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THE APPROXIMATE SECTION EXTENSION PROPERTY
AND HEREDITARY SHAPE EQUIVALENCES®

By

Tatsuhiko YAGASAKI

Abstract. In this paper, the concept of the approximate section extension
property (ASEP) is introduced. It is shown that hereditary shape equivalences are
exactly the maps with the hereditary ASEP and every UV" !-map with »#-dimentional
range has the ASEP.

0. Introduction.

In this paper we will introduce the concept of the approxsmate section exten-
sion property (ASEP), which is a shape version of the section extemsion property,
[Do]. The ASEP is defined in Section 1 to maps between metric spaces. How-
ever, using resolutions of maps, this can be extended to a general case (see Section
3). Main results of the paper are contained in Section 2. We prove the followings:

1) Hereditary shape equivalences (HSE’s) are exactly the maps with the
hereditary ASEP. In particular, any pull back of a HSE is also HSE.

2) Every UV"!i-map with an #n-dimensional range and every UV>-map be-
tween ANR’s has the ASEP. If the range is a manifold, then an appropriate
converse holds.

One can regard these results as a shape version of some results in the fiber

homotopy theory, [Do]

| Here, we list some notations to be used throughout the paper. In Sections 1
and 2, spaces are assumed to be metrizable. If A is a subset of a space X, A is
the closure of A and inc (A4, X) denotes the inclusion map AcX. Cov X is the
set of all normal coverings of X. For c7eCovY, stCyy is the star of <. We
say two maps f, ¢g: X—Y are Cy-near and write (f, ¢)<ClV when each x€X admits
a Vecy such that f(z),g(z)eV. An ANR is one for metric spaces. A polyhedron
is the body |K| of a simplicial complex K with the CW-topology.

We refer to for the definitions of basic terms ‘in Shape theory, and to
for relation theoretic terms. One should refer to [Do] in Sections 1, 2 and to

in Section 3.

(1) This work is partially included in the author’s master thesis.
Received August 24, 1983.
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1. Approximate section extension property.

Let f: X—Y be a map between metric spaces. We can find closed embeddings
i:X—>M, j:Y—>N into ANR’s and a map F: M- N with Fi=jf (H]). Consider
a pair (U, V') of open neighborhoods (nbd’s) U of i(X) in M and V of j(Y) in N
with F(U)c V. We call such a pair an admissible pair for f w.r.t. F.

ProrosiTION 1.1: Under the above notations, the following conditions (1)-(3)
are equivalent. Furthermore if the map f satisfies the condition (1) (eq., (2), (3)),
for some i, j and F as above, then f satisfies the condition (1) for any such i, j
and F.

(1) For each admissible pair (U, V) UeCovU and <VeCovV, there xeist an
admissible pair (U,, V\)>(U, V) (@G.e., U,cU, VicV) and cV,€CovV, such that
for each closed set A of V, and each map s:A—U, with (Fs, inc (A4, V1)<V,
there exist an open nbd W of j(Y) in V, and a map S:W—-U with (FS, inc (W, V))
<Y and (Slanw, Slaaw) <U.

(2) For each admissible pair (U, V), 1UeCovU and ciyeCovV, there exist
(U, V)>2(U, V) and <,€CovV, such that for each closed set A of Y and each
map s: A—-U, with (Fs, inc (4, V1)<V, there exists a map S:Y ->U with (FS,
inc (Y, V)<< and (S|4, s)<U.

(3) For each open nbd U of i(X) in M and VeCov N, there exist an open
nbd U, of i(X) in U and </,€Cov N such that for each closed set A of Y and
each map s:A—-U, with (Fs, inc (A, N))<CV,, there exists a map S:Y -»U with
(FS, inc (Y, N))<<V and S|a=s.

Proor: Note that U and U, are ANR’s. Therefore (2)— (1) follows from
the nbd extension property of ANR’s and (2) — (3) follows from the komotopy ex-
tension theorem ([(H]). (1)—(2) and (3) — (2) are obvious. For the latter statement,
see [Proposition 3.2, which implies the same conclusion under a more general
setting.

DEFINITION 1.2: We say the map [ has the approximate section extension
property (ASEP) provided f satisfies the conditions in Proposition 1.1.

