THE APPROXIMATE SECTION EXTENSION PROPERTY AND HEREDITARY SHAPE EQUIVALENCES(1)

By

Tatsuhiko YAGASAKI

Abstract. In this paper, the concept of the *approximate section extension* property (ASEP) is introduced. It is shown that hereditary shape equivalences are exactly the maps with the hereditary ASEP and every UV^{n-1} -map with n-dimentional range has the ASEP.

0. Introduction.

In this paper we will introduce the concept of the approximate section extension property (ASEP), which is a shape version of the section extension property, [Do]. The ASEP is defined in Section 1 to maps between metric spaces. However, using resolutions of maps, this can be extended to a general case (see Section 3). Main results of the paper are contained in Section 2. We prove the followings:

- 1) Hereditary shape equivalences (HSE's) are exactly the maps with the hereditary ASEP. In particular, any pull back of a HSE is also HSE.
- 2) Every UV^{n-1} -map with an *n*-dimensional range and every UV^{∞} -map between ANR's has the ASEP. If the range is a manifold, then an appropriate converse holds.

One can regard these results as a shape version of some results in the fiber homotopy theory, [Do].

Here, we list some notations to be used throughout the paper. In Sections 1 and 2, spaces are assumed to be metrizable. If A is a subset of a space X, \overline{A} is the closure of A and inc (A, X) denotes the inclusion map $A \subset X$. Cov X is the set of all *normal* coverings of X. For $CV \in Cov Y$, st CV is the star of CV. We say two maps f, $g: X \to Y$ are CV-near and write $(f, g) \leq CV$ when each $x \in X$ admits a $V \in CV$ such that $f(x), g(x) \in V$. An ANR is one for metric spaces. A *polyhedron* is the body |K| of a simplicial complex K with the CW-topology.

We refer to [DS] for the definitions of basic terms in Shape theory, and to [A1] for relation theoretic terms. One should refer to [Do] in Sections 1, 2 and to [Ma] in Section 3.

⁽¹⁾ This work is partially included in the author's master thesis. Received August 24, 1983.

1. Approximate section extension property.

Let $f: X \to Y$ be a map between metric spaces. We can find closed embeddings $i: X \to M$, $j: Y \to N$ into ANR's and a map $F: M \to N$ with Fi = jf ([H]). Consider a pair (U, V) of open neighborhoods (nbd's) U of i(X) in M and V of j(Y) in N with $F(U) \subset V$. We call such a pair an *admissible pair* for f w.r.t. F.

PROPOSITION 1.1: Under the above notations, the following conditions (1)–(3) are equivalent. Furthermore if the map f satisfies the condition (1) (eq., (2), (3)), for some i, j and F as above, then f satisfies the condition (1) for any such i, j and F.

- (1) For each admissible pair (U, V) $U \in \text{Cov } U$ and $CV \in \text{Cov } V$, there xeist an admissible pair $(U_1, V_1) \geq (U, V)$ (i. e., $U_1 \subset U$, $V_1 \subset V$) and $CV_1 \in \text{Cov } V_1$ such that for each closed set A of V_1 and each map $s: A \to U_1$ with $(Fs, \text{inc } (A, V_1)) \leq CV_1$, there exist an open nbd W of j(Y) in V_1 and a map $S: W \to U$ with $(Fs, \text{inc } (W, V)) \leq CV$ and $(S|_{A\cap W}, S|_{A\cap W}) \leq U$.
- (2) For each admissible pair (U, V), $U \in Cov U$ and $CV \in Cov V$, there exist $(U_1, V_1) \geq (U, V)$ and $CV_1 \in Cov V_1$ such that for each closed set A of Y and each map $s: A \rightarrow U_1$ with $(Fs, inc(A, V_1)) \leq CV_1$, there exists a map $S: Y \rightarrow U$ with $(Fs, inc(Y, V)) \leq CV$ and $(S|_A, s) \leq U$.
- (3) For each open $nbd\ U$ of i(X) in M and $CV \in Cov\ N$, there exist an open $nbd\ U_1$ of i(X) in U and $CV_1 \in Cov\ N$ such that for each closed set A of Y and each map $s: A \to U_1$ with $(Fs, inc\ (A, N)) \le CV_1$, there exists a map $S: Y \to U$ with $(Fs, inc\ (Y, N)) \le CV$ and $S|_A = s$.

PROOF: Note that U and U_1 are ANR's. Therefore $(2) \rightarrow (1)$ follows from the nbd extension property of ANR's and $(2) \rightarrow (3)$ follows from the homotopy extension theorem ([H]). $(1) \rightarrow (2)$ and $(3) \rightarrow (2)$ are obvious. For the latter statement, see Proposition 3.2, which implies the same conclusion under a more general setting.

DEFINITION 1.2: We say the map f has the approximate section extension property (ASEP) provided f satisfies the conditions in Proposition 1.1.

If f is a *proper* map (i. e., the inverses of compact sets are compact), then we can reduce the above conditions to a simpler one. For later use, we shall work in the setting of relation.

Suppose M and N are ANR's, Y is a closed subset of N, $R:Y \to M$ is an (upper semi-) continuous relation with compact point images (i.e., for each $y \in Y$, R(y) is compact) ([A1]) and $p: N \times M \to N$ is the projection. Note that $p(R) \subset Y$.

