LEMMA 4.7. Let ¢(2) and K(z, o) be given as in Theorem 1.3 and Lemma 2.1,
respectively. Then we have C=(R™\{0}) X R.)-functions z(, t) and o(§, t) possessing
the following properties: For any compact set B in R™\{0} there exists a positive
constant T such that if ée€B and t>T, then

¢=(VK)(x(, 1)), o(§, 1)),

20(¢, 1)p'(a*(§, Nt=(0.K)x(§, 8), a(§, 1));
|05 (x(&, 8)—26¢"(I§1M)D <Co1+2)'77,

|03 (a(¢, H—1EDI<Ca(1+2)77,

(la| 20)

where the constant C,>0 is independent of &eB.

This lemma is a consequence of the inverse function theorem and since the
proof can be carried out similarly as for of Tkebe-Isozaki [4] (see also
Proposition 2.2 of Kitada [9] and Lemmas A1, 4.2 of Ikebe-Isozaki [3]), we may
omit the proof.

DEFINITION 4.8. Let z(&, £) and o(¢, ¢) be as introduced in Lemma 4.7. Define
X, (&, )= —t(|€1")+z(&, 1)-E+1(a*(E, 1)—K(x(§, 8), o(§, 1)).
It follows from Lemmas 2.1 and 4.7 that X (&, £)eC(R™\{0})X R.) and
|0z Xy(&, DI<Cu(1+2)'72

for £eB, a compact set in R™\{0} and la| >0. Put W&, t)=t6(I€1%)+ X4(&, £). Then
Lemma 4.7 implies that for any compact set B in R™\{0} there exists a positive
constant 7" such that

VW&, D)==(&, ), W&, )=¢(d*, 1)
for £eB and t>7T. Since K(z, g) satisfies
(P-KXz, o) A(x)V=KXx, o)+ V(z)=0d%

we replace x, V.K(x, o) and ¢® by V:Wu§, t), § and ¢~ (8. Wy(§, t)), respectively in
the above equation. Then we get the Hamilton-Jacobi equation
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WS, D=¢(&- AW W&, DE+ VW&, t)))
for éeB and t>7. Thus we have obtained the time dependent modifier Xy (&, 1)

DEFINITION 4.9. Let F, be the operator from L% R"™) to L*R" defined by
(Fou)&)= 6"V F u)|é], &/I¢]), we L R™),

where & . is the operator defined in Theorem 2.9.
Theorem 2.9 implies that F. is a unitary operator from L3 R™ onto L*R™).

THEOREM 4.10. For any ue LA(R"™) we have
|le=i¢ Ly — Fo~'[e~ WO F 4]|| -0 as t—oo,
where W&, t)=td(|6|2)+ X, (€, 1).

Proor. Since the operators are unitary, we have only to verify the theorem
when #(o, )=(F .u)(o, £)eC3(3XS* ") with Y=(gy, 62) (0<0,<06:<0). The proof
follows the same lines as in Lemma 6.3 of Ikebe-Isozaki [4] Let ¢=inf {20¢'(a?);
o€} and b=sup {20¢'(¢*); ceX}. We cover R, by three open subsets ¢/,=(0, a),
Us=(a—2¢, b+2¢) and Us=(b, o), where ¢ is a sufficiently small positive constant.

Let {x;};=1,2, s be a partition of unity subordinate to this covering such that 2(8)=0
for s>a—e¢, y(s)=1 for sela, b] and ys(s)=0 for s<b+: We set

fiz, O=ylz|/Dwi(z, t; @), j=1,2,3.

1st Step. We begin by estimating f;(x, ) for j=1,3. Putting z=¢y we have
fj(ty, t)ze—(n—l)niu(zn)—uzxj(!yl>S°°ewr(n.y.t)/z(a, Y, t)do;
0

(o, v, )=Volo, y, )—Y(ty, o)
Vo(o, v, H)=t(o|y| —p(a*),
Wo, v, )=x(tlyEly)~ "o, v/ly])
with Y(z, ¢) introduced in (2.2). Put
Q;={(0, v); 0eX, y(lyD=+0}, j=1, 3.
Then we have with some constant C>0
(4.8) 10.% (0, ¥, )| =CH1+|y])
for (o, ¥)ef2;, j=1, 3. In fact, since 3,% (o, v, ¢) is calculated as
9% (o, ¥, )=H(y|—20¢'(a%)),
it follows that if (¢, ¥)ef2,, then
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10.¥o(a, ¥, D) =ell+(a—e)] ' H(1+]yl).