If f is a proper map (i.e., the inverses of compact sets are compact), then we
can reduce the above conditions to a simpler one. For later use, we shall work
in the setting of relation.

Suppose M and N are ANR’s, Y is a closed subset of N, R:Y —-M is an
(upper semi-) continuous relation with compact point images (i.e., for each yeY,
R(y) is compact) and p: NXM — N is the projection. Note that p(R)cY.
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ProrosiTIiON 1.3: Under the above notations, the projection p:R—Y has the
ASEP iff .

#&): each nod U of R in Y XM contains @ nbd V of R such that

(*): for each closed set A of Y and each map s:A—V with ps=inc(A,Y),
there exists a map S:Y —U with pS=1y and S|a=s.

Let f: X—Y be a proper map and M an ANR containing X as a closed sub-
set. Consider the continuous relation f'=U{yxf '(y):yeY}:Y—> M. Since the
projection p: f~!—Y corresponds to f by the identification f~'— X:(f(z), z)l— z,
we get the following.

CoROLLARY 1.4: Under the above notation, f has the ASEP iff () holds with
R replaced by f.

ReMARK 1.5: The map f is said to be approximately invertible if each
nbd U of f~! in Y XM admits a map S:Y —U such that pS=1y.

Proor ofF 1.3: From [Proposition 1.3, p has the ASEP iff

(#8): for each nbd U’ of R in NXM and UeCov N, there exist a nbd V' of
R in U and C9eCov N such that

(**): if Ais a closed set of Y and s': A—V" is a map with (ps’, inc (4, N))
<CV, then there exists S': Y —U" with (pS’, inc (Y,N))<U and S'|4=5".

() > @##): Given U’ and U as in (#%). By [Al], Lemma A-8, there exist an
open nbd U/ of R in U’ and U, ={U}wx€Cov N such that U X U/(U,)cU’ for each
k€K and U, <. Apply (#) to U=U/N(YXM) and we have an open nbd V of
R in U which satisfies (*). By Lemma A-8, there exist a nbd V’ of R in
U/ and a cV={V,};es€Cov N such that (VX V(V))N(YXM)c V for each 2e4 and
Cy-near maps to N are qJ,-homotopic. Then V’ and ¢y satisfy (**). In fact, take
s’ as in (**). Since (ps’, inc (4, N))<C), we can define s: A —V by s(y)=(y, zs'(¥))
(yeA), where n: NXM — M is the projection. By (*), the map s extends to a map
S:Y»>U with pS=1y, and since ps’ is qJ,-homotopic to inc (A, N), using the
homotopy extension theorem, ps’ extends to a map ¢ :Y — N which is ¢J,;-homotopic
to inc(Y,N). Then the desired map S :Y U’ is defined by S'(y)=(g(¥), #S(¥))
(yeY).

(##) > (#): The proof is similar and omitted.

We use 1.4 to obtain the Uniformization for the ASEP. Compair
this with [Do], [Theorem 2.7.

THEOREM 1.6: Suppose f:X—->Y is a proper map. If each yeY admits a



162 Tatsuhiko YAGASAKI

(not necessarily open) nbd V in Y such that flr—w,:fY(V)—>V has the ASEP,
then f itself has the ASEP.

Proor: Consider the following property P(A) for each subset A of Y.

P(A): fa has the ASEP, where fa=flr—1ca,: f(A)— A. In order to show
P(Y) holds, by Theorem 5.5, it suffices to show that @ is an F-hzreditary
property, that is, satisfies the following conditions :

(F1) If fa has the ASEP and B is a closed subset of A, then fg has the ASEP.

(F2) Suppose A=A, UA,CY and A, and A; are closed in Y. If fi==fa; has
the ASEP (i=1,2), then fa has the ASEP.

(F3) Suppose A=U{A;:2eAiCY and {Ai}wes is discrete in Y. If eack fa, has
the ASEP, then f4 has the ASEP.