Proposition 1.3: Under the above notations, the projection $p: R \to Y$ has the ASEP iff

- (#): each nbd U of R in $Y \times M$ contains a nbd V of R such that
- (*): for each closed set A of Y and each map $s: A \to V$ with ps = inc(A, Y), there exists a map $S: Y \to U$ with $pS = 1_Y$ and $S|_A = s$.
- Let $f: X \to Y$ be a proper map and M an ANR containing X as a closed subset. Consider the continuous relation $f^{-1} = \bigcup \{y \times f^{-1}(y) : y \in Y\} : Y \to M$. Since the projection $p: f^{-1} \to Y$ corresponds to f by the identification $f^{-1} \to X : (f(x), x) \mapsto x$, we get the following.
- COROLLARY 1.4: Under the above notation, f has the ASEP iff (#) holds with R replaced by f^{-1} .
- REMARK 1.5: The map f is said to be *approximately invertible* ([A2]) if each nbd U of f^{-1} in $Y \times M$ admits a map $S: Y \to U$ such that $pS = 1_Y$.

PROOF OF 1.3: From Proposition 1.1, p has the ASEP iff

- (##): for each nbd U' of R in $N \times M$ and $U \in Cov N$, there exist a nbd V' of R in U' and $C \in Cov N$ such that
- (**): if A is a closed set of Y and $s': A \to V'$ is a map with $(ps', \text{ inc } (A, N)) \le CV$, then there exists $S': Y \to U'$ with $(pS', \text{ inc } (Y, N)) \le U$ and $S'|_A = s'$.
- $(\sharp) \to (\sharp\sharp)$: Given U' and U as in $(\sharp\sharp)$. By [A1], Lemma A-8, there exist an open nbd U_1' of R in U' and $U_1 = \{U_s\}_{s \in K} \in \text{Cov } N$ such that $U_s \times U_1'(U_s) \subset U'$ for each $\kappa \in K$ and $U_1 < U$. Apply (\sharp) to $U = U_1' \cap (Y \times M)$ and we have an open nbd V of R in U which satisfies (*). By [A1], Lemma A-8, there exist a nbd V' of R in U_1' and a $CV = \{V_i\}_{i \in A} \in \text{Cov } N$ such that $(V_i \times V'(V_i)) \cap (Y \times M) \subset V$ for each $\lambda \in \Lambda$ and CV-near maps to N are U_1 -homotopic. Then V' and CV satisfy (**). In fact, take s' as in (**). Since $(ps', \text{inc } (A, N)) \leq CV$, we can define $s: A \to V$ by $s(y) = (y, \pi s'(y))$ $(y \in A)$, where $\pi: N \times M \to M$ is the projection. By (*), the map s extends to a map $S: Y \to U$ with $pS = 1_Y$, and since ps' is U_1 -homotopic to inc (A, N), using the homotopy extension theorem, ps' extends to a map $g: Y \to N$ which is U_1 -homotopic to inc (Y, N). Then the desired map $S': Y \to U'$ is defined by $S'(y) = (g(y), \pi S(y))$ $(y \in Y)$.
 - $(##) \rightarrow (#)$: The proof is similar and omitted.
- We use 1.4 to obtain the *Uniformization Theorem* for the ASEP. Compair this with [Do], Theorem 2.7.
 - Theorem 1.6: Suppose $f: X \rightarrow Y$ is a proper map. If each $y \in Y$ admits a

(not necessarily open) nbd V in Y such that $f|_{f^{-1}(V)}: f^{-1}(V) \to V$ has the ASEP, then f itself has the ASEP.

PROOF: Consider the following property $\mathcal{Q}(A)$ for each subset A of Y.

- $\mathcal{L}(A)$: f_A has the ASEP, where $f_A = f|_{f^{-1}(A)}$: $f^{-1}(A) \to A$. In order to show $\mathcal{L}(Y)$ holds, by [Mi], Theorem 5.5, it suffices to show that $\mathcal{L}(Y)$ is an F-hereditary property, that is, satisfies the following conditions:
 - (F1) If f_A has the ASEP and B is a closed subset of A, then f_B has the ASEP.
- (F2) Suppose $A = A_1 \cup A_2 \subset Y$ and A_1 and A_2 are closed in Y. If $f_i = f_{A_i}$ has the ASEP (i=1,2), then f_A has the ASEP.
- (F3) Suppose $A = \bigcup \{A_{\lambda} : \lambda \in \Lambda\} \subset Y$ and $\{A_{\lambda}\}_{{\lambda} \in \Lambda}$ is discrete in Y. If each $f_{A_{\lambda}}$ has the ASEP, then f_{A} has the ASEP.
- (F1) and (F3) are easily verified, so we will prove (F2). We use the same notation as in Corollary 1.4. Note that $f_i^{-1}=f^{-1}\cap(A_i\times M)$ (i=1,2). To see the ASEP of f_A , let U be any open nbd of f_A^{-1} in $A\times M$. Since f_1 has the ASEP, the nbd $U\cap(A_1\times M)$ of f_1^{-1} contains an open nbd V_1 of f_1^{-1} in $A_1\times M$ which satisffes the condition (*) in Proposition 1.3 w.r.t. f_1^{-1} . In turn, by the ASEP of f_2 , the open nbd $U_2=\{V_1\cup(U-(A_1\times M))\}\cap(A_2\times M)$ of f_2^{-1} in $A_2\times M$ contains an open nbd V_2 of f_2^{-1} in $A_2\times M$ which satisfies (*) w.r.t. f_2^{-1} . Then the nbd $V=(V_1-(A_2\times M))\cup V_2$ of f^{-1} in U satisfies (*) w.r.t. f^{-1} and U.

2. The ASEP, HSE's and UV^n -maps.

We begin with a reference to [A1]. Let $f: X \rightarrow Y$ be a proper map between metric spaces, and M an ANR containing X as a closed subset.

THEOREM ([A1], Theorem 4.5): The map f is a HSE iff the relation $f^{-1}: Y \to M$ is slice trivial, that is, satisfies the following:

For each nbd U of f^{-1} in $Y \times M$ there exist a nbd V of f^{-1} and maps $\phi: V \times [0,1] \rightarrow U$ and $S: Y \rightarrow U$ such that $\phi_0 = \text{inc}(V, U)$, $\phi_1(y, x) = S(y)$, $p\phi(y, x, t) = y$, $pS = 1_Y$ $((y, x) \in V, t \in [0, 1])$, where $p: Y \times M \rightarrow Y$ is the projection.