Next, take a sufficiently large constant R,>0 such that Ro(1+R,)~'>3/4 and

b(1+R,)'<1/4. When (o, y)ef2;, we have
e(1+Ro)'t(1+y]) if |y|< R,

laawO(Uv Y, t)IZ .
H1+|y|)/2 if |y|>R,.

Thus we have shown [4.8) On the other hand, it follows immediately from 2.3)
that for ¢ large,

10, Y(ty, o)l <CL£(1+ 1y~
Hence we can find positive constants C and 7 such that
10.¥ (o, y, ) 2CH1+ i)
for (o, y)ef2;, j=1, 3 and ¢t>7. Noting that
|05 ¥ (o, y, 1) <Cut(1+|yl),
0% h(a, y, DI<CltQ+]yD]- D7

(k>0)

for (o, ¥)€f2;, j=1, 3 and ¢>T, we can use [Proposition 3.1] to obtain

|f iy, O <Cwt=¥QA+|y)-¥, j=1, 3

for any large N>0 and ¢>7. Therefore we have for j=1, 3
4.9) I1fsC-, DII>0 as t—co.

2nd Step. We now choose {CV;};-1,2,3, @ covering of R, such that <CV,=(0, a,),
CVe=(0,—2¢, 0:+2¢) and CV3=(0,, 00). Take a partition of unity {¢;};-1,2,s subor-
dinate to this covering such that ¢,(s)=0 for s>o,—¢, ¢:(s)=1 for sed and ¢s(s)
=0 for s<o.+e. Noting that f.( -, )eL¥R"), we set for j=1, 2, 3

016, =) g IED| w e f i, Dd,

I'i={(y, o, §); 2(lyD+0, ce, ¢;(|§])+0}.
We shall estimate g¢,¢, ¢) for j=1, 3. Putting x=¢{y we have

gj(e, t)=(27[)—(11,+l)/26—(n—l)xi/4t(n+—l)/2¢j('EI)

X[ (e aeeonty, o, t)dody;

0

U(y, o, & )=Vuy, 0, § £)— Yy, 0),
wo(yi g, Sy t)=t(y'$+¢(02)—0|y|)9
h(y, o, B)=x(lyDn(tlyDly|="=P"%4(a, y/lyl).
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Then it is easily seen as in lst Step that for some constant C>0,
7oy, o, & DIZCL1+[E])

if (y, o, &)el'y, j=1, 3. If we take account of the inequality
|7, Y(ty, o)l <C[H(1+|E])]'°

for (y, o, £)el’;, j=1, 3 and ¢ large, then we can find positive constants Cand T
such that

7Y (y, o, § DI =CH1+|E])

for t>T and (v, g, £)el’;, j=1, 3. We also see that
350y, 0, & OI<CHL+IED,
|0y A(y, a, )| <C,

(la|=0)

for (v, o, €)el’y, j=1, 3 and ¢>7. Thus we can apply [Proposition 3.1 to the y-
integral to obtain for any integer N>0 and ¢>7T

6,06D] o 677 ¥ 7€ Ohta, 0, Dy <Ot A+ DY, =1, 3

uniformly in ¢ey. Hence we have
(4.10) g, -, D0 as t—co, j=1, 3.
3rd Step. Rewrite g.(¢, t) as follows:

g2(Ea t)=(271.)—-(n+1)/Ze-—(’n—l):ri/4t(n+l)/2(/)2(ISI)
XSRnSme—izsw.a.e, Oh(y, o, t)dody ;
0

S(y, e, & t)=So(y, a, &)+S:«(y, o, 1),

So(y, 0, &)=y -£+d(a*)—alyl,

Si(y, 6, )= —1t"Y(ty, o),

k(y, o, )=xlynElyDly|=""P"%(o, y/lyl).
Then it is easily seen that the following inequalities hold:

105 0% So(y, 0, §)|<Car, 1859 S:(y, 0, )| <Cart™,

|62 0%y, o, £)|<Cux (Ja| =0, £>0)

for (y, o, £)el'; and ¢ large. Thus we have checked the assumptions (i) and (iv)-
(vi) of [Proposition 3.2 Let B={seR"; ¢:(|£])+0}. For £eB there exists a unique
critical point (26¢/(|&|%), |€]) of So(y, ¢, §). Let Ao(§) be the Hessian matrix of S(v,
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0, §) at (y, 9)=(2£4"(1€|*), 1&]) and sign A, its signature. A direct calculation yields
det Ao(§)=(—1)"(2¢'(|§]%)= -V,
sign Ay=—(n—1)

