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Introduction.

A space $X$ is said to be isocompact [1] if every countably compact closed subset
of $X$ is compact. In this paper we introduce a new class of spaces called CL-
isocompact spaces. We call a space $X$ CL-isocompact if the closure of each countably

compact subset of $X$ is compact. CL-isocompact spaces are isocompact. The
class of CL-isocompact spaces behaves well with respect to topological operations.
For example the class is productive and closed hereditary. After showing various
properties of CL-isocompact spaces, we investigate the relationship between CL-
isocompact spaces, weakly $\theta$ -refinable spaces [6] and weakly Borel complete
spaces [3]. We show that every weakly $\theta$ -refinable space of non-measurable
cardinal is weakly Borel complete and every weakly Borel complete space is
CL-isocompact.

All spaces are assumed to be completely regular. But this is not always

needed.

\S 1. Fundamental properties.

DEFINITION 1.1. A space $X$ is said to be CL-isocompact if the closure of
each countably compact subset of $X$ is compact.

Obviously CL-isocompact spaces are isocompact.

PROPOSITION 1.2. The following facts hold.
(a) Let $f$ be a perfect map from $X$ onto Y. Then, $X$ is CL-isocompact iff

$Y$ is CL-isocompact.
(b) Let $X$ be CL-isocompact, and $Y$ be an F.-subset of X. $T/len,$ $Y$ is CL-

$isoco\prime npact$ .
(c) If $X=\prod_{\alpha}X_{\alpha}$ , with $X_{\alpha}$ CL-isocompact for $\alpha\in A$ , then $X$ is CL-isocompact.

(d) If $X=\bigoplus_{\alpha}X_{\alpha}$ , with $X_{\alpha}$ CL-isocompact for $\alpha\in A$ , then $X$ is CL-isocompact.
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(e) If each $X_{\alpha}$ is a CL-isocompact subset of $X$, then $\bigcap_{\alpha}X_{\alpha}$ is CL-isocompact.

(f) The following (1), (2) and (3) are equivalent.
(1) $X$ is hereditarily CL-isocompact.
(2) $X$ is hereditarily isocompact.
(3) For each $x\in X,$ $X-\{x\}$ is CL-isocompact.

PROOF. (a) Compactness and countably compactness are preserved by perfect

maps. From this fact, it is easy to show (a). (b) We set $Y=\bigcup_{i=1}^{\infty}Y_{i}$ , each $Y_{i}$ is

closed in $X$. Let $E$ be any countably compact subset of $Y$. Since each $Y_{i}$ is
CL-isocompact, $C1(E^{\cap}|\}Y_{i})$ is compact. $\bigcup_{i}C1(E\cap Y_{i})$ contains $E$ as a dense sub-

set. Since $\bigcup_{i}C1(E\cap 1_{i}^{\nearrow})$ is pseudocompact $\sigma$ -compact, it is compact. We get

$C1_{Y}E=\bigcup_{i}C1(E\bigcap_{\backslash }]_{i}^{\Gamma})$ . (c) Let $E$ be any countably compact subset of $X$. Since

each $Pr_{\alpha}E$ is countably compact, $C1(Pr_{\alpha}E)$ is compact. Here $Pr_{\alpha}$ is the $pro|ec-$

tion of $X$ onto $X_{\alpha}$ . The closure of $E$ in $X$ is contained in the compact space
$\prod_{\alpha}C1(Pr_{\alpha}E)$ . Cl $E$ must be compact. (d) is trivial. (e) $\bigcap_{\alpha}X_{\alpha}$ can be naturally

embedded as a closed subspace into $\prod_{\alpha}X_{\alpha}$ . By (b) and (c), $\bigcap_{\alpha}X_{\alpha}$ is CL-isocom-

pact. (f) The equivalence of (1) and (2) is obvious. We assume (3). Let $Y$ be any
subspace of $X$. Since $Y=\cap\{X-\{x\}|x\in X-Y\},$ $Y$ is CL-isocompact by (e). $\blacksquare$

Bacon proved in [1] that the product of an isocompact space and a heredi-
tarily isocompact space is isocompact. The following result generalizes it.