We will use the above theorem to get another characterization of HSE's in term of the ASEP, which corresponds to [Do], Proposition 3.1.

Let $\alpha: B \to Y$ is a proper map. Define E and $f_{\alpha}: E \to B$, $\beta: E \to X$ by $E = \{(b, x) \in B \times X : \alpha(b) = f(x)\}$, $f_{\alpha}(b, x) = b$, $\beta(b, x) = x$, $((b, x) \in E)$. The map f_{α} is called the map induced from f by α . Since $E = \bigcup \{b \times f^{-1}\alpha(b) : b \in B\} = \bigcup \{\alpha^{-1}(y) \times f^{-1}(y) : y \in Y\}$, if we regard E as a relation from B to X, we have:

- 1) $E=f^{-1}\alpha$, therefore E is *continuous* and has *compact* point images.
- 2) $\alpha \times 1_M : B \times M \to Y \times M$ is a closed map and $E = (\alpha \times 1_M)^{-1} (f^{-1})$.

LEMMA 2.1: Under the above notation, the following conditions are equivalent.

- a) f_{α} has the ASEP.
- b) Each nbd U of f^{-1} in $Y \times M$ contains a nbd V of f^{-1} such that if A is a closed set of B and $\alpha_0: A \to V$ is a map with $p\alpha_0 = \alpha|_A$, then there exists a map $\alpha': B \to U$ with $p\alpha' = \alpha$ and $\alpha'|_A = \alpha_0$.

PROOF: By Proposition 1.3, a) is equivalent to 1.3 (#), with R and Y replaced by E and B. By the observation 2), $\alpha \times 1_M$ gives the correspondence between a nbd base of f^{-1} in $Y \times M$ and a nbd base of E in $B \times M$, so that the maps α_0 and α' as in b) correspond to the maps s and S as in (#) and (*). From this follows 2.1. Compair this with [Do], Proposition 3.1.

Let \tilde{f} be the map induced from f by fr, i. e., $\tilde{f} = f_{fr}$, where $r: X \times [0, 1] \to X$ is the projection.

Theorem 2.2: Let $f: X \rightarrow Y$ be a proper map. The following conditions are equivalent.

- a) For each proper map $\alpha: B \to Y$, f_{α} has the ASEP.
- b) f is approximately invertible (see Remark 1.5) and \tilde{f} has the ASEP.
- c) f is a HSE.
- d) Each nbd U of f^{-1} in $Y \times M$ contains a nbd V of f^{-1} such that for any proper map $\alpha: B \to Y$, Lemma 2.1, b) holdds.

Since $(f_{\alpha})_{\beta} = f_{\alpha\beta}$ for any maps $C \xrightarrow{\beta} B \xrightarrow{\alpha} Y$, we have the following.

COROLLARY 2.3: If f is a HSE, then f_{α} is a HSE for any proper map α : $B \rightarrow Y$.

REMARK 2.4: By [A1], Lemma 4.6, we see the relation $E=f^{-1}\alpha: B \to M$ is slice trivial if $f^{-1}: Y \to M$ is slice trivial. This also implies 2.3.

PROOF OF 2.2: (a) \rightarrow (b) follows from 1.4. (b) \rightarrow (c): It suffices to show that each open nbd U of f^{-1} in $Y \times M$ admits a slice contraction $\phi: f^{-1} \times [0,1] \rightarrow U$ of f^{-1} in U. (See [A1], Lemma 4.3.) Applying Lemma 2.1 to \tilde{f} , we can find an open nbd V of f^{-1} in U such that each map $g: X \times \{0,1\} \rightarrow V$ with $pg = fr|_{X \times \{0,1\}}$ has an extension $G: X \times [0,1] \rightarrow U$ with pG = fr. Since f is approximately invertible, there exists a map $S: Y \rightarrow V$ with $PS = 1_Y$. Then the map $g: X \times \{0,1\} \rightarrow V$ defined by $g(x,0) = (f(x), x) \in f^{-1}$ and $g(x,1) = S(f(x)) \in V$ ($x \in X$) admits an extension G as above. Define $\phi: f^{-1} \times [0,1] \rightarrow U$ by $\phi(y, x, t) = G(x, t)$ ((y, x, t) $\in f^{-1} \times [0,1]$). (c) \rightarrow (d): See the proof of [A1], Proposition 2.2. (d) \rightarrow (a) follows from Lemma 2.1.

Next we study UV^n -maps with the ASEP. We recall some definitions of basic terms. For $n \ge 0$, S^n denotes the standard n-sphere and B^n denotes the n-ball. Suppose X be a metric space and $i: X \to M$ is a closed embedding into an ANR M. We say X is UV^n (or AC^n) provided each nbd U of i(X) in M contains a nbd V of i(X) such that every $\alpha: S^k \to V$ $(0 \le k \le n)$ is null homotopic in U. The definition does not depend on the choice of such an embedding i. X is UV^∞ if X is UV^n for each $n \ge 0$. A UV^n -map $(0 \le n \le \infty)$ is an onto map each point inverse of which is UV^n . For the details, see [Dy], [K] and [L]. We will prove the following theorem.

THEOREM 2.5: Suppose $f: X \rightarrow Y$ is a closed onto map.

- (1) If f is a UV^{n-1} -map and $\dim Y \le n < \infty$, then f has the ASEP.
- (2) If f is a UV^{∞} -map and X and Y are ANR's, then f has the ASEP.

The proof is based on the following *lifting* lemmas.