for {eB, hence det A,(&)+0 since ¢’(1)>0. Thus we have a unique critical point
(W&, B), al§, 1)) of S(y, o, & t) for ¢ large and £eB if we apply [Proposition 3.2,
(1). Noting that

tS(yC(S) t)’ 00(5, t)) E! t)=W¢(€’ t)’
(264 (1€1%), 181, H)=|26¢"(I€IDI-»->244(|&], &/18])
when £eB and {—oo, we obtain by [Proposition 3.2, (2)

g2(§, 1) —e I EO(Fu)§)=0(1)

uniformly for &eB as t—oo. This shows that
(4.11) lgo( -, £)—e W OF 4|0 as t—>oco

since F.u vanishes outside B. Hence the assertion follows from combining (4.9)-
(4.11) and [Theorem 4.6, and using the inverse Fourier transformation. Q.E.D.

Proor oF THEOREM 1.3. We have already constructed the time dependent

modifier X,(&, ¢). [Theorem 4].10 implies that for xeL* R"),
||e=it#Lvy — g-itd LO-iX$O FXF, 44|| -0 as t—»co.
This together with the unitarity of e~##v and F*F. in L* R™) shows that
||ett¢ L gt (L -tX4yy — F*Foy||—0 as ¢—>co.
This yields the existence of 2.(¢(L,), ¢(Lo)) and
24($(L), $(Lo))=F%F,,

which implies the unitarity and the intertwining property. In particular if we
take ¢(4)=2, we have

2.(L,, Ly)=F*F,.
Similarly we obtain
Q($(Ly), $(Lo))=F*F,
if we set
(Fu)§)=§|= "D XF _u)—¢l, —&/1&])
with &_ introduced in Q.E.D.
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ReEMARK. For an interval I'=(s?, ¢2) (0<a,<g,<c0), let

T (Du=@ny|" v oot oY Fru)o, B)do
91

(Fu)o, a‘c')=(2n)‘"’za("‘”/2g e~ 1Y 34(y)dy .
Rn
Then we have another type of the invariance principle from Theorems 4.6 and
similarly as in Mochizuki-Uchiyama [15] (see also Kako [7]):
2.(Li, L)&o)=s-lim 40 J (D=0 & y(I),
t—oo

where &o(2) is the spectral measure of L,.

§5. Proof of Lemma 4.5.

This section is devoted to the proof of Theorem 4.5, which will be carried
out along the ideas in Calderén-Vaillancourt and Mochizuki-Uchiyama [15]

LeMMA 5.1 (Calderén-Vaillancourt [1]). Let I be a bounded interval of R and
let B(r) with rel be a weakly measurable and uniformly bounded family of operators
in a separable Hilbert space 9. If

| B B*(r"\|<h¥(r, v'), | BX®)Br)II<hXr, 77)
for r, ' el with a non-negative function h(r, r') which is the kernel of a bounded

operator in L¥I) with norm bounded by M, then the operator [1 B(r)dr defined by

(SIB(r)dr f=SIB(r)fdr, fedr

is a bounded operator in I with norm bounded by M.

Let &(x) be a CP(R™-function such that 0<{<1, {(z)=1 if |z|<1 and {(x)=0
if |x|>2. We set

(5.1 bio, A, 7, & S, )=Llex)p(|z|/(s+1))a(o, x)a(2, x),
6o, A, 7, &, S, H=A%s+¢(1*)t— Kz, ) —[o*s +¢(o*)t — K(z, a)l,
where r=|z|, ¥=x/|x| and ¢>0.
LEMMA 5.2. Let BJ(s, t) be the operator defined by
(Bus, Do, D= gocrFuobia, 4 7, 5, s, g, Bdadr

for ¢eLX(IXS* ). Then we can find a constant T >T’ having the following
property: For any s>0 and t>T'' there exists a constant e, such that if s>0, t>
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T" and 0<e<eo, then BJ(s, t) is bounded in LYY xS" ") and satisfies
[B(s, HII<C(s+2)-20+a,
where the constant C>0 is independent of s, t and .
Proor. For s>0 and ¢> 7", put eo=3/d(s+1t), where d is the constant given
by Let I, ., . be the interval defined by I, v =[3d(s+t)/4, 2/¢] for s>0, t>

7" and €€(0, ). Note that the support of b, in 7 is contained in L¢.. We define
the family of operators in L*J3 xS™!) with parameters s, ¢ and ¢ by

[BJr, s, )go, & )=S£e"9("""";'“’b5(0', A7, & s, A, F)da.
Then each B.(r, s, t) is bounded and selfadjoint in L?(YxS™!'). Since

1B, s oll<_sup {{ {160, 2,7, 2,5 dodz} ",

resn—1

it follows from and that
1B, s, HI|<C

for t>7", «€(0, &) and v€ls. . Furthermore Lebesgue’s theorem implies that
Bd(r, s, t) is strongly continuous in rel, . . and thus

B.(s, t)=§l Bz, s, Hdr.