PROPOSITION 1.3. Let $X$ be CL-isocompact, and $Y$ be isocompact. Then $X\times Y$

is isocompact.

PROOF. Let $E$ be any countably compact closed subset of $x\times Y$. Since
$Pr_{X}E$ is countably compact, $C1(Pr_{X}E)$ is compact. Therefore $Pr_{Y}E$ is closed
countably compact in $Y$. So, $Pr_{Y}E$ must be compact. $E$ is contained in the
compact space $C1(Pr_{Y}E)\times Pr_{Y}E$ . The proof is complete. $\blacksquare$

PROPOSITION 1.4. The following (a) and (b) hold.
(a) For each space $X$, there exists a CL-isocompact space $pX$ with the follow-

ing properties.
(1) $X\subset pX\subset\beta X$. Here $\beta X$ is the $Stone-\check{C}ech$ compactification of $X$.
(2) If $f$ is a map from $X$ onto a CL-isocompact space $Y$, then $f$ has a con-

tinuous extention $f^{p}$ that maps $pX$ onto $Y$.
(b) If $X$ has a dense countably compact subspace, then $pX=\beta X$. Conversely,
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if $pX=\beta X$, then $X$ is pseudocompact.

PROOF. (a) is obtained from Proposition 1.2. (b), (c) and Theorem 2.1. in
[7]. (b) is trivial. Note that $pX\subset vX,$ $vX$ is the Hewitt’s realcompactification. $\blacksquare$

\S 2. Weak Borel completeness.

A space $X$ is said to be weakly Borel complete [3] if each Borel ultrafilter $\mathscr{D}$

on $X$ with $c$ . $i$ . $p$ . (countable intersection property) has the property that $\cap\{Z|Z$

$\in \mathscr{D}\cap \mathcal{Z}(X)\}=\cap$ { $F|F\in \mathscr{D},$ $F$ is closed in $X.$ } is non-void. Here $\mathcal{Z}(X)$ is the set
of zero sets of $X$.

THEOREM 2.1. Weakly Borel complete spaces are CL-isocompact.

PROOF. Weak Borel completeness is closed hereditary [3]. So, we show
that a weakly Borel complete space which has a dense countably compact subset
is compact. Let $X$ be weakly Borel complete, and $Y$ be a dense countably com-
pact subset of $X$.

Suppose that $X$ is not compact. Since $X$ is pseudocompact, $X$ is not real-
compact. We take a free zero ultrafilter $\mathcal{Z}$ on $X$ with $c$ . $i.p.$ . Each element of
% must intersect with $Y$. Put $\cup\#=\{\mathcal{H}|\mathcal{H}$ is a closed family such that (1) $\mathcal{Z}\subset \mathcal{H}$ .
(2) If $H\in \mathcal{H}$ , then $ H\cap Y\neq\emptyset$ . (3) $\mathcal{H}$ is closed under the finite intersections.}. Let
$\mathcal{H}$ be a maximal element of .,7. It is easily showed that $\mathcal{H}$ is closed under the
countable intersections, and $X\in \mathcal{H}$ by the maximality.

Put $\mathcal{D}=$ { $B\in Bo(X)|B\supset H\cap Y$ for some $H\in \mathcal{H}$ }. Here $Bo(X)$ is the set of
Borel sets of $X$. We take a Borel ultrafilter .9 on $X$ containing $\mathcal{D}$ . Put $\mathcal{E}=$

{ $B\in Bo(X)|1fBJ3H\cap Y$ for any $H\in \mathcal{H}$ , then $ B\cap H\cap Y=\emptyset$ for some $H\in \mathcal{H}.$ }.
Now, $\mathcal{E}$ satisfies the following conditions.
(a) If $F$ is closed in $X$, then $F\in \mathcal{E}$ .
(b) If $B\in \mathcal{E}$, then $X-B\in \mathcal{E}$ .
(c) If $\mathcal{E}\supset\{B_{i}\}_{i=1}^{\infty}$ , then $\bigcap_{i}B_{i}\in \mathcal{E}$ .