LEMMA 1 ([Dy], Lemma 8.3): Under the same notation as in Proposition 1.1, suppose the map f is a closed UV^{n-1} -map $(0 \le n < \infty)$. Then for each admissible pair (U, V) for f w.r.t. F and each $CV' \in Cov V$, there exist $(U_1, V_1) \ge (U, V)$ and $CV_1 \in Cov V_1$ such that

(*) if (P,Q) is a polyhedral pair with dim $p \le n$ and $g: P \to V_1$, $h: Q \to U_1$ are maps with $(g|_Q, Fh) \le CV_1$, then there exists a map $g': P \to U$ with $g'|_Q = h$ and $(Fg', g) \le CV'$.

LEMMA 2 ([K], Theorem 1, Part II): Let $f: X \to Y$ be an LC^{∞} -dense map. Then for each locally finite open covering CV of Y, polyhedral pair (P,Q) and maps $g: P \to Y$, $h: Q \to X$ with $g|_Q \simeq fh$ (CV-homotopic), there exists a map $g': P \to X$ with $g'|_Q = h$ and $fg' \simeq g$ (st CV-homotopic).

Remark 2.6: 1) Among closed onto maps with ANR domains, LC°-(dense) maps coincide with UV^{∞} -maps.

2) Theorem 2.5, (2) holds even if X is an approximate polyhedron (AP) ([Ma]) and f is an LC $^{\infty}$ -dense map.

However, it will be shown that Taylor's map $F: X \to Q$ does not have the ASEP (Example 3.7). Hence we can't omit the assumption on X if $\dim Y = \infty$.

PROOF OF 2.5: (1) Under the same notation as in Proposition 1.1, we will show that f satisfies the condition (2) in 1.1. Given any admissible pair (U, V), $U \in Cov U$ and $CV \in Cov V$. Let CV' be a star refinement of CV. By Lemma 1, we get $(U_1, V_1) \ge (U, V)$ and $CV_1 \in Cov V_1$ which satisfy (*). We must verify that

 (U_1, V_1) , $\subset V_1$ satisfy the required condition in Proposition 1.1, (2) w.r.t. (U, V), $\subset V$ and $\subset V$. Let A be a closed set of Y, W an open nbd of A in V_1 and $s:W \to U_1$ a map with $(Fs, \operatorname{inc}(W, V_1)) \leq \subset V_1$. Take an open $\operatorname{nbd}(W_1) = A$ with $\overline{W}_1 \subset W$ and a common refinement $W \in \operatorname{Cov} V_1$ of coverings $CV'|_{V_1}$, $\{V_1 - A, W_1\}$ and $s^{-1}(U|_{V_1}) \cup \{V_1 - A\}$. Since $\dim Y \leq n$ and V_1 is an ANR, there exist a polyhedron P and $\operatorname{maps}(Y \to P \to V_1)$ such that $\dim P \leq n$ and $(ri, \operatorname{inc}(Y, V_1)) \leq W$ ([H], Themrem 6.1). Choose a triangulation K of P such that $\{|\sigma|: \sigma \in K\}$ refines $\{r^{-1}(W), P - r^{-1}(\overline{W}_1)\}$, and $\operatorname{put}(Q) = \bigcup \{|\sigma|: \sigma \in K, |\sigma| \cap r^{-1}(\overline{W}_1) \neq \emptyset\}$. Then Q is a subpolyhedron of P and P and

(2) is verified by the same argument as in (1), using Lemma 2 instead of Lemma 1.

The next theorem is a partial converse of the above theorem.

THEOREM 2.7: Let $f: X \to Y$ be a proper (onto) map with the ASEP and $y \in Y$. If each nbd V of y in Y contains an n-sphere contractible in V, then $f^{-1}(y)$ is UVⁿ.

PROOF. Take a closed embedding $X \subset M$ into an ANR M. To show $f^{-1}(y)$ is UV^n (in M), let U_1 be any open nbd of $f^{-1}(y)$ in M. We must find a nbd U_2 of $f^{-1}(y)$ in U_1 as in the definition of UV^n -property. Take an open nbd V_1 , V_2 of y in Y with $f^{-1}(V_1) \subset U_1$, $\overline{V}_2 \subset V_1$ and let $\widetilde{U} = V_1 \times U_1 \cup (Y - \overline{V}_2) \times M$. Then by Corollary 1.4, we get an open nbd \widetilde{V} of f^{-1} in \widetilde{U} which satisfies Proposition 1.3, (*). Take a nbd V_3 of y in V_2 and a nbd U_2 of $f^{-1}(y)$ in U_1 such that $V_3 \times U_2 \subset \widetilde{V}$. By the assumption, V_3 contains an n-sphere S^n contractible in V_3 . Now for $0 \le i$ $\le n$, consider $S^i \subset S^n$ and given any map $\alpha : S^i \to U_2$. Then the map $s : S^i \to \widetilde{V}$ defined by $s(x) = (x, \alpha(x))$ ($x \in S^i$) can be extended to a map $S : Y \to \widetilde{U}$ with $pS = 1_Y$. Since $S^i \simeq 0$ in V_3 , we have a map $h : B^{i+1} \to V_3$ such that $h|_{S^i} = \operatorname{inc}(S^i, Y)$. Then $\pi Sh : B^{i+1} \to U_1$ is an extension of α , where $\pi : Y \times M \to M$ is the projection. This completes the proof.

COROLLARY 2.8: Let $f: X \to Y$ be a proper map.

- (1) Suppose dim $Y \le n$ $(0 \le n < \infty)$ and each non-empty open set U of Y contains an (n-1)-sphere contractible in U. Then the map f has the ASEP iff f is a UV^{n-1} -map
- (2) Suppose X and Y are ANR's and each non-empty open set U of Y contains an n-sphere for each $n \ge 0$. Then f has the ASEP iff f is a UV^{∞} -map.

REMARK 2.9: If dim Y=n $(0 \le n < \infty)$ and Y contains a dense open set which

is an n-manifold, then Y satisfies the condition in (1). If Y is a Q (or \mathcal{L}_2)-manifold, then Y satisfies the condition in (2).

3. Generalization.

In this section, we extend the definition of the ASEP to the general case. The manner of the generalization has been established in [Ma], where the concept of shape fibrations is generalized using (AP-) resolutions of maps. We shall show the same method works for the ASEP as well as shape fibrations.

We use the same notations as in [Ma]. In addition, $A(\underline{p})$ denotes the set of all *admissible* pairs of *a map* \underline{p} of systems. In this section, spaces are not assumed to be metrizable. Let B be a space and $A \subset V$ subsets of B. By definition, V is a halo of A in B if there is a map $\tau: B \to [0,1]$ with $A \subset \tau^{-1}(1)$ are $B - V \subset \tau^{-1}(0)$.

DEFINITION 3.1: Let $p: E \to B$ be a map of systems, where $E = (E_{\lambda}, q_{\lambda \lambda_{\perp}}, \Lambda)$, $E = (B_{\mu}, r_{\mu \mu_{1}}, M)$ and $p = (p_{\mu}, \phi)$. We say p has the ASEP provided the following holds.

For each $(\lambda, \mu) \in A(\underline{p})$ and each $\bigcup_{\lambda} \in \text{Cov } E_{\lambda}$, $\bigcup_{\mu} \in \text{Cov } B_{\mu}$, there exist $(\lambda_1, \mu_1) \geq (\lambda, \mu)$ in $A(\underline{p})$ and $\bigcup_{\mu_1} \in \text{Cov } B_{\mu_1}$ which satisfies the following:

(*) Suppose $\mu_2 \geq \mu_1$, V is a halo of a subset A in B_{μ_2} and $s: V \to E_{\lambda_1}$ is a map with $(p_{\mu_1\lambda_1}s, r_{\mu_1\mu_2}|_V) \leq CV_{\mu_1}$. Then there exist $\mu_3 \geq \mu_2$ and a map $S: B_{\mu_3} \to E_{\lambda}$ with $(p_{\mu\lambda}S, r_{\mu\mu_3}) \leq CV_{\mu}$ and $(S|_{r_{\mu_3\mu_3}(A)}, q_{\lambda\lambda_1}sr_{\mu_2\mu_3}|_{r_{\mu_3\mu_3}(A)}) \leq U_{\lambda}$.

PROPOSITION 3.2: Let $(\underline{q},\underline{r},\underline{p})$ and $(\underline{q'},\underline{r'},\underline{p'})$ be two AP-resolutions of a map $p: E \to B$. If p has the ASEP, then so does p'.

Note that under the notation of Proposition 1.1, all admissible pairs form an ANR (hence AP)-resolution of the map f. Therefore by Proposition 1.1, the following definition extends Definition 1.2.

DEFINITION 3.3: Let $p: E \rightarrow B$ be a map. We say the map p has the ASEP provided some (eq., any) AP-resolution of p has the ASEP.

We can extend the concept of approximate invertibility ([A2]) by the same method.

PROPOSITITION AND DEFINITION 3.4: Suppose $p: E \to B$ be a map and $(\underline{q}, \underline{r}, \underline{p})$ is an AP-resolution of p, where $\underline{q} = (q_{\lambda}): E \to \underline{E} = (E_{\lambda}, q_{\lambda \lambda_{1}}, \Lambda)$, $\underline{r} = (r_{\mu}): B \to \underline{B} = (B_{\mu}, r_{\mu \mu_{1}}, M)$ and $\underline{p} = (p_{\mu}): \underline{E} \to \underline{B}$. Then the following conditions are equivalent and depend only on the map p.

(1) For each $(\lambda, \mu) \in A(p)$ and each $(\mathcal{V}_{\mu} \in \text{Cov } B_{\mu}, \text{ there exist } \mu_1 \geq \mu \text{ in } M \text{ and } a$

- map $S: B_{\mu_1} \to E_{\lambda}$ with $(p_{\mu\lambda}S, r_{\mu\mu_1}) \leq CV_{\mu}$.
- (2) For each $(\lambda, \mu) \in A(\underline{p})$ and each $CV_{\mu} \in Cov B_{\mu}$, there exists $S: B \to E_{\lambda}$ with $(p_{\mu\lambda}S, r_{\mu}) \leq CV_{\mu}$.

We say the map p has approximate sections when the above conditions are satisfied.

REMARK 3.5: T. Watanabe also introduced ([W], Section 24) the concept of weak approximative dominations, which is essentially the same as ours.

REMMARK 3.6: 1) Every ANR-resolution of a space X induces an HPolexpansion of X in the category pro-HTop. Therefore by the definition, if a map $p: E \rightarrow B$ has approximate sections then p induces a weak domination in Shape category.

2) Let $f: X \rightarrow Y$ be a map between metric spaces. If the map f has approximate sections, then f has a *dense* image.

The proof of 3.2 is similar to those of [Ma], Theorem 4, or [MR], Theorem 1. For the sake of completeness, we give a full detail of the proof. As for notations, let $\underline{q} = (q_{\lambda}) : E \to \underline{E} = (E_{\lambda}, q_{\lambda\lambda_{1}}, \Lambda), \ \underline{r} = (r_{\mu}) : B \to \underline{B} = (B_{\mu}, r_{\mu\mu_{1}}, M), \ \underline{p} = (p_{\mu}) : \underline{E} \to \underline{B}, \ \underline{q}' = (q'_{\kappa}) : E \to \underline{F} = (F_{\kappa}, q'_{\kappa\kappa_{1}}, K), \ \underline{r}' = (r'_{\nu}) : B \to \underline{C} = (C_{\nu}, r'_{\nu\nu_{1}}, N), \ \underline{p}' = (p'_{\nu}) : \underline{F} \to \underline{C}.$ We need the following lemma. See [Ma], Definition 3 and [MR], Theorem 1.

