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Introduction.

A space X is said to be isocompact if every countably compact closed subset
of X is compact. In this paper we introduce a new class of spaces called CL-
isocompact spaces. We call a space X CL-isocompact if the closure of each countably
compact subset of X is compact. CL-isocompact spaces are isocompact. The
class of CL-isocompact spaces behaves well with respect to topological operations.
For example the class is productive and closed hereditary. After showing various
properties of CL-isocompact spaces, we investigate the relationship between CL-
isocompact spaces, weakly @-refinable spaces [6] and weakly Borel complete
spaces [3]. We show that every weakly @-refinable space of non-measurable
cardinal is weakly Borel complete and every weakly Borel complete space is
CL-isocompact.

All spaces are assumed to be completely regular. But this is not always
needed.

§1. Fundamental properties.

DEFINITION 1.1. A space X is said to be CL-isocompact if the closure of
each countably compact subset of X is compact.

Obviously CL-isocompact spaces are isocompact.

PROPOSITION 1.2. The following facts hold.

(@) Let f be a perfect map from X onto Y. Then, X is CL-isocompact iff
Y is CL-isocompact.

(b) Let X be CL-isocompact, and Y be an F,-subset of X. Then, Y is CL-
1socompact.

(¢) If X=II X,, with X, CL-isocompact for ac A, then X is CL-isocompact.
(d) If X=D X,, with X, CL-isocompact for a< A, then X is CL-isocompact.
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(e) If each X, is a CL-isocompact subset of X, then [\ X, is CL-isocompact.
(f) The following (1), (2) and (3) are equivalent.
(1) X s hereditarily CL-isocompact.

(2) X is hereditarily isocompact.
(3) For each x=X, X—{x} is CL-isocompact.

Proor. (a) Compactness and countably compactness are preserved by perfect
maps. From this fact, it is easy to show (a). (b) We set Y= O Y, each Y, is
i=1

closed in X. Let E be any countably compact subset of Y. Since each Y, is
CL-isocompact, CI(ENY,) is compact. \JCI(ENY,) contains E as a dense sub-

set. Since \JCI(EMY;) is pseudocompact o-compact, it is compact. We get
ClyE=\JCIENY,). (c) Let E be any countably compact subset of X. Since
1

each Pr.E is countably compact, Cl(Pr.E) is compact. Here Pr, is the projec-
tion of X onto X,. The closure of £ in X is contained in the compact space
TIICI(Pr.E). ClFE must be compact. (d) is trivial. (e) [\ X. can be naturally

embedded as a closed subspace into IT X,. By (b) and (¢), N\ X. is CL-isocom-

pact. (f) The equivalence of (1) and (2) is obvious. We assume (3). Let Y be any
subspace of X. Since Y=N{X—{x}|[xeX—Y}, Y is CL-isocompact by (e¢). =

Bacon proved in [1] that the product of an isocompact space and a heredi-
tarily isocompact space is isocompact. The following result generalizes it.

PROPOSITION 1.3. Let X be CL-tsocompact, and Y be isocompact. Then XXY

s isocompact.

ProOOF. Let E be any countably compact closed subset of XX Y. Since
PryE is countably compact, CI(PrxE) is compact. Therefore PryE is closed
countably compact in Y. So, PryE must be compact. FE is contained in the
compact space Cl(PryE)XPryE. The proof is complete. m

PROPOSITION 1.4. The following (a) and (b) hold.

(a) For each space X, there exists a CL-isocompact space pX with the follow-
ing properties.

(1) XcpXcpX. Here BX is the Stone-Cech compactification of X.

(2) If f is a map from X onto a CL-isocompact space Y, then f has a con-
tinuous extention f? that maps pX onto Y.

(b) If X has a dense countably compact subspace, then pX=LX. Conversely,
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if pX=BX, then X is pseudocompact.

PrROOF. (a) is obtained from Proposition 1.2. (b), (¢) and Theorem 2.1. in
[7]. (b) is trivial. Note that pXCvX, vX is the Hewitt’s realcompactification. ®m

§2. Weak Borel completeness.

A space X is said to be weakly Borel complete [3] if each Borel ultrafilter @
on X with c.i.p. (countable intersection property) has the property that N{Z|Z
e BNZ(X)} =N{F|Fe®, F is closed in X.} is non-void. Here Z(X) is the set
of zero sets of X.

THEOREM 2.1. Weakly Borel complete spaces are CL-isocompact.

PrOOF. Weak Borel completeness is closed hereditary [3]. So, we show
that a weakly Borel complete space which has a dense countably compact subset
is compact. Let X be weakly Borel complete, and Y be a dense countably com-
pact subset of X.

Suppose that X is not compact. Since X is pseudocompact, X is not real-
compact. We take a free zero ultrafilter £ on X with c.i.p.. Each element of
Z must intersect with Y. Put A={4|4 is a closed family such that (1) ZC Y.
(2) If He %, then HNY+#@. (3) 4 is closed under the finite intersections.}. Let
K be a maximal element of 4. It is easily showed that 4 is closed under the
countable intersections, and X< 4 by the maximality.

Put 9={BeBo(X)|BOHNY for some H=4}. Here Bo(X) is the set of
Borel sets of X. We take a Borel ultrafilter 8 on X containing 9. Put &€=
{BeBo(X)|If BPHNY for any He 4, then BNHNY=¢g for some H= 4 .}.