(F1) and (F3) are easily verified, so we will prove (F2). We use the same
notation as in |Corollary 1.4 Note that f;'=f"'N(A:xM) (i=1,2). To see the
ASEP of f4, let U be any open nbd of f;' in AXM. Since f, has the ASEP, the
nbd UN(A;XM) of f~' contains an open nbd V, of f{' in A, xM which satisffes
the condition (*) in [Proposition 1.3 w.r.t. fi”*. In turn, by the ASEP of f,, the
open nbd U,={V,U(U—-(AXMNN(A:XM) of f;' in A.xM contains an open
nbd V. of f;'in A.xM which satisfies (*) w.r.t. f;7!. Then the nbd V=(V,—
(AeXM) UV, of 7' in U satisfies (*) w.r.t. f~! and U.

2. The ASEP, HSE’s and UV"-maps.

We begin with a reference to [Al] Let f: X —Y be a proper map between
metric spaces, and M an ANR containing X as a closed subset.

THEOREM ([A1l), Theorem 4.5): The map fis @ HSE iff the relation f~':Y - M
is slice trivial, that is, satisfies the following:

For each nbd U of f~' in Y XM there exist @ nbd V of f~' and maps ¢:V X
[0,1]>U and S:Y —>U such that ¢po=inc (V, U), ¢:(y, x)=Sw), po(y, x, )=y, pS=1y
((y, x)eV, te[0,1]), where p:Y XM —Y is the projection.

We will use the above theorem to get another characterization of HSE’s in
term of the ASEP, which corresponds to [Do], Proposition 3.1.

Let «: B—~Y is a proper map. Define F and f.:E— B, f: E— X by £={b, x)
eBXX:ab)=f(x)}, fub, z)=b, B, x)=x, ((b,x)eE). The map f, is called the
map induced from f by a. Since E=U{X fad):beBl=U{a ' (y)Xf (1) :yeY},
if we regard £ as a relation from B to X, we have:

1) E=f"'a, therefore E is continuous and has compact point images.

2) aXly:BXM—->YXM is a closed map and E=(aX1yx) '(f).
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LemMMA 2.1: Under the above notation, the following conditions are equivalent,
a) f. has the ASEP.
b) Each nbd U of f~' in YXM contains a@ nbd V of f~' such that if A is a

closed set of B and ao: A—V is a map with pay=ala, then there exists a map o :
B—-U with pa’=a and o'|s4=a,.

Proor: By [Proposition 1.3, a) is equivalent to 1.3 (#), with R and Y replaced
by E and B. By the observation 2), ax1y gives the correspondence between a
nbd base of f~! in Y XM and a nbd base of £ in BXM, so that the maps a, and
a’ as in b) correspond to the maps s and S as in (#) and (*). From this follows
2.1. Compair this with [Do], Proposition 3.1.

Let 7 be the map induced from f by f7, i.e., f=fs, where r:Xx[0,1]>X
is the projection.

THEOREM 2.2: Let f:X—>Y be a proper map. The following conditions are
equivalent.

a) For each proper map a:B—-Y, f. has the ASEP.

b) f is approximately invertible (see Remark 1.5) and f has the ASEP.

c) fis a HSE.

d) FEach nbd U of f~' in YXM contains a nbd V of f~! such that for any
proper map a: B—Y, Lemma 2.1, b) holdds.

Since (f.)s=f.; for any maps CLB—“»Y, we have the following.

CoroLLARY 2.3: If f is a HSE, then f, is a HSE for any proper map o :
B-Y.

REMARK 2.4: By [AI], Lemma 4.6, we see the relation E=f"‘a:B—>M is
slice trivial if f=':Y — M is slice trivial. This also implies 2.3.