LEMMA 3.7: Under the above notation:

- (1) For each $(\kappa, \nu) \in A(\underline{p}')$, $\mathcal{W} \in \text{Cov } F_{\kappa}$ and $\mathcal{Z} \in \text{Cov } C_{\nu}$, there exist $(\lambda, \mu) \in A(\underline{p})$ and maps $f: E_{\lambda} \to F_{\kappa}$, $g: B_{\mu} \to C_{\nu}$ with $(fq_{\lambda}, q'_{\kappa}) \leq \mathcal{W}$, $(gr_{\mu}, r'_{\nu}) \leq \mathcal{Z}$ and $(p'_{\nu\kappa}f, gp_{\mu\lambda}) \leq \mathcal{Z}$.
- (2) For each $(\kappa, \nu) \in A(\underline{p}')$, $W \in \text{Cov } F_{\kappa}$ and $Z \in \text{Cov } C_{\nu}$, there exist $W' \in \text{Cov } F_{\kappa}$ and $Z' \in \text{Cov } C_{\nu}$ which refine W and Z resp. and satisfy the following:

For each $(\lambda, \mu) \in A(\underline{p})$ and maps $f: E_{\lambda} \to F_{\kappa}$, $g: B_{\lambda} \to C_{\nu}$ with $(fq_{\lambda}, q'_{\kappa}) \leq \mathcal{W}'$, $(gr_{\mu}, r'_{\nu}) \leq \mathcal{Z}'$ and $(p'_{\nu\kappa}f, gp_{\mu\lambda}) \leq \mathcal{Z}'$ and for each $(\lambda_1, \mu_1) \geq (\lambda, \mu)$ in $A(\underline{p})$ and $U_1 \in Cov E_{\lambda_1}$, $CV_1 \in Cov B_{\mu_1}$, there exist $(\kappa_1, \nu_1) \geq (\kappa, \nu)$ in $A(\underline{p}')$ and two maps $f_1: F_{\kappa_1} \to E_{\lambda_1}$, $g_1: C_{\nu_1} \to B_{\mu_1}$ with $(f_1q'_{\kappa_1}, q_{\lambda_1}) \leq U_1$, $(g_1r'_{\nu_1}, r_{\mu_1}) \leq CV_1$, $(p_{\mu_1\lambda_1}f_1, g_1p'_{\nu_1\kappa_1}) \leq CV_1$ and $(fq_{\lambda\lambda_1}f_1, q'_{\kappa\kappa_1}) \leq \mathcal{W}$, $(gr_{\mu\mu_1}g_1, r'_{\nu\nu_1}) \leq \mathcal{Z}$.

PROOF OF 3.2: The proof consists of the construction of the following diagram by Lemma 3.7 and the ASEP of p.

To show \underline{p}' has the ASEP, given $(\kappa, \nu) \in A(\underline{p}')$, $\mathcal{W}_{\kappa} \in \text{Cov } F_{\kappa}$ and $\mathcal{Z}_{\nu} \in \text{Cov } C_{\nu}$. Take $\mathcal{W}' \in \text{Cov } F_{\kappa}$ and $\mathcal{Z}' \in \text{Cov } C_{\nu}$ with st $\mathcal{W}' < \mathcal{W}_{\kappa}$, st² $\mathcal{Z}' < \mathcal{Z}_{\nu}$. Apply 3.7, (2) to (κ, ν) , \mathcal{W}' , \mathcal{Z}' and we obtain

(a): $W'_{\epsilon} \in \text{Cov } F_{\epsilon}$ and $\mathcal{Z}'_{\nu} \in \text{Cov } C_{\nu}$ as in 3.7, (2).

By 3.7, (1), there exist $(\lambda, \mu) \in A(\underline{p})$ and maps $f: E_{\lambda} \to F_{\epsilon}$, $g: B_{\mu} \to C_{\nu}$ with $(fq_{\lambda}, q'_{\epsilon}) \le \mathcal{W}'_{\epsilon}$, $(gr_{\mu}, r'_{\nu}) \le \mathcal{Z}'_{\nu}$, $(p'_{\nu\epsilon}f, gp_{\mu\lambda}) \le \mathcal{Z}'_{\nu}$. Since p has the ASEP, there exist

(b): $(\lambda_1, \mu_1) \ge (\lambda, \mu)$ and $CV_{\mu_1} \in Cov B_{\mu_1}$ which satisfy 3.1, (*) w. r. t. (λ, μ) , $f^{-1}(W') \in Cov E_{\lambda}$ and $g^{-1}(Z') \in Cov B_{\mu}$.

Take $CV'_{\mu_1} \in Cov B_{\mu_1}$ with st $CV'_{\mu_1} < CV_{\mu_1} \wedge (gr_{\mu\mu_1})^{-1}(\mathcal{Z}')$. By 3.7, (2) (in this case, we apply the lemma only to q and q'), there exists

(c): $\mathcal{CV}_{\mu_1}^{\prime\prime} \in \text{Cov } B_{\mu_1}$ as in 3.7, (2) w.r.t. μ_1 and $\mathcal{CV}_{\mu_1}^{\prime}$.

We apply (a) to the data (λ, μ) , f, g, (λ_1, μ_1) and $\mathcal{O}''_{\mu_1} \in \text{Cov } B_{\mu_1}$ to get $(\kappa_1, \nu_1) \geq (\kappa, \nu)$ in $A(\underline{p})$ and maps $f_1: F_{\kappa_1} \to E_{\lambda_1}$ and $g_1: C_{\nu_1} \to B_{\mu_1}$ with $(g_1 r'_{\nu_1}, r_{\mu_1}) \leq \mathcal{O}''_{\mu_1}$, $(p_{\mu_1 \lambda_1} f_1, g_1 p'_{\nu_1 \kappa_1}) \leq \mathcal{O}''_{\mu_1}$ and $(fq_{\lambda \lambda_1} f_1, q'_{\kappa \kappa_1}) \leq \mathcal{O}''$, $(gr_{\mu\mu_1} g_1, r'_{\nu\nu_1}) \leq \mathcal{O}'$.

Claim: (κ_1, ν_1) and $g_1^{-1}(CV'_{\mu_1}) \in \text{Cov } C_{\nu_1}$ satisfy 3.1, (*) w.r.t. (κ, ν) , \mathcal{W}_{κ} and \mathcal{Z}_{ν} .

To see this, suppose $\nu_2 \geq \nu_1$ in N, V is an open halo of a subset D in C_{ν_2} and $s': V \to F_{\varepsilon_1}$ is a map with $(p'_{\nu_1\varepsilon_1}s', r'_{\nu_1\nu_2}|_V) \leq g_1^{-1}(\bigcirc V'_{\mu_1})$. Take a haloing function $\tau: C_{\nu_2} \to [0,1]$ with $D \subset \tau^{-1}(1)$ and $C_{\nu_2} - V \subset \tau^{-1}(0)$. Let $V_1 = \tau^{-1}(1/2,1]$. Then V is a halo of V_1 , $\bar{D} \subset V_1$, and $r'_{\nu\nu_2}^{-1}(\mathcal{Z}')$, $\{C_{\nu_2} - \bar{D}, V_1\}$, $(q'_{\varepsilon\varepsilon_1}s')^{-1}(\mathcal{W}') \cup \{C_{\nu_2} - \bar{D}\} \in \text{Cov } C_{\nu_2}$. Take \mathcal{Z}_{ν_2} e Cov C_{ν_2} which refines the above three coverings. Apply 3.7, (2) to ν_2 and \mathcal{Z}_{ν_2} , we obtain

(d): $\mathcal{Z}'_{\nu_2} \in \text{Cov } C_{\nu_2}$ as in 3.7, (2).

We apply (c) to the data ν_1 , g_1 , ν_2 , \mathcal{Z}'_{ν_2} and obtain $\mu_2 \geq \mu_1$ and a map $g_2: B_{\mu_2} \rightarrow C_{\nu_2}$ with $(g_2 r_{\mu_2}, r'_{\nu_2}) \leq \mathcal{Z}'_{\nu_2}$ and $(g_1 r'_{\nu_1 \nu_2} g_2, r_{\mu_1 \mu_2}) \leq \mathcal{C} \mathcal{V}'_{\mu_1}$. Let $U = g_2^{-1}(V)$, $A = g_2^{-1}(V_1)$ and $s = f_1 s' g_2|_U: U \rightarrow E_{\lambda_1}$. Then U is a halo of A in B_{μ_2} and $(p_{\mu_1 \lambda_1} s, r_{\mu_1 \mu_2}|_U) \leq \mathcal{C} \mathcal{V}_{\mu_1}$.

Therefore (b) gives $\mu_3 \geq \mu_2$ and a map $S: B_{\mu_3} \to E_{\lambda}$ with $(p_{\mu\lambda}S, r_{\mu\mu_3}) \leq g^{-1}(\mathcal{Z}')$ and $(S|_{r_{\mu_2\mu_3}^{-1}(A)}, q_{\lambda\lambda_1}sr_{\mu_2\mu_3}|_{r_{\mu_2\mu_3}^{-1}(A)}) \leq f^{-1}(\mathcal{W}')$. Apply (d) to μ_2 , g_2 , μ_3 , and we get $\nu_3 \geq \nu_2$ and a map $g_3: C_{\nu_3} \to B_{\mu_3}$ with $(g_2r_{\mu_2\mu_3}g_3, r'_{\nu_2\nu_3}) \leq \mathcal{Z}_{\nu_2}$. Let $S' = fSg_3: C_{\nu_3} \to F_{\kappa}$. Then adjacent maps of the followings are \mathcal{Z}' -near:

$$p_{\nu\kappa}'S', gp_{\mu\lambda}Sg_3, gr_{\mu\mu_3}g_3, gr_{\mu\mu_1}g_1r_{\nu_1\nu_2}'g_2r_{\mu_2\mu_3}g_3, r_{\nu\nu_2}'g_2r_{\mu_2\mu_3}g_3, r_{\nu\nu_3}'.$$

This implies $(p'_{\nu\kappa}S', r'_{\nu\nu\alpha}) \leq \mathcal{Z}_{\nu}$.

It remains only to show $(q'_{\kappa_1}s'r'_{\nu_2\nu_3}|_{r'_{\nu_2\nu_3}(D)}, S'|_{r'_{\nu_2\nu_3}(D)}) \leq \mathcal{W}_{\kappa}$. First note that $g_3(r'_{\nu_2\nu_3}(D)) \subset r_{\mu_2\mu_3}^{-1}(A)$ and that, since $(g_2r_{\mu_2\mu_3}g_3, r'_{\nu_2\nu_3}) \leq (q'_{\kappa_1}s')^{-1}(\mathcal{W}') \cup \{C_{\nu_2} - \bar{D}\}$, maps $g_2r_{\mu_2\mu_3}g_3, r'_{\nu_2\nu_3}: r'_{\nu_2\nu_3}(D) \to V$ are $(q'_{\kappa\kappa_1}s')^{-1}(\mathcal{W}')$ -near. Thus adjacent maps of the followings are \mathcal{W}' -near on $r'_{\nu_2\nu_3}(D)$:

$$q'_{\kappa\kappa_1}s'\gamma'_{\nu_2\nu_3}, \ q'_{\kappa\kappa_1}s'g_2\gamma_{\mu_2\mu_3}g_3, \ fq_{\lambda\lambda_1}s\gamma_{\mu_2\mu_3}g_3, \ S'.$$

Since st $W' < W_{\kappa}$, we have the conclusion.