Now, & satisfies the following conditions.

(a) If F is closed in X, then Feé&.

(b) If Be¢g, then X—Beeé.

(¢) If €D{B;}%,, then QBieé’.

Firstly we show (a). Let F be a closed subset of X, and suppose that
FDHNY for any He4. Obviously F&E¥%. Put L=HJ{FNH|Hs%}. L
satisfies (1), (3) of A, and 4+ .L, because Fe.. By the maximality of 4,
there exists He 4% such that FANHNY=¢@. This shows that F=&. The proof
of (b) and (c) is a routine matter. We omit the proof.

Since Bo(X) is the smallest ¢-field containing the set of closed subsets of X,
we get &€=Bo(X).

Suppose that Be 8, and BNHNY=¢@ for some H= 4. Then X—BeJC 8.

’
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It is a contradiction that @ is a filter. Therefore, for each B 8, BANHNY+# @
for any He 4. It follows from £=DBo(X) that for each B< @ there exists some
H(B)e 4 such that BOH(B)NY. This fact gives that @ has c.i.p.. Since ZC 3,
we obtain that N\ {Z|Z€ 8N\ 2Z(X)} =¢@. This is a contradiction that X is weakly
Borel complete. W

COROLLARY 2.2. If X has a countably compact dense subset, then wX=pj3X.
Here wX is the weak Borel completion of X.

ProOOF. Apply Proposition 1.4. (b) and Theorem 2.1. ®m

COROLLARY 2.3. If X is a perfect image of a weakly Borel complete space,
then X is CL-isocompact.

PrROOF. Apply Proposition 1.2. (a) and Theorem 2.1. =

It is not known whether perfect images of weakly Borel complete spaces are
weakly Borel complete.

THEOREM 2.4. If X is a weakly @-refinable space of non-measurable cardinal,
then X is weakly Borel complete.

PrROOF. Hardy proved in [2] that a weakly @-refinable space of non-meas-
urable cardinal is a-realcompact. The procedure of the proof is valid for this
theorem.

Let 8 be a Borel ultrafilter on X with c.i.p.. Let £¥={H|He 38, H is
closed in X.}. Suppose that "#=@. Since U={X—H|HeJ4} is an open

cover of X, there exists a weak @-refinement <= OCVn of U. For n, j, let
n=1
H,,={xeX|1=Zord(x, &V,)<j}. Then obviously X=\J H,;, By c.i.p. of 3,
n,J

there exist natural numbers n, j such that H,;,N\B# @ for any B€ 8. We fix
these n, j.

By virtue of Zorn’s lemma, we can find a discrete subspace DCH,; such
that

(a) {St(x, <V,)|x=D} covers H,;

(b) If Vecv,, then |VND|Z1.
Since | X]|<m,;, D is realcompact. Here m, is the first measurable cardinal.

For each FeuJ, let F*={xeD|St(x, V) NFNH,;#+ @}. Then M=
{F*|Fe 4} is a free filter base on D. Take a ultrafilter X on D such that
M K. Since D is realcompact, there exists a countable subcollection {K,}7-,
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C X such that (\ K;=@. Let U;=U{St(x, V,)|xcK;}. If xe[i\ U,;, then for

each 7 there exist x;=K; and V,;ec/, with x, x;=V,;. Since this shows that
ord(x, &V,)=w, we have x& H,;. Consequently H,;,N(\U:)=@.
(3

If X—U,=4 for some 7, we can consider (X—U,)*. But it is easily showed
that K;N\(X—U,)=@. Since K,;, (X—U;*< X, this is a contradiction. It must
be X—U,;s¢ % for every i. Therefore X—U;¢ @ for every 7. Since it must be
U, 3 for every 7, we have (\U,= 3. It follows that H,,N\(\Uy)# @. This
is a contradiction. = l '

By the similar procedure of the proof of Theorem 2.4, we can show that
each @-refinable space is weakly Borel complete if the cardinality of each
closed discrete subspace is non-measurable.

REMARK 2.5. Hardy conjectured in [2, Remark 2.8.] that there exists an
a-realcompact space of non-measurable cardinal which is not weakly @-refinable.
Rudin’s Dowker space in [4] is, in fact, such a space. Because Simon proved
in [5] that the Rudin’s Dowker space is a-realcompact, and not weakly Borel
complete. This fact answers the third question posed in [9].

COROLLARY 2.6. A quasi-developable space of non-measurable cardinal is Borel
complete.

Proor. It is known that a quasi-developable space is hereditarily weakly
d-refinable, and that Borel completeness is equivalent to be hereditarily weakly

Borel complete {3]. &

Addendum

Theorem 2.4 is extendable to the class of #-penetrable spaces. Namely each
@-penetrable space of non-measurable cardinal is weakly Borel complete. For
f-penetrable spaces, refer to [8]. For the proof, we use the fact that, for a
free closed filter ¥ on X with c.i.p. which is extendable to a Borel ultrafilter on
X with c.i.p., {X—F|F< 9} has a weak @-refinement if it has a #-penetration.
This fact is proved by the quite similar way of [8, Lemma 2.2].
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