ON CL-ISOCOMPACTNESS AND WEAK BOREL COMPLETENESS

By

Masami SAKAI

Introduction.

A space X is said to be isocompact [1] if every countably compact closed subset of X is compact. In this paper we introduce a new class of spaces called CLisocompact spaces. We call a space X CL-isocompact if the closure of each countably compact subset of X is compact. CL-isocompact spaces are isocompact. The class of CL-isocompact spaces behaves well with respect to topological operations. For example the class is productive and closed hereditary. After showing various properties of CL-isocompact spaces, we investigate the relationship between CLisocompact spaces, weakly θ -refinable spaces [6] and weakly Borel complete spaces [3]. We show that every weakly θ -refinable space of non-measurable cardinal is weakly Borel complete and every weakly Borel complete space is CL-isocompact.

All spaces are assumed to be completely regular. But this is not always needed.

§1. Fundamental properties.

DEFINITION 1.1. A space X is said to be CL-isocompact if the closure of each countably compact subset of X is compact.

Obviously *CL*-isocompact spaces are isocompact.

PROPOSITION 1.2. The following facts hold.

(a) Let f be a perfect map from X onto Y. Then, X is CL-isocompact iff Y is CL-isocompact.

(b) Let X be CL-isocompact, and Y be an F_{σ} -subset of X. Then, Y is CL-isocompact.

(c) If $X = \prod_{\alpha} X_{\alpha}$, with X_{α} CL-isocompact for $\alpha \in A$, then X is CL-isocompact. (d) If $X = \bigoplus_{\alpha} X_{\alpha}$, with X_{α} CL-isocompact for $\alpha \in A$, then X is CL-isocompact.

Received November 14, 1983. Revised February 1, 1984.

Masami SAKAI

- (e) If each X_{α} is a CL-isocompact subset of X, then $\bigcap X_{\alpha}$ is CL-isocompact.
- (f) The following (1), (2) and (3) are equivalent.
- (1) X is hereditarily CL-isocompact.
- (2) X is hereditarily isocompact.
- (3) For each $x \in X$, $X \{x\}$ is CL-isocompact.

PROOF. (a) Compactness and countably compactness are preserved by perfect maps. From this fact, it is easy to show (a). (b) We set $Y = \bigcup_{i=1}^{\infty} Y_i$, each Y_i is closed in X. Let E be any countably compact subset of Y. Since each Y_i is CL-isocompact, $Cl(E \cap Y_i)$ is compact. $\bigcup_i Cl(E \cap Y_i)$ contains E as a dense subset. Since $\bigcup_i Cl(E \cap Y_i)$ is pseudocompact σ -compact, it is compact. We get $Cl_Y E = \bigcup_i Cl(E \cap Y_i)$. (c) Let E be any countably compact subset of X. Since each $Pr_{\alpha}E$ is countably compact, $Cl(Pr_{\alpha}E)$ is compact. Here Pr_{α} is the projection of X onto X_{α} . The closure of E in X is contained in the compact space $\prod_{\alpha} Cl(Pr_{\alpha}E)$. Cl E must be compact. (d) is trivial. (e) $\bigcap_{\alpha} X_{\alpha}$ can be naturally embedded as a closed subspace into $\prod_{\alpha} X_{\alpha}$. By (b) and (c), $\bigcap_{\alpha} X_{\alpha}$ is CL-isocompact. (f) The equivalence of (1) and (2) is obvious. We assume (3). Let Y be any subspace of X. Since $Y = \bigcap_i \{X - \{x\} \mid x \in X - Y\}$, Y is CL-isocompact by (e).

Bacon proved in [1] that the product of an isocompact space and a hereditarily isocompact space is isocompact. The following result generalizes it.

PROPOSITION 1.3. Let X be CL-isocompact, and Y be isocompact. Then $X \times Y$ is isocompact.