We conclude the section, inspecting Taylor's map $F: X \to Q$ ([DW], [T]).

EXAMPLE 3.8 (Taylor's map): The map F is obtained as the *inverse limit* of the following *level* map $f = \{f_n\}$:

$$L \stackrel{\beta}{\longleftarrow} \Sigma^{1}L \stackrel{\Sigma\beta}{\longleftarrow} \Sigma^{2}L \stackrel{\Sigma^{2}\beta}{\longleftarrow} -- \stackrel{\Sigma^{n-1}\beta}{\longleftarrow} \Sigma^{n}L \stackrel{\Sigma^{n}\beta}{\longleftarrow} f_{0} \downarrow \qquad f_{1} \downarrow \qquad f_{2} \downarrow \qquad f_{n} \downarrow f_{n} \downarrow f_{n}$$

$$* \stackrel{\beta}{\longleftarrow} I^{1} \stackrel{\Sigma^{1}}{\longleftarrow} I^{2} \stackrel{\beta}{\longleftarrow} -- \stackrel{\Sigma^{n-1}\beta}{\longleftarrow} I^{n} \stackrel{\Sigma^{n}\beta}{\longleftarrow} f_{n} \downarrow f_{$$

where $I=[-1,1]^r$ (r is a fixed positive integer), $\Sigma^n L$ is the nr-th suspension of a compact polyhedron L and β is a map for which the composition $\beta \circ \Sigma \beta \circ \cdots \circ \Sigma^n \beta \not= 0$ for each $n \ge 0$, f_n is induced from the projection $L \times I^n \to I^n$ and p_n is the projection. Note that, by [Ma], Theorem 8, \underline{f} is an ANR-resolution of F. The map F is an example of CE-maps which are *not* shape equivalences ([T]), and moreover, F is approximately invertible ([A2]). Note that each f_n has a section.

We now show that F does *not* have the ASEP. To see this, on the contrary, suppose F, hence \underline{f} has the ASEP. Then there exist $n \ge 0$ and $\varepsilon > 0$ which satisfy 3.1, (*) w.r.t. the index 0 in \underline{f} . Since $\Sigma^n L$ is a finite dimensional compact metric space, we can find an embedding $i: \Sigma^n L \to I^m$ for some $m \ge 0$. Define an embedding $j: \Sigma^n L \to I^{n+m} = I^n \times I^m$ by $j(x) = (f_n(x), i(x))$ ($x \in \Sigma^n L$) and let $A = j(\Sigma^n L)$, $s = j^{-1}: A \to \Sigma^n L$. Since $f_n s = p_{n n+m}|_A$, by the choice of n, there exist $k \ge n+m$ and a map $S: I^k \to L$ such that S coincides with the composition $\beta \circ \cdots \circ \Sigma^{n-1} \beta \circ s \circ p_{n+m,k}$ on $p_{n+m,k}^{-1}(A) = A \times I^{k-n-m}$. Since $S \cong 0$ and $sp_{n+m,k}: A \times I^{k-n-m} \to \Sigma^n L$ is a homotopy equivalence,

 $\beta \circ \cdots \circ \Sigma^{n-1} \beta \simeq 0$. This contradicts the choice of β .

One can embeds X into Q and extend F to the CE-map $G: Q \to Q \cup_F Q$. It is known that $Q \cup_F Q$ does *not* have the *trivial* shape ([DS]), hence G is not a weak domination. This implies that G is *not* approximately invertible.

References

- [A1] Ancel, F.D., The role of countable dimensionality in the theory of cell-like relations, Trans. Amer. Math. Soc. (to appear).
- [A2] , Approximate countable dimensionality and cell-like maps, in preparation.
- [DW] Daverman, R. J. and Walsh, J. J., Examples of cell-like maps that are not shape equivalences, Michigan Math. J. 30 (1983) 17-30.
- [Do] Dold, A., Partitions of unity in the theory of fibrations, Annals of Math. 78 (1963) 223-255.
- [Dy] Dydak, J., The Whitehead and the Smale theorems in shape theory, Dissertationes Math. 156.
- [DS] —— and Segal, J., Shape theory, Lecture Note in Math. Vol. 688, Springer-Verlag, New York, 1978.
- [H] Hu, S.T., Theory of Retracts, Wayne State Univ. Press, 1965.
- [K] Kozlowski, G., Images of ANR's, Trans. Amer. Math. Soc. (to appear).
- [L] Lacher, R. C., Cellularity criteria for maps, Michigan Math. J. 17 (1970) 385-396.
- [Ma] Mardešić, S., Approximate polyhedra, resolution of maps and shape fibrations, Fund. Math. 114 (1981) 53-78.
- [MR] —— and Rushing, T. B., Shape fibrations I, Gen. Top. and its Appli. 9 (1978) 193-215.
- [Mi] Michael, E., Local properties of topological spaces, Duke Math. J. 21 (1954) 163-172.
- [T] Taylor, J. L., A counterexample in shape theory, Bull. Amre. Math. Soc. 81 (1975) 629-632.
- [W] Watanabe, T., Approximative shape theory, in preparation.

Institute of Mathematics University of Tsukuba Sakuramura, Ibaraki, 305 Japan.