Proor or 2.2: (a)—(b) follows from 1.4. (b)—(c): It suffices to show that
each open nbd U of f~!in ¥ XM admits a slice contraction ¢ : f~!x[0,1]->Uof f~'in
U. (See Lemma 4.3.) Applying Lemma 2.1 to 7, we can find an open nbd V'
of f~'in U such that each map ¢g: Xx{0,1} >V with pg=/7|xxw.y has an extension
G:XX%[0,1]-U with pG=fr. Since f is approximately invertible, there exists a
map S:Y >V with PS=1y. Then the map ¢:XX{0,1} -V defined by g(z,0)=
(f(z), z)ef! and g(x,1)=S(f(x))e V (xe€X) admits an extension G as above. Define
¢: f1X[0,11-U by ¢y, z,)=G(z,t) ((y, x,)ef~*x[0,1]). (c)—(d): See the proof
of Proposition 2.2. (d) — (a) follows from Lemma 2.1.
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Next we study UV™maps with the ASEP. We recall some definitions of basic
terms. For >0, 8" denotes the standard #n-sphere and B™ denotes the #n-ball.
Suppose X be a metric space and i: X— M is a closed embedding into an ANR
M. We say X is UV" (or AC") provided each nbd U of i(X) in M contains a nbd
V of i(X) such that every a:S8* >V (0<k<n) is null homotopic in U. The de-
finition does not depend on the choice of such an embedding i. X is UV> if X
is UV™ for each #>0. A UV™map (0<n<oco) is an onto map each point inverse
of which is UV™. For the details, see and [L] We will prove the follow-
ing theorem.

THEOREM 2.5: Suppose f: X —Y is a closed onto map.
Q) If fis a UV™'t-map and dimY <n<oo, then f has the ASEP.
@) If fis a UV=-map and X and Y are ANR’s, then f has the ASEP.

The proof is based on the following /ifting lemmas.

LemMmA 1 ([Dy], Lemma 8.3): Under the same notation as in Proposition 1.1,
suppose the map f is a closed UV"'-map (0<n<oco). Then for each admissible
pair (U, V) for fw.r.t. F and each <V'e€CovV, there exist (U,, Vi)>(U, V) and
c,€CovV, such that

*) if (P,Q) is a polyhedral pair with dim p<n and g:P—V, h:Q-->U, are
maps with (gle, Fh)<CV,, then there exists @ map g’ : P—U with ¢'|q=h and (Fg’, g)
<.

LEmmA 2 ([K], Theorem 1, Part II): Let f: X—>Y be an LC>-dense map.
Then for each locally finite open covering CV of Y, polyhedral pair (P, Q) and maps
g:P->Y, h:Q— X with glo=fh (C-homotopic), there exists a map ¢’ . P—» X with
g’ lo=h and fo' =g (st CV-homotopic).

REMARK 2.6: 1) Among closed onto maps with ANR domains, LC*-(dense)
maps coincide with UV=-maps.

2) [Theorem 2.5, (2) holds even if X is an approximate polyhedron (AP)
and f is an LC»-dense map.
However, it will be shown that Taylor’s map F': X — @ does not have the ASEP
(Example 3.7). Hence we can’t omit the assumption on X if dimY=oco.

Proor orF 2.5: (1) Under the same notation as in [Proposition 1.1, we will
show that f satisfies the condition (2) in 1.1. Given any admissible pair (U, V),
JeCovU and cyeCovV. Let €V’ be a star refinement of CV. By Lemma 1, we
get (U, V)>(U,V) and <V,€CovV, which satisfy (*). We must verify that
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(U, V1), €U, satisfy the required condition in [Proposition 1.1, (2) w.r.t. (U, V),
J and €. Let A be a closed set of Y, W an open nbd of A in V, and s:W—
U, a map with (Fs, inc (W, V,))<CV,. Take an open nbd W, of A with W,cW
and a common refinement 9 eCovV, of coverings <’|v,, {Vi—A, Wi} and s (Ulv,)
U{V.—A}. Since dimY<# and V, is an ANR, there exist a polyhedron P and
maps Y — PV, such that dim P<% and (i, inc (Y, Vi))<9 [H], Themrem 6.1).
Choose a triangulation K of P such that {|¢]: 6€ K} refines {r"Y(W), P—r\(W))},
and put Q= U{|s|: 0€K, |o|N7r'(W,)#0}. Then Q is a subpolyhedron of P and i(A4)
cQ, 7@ cW. Since (Fsrlg, 7o)<V, by (*), we obtain a map 7' :P-—-U with
(Fr',r)<cV’ and 7’|q=sr|g. Put S=7/i:Y U, then it is easy to see that (FS,
inc (U, V)<< and (S|4, s|a)<?U. This completes the proof of (1).

(2) is verified by the same argument as in (1), using instead of
Lemma 1. '

The next theorem is a partial converse of the above theorem.

THEOREM 2.7:Let f: X—Y be a proper (onto) map with the ASEP and yeY.
If each nbd V of y in Y contains an n-sphere contractible in V, then f~'(y) is UV™.