PROOF. Let *E* be any countably compact closed subset of $X \times Y$. Since Pr_XE is countably compact, $Cl(Pr_XE)$ is compact. Therefore Pr_YE is closed countably compact in *Y*. So, Pr_YE must be compact. *E* is contained in the compact space $Cl(Pr_XE) \times Pr_YE$. The proof is complete.

PROPOSITION 1.4. The following (a) and (b) hold.

(a) For each space X, there exists a CL-isocompact space pX with the following properties.

(1) $X \subset pX \subset \beta X$. Here βX is the Stone-Čech compactification of X.

(2) If f is a map from X onto a CL-isocompact space Y, then f has a continuous extention f^p that maps pX onto Y.

(b) If X has a dense countably compact subspace, then $pX = \beta X$. Conversely,

if $pX = \beta X$, then X is pseudocompact.

PROOF. (a) is obtained from Proposition 1.2. (b), (c) and Theorem 2.1. in [7]. (b) is trivial. Note that $pX \subset vX$, vX is the Hewitt's realcompactification.

§2. Weak Borel completeness.

A space X is said to be weakly Borel complete [3] if each Borel ultrafilter \mathscr{B} on X with c. i. p. (countable intersection property) has the property that $\bigcap \{Z \mid Z \in \mathscr{B} \cap \mathscr{Z}(X)\} = \bigcap \{F \mid F \in \mathscr{B}, F \text{ is closed in } X.\}$ is non-void. Here $\mathscr{Z}(X)$ is the set of zero sets of X.

THEOREM 2.1. Weakly Borel complete spaces are CL-isocompact.

PROOF. Weak Borel completeness is closed hereditary [3]. So, we show that a weakly Borel complete space which has a dense countably compact subset is compact. Let X be weakly Borel complete, and Y be a dense countably compact subset of X.

Suppose that X is not compact. Since X is pseudocompact, X is not realcompact. We take a free zero ultrafilter \mathcal{Z} on X with c. i. p.. Each element of \mathcal{Z} must intersect with Y. Put $\mathcal{A} = \{\mathcal{H} \mid \mathcal{H} \text{ is a closed family such that (1) } \mathcal{Z} \subset \mathcal{H}$. (2) If $H \in \mathcal{H}$, then $H \cap Y \neq \emptyset$. (3) \mathcal{H} is closed under the finite intersections.}. Let \mathcal{H} be a maximal element of \mathcal{A} . It is easily showed that \mathcal{H} is closed under the countable intersections, and $X \in \mathcal{H}$ by the maximality.

Put $\mathcal{D} = \{B \in Bo(X) | B \supset H \cap Y \text{ for some } H \in \mathcal{H}\}$. Here Bo(X) is the set of Borel sets of X. We take a Borel ultrafilter \mathcal{B} on X containing \mathcal{D} . Put $\mathcal{E} = \{B \in Bo(X) | \text{If } B \supset H \cap Y \text{ for any } H \in \mathcal{H}, \text{ then } B \cap H \cap Y = \emptyset \text{ for some } H \in \mathcal{H}.\}$.

Now, \mathcal{E} satisfies the following conditions.

- (a) If F is closed in X, then $F \in \mathcal{E}$.
- (b) If $B \in \mathcal{E}$, then $X B \in \mathcal{E}$.
- (c) If $\mathcal{E} \supset \{B_i\}_{i=1}^{\infty}$, then $\bigcap_i B_i \in \mathcal{E}$.

Firstly we show (a). Let F be a closed subset of X, and suppose that $F \stackrel{{}_{\rightarrow}}{\to} H \cap Y$ for any $H \in \mathcal{H}$. Obviously $F \notin \mathcal{H}$. Put $\mathcal{L} = \mathcal{H} \cup \{F \cap H | H \in \mathcal{H}\}$. \mathcal{L} satisfies (1), (3) of \mathcal{A} , and $\mathcal{H} \neq \mathcal{L}$, because $F \in \mathcal{L}$. By the maximality of \mathcal{H} , there exists $H \in \mathcal{H}$ such that $F \cap H \cap Y = \emptyset$. This shows that $F \in \mathcal{E}$. The proof of (b) and (c) is a routine matter. We omit the proof.