8,

Now we claim that there exist a constant 7'/>7" and a kernel A(r, 7', s, t) such
that if s>0, £> 7", ¢€(0, ) and 7, r’'els,;. ., then

(5.2) IB(7, s, OB, s, )|<hir, 7', s, t),

(5.3) Sz,,,lgz_ lr, 7 s, DF “ar

SC(s+t)"‘“+">51 Lf() |2
t;l

8,

for f(r)eL*(l,,,, ), where the constant C>0 is independent of s, ¢ and «. To this
end, consider the kernel function G.(o, , 7, 7', %, s, t) of B.(r, s, O)B(r, s, t):

Glo, 2, 1,7, %, s, t):Le“""-"- ArTE DG (0, 4, 7, F, S, 8) dp;

U(p, 0,2, 7,7, % s,8)=6(c, , 7, &, s, )+6(y, A, 7, %, s, 1)
=—(K(rz, p)— K%, p))+(22—a?)s
+H((2®)—p(* Nt + K(rZ, 06)— K7’ %, 2),
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9y 0, 4, 7, 7', B, 8, )=b0, pt, 7, &, S, Db, A, ¥, &, s, 1).
Then it follows from an immediate calculation that
0¥ (0, 2, 7, v, &, 8, )=—(r—vY1+Zp, v, 7', &));
2, 7, 7, z):S; 3,0, Y X{cr+(1—)0')&, u)de,

with Y(z, o) defined by (2.2). In virtue of [2.3), there exists a constant 77/>7"
such that if ¢£>7", », '€l ;. and @€, then

|Z(p, v, 7', %)|<1/2,
|0k Z(p, 7, v/, )| <Ci for any integer k>1.

Hence the following inequalities hold if ¢>7"’, 7, 7’€l, ... and o, o, A€
/= 1 ’
10, (p, 0, A, v, V', &, s, 1)) zglr—r l,

05U (y, 0, 2, 7, 7/, &, s, 1)| <Cylr—7'| for any integer £>2.
From and we have for any integer £>0

|05 gy, 0, 2, 7, ¥/, &, s, £)| <Cr(s+¢)~4+®

if t>T", ¢€(0, ), 7, ¥'€l, ;.. and ©, o, €Y. We can now apply lProposition 3.1
to get for any large integer N

|Gdo, 4, 7,7, &, 5, )| <Cn(s+t)* DA+ |r—7'|)-¥

if §>0, t>T", <€(0, &), 7, r'el;,,. and p, g, 2, which implies that for s>0,
t>T", ¢€(0, ¢) and 7, v’ els;..,

1B(7, s, OBr', s, I <Cu(s+)~ (1 + |r—7')77,

where the constant Cy>0 is independent of s, # and . Hence the function A(,
7, s, )=VCxn(s+1) 2D+ |r—¢'|)-¥/2 fulfills and for Nlarge. Apply-
ing [Lemma 5.1 to BJs, ¢), we conclude the proof of the lemma.

Proor orF LEMMA 4.5. By there exists a constant 7>7" such that if
t>T, |x|>3d(s+1)/4 and ¢€X, then

|0, Y (x, o)|g—;—|.z'|, hence |0,K(x, 0)|2%]x].

We apply [Proposition 3.1 to [A(s, #)¢)(x) to obtain for large N
ILAGs, 8)PNx)| <Cs, (14 |2)~V if ¢>T,
that is, A(s, t)¢peL*(R™) for each s>0 and £>7. Therefore we can use Lebesgue’s
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theorem and Fubini's theorem to get for s>0 and ¢t>T
4G, gil=lim| KA, Oylo)l de

=l‘i{1;1 (B(s, ), ¢)razxsn-1y -

This and Lemma 5.2 complete the proof of Lemma 4.5

§ 6. Proof of Theorem 1.7.

LEMMmA 6.1. Suppose that Assumption 1.6 is fulfilled. Then
(6.1) [[(Ly—Lo)e= "'+ ®@u|| >0 as t—oo
for ue D={ue S(R™), the Schwartz space; teCT(R™\{0})}, where

@ iW 4 (1) — pFitHo—iX 1 (1)

Proor. It is sufficient to prove only (6.1). since (6.1)- is similarly verified.
For ue 9 we set

Sf(x, H=(L,— Ly)e W+ ©u(x).

Let {y;};-1.. be a partition of unity on R. such that x,(s)=0 for s>1/2 and y.(s)=
0 for s<1/4. Put

fiz, =y 4lx|/)f(x, t) (7=1, 2).
We shall first estimate f,(x, ¢). Putting x=¢y we have

filty, )= SR,, e € V0a(§, y, 1) dE;

w(éa Y, t)=q/0($» Y, t)—X“(Ey t),

a(&, v, H=(2r) " n@yDL 3 (@(ty) — )t

— (02 @ *)(ty)ext + V(Ey)la(é).
Let I'={(¢, v); @(&)+0, n.(4]y])+0}. It is easily seen that for (¢, y)e/” and £>0,

1
lVewo(f, Y, t)lZE‘t.
On the other hand, by there exists a large constant 7>0 such that

|7 X (&, ) si— t
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for ¢>7T and &esupp #. Hence the following inequality holds:

|PW(&, vy, t)lz%t for (¢, y)el” and t>T.

We also obtain for any a

05 (&, v, DI <Cat, |05a(§, v, )| <C,

if (¢, y)el’ and t>T. We can now apply [Proposition 3.1] to get for any integer
N>0 and t>T

|1y, DI<Cyt=»
uniformly for |y|<1/2, which implies that
(6.1) (-, DI<Cwt=¥
for t>T. As for fi(z, t), we have with some positive constant C
IIf( -, DI<C sup{|a?*(x)—d7*|, |0z,07%(2)l, | V()| ;
lz|=t, j, k=1, .-+, n},
which together with the assumption gives
ILF2( -, DII<CA+8).
Combining this and we have
[|(Ly— Lo)e=iW +®y|| < Ct—°
for t>7T. This completes the proof.

Proor oF THEOREM 1.7. The first half of the assertion in the theorem is an
immediate consequence of Assumption 1.6 and the following two well known in-
equalities (cf., e.g., Lax-Phillips [10], p. 95 and Mizohata [12], p. 451):

2

2 R ,
Sw|<R Il dxgmg RnImel dx, R>0,

{ laos2{ irsiaa

B |z|® 7T (n—2)"

for n>3 and feCy(R™). We shall show the last half only for W, since W. can
be treated in a similar manner. It suffices to show that

(6.2) Hm [|(J = DU O f 1.9, =0

for f=4f., fo) with f,, f.€9 since @ is dense in [@(H,)] and the operators are
uniformly bounded. The proof of to be carried out below is essentially the
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same as for Theorem XI. 76 of Reed-Simon [17]. Recall that J=T7'T,, and Jf is
calculated as

Jf="HHof1, f2)-
If w(f) is the first component of Us(¢)/s(#)f, then
1T =D U § @) f e, = | Hi(H Ho— Du(2))?
=I(Ho— H)u@)|*.

Since
Uty =5 (VO T )+ o= O —iHT o)

it suffices to show that forjue 9,
(63)1 H(Ho_Hl)e—iWi(t)unzHe:titHl(Ho__Hl)e—iwiu)u”_,o as t—oco.

We shall prove only (6.3),. Hereafter we denote e-*"+® by e~ ®, By [Theorem
1.4 we know that

et H e W Oyu—0. Hou as t—oo.
Hence to obtain (6.3),, we have only to show that
(6.4) e o= tW Wy = H gt Hig= WOy S I 0 u
since H\2.=0.H, by the intertwining property. For x€9 we have
|| H et ig=t% Oy — H 2 u|?
=||H e" e~ ©Oul[* +||H Q. ul|*+ R(?),
where we have put
R(t)=—(H e e~ WOy H,\Q u)—(H,2.u, HetHie W y)
= —(ette~ Wy, H:Q w)—(H; 2 u, eie=Why),

Since R(t) converges to —2|/H,2.u||?, in order to conclude [6.4), it remains to show
that

lim ||H, e#H1g=tW ©y| 2 < || H Q2 u] |2
t—oo
In fact, the left-hand side of the above inequality is calculated as

im || H ettH1g=tW Dy |2 = li_m(e‘iW(‘)u, Lie—tW®y)
t—oo t—o0

=lim (e-t" ©u, Loe~tW D)

t—o
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= ||Hou||*= 112+ Hou|* = || H.2.ul|*.

In the second equality we have used Lemma 6.1, Thus we have completed the
proof of the theorem.
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