Proor. Take a closed embedding XC_, M into an ANR M. To show f(y)
is UV" (in M), let U, be any open nbd of f~'(y) in M. We must find a nbd U,
of f~'(y) in U, as in the definition of UV™-property. Take an open nbd Vi, V; of
y in Y with f-{(V)cU, V.cV;: and let U=V, xU,U(Y—V:)xM. Then by Cor-
ollary 1.4, we get an open nbd ¥ of 7! in U which satisfies [Proposition 1.3, (*).
Take a nbd Vs of ¥y in V. and a nbd U, of f'(y) in U, such that V;X U.cV.
By the assumption, V3 contains an z-sphere S™ contractible in V. Now for 0<:
<n, consider StcS™ and given any map a:S*—U,. Then the map s: StV de-
fined by s(z)=(x, a(z)) (x€S?) can be extended to a map S:Y U with pS=ly.
Since Si~0 in Vs, we have a map 4: Bi*' -V, such that 4|si=inc(S%, Y). Then
xSh: Bi*' - U, is an extension of «, where =:Y XM — M is the projection. This
completes the proof.

COROLLARY 2.8: Let f: X Y be a proper map.

(1) Suppose dimY <n (0<n<oo) and each non-empty open set U of Y contains
an (n—1)-sphere contractible in U. Then the map f has the ASEP iff fis a UV"7'-
map

(2) Suppose X and Y are ANR’s and each non-empty open set U of Y contains
an n-sphere for each n>0. Then f has the ASEP iff f is a UV™-map.

REMARK 2.9: If dimY=#n (0<n<oo) and Y contains a dense open set which
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is an n-manifold, then Y satisfies the condition in (1). If Y is a @ (or _C.)-mani-
Jold, then Y satisfies the condition in (2).

3. Generalization.

In this section, we extend the definition of the ASEP to the general case.
The manner of the generalization has been established in [Ma], where the concept
of shape fibrations is generalized using (AP-) resolutions of maps. We shall show
the same method works for the ASEP as well as shape fibrations.

We use the same notations as in [Ma]. In addition, A(p) denotes the set of
all admissible pairs of a map p of systems. In this section, spaces are not assumed
to be metrizable. Let B be a space and AcV subsets of B. By definition, V is
a halo of A in B if there is a map r: B—[0,1] with Acz"!(1) are B— V< Y(0).

DEFINITION 3.1: Let p: E— B be a map of systems, where E=(E,, q., A), B=
(Bus Vs M) and p=(p,, $). We say p has the ASEP provided the following holds.

For each (2, )€ A(p) and each U,eCov E,, C1V,eCov B,, there exist (i, 1) >(4, pr)
in A(p) and <, €Cov B,, which satisfies the following :

(*) Suppose p:>p, V is a halo of a subset A in B,, and s:V — E;, is a map
With (Puy3yS, Tuyuylv) SV, Then there exist ps>p, and a map S:B,,— E; with
(DS, Tung) SV @nd (Slezt, a5y Quay ST uguglryt, ) U

ProposiTION 3.2: Let (g,7,p) and (¢',7',p’) be two AP-resolutions of a map
p:E—B. If p has the ASEP, then so does p'.

Note that under the notation of [Proposition 1.1, all admissible pairs form an
ANR (hence AP)-resolution of the map f. Therefore by [Proposition 1.1, the fol-
lhwing definition extends Definition 1.2

DerFINITION 3.3: Let p: E— B be a map. We say the map p has the ASEP
provided some (eq., any) AP-rvesolution of p has the ASEP.

We can extend the concept of approximate invertibility by the same
method.

PropoOsSITITION AND DEFINITION 3.4: Swuppose p:E— B be a map and (g, 7, p)
is an AP-resolution of p, where q=(q.):E—E=(E, qu, 1), r=(.):B— B=
(Bus Tuupy M) and p=(p,): E— B. Then the following conditions are equivalent and
depend only on the map p.

(1) For each (4, peA(p) and each CV,€Cov B,, there exist yy>p in M and a



The Approximate Section Extension Property 167

map S: By, — Ey with (DS, 7 ) <V

(2) For each (2, m)eA(p) and each c1,eCov B,, there exists S:B—E, with
(DuaS, 7,) KCV,.