Since Bo(X) is the smallest σ -field containing the set of closed subsets of X, we get $\mathcal{E}=Bo(X)$.

Suppose that $B \in \mathcal{B}$, and $B \cap H \cap Y = \emptyset$ for some $H \in \mathcal{H}$. Then $X - B \in \mathcal{D} \subset \mathcal{B}$.

Masami SAKAI

It is a contradiction that \mathcal{B} is a filter. Therefore, for each $B \in \mathcal{B}$, $B \cap H \cap Y \neq \emptyset$ for any $H \in \mathcal{H}$. It follows from $\mathcal{E} = Bo(X)$ that for each $B \in \mathcal{B}$ there exists some $H(B) \in \mathcal{H}$ such that $B \supset H(B) \cap Y$. This fact gives that \mathcal{B} has c. i. p... Since $\mathcal{Z} \subset \mathcal{B}$, we obtain that $\cap \{Z \mid Z \in \mathcal{B} \cap \mathcal{Z}(X)\} = \emptyset$. This is a contradiction that X is weakly Borel complete.

COROLLARY 2.2. If X has a countably compact dense subset, then $wX = \beta X$. Here wX is the weak Borel completion of X.

PROOF. Apply Proposition 1.4. (b) and Theorem 2.1. \blacksquare

COROLLARY 2.3. If X is a perfect image of a weakly Borel complete space, then X is CL-isocompact.

PROOF. Apply Proposition 1.2. (a) and Theorem 2.1. ■

It is not known whether perfect images of weakly Borel complete spaces are weakly Borel complete.

THEOREM 2.4. If X is a weakly θ -refinable space of non-measurable cardinal, then X is weakly Borel complete.

PROOF. Hardy proved in [2] that a weakly θ -refinable space of non-measurable cardinal is *a*-realcompact. The procedure of the proof is valid for this theorem.

Let \mathscr{B} be a Borel ultrafilter on X with c.i.p.. Let $\mathscr{H} = \{H | H \in \mathscr{B}, H \text{ is} closed in X.\}$. Suppose that $\cap \mathscr{H} = \emptyset$. Since $\mathscr{U} = \{X - H | H \in \mathscr{H}\}$ is an open cover of X, there exists a weak θ -refinement $\mathscr{V} = \bigcup_{n=1}^{\infty} \mathscr{V}_n$ of \mathscr{U} . For n, j, let $H_{nj} = \{x \in X | 1 \leq \operatorname{ord}(x, \mathscr{V}_n) \leq j\}$. Then obviously $X = \bigcup_{n,j} H_{nj}$. By c.i.p. of \mathscr{B} , there exist natural numbers n, j such that $H_{nj} \cap B \neq \emptyset$ for any $B \in \mathscr{B}$. We fix these n, j.

By virtue of Zorn's lemma, we can find a discrete subspace $D \subset H_{nj}$ such that

(a) $\{\operatorname{St}(x, \mathcal{O}_n) \mid x \in D\}$ covers H_{nj} ,

(b) If $V \in CV_n$, then $|V \cap D| \leq 1$.

Since $|X| < m_1$, D is realcompact. Here m_1 is the first measurable cardinal.