Firstly we show (a). Let $F$ be a closed subset of $X$, and suppose that
$F])H\cap Y$ for any $H\in \mathcal{H}$ . Obviously $F\not\in \mathcal{H}$ . Put $\mathcal{L}=\mathcal{H}\cup\{F\cap H|H\in \mathcal{H}\}$ . $\mathcal{L}$

satisfies (1), (3) of $\llcorner\ell$ , and $\mathcal{H}\neq \mathcal{L}$ , because $F\in \mathcal{L}$ . By the maximality of $\mathcal{H}$ ,
there exists $H\in \mathcal{H}$ such that $ F\cap H\cap Y=\emptyset$ . This shows that $F\in \mathcal{E}$ . The proof
of (b) and (c) is a routine matter. We omit the proof.

Since $Bo(X)$ is the smallest $\sigma- field$ containing the set of closed subsets of $X$,

we get $\mathcal{E}=Bo(X)$ .
Suppose that $B\in \mathscr{D}$ , and $ B\cap H\cap Y=\emptyset$ for some $H\in \mathcal{H}$ . Then $X-B\in \mathcal{D}\subset \mathscr{D}$ .
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It is a contradiction that $B$ is a filter. Therefore, for each $B\in B,$ $ B\cap H\cap Y\neq\emptyset$

for any $H\in \mathcal{H}$ . It follows from $\mathcal{E}=Bo(X)$ that for each $B\in \mathscr{D}$ there exists some
$H(B)\in \mathcal{H}$ such that $B\supset H(B)\cap Y$. This fact gives that $\mathscr{Q}$ has $c.i.p.$ . Since Sc $\mathscr{Q}$

we obtain $that\cap\{Z|Z\in B\cap Z(X)\}=\emptyset$ . This is a contradiction that $X$ is weakly

Borel complete. $\blacksquare$

COROLLARY 2.2. If $X$ has a countably compact dense subset, then $wX=\beta X$.
Here $wX$ is the weak Borel completion of $X$.

PROOF. Apply Proposition 1.4. (b) and Theorem 2.1. $\blacksquare$

COROLLARY 2.3. If $X$ is a perfect image of a weakly Borel complete space,
ihen $X$ is CL-isocompact.

PROOF. Apply Proposition 1.2. (a) and Theorem 2.1. $\blacksquare$

It is not known whether perfect images of weakly Borel complete spaces are
weakly Borel complete.

THEOREM 2.4. If $X$ is a weakly $\theta$ -refinable space of non-measurable cardinal,

then $X$ is weakly Borel complete.

PROOF. Hardy proved in [2] that a weakly $\theta$ -refinable space of non-meas-
urable cardinal is a-realcompact. The procedure of the proof is valid for this
theorem.

Let $B$ be a Borel ultrafilter on $X$ with $c$ . $i$ . $p.$ . Let $\mathcal{H}=\{H|H\in \mathscr{Q},$ $H$ is
closed in $X.$ }. Suppose that $\cap \mathcal{H}=\emptyset$ . Since $cU=\{X-H|H\in \mathcal{H}\}$ is an open

cover of $X$, there exists a weak $\theta$ -refinement $\mathcal{V}=\bigcup_{n\Leftarrow 1}^{\infty}\mathcal{V}_{n}$ of $cU$ . For $n,$ $j$ , let

$H_{nj}=\{x\in X|1\leqq ord(x, \mathcal{V}_{n})\leqq j\}$ . Then obviously $X=\bigcup_{n.j}H_{nj}$ . By $c$ . $i.p$ . of $\mathscr{D}$ ,

there exist natural numbers $n,$ $j$ such that $ H_{nj}\cap B\neq\emptyset$ for any $ B\in$ Ve. We fix
these $n,$ $j$ .

By virtue of Zorn’s lemma, we can find a discrete subspace $D\subset H_{nj}$ such
that

(a) $\{St(x, \mathcal{V}_{n})|x\in D\}$ covers $H_{nj}$,

(b) If $V\in \mathcal{V}_{n}$ , then $|V\cap D|\leqq 1$ .
Since $|X|<m_{1},$ $D$ is realcompact. Here $m_{1}$ is the first measurable cardinal.

For each $F\in \mathcal{H}$ , let $F^{*}=\{x\in D|St(x, \mathcal{V}_{n})\cap F\cap H_{nj}\neq\emptyset\}$ . Then $\ovalbox{\tt\small REJECT}=$

$\{F^{*}|F\in \mathcal{H}\}$ is a free filter base on $D$ . Take a ultrafilter $\chi$ on $D$ such that
$\ovalbox{\tt\small REJECT}\subset j\zeta$ . Since $D$ is realcompact, there exists a countable subcollection $\{K_{i}\}_{i=1}^{\infty}$
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$\subset j\zeta$ such that $\bigcap_{i}K_{i}=\emptyset$ . Let $U_{i}=\cup\{St(x, \mathcal{V}_{n})|x\in K_{i}\}$ . If $x\in\bigcap_{i}U_{i}$ , then for

each $i$ there exist $x_{i}\in K_{i}$ and $V_{i}\in \mathcal{V}_{n}$ with $x,$ $x_{i}\in V_{i}$ . Since this shows that
$ord(x, \mathcal{V}_{n})=\omega$, we have $x\not\in H_{nj}$ . Consequently $ H_{nj}\cap(\bigcap_{i}U_{i})=\emptyset$ .

If $X-U_{i}\in \mathcal{H}$ for some $i$ , we can consider $(X-U_{i})^{*}$ . But it is easily showed
that $ K_{i}\cap(X-U_{i})=\emptyset$ . Since $K_{i},$ $(X-U_{i})^{*}\in j\zeta$ this is a contradiction. It must

be $X-U_{i}\not\in \mathcal{H}$ for every $i$ . Therefore $X-U_{i}\not\in \mathscr{Q}$ for every $i$ . Since it must be
$U_{i}\in \mathscr{D}$ for every $i$ , we have $\bigcap_{i}U_{i}\in \mathscr{Q}$ . It follows that $ H_{nj}\cap(\bigcap_{i}U_{i})\neq\emptyset$ . This

is a contradiction. $\blacksquare$

By the similar procedure of the proof of Theorem 2.4, we can show that

each $\theta$ -refinable space [6] is weakly Borel complete if the cardinality of each

closed discrete subspace is non-measurable.

REMARK 2.5. Hardy conjectured in [2, Remark 2.8.] that there exists an
a-realcompact space of non-measurable cardinal which is not weakly $\theta$ -refinable.
Rudin’s Dowker space in [4] is, in fact, such a space. Because Simon proved

in [5] that the Rudin’s Dowker space is a-realcompact, and not weakly Borel
complete. This fact answers the third question posed in [9].

COROLLARY 2.6. A quasi-developable space of non-measurable cardinal is Borel
complete.

PROOF. It is known that a quasi-developable space is hereditarily weakly
$\theta$ -refinable, and that Borel completeness is equivalent to be hereditarily weakly

Borel complete [3]. $\blacksquare$

Addendum

Theorem 2.4 is extendable to the class of $\theta$ -penetrable spaces. Namely each
$\theta$ -penetrable space of non-measurable cardinal is weakly Borel complete. For
$\theta$ -penetrable spaces, refer to [8]. For the proof, we use the fact that, for a
free closed filter $\mathcal{F}$ on $X$ with $c$ . $i.p$ . which is extendable to a Borel ultrafilter on
$X$ with $c$ . $i.p.$ , $\{X-F|F\in \mathcal{F}\}$ has a weak $\theta$ -refinement if it has a $\theta$ -penetration.
This fact is proved by the quite similar way of [8, Lemma 2.2].
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