We say the map p has approximate sections when the above conditions are
satisfied.

REMARK 3.5: T. Watanabe also introduced (W], Section 24) the concept of
weak approximative dominations, which is essentially the same as ours.

REMMARK 3.6: 1) Every ANR-resolution of a space X induces an HPol-
expansion of X in the category pro-HTop. Therefore by the definition, if a map
p:E— B has approximate sections then p induces a weak domination in Shape
category.

2) Let f: X—Y be a map between metric spaces. If the map f has approx-
imate sections, then f has a dense image.

The proof of 3.2 is similar to those of Theorem 4, or [MR], Theorem 1.
For the sake of completeness, we give a full detail of the proof. As for notations,
let g=(g2): E — E=(E, qusyy A), 7=(#,): B—> B=(Bu, 70, M), p=(0,):E—> B, ¢'=(d)):
E— F=(F,, i, K), _r’=(r£):B—>§==(Cy,rj,l,N), =) F—>C. We need the fol-
lowing lemma. See [Ma], Definition 3 and [MR], Theorem 1.

LEMMA 3.7: Under the above notation:

(1) For each (x,v)eA(p"), WeCov F. and %eCov C,, there exist (4, p)e A(p) and
maps f:Ei—F., g:B,—C, with (fq, q)<W, (97, 1)<Z and (p..f, 0pu) < 2.

(2) For each (r,v)eA(p’), WeCov F. and ZeCovC, there exist " eCov F,
and Z'eCov C, which refine G and Z resp. and satisfy the following :

For each (2, )€ A(p) and maps f:E;—F,, g: B —C, with (fq, @) L<W’', (g7,,7)
<Z' and (PLf, 9pu)<Z’ and for each (A, )=, p) in A(p) and U,eCov Ey,, V1
€Cov B,,, there exist (ky,v))=(x,v) in A(p’) and two maps fi: F. —>Ey, 0.:C,,—> B,
with (figey &)< U, (@70 7u) SV, (D J1s 01 00) SV and  (fquJo, @ee) <W,
(97 upy 01, 70) < 2.

PrOOF OF 3.2: The proof consists of the construction of the following dia-
gram by and the ASEP of p.
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q s r
B $ B U ——riA)
f ~ Si / gs
P q \ y N
F, «— v’ (D)
\
v N N v
u < B,, < BI‘2<\
’
)2 r » 4 n N
v g % v \ r
, € C, « C, C.,
r r r

To show p’ has the ASEP, given (x,v)€A(p’), W.cCov F, and Z,eCovC..
Take 94’e€Cov F, and Z’eCovC, with st P’ <., st® F'<Z,. Apply 3.7, (2) to
(x,v), W', &’ and we obtain

(@): 9Y.eCov F, and Z.eCovC, as in 3.7, (2).

By 3.7, (1), there exist (2, )€ A(p) and maps f: E;,— F., g: B,—~C, with {fq, ql)
SWi, (g7, 1)< 2L, (Pl f,9p.)< Z.. Since p has the ASEP, there exist

(b): (41, ) =(4, ) and <, €Cov B,, which satisfy 3.1, (*) w.r.t. (4, ), f/~(W’)
€Cov £; and ¢7(&’)eCov B..

Take ¢/, eCov B,, with st U}, <V, A(97u,)"(Z’). By 3.7, (2) (in this case,
we apply the lemma only to ¢ and ¢’), there exists

(): <vueCov B, as in 3.7, (2) w.r.t. g and <V,

We apply (a) to the data (2, ), f, ¢, (A1, m) and <V eCov B,, to get (i1, v1)>
(x,v) in A(p) and maps f,: F.,— E,, and ¢,:C,, > B,, with (9170 Yu ) SV, (Dpyay Sy
9150,) SV and (fqua, f1, @) S W', (@Y upy01, Vo) < Z.

Claim: (ki v1) and g7 (<V,,)eCov C,, satisfy 3.1, (*) w.r.t. (x,v), W. and Z,.

To see this, suppose v:>y, in N, V is an open halo of a subset D in C,, and

"V —>F, is a map with ()8, 7.,lv)<¢*(CV,,). Take a haloing function t:C,,
—>[0, 1] with Dcr™'(1) and C,,—Vcz7'(0). Let Vi=7"1/2,1]. Then V is a halo
of Vi, DcV,, and 7;(Z"), (C,,— D, Vi), (¢ls") (W) U{C,,—D}eCovC,, Tzke Z,,
€Cov C,, which refines the above three coverings. Apply 3.7, (2) to v, and &
we obtain

(d): Z,eCovC, as in 3.7, (2).

We apply (c) to the data vy, ¢, ve, &), and obtain p;>yx, and a map g:: B,,—
C., with (gu7,,,7,,)<Z!, and (017,02, 7,u) <CV5. Let U=g;'(V), A=g¢7%(V) and
$=/18'g2ly:U—~E;. Then U is a halo of A in B,, and (pu3S, 7uulv) SV,

vy
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Therefore (b) gives ps>p, and a map S:B,, — E: with (p.S, 7,.)<¢7'(Z’) and
(S|7;21M<A>,q;;lsr,,zyslr;zlﬂsw)éf‘l(CW’). Apply (d) to pe, g ps, and we get vs>v, and

a map gs:C.,; — B, With (ge7 40,05, 71,,) < Z.,. Let S'=fSgs:C,, — F.. Then adjacent
maps of the followings are %’-near:

pS:S,, gp/Angiiy g”p;z3gs, 07’,,,11917’:1»2027’”2,1393, 751/2.(}27’;12;:3931 7’:v3-

This implies (p..S,7.,)< ..

It remains only to show (quS’rﬁzus[T'uz—u;(p),S’ |¢;2—v§<p>)£CWx. First note that
(D) Crih(A) and that, since (geu,uy0s, ipy) < (@S (W)U{C,,—D}, maps
92 uyusd3s Vips - Vips(D) =V are (qi,s’)"(W’)-near. Thus adjacent maps of the follow-
ings are 9/’-near on 7.;}(D):

lela
Qiqslﬂzug, q1;13,g27p2;1893, fQUIS?’pZMga; S,-

Since st 9’ <9/, we have the conclusion.
We conclude the section, inspecting Taylor's map F: X—Q (DW], [T).

ExampLE 3.8 (Taylor’'s map): The map F is obtained as the inverse limit of
the following level map f={fa}:

b 228 yn-1 "
L <o s L P
fo‘[ fll le fnJ’
* < I e I? e— —— —— 7 e
Do yo D: Da-1 Dn

where [=[—1,1] (v is a fixed positive integer), X"L is the nr-th suspension of a
compact polyhedron L and B is a map for which the composition SoXgo::-03"8%0
for each #>0, f, is induced from the projection LXI"— I" and py, is the projection.
Note that, by Theorem 8, f is an ANR-resolution of /. The map F is an
example of CE-maps which are not shape equivalences (T]), and moreover, F is
approximately invertible ([A2]). Note that each f. has a section.

We now show that F' does nof have the ASEP. To see this, on the contrary,
suppose F, hence f has the ASEP. Then there exist #>0 and ¢>0 which satisfy
3.1, (*) w.r.t. the index 0 in f. Since 2"L is a finite dimensional compact metric
space, we can find an embedding ¢: 3"L — I™ for some m>0. Define an embedding
JiI"L I =I"XI" by jlx)=(falzx),i(x)) (x€2"L) and let A=j(2"L), s=j"':A—
2"L. Since fuS=pnnimla, by the choice of z, there exist k>n-+m and a map S:
I* I such that S coincides with the composition fo::-02" !fosoppim,k ON Primi(A4)
=AxI*"™ Since S~0 and Sppim.x: AXI*"™—3"L is a homotopy equivalence,
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+02™71p~0. This contradicts the choice of 8.

One can embeds X into @ and extend F to the CE-map G:Q—->QUrQ. 1t is
known that QU@ does not have the trivial shape (DS]), hence G is not a weak
domination. This implies that G is not approximately invertible.

[A1]

(AZ]
[(DW]

[Do]
[Dy]
[DS]
[H]
K]
(L]
[Ma]
(MR]
[(Mi]
[T]

W]
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