For each $F \in \mathcal{H}$, let $F^* = \{x \in D \mid \text{St}(x, \mathcal{O}_n) \cap F \cap H_{nj} \neq \emptyset\}$. Then $\mathcal{M} = \{F^* \mid F \in \mathcal{H}\}$ is a free filter base on D. Take a ultrafilter \mathcal{K} on D such that $\mathcal{M} \subset \mathcal{K}$. Since D is realcompact, there exists a countable subcollection $\{K_i\}_{i=1}^{\infty}$

 $\subset \mathcal{K}$ such that $\bigcap_i K_i = \emptyset$. Let $U_i = \bigcup \{ \operatorname{St}(x, \mathcal{V}_n) | x \in K_i \}$. If $x \in \bigcap_i U_i$, then for each *i* there exist $x_i \in K_i$ and $V_i \in \mathcal{V}_n$ with $x, x_i \in V_i$. Since this shows that $\operatorname{ord}(x, \mathcal{V}_n) = \omega$, we have $x \notin H_{nj}$. Consequently $H_{nj} \cap (\bigcap_i U_i) = \emptyset$.

If $X-U_i \in \mathcal{H}$ for some *i*, we can consider $(X-U_i)^*$. But it is easily showed that $K_i \cap (X-U_i) = \emptyset$. Since K_i , $(X-U_i)^* \in \mathcal{H}$, this is a contradiction. It must be $X-U_i \notin \mathcal{H}$ for every *i*. Therefore $X-U_i \notin \mathcal{B}$ for every *i*. Since it must be $U_i \in \mathcal{B}$ for every *i*, we have $\bigcap_i U_i \in \mathcal{B}$. It follows that $H_{nj} \cap (\bigcap_i U_i) \neq \emptyset$. This is a contradiction.

By the similar procedure of the proof of Theorem 2.4, we can show that each θ -refinable space [6] is weakly Borel complete if the cardinality of each closed discrete subspace is non-measurable.

REMARK 2.5. Hardy conjectured in [2, Remark 2.8.] that there exists an a-realcompact space of non-measurable cardinal which is not weakly θ -refinable. Rudin's Dowker space in [4] is, in fact, such a space. Because Simon proved in [5] that the Rudin's Dowker space is a-realcompact, and not weakly Borel complete. This fact answers the third question posed in [9].

COROLLARY 2.6. A quasi-developable space of non-measurable cardinal is Borel complete.

PROOF. It is known that a quasi-developable space is hereditarily weakly θ -refinable, and that Borel completeness is equivalent to be hereditarily weakly Borel complete [3].

Addendum

Theorem 2.4 is extendable to the class of θ -penetrable spaces. Namely each θ -penetrable space of non-measurable cardinal is weakly Borel complete. For θ -penetrable spaces, refer to [8]. For the proof, we use the fact that, for a free closed filter \mathcal{F} on X with c.i.p. which is extendable to a Borel ultrafilter on X with c.i.p., $\{X-F|F\in\mathcal{F}\}$ has a weak θ -refinement if it has a θ -penetration. This fact is proved by the quite similar way of [8, Lemma 2.2].

References

- [1] Bacon, P., The compactness of countably compact spaces. Pacific J. Math. 32 (1970), 587-593.
- [2] Hardy, K., Notes on two generalizations of almost realcompact spaces. Math. Centrum, 1975.

Masami SAKAI

- [3] Rice, M.D. and Leynolds, G., Weakly Borel-complete topological spaces. Fund. Math. (1980), 179-185.
- [4] Rudin, M.E., A normal space X for which $X \times I$ is not normal. Fund. Math. 73 (1971), 179-186.
- [5] Simon, P., A note on Rudin's example of Dowker space. Comm. Math. Univ. Car. 12 (1971), 825-834.
- [6] Wicke, H. H. and Worrell, J. M. Jr., Point-countability and compactness. Proc. Amer. Math. Soc. 55 (1976), 427-431.
- [7] Woods, R.G., A Tychonoff almost realcompactification. Proc. Amer. Math. Soc. 43 (1974), 200-208.
- [8] Blair, R.L., On a theorem of Chaber. Top. Proceed. 5 (1980), 33-46.
- [9] Smith, J. C., Applications of shrinkable covers. Proc. Amer. Math. Soc. 73 (1979), 379-387.

Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan