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ON CONDUCTOR OVERRINGS OF AN INTEGRAL DOMAIN

by

Akira OKABE

INTRODUCTION. Throughout this paper, $R$ will be an integral domain with
identity, and $K$ will be the quotient field of $R$ . By an overring of $R$ we shall
mean any integral domain $S$ between $R$ and $K$ A proper overring of $R$ is an
overring $S$ such that $R\neq S$. Any unexplained terminology is standard as in [3] or [6].

If $I$ is an ideal of $R$ , then $I;_{K}I=\{x\in K|xI\subseteq I\}$ is an overring of $R$ and fur-
thermore it is a subring of the ideal transform $T(I)=\bigcup_{n\Rightarrow 1}^{\infty}\{x\in K|xI^{n}\subseteq R\}$ . We shall
call $I;_{K}I$ the conductor overring of $R$ with respect to $I$.

In [8] Nagata has shown that if $I$ is an ideal of $R$ and $R^{\prime}$ is an overring of
$R$ such that $R\subseteq R^{\prime}\subseteq T(I)$ , then there exists a one-one correspondence between the
set of all prime ideals $P^{\prime}$ of $R^{\prime}$ not containing $IR^{\prime}$ and the set of all prime ideals
$P$ of $R$ not containing $I$. Furthermore, this correspondence can be realized in such
a manner that if $P$ corresponds to $P^{\prime}$ , then $P=P^{\prime}\cap R$ and $R_{P}=R_{P^{\prime}}^{\prime}$ . Hence, if $I$

is an ideal of $R$ then $P^{\prime}\rightarrow P^{\prime}\cap R$ is a one-one mapping from the set of all prime
ideals $P^{\prime}$ of $I;_{K}I$ not containing $I$ onto the set of all prime ideals $P$ of $R$ not
containing $I$.

Our results are divided into two sections. In Section 1 we show that if $I$ is
an ideal of $R$ then $P\rightarrow(P\cap I);_{K}I$ gives a one-one correspondence between the set
of all prime ideals $P$ of $R$ not containing $I$ and the set of all prime ideals $P^{\prime}$ of
$I;_{K}I$ not containing $I$.

In Section 2 we prove that if $I$ is an ideal of $R$ and $P$ is a prime ideal of $R$

not containing $I$, then $I:_{K}I/((P\cap I):_{K}I)$ is isomorphic to a subring of $(I+P)/P$ :
$L(I+P)/P$ with $L$ the quotient field of $R/P$. As a corollary, it will be shown that
if $P$ is a prime ideal of $R$ properly contained in an ideal $I$ of $R$, then $P;_{K}I$ is
not a maximal ideal of $I:_{K}I$.

1. SOME PRELIMINARY RESULTS
We first establish some general results concerning conductor overrings.

LEMMA 1.1. Let I be an ideal of $R$ and let $S$ be a proper overring of $R$.
(1) I is an ideal of $I;_{K}I$.
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(2) If we set $I_{(S)}=R:_{R}S$, then $S\subseteq I_{(S)};_{K}I_{(S)}$ .
(3) If $J$ is an ideal of $R$ such that $S\subseteq J;_{K}J$, then $J\subseteq I_{(S)}$ .
(4) If I is also an ideal of $S$, then $S\subseteq I;_{K}I$ and $I\subseteq I_{(S)}$ .
(5) $I;_{R}S$ is an ideal of $R$ and is contained in I. Furthermore if I is also an

ideal of $S$, then $I=I:_{R}S$.
(6) $I=I:_{R}(I;_{K}I)$ .
(7) If $J$ is an ideal of $R$ such that $J\subset I$, then $J;_{K}I$ is a proper ideal of $I;_{K}I$.

PROOF. (1) This is trivial.
(2) We first show that $I_{(S)}$ is an ideal of $S$. Let $x,$ $y\in I_{(S)}$ and $s\in S$. Since

$xS\subseteq R$ and $yS\subseteq R,$ $(x-y)S\subseteq xS+yS\subseteq R$ , and so $x-y\in I_{(S)}$ . Next, since $x\in I_{(S)}$ and
$s\in S,$ $xs\epsilon R$ and moreover $sS\subseteq S$, and therefore $(xs)S=x(sS)\subseteq xS\subseteq R$ . Thus $xs\in I_{(S)}$ ,

and therefore $I_{(S)}$ is an ideal of $S$ as we required. Then, since $I_{(S)}$ is an ideal of
$S$, it is clear that $S\subseteq I:I_{(S)}$ .

(3) By hypothesis, $JS\subseteq J\subseteq R$ and so $J\subseteq I_{(S)}$ .
(4) The first assertion is evident. Next, since $S\subseteq I;_{K}I$, the second assertion

follows immediately from (3).

(5) Let $x,$ $y\in I;_{R}S$ and $r\in R$ . Then $xS\subseteq I$ and $yS\subseteq I$, and so $(x-y)S\subseteq xS+$

$yS\subseteq I$. Thus $x-y\in I:_{R}S$. Next, since $(rx)S=r(xS)\subseteq rI\subseteq I,$ $rx\in I:_{R}S$. Thus 1: $RS$ is
an ideal of $R$ . Moreover, if $x\in I:_{R}S$ then $x=x1\in xS\subseteq I$, and hence $I:_{R}S\subseteq I$. Assume
furthermore that $I$ is an ideal of $S$. If $x\in I$, then $xS\subseteq I$ and so $I\subseteq I:_{R}S$ . Hence we
have $I=I:_{R}S$ as we wanted.

(6) Since $I$ is an ideal of $I:_{K}I$, our assertion follows from (5).

(7) Let $x,$ $y\in J;_{K}I$ and $t\in I;_{K}I$. Then $xI\subseteq J$ and $yI\subseteq J$, and therefore $(x-y)I$

$\subseteq xI+yl\subseteq J$. Thus $x-y\in J:_{K}I$. Next, $(xt)I=x(tI)\subseteq xI\subseteq J$ and hence $xt\in J;_{K}I$.
Therefore $J;_{K}I$ is an ideal of $I;_{K}I$. Assume that $J;_{K}I=I;_{K}I$. Then, since
$1\in I;_{K}I=J;_{K}I,$ $I=1I\subseteq J$ and so $I=J$, a contradiction. Therefore $J;_{K}I$ is a proper
ideal of $I;_{K}I$.

REMARK 1.2. Let $I$ be a proper ideal of $R$ . Then $I:_{K}I=K$ if and only if
$I=(0)$ . If $I;_{K}I=K$, then, by (1) of Lemma 1.1, $I$ is an ideal of a field $K$ and
hence $I=(0)$ . Conversely, if $I=(O)$ , then clearly $I;_{K}I=(0):_{K}(0)=K$

PROPOSITION 1.3. Let I be a nonzero ideal of $R$ and let $P$ be a prime ideal
of $R$ not containing I. Then

(1) $(P\cap I);_{K}I=\{x\in K|xI\subseteq P\cap I\}$ is a prime ideal of $I:_{K}I$.
(2) $((P\cap I):_{K}I)\cap R=P$.
(3) If $P^{\prime}$ is a prime ideal of $I:_{K}I$ such that $P^{\prime}\cap R=P$, then $P^{\prime}=(P\cap I):_{K}I$.
(4) $R_{P}=(I:_{K}I)_{((PnI):_{K}I)}$ .
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PROOF. (1) By Lemma 1.1 (7), $(P\cap I):_{K}I$ is a proper ideal of $I;_{K}I$. We shall

next prove that $(P\cap I):_{K}I$ is a prime ideal of $I:_{K}I$. To prove this, let $x,$ $y\in I;_{K}I$,

$xy\in(P\cap I);_{K}I$, and $x\not\in(P\cap I);_{K}I$. First, since $x\not\in(P\cap I);_{K}I$, there exists an ele-

ment $t\in I$ such that $xt\not\in P\cap I$. Then $xt\not\in P$, because $xt\in(I;_{K}I)I\subseteq I$. Now, if $r\in I$,

then $rt\in I$, and hence $(xt)(yr)=(xy)(tr)\in P\cap I\subseteq P$. But then, since $xt\in R\backslash P,$ $ yr\in$

(I: $KI$ ) $I\subseteq I\subset R,$ $(xt)(yr)\in P$ implies that $yr\in P$. Thus $yI\subseteq P$ and therefore $yI\subseteq P\cap I$,

that is, $y\in(P\cap I);_{K}I$. Hence it follows that $(P\cap I):_{K}I$ is a prime ideal of $I;_{K}I$.
(2) The containment $P\subseteq((P\cap I):_{K}I)\cap R$ is clear. To prove the reverse con-

tainment, let $x\in((P\cap I);_{K}I)\cap R$ . Choose $t\in I\backslash P$. Then $t\in R\backslash P,$ $x\in R$ , and $xt\in P$

and so $x\in P$, because $P$ is a prime ideal of $R$ .
(3) and (4) follow from Nagata’s theorem mentioned in Introduction, but here

we give direct proves.
(3) First, let $x\in P^{\prime}$ . Since $P^{\prime}$ is an ideal of $I;_{K}I,$ $xI\subseteq I\cap P^{\prime}=I\cap(R\cap P^{\prime})=I\cap P$

and so $x\in(P\cap I);_{K}I$. Thus $P^{\prime}\subseteq(P\cap I):_{K}I$. Conversely, let $x\in(P\cap I):_{K}I$. Then
$xI\subseteq P\cap I=P^{\prime}\cap I$. Choose $t\in I\backslash P$. Then $xt\in P^{\prime}\cap I\subseteq P^{\prime},$ $t\not\in P^{\prime}$ , and $x\in I;_{K}I$ and so
$x\in P^{\prime}$ , because $P^{\prime}$ is a prime ideal of $I:_{K}I$. Thus we also have $(P\cap I);_{K}I\subseteq P^{\prime}$ .

To prove (4), we need the following

LEMMA 1.4. If I is an ideal of $R$ and $P$ is a prime ideal of $R$ not containing
$I$, then $P\cap I$ is also an ideal of $I:_{K}I$.

PROOF. To prove this, we need to show that $(P\cap I)(I:_{K}I)=P\cap I$. The con-
tainment $P\cap I\subseteq(P\cap I)(I:_{K}I)$ is clear. To prove the reverse containment, let
$x\in(P\cap I)(I:_{K}I)$ . Then we can write $x=\sum a_{i}x_{i}$ , where $a_{i}\in P\cap I$ and $x_{i}\in I:_{K}I$. Now
if we choose $s\in I\backslash P$, then $x_{i}s\in(I:_{K}I)I\subseteq I\subseteq R$. Hence $xs=\sum a_{i}(x_{i}s)\in P\cap I\subseteq P$. But,

since $x\in(P\cap I)(I;_{K}I)\subseteq I\subseteq R$ and $s\in R\backslash P,$ $xs\in P$ implies that $x\in P$. Thus $x\in P\cap I$,

as desired.
Now let us return to the proof of (4) in Proposition 1.3. Since $P=((P\cap I)$ :

$KI)\cap R,$ $R_{P}\subseteq(I:_{K}I)_{((P\cap I);_{K}I)}$ . Conversely, let $x\in(I:_{K}I)_{((PnI);_{K}I)}$ . Then we can
write $x=a/b$ , where $a\in I;_{K}I$ and $b\not\in(P\cap I);_{K}I$. Since $b\not\in(P\cap I);_{K}I$, there exists
$t\in I$ such that $bt\not\in P\cap I$. Then necessarily $t\not\in P$. Assume the contrary. Then, since
$t\in I\cap P,$ $bt\in(P\cap I)(I;_{K}I)=P\cap I$, a contradiction. Thus $t\not\in P$ and therefore $t\not\in(P\cap I);_{K}I$.
Then $x=at/bt\in R_{P}$ , because $at\in I\subseteq R$ and $bt\in I\backslash P\subseteq R\backslash P$. This completes our
proof.

COROLLARY 1.5. Let I be an ideal of $R$ and let $P$ be a prime ideal of $R$ not
containing I. Then $P$ is a prime ideal of $I:_{K}I$ if and only if $P=(P\cap I):_{K}I$. In
particular, if $P$ is properly contained in $I$, then $P$ is a prime ideal of $I;_{K}I$ if and

only if $P=P;_{K}I$.
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PROOF. This follows immediately from Proposition 1.3.

REMARK 1.6. If $J\subset I$ are ideals of $R$ , then $J$ is not necessarily an ideal of
$I:_{K}l$. For example, let $k$ be a field and $R=k[X^{2}, X^{3}]$ be the subring of $k[X]$ .
Then $K=k(X)$ is the quotient field of $R$ . If we set $M=X^{2}R+X^{3}R$, then $M$ is a
maximal ideal of $R$ and $M;_{K}M=k[X]\neq R$ . Furthermore, if we take $I=X^{a}R\subset M$,
then $I$ is not an ideal of $M;_{K}M$, because $X^{3}\in I,$ $X\in M:_{K}M$, but $X^{3}X=X^{4}\not\in l$.

2. THE MAIN THEOREM

LEMMA 2.1. Let I be an ideal of $R$ and let $P$ be a prime ideal of $R$ not
containing I. Then, for an element $x\in I:_{K}I,$ $x\not\in(P\cap I):_{K}I$ if and only if $xt\not\in P\cap I$

for all $t\in I\backslash P$.

PROOF. The “ if “ half is trivial. Conversely, suppose that $x\not\in(P\cap I):_{K}I$. Then
there exists $t_{0}\in I$ such that $xt_{0}\not\in P\cap I$. Since $xt_{0}\in(I;_{K}I)I\subseteq I,$ $xt_{0}\not\in P$. Moreover, it
follows that $t_{0}\not\in P$. Suppose the contrary. Then, $xt_{0}\in(P\cap I)(I;_{K}I)=P\cap I$ by Lemma
1.4. But this contradicts the choice of $t_{0}$ . Thus $t_{0}\not\in P$ as required. Then, for any
element $t\in I\backslash P,$ $xt\in I\subseteq R$ and $(xt)t_{0}=(xt_{0})t\not\in P$, and therefore $xt\not\in P$. Thus $xt\not\in P\cap I$ for
all $t\in I\backslash P$, and the proof is completed.

Now we shall prove the main theorem.

THEOREM 2.2. Let I be an ideal of $R$ and let $P$ be a prime ideal of $R$ not
containing I. Then $I;_{K}I/((P\cap I):_{K}I)$ is isomorphic to a subring of $(I+P)/P$ :
$L(I+P)/P$, where $L$ is the quotient field of $R/P$.

PROOF. For each $x\in I:_{K}I$, we shall denote its coset $x+(P\cap I);_{K}I$ by $\tilde{x}$ , and,
for each $r\in R$, we shall denote its coset $r+P$ by $\overline{r}$ . Now we shall first define a
mapping $\Phi$ of $I:_{K}I/((P\cap I);_{K}I)$ into $(I+P)/P;_{L}(I+P)/P$ as follows: For each
$\tilde{x}\in I:_{K}I/((P\cap I);_{K}I)$ , we set $\Phi(\tilde{x})=\overline{xt}/\overline{t}$ where $t\in I\backslash P$. Let us first show that this
mapping $\Phi$ is well-defined. If $t$ and $u$ are any two elements of $I\backslash P,$ then $\overline{t}\overline{xu}=$

$\overline{txu}=\overline{xt}\overline{u}$ in $R/P$, and so $\overline{xt/}\overline{t}=\overline{xu}/\overline{u}$ in $L$ . Next, if $y$ is any other representative
of the coset $\tilde{x}$ , then $x-y\in(P\cap I);_{K}I$, and so, for any $t\in I\backslash P,$ $(x-y)t\in P\cap I\subseteq P$.
Hence $\overline{xt}=\overline{yt}$ in $R/P$, and so, $\overline{xt}/\overline{t}=\overline{yt}/\overline{t}$ in $L$ . Thus $\Phi(\tilde{x})=\overline{x}t/\overline{t}$ does depend only on
the coset $\tilde{x}$ , and not on the choice of a representative of $\tilde{x}$ and an element $t$ of
$I\backslash P$, and therefore the mapping $\Phi$ is well-defined. Next, let us show that $\Phi$ is
a ring homomorphism from $I;_{K}I/((P\cap I);_{K}I)$ into $L$ . To prove this, let $\tilde{x},\tilde{y}\in I$ :
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$KI/((P\cap I):_{K}I)$ . Then, for any $t\in I\backslash P,$
$(\overline{x+y)t}/\overline{t}=(\overline{xt+yt})/\overline{t}=(\overline{xt}+\overline{yt})/\overline{t}=\overline{xt}/\overline{t}+\overline{yt}/\overline{t}$ ,

and hence it follows that $\Phi(\tilde{x}+\tilde{y})=\Phi(x+y)=(\overline{x+y)t}/\overline{t}=\overline{xt}/\overline{t}+\overline{yt}/\overline{t}=\Phi(\tilde{x})+\Phi(\tilde{y})\sim$ . More-
over, for any $t\in I\backslash P,$ $\overline{xyt^{2}}\overline{/t^{2}}=\overline{(xt)(yt}$) $/\overline{t}^{2}=(\overline{x}t/\overline{t})(\overline{yt}/\overline{t})$ , and so we have $\Phi(\tilde{x}\tilde{y})=\Phi(xy)\sim$

$=\overline{xyt^{2}}\overline{/t^{2}}=(\overline{xt}/\overline{t})(\overline{yt}/\overline{t})=\Phi(\tilde{x})\cdot\Phi(\tilde{y})$ . Thus $\Phi$ is a ring homomorphism from $I;_{K}I/$

$((P\cap I);_{K}I)$ into $L$ . We shall now proceed to prove the injectivity of $\Phi$ . For
this, assume that $\Phi(\tilde{x})=0$ for some coset $\tilde{x}$ . Then $\overline{x}t=0$ in $R/P$ for all $t\in I\backslash P$,

so that $xt\in P\cap I$ for all $t\in I\backslash P$. Moreover, for any $s\in P\cap I$, we have, by Lemma
1.4, $xs\in(P\cap I)(I:_{K}I)=P\cap I$. Hence it follows that $xI\subseteq P\cap I$, that is, $x\epsilon(P\cap I);_{K}I$,

and so $\tilde{x}=0$ in $I:_{K}I/((P\cap I):_{K}I)$ as we asserted. It now remains to show that the
image of $I;_{K}I/((P\cap I);_{K}I)$ under $\Phi$ is actually contained in $(I+P)/P:_{L}(I+P)/P$.
To prove this, let $\tilde{x}\in I;_{K}I/((P\cap I):_{K}I)$ . Then, for any $\overline{r}\in(I+P)/P$ with $r\in I$, we
have $\Phi(\tilde{x})\overline{r}=((\overline{xt})/\overline{t})\overline{r}=\overline{xtr}/\overline{t}=\overline{xr}\cdot\overline{t}/\overline{t}=\overline{xr}\in(I+P)/P$, where $t\in I\backslash P$. Thus we have
$\Phi(\tilde{x})\in(I+P)/P:_{L}(I+P)/P$ for all $\tilde{x}\in I;_{K}I/((P\cap I);_{K}I$, and accordingly, $Im(\Phi)$ is act-
ually contained in $(I+P)/P:_{L}(I+P)/P$. Thus our proof is complete.

REMARK 2.3. It would be worth noting that the ring homomorphism $\Phi$ defined
in Theorem 2.2 is the identity mapping on $R/P$. In fact, by Proposition 1.3,
$R/P\subseteq I;_{K}I/((P\cap I):_{K}I)$ and moreover, for any $\overline{r}\in R/P,$ $\Phi(\overline{r})=\overline{rt}/\overline{t}=\overline{r}\cdot\overline{t}/\overline{t}=\overline{r}$ where
$t\in I\backslash P$. Thus $\Phi$ is the identity mapping on $R/P$.

COROLLARY 2.4. Let I be an ideal of $R$ and let $P$ be a prime ideal of $R$

not containing I. Then
(1) If $I+P=R$, then $I;_{K}I/((P\cap I):_{K}I$ is isomorphic to $R/P$.
(2) $P$ is a maximal ideal of $R$ if and only if $(P\cap I):_{K}I$ is a maximal ideal

of $I;_{K}I$.

PROOF. (1) If $I+P=R$, then we have $(I+P)/P:_{L}(I+P)P=R/P:_{L}R/P=R/P$,

where $L$ is the quotient field of $R/P$, and then by Theorem 2.2 and Remark 2.3,
$I;_{K}I/((P\cap I):_{K}I)$ is isomorphic to $R/P$ as we asserted.

(2) If $P$ is a maximal ideal of $R$ , then $I+P=R$ , since $I$ is not contained in
$P$. Then, by the above result (1), $I;_{K}I/((P\cap I):_{K}I)$ is a field, and accordingly,
$(P\cap I):_{K}I$ is a maximal ideal of $I:_{K}I$. Conversely, assume that $(P\cap I);_{K}I$ is a
maximal ideal of $I;_{K}I$. If $I+P=R$, then, by the above result (1), $P$ is also a
maximal ideal of $R$ . Hence, to prove that $P$ is a maximal ideal of $R$, it suffices
to show that $I+P=R$ . We shall now recall that by Theorem 2.2 and Remark
2.3, $I;_{K}I/((P\cap I);_{K}I)$ is isomorphic to an integral domain $T$ which is an overring

of $R/P$ and is contained in $(I+P)/P:_{L}(I+P)/P$. Now, by our assumption, $T$ is a
field, and so $T=(I+P)/P:_{L}(I+P)/P=L$ . Hence, if $I+P$ is a proper ideal of $R$ ,
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then, by Remark 1.2, $(I+P)/P=(O)$ in $R/P$ and therefore $I\subseteq P$, a contradiction.
Therefore we have $l+P=R$, as we wanted.

COROLLARY 2.5. If $P$ is a prime ideal of $R$ , then $dimP;{}_{K}P\geqq rankP$.

PROOF. If $P=(0)$ , then, by Remark 1.2, (0): $K(0)=K$ and hence dim(O): $K(0)=$

rank(O) $=0$ , whence our corollary is valid. Then assume that $P$ is a nonzero prime
ideal of rank $ r<\infty$ , and let (0) $\subset P_{1}\subset P_{2}\subset\cdots\subset P_{r-1}\subset P$ be a chain of distinct prime
ideals of $R$ . By Proposition 1.3, (0) $=(0):{}_{K}P\subset P_{1}$ : ${}_{K}P\subset\cdots\subset P_{r-1}$ : ${}_{K}P$ is a chain of
distinct proper prime ideals of $P:{}_{K}P$. Since, by Corollary 2.4, $P_{r-1}$ : ${}_{K}P$ is not a
maximal ideal of $P:{}_{K}P$, the ideal $P_{r-1}$ : ${}_{K}P$ is properly contained in a maximal ideal
$M$ of $P:{}_{K}P$. Then

(0) $\subset P_{1}$ : ${}_{K}P\subset P_{2}$ : ${}_{K}P\subset\cdots\subset P_{r-1}$ ; ${}_{K}P\subset M$

is a chain of length $r$ of distinct proper prime ideals of $P:{}_{K}P$. The assertion
follows immediately from this fact. Lastly, we assume that rank $P$ is infinite.
Then, as in the case of finite rank, it follows from Proposition 1.3 and Corollary
2.4 that $\dim P:{}_{K}P$ is infinite, and hence our proof is complete.

REMARK 2.6. If $P$ is a finitely generated prime ideal of $R$ , then Corollary
2.5 is evident. For, in this case, $P:{}_{K}P$ is integral over $R$ , and accordingly $\dim$

$P:{}_{K}P=\dim R\geqq rankP$.

COROLLARY 2.7. Let $(R, M)$ be a quasi-local domain. Then every maximal
ideal of $M;_{K}M$ lies over $M$

PROOF. Let $P$ be an arbitrary maximal ideal of $M;_{K}M$ Then we always
have $P\cap R\subseteq M$ If $Q=P\cap R\neq M$, then, by Proposition 1.3, $P=Q;_{K}M$ But then,
by Corollary 2.4, $P$ is not a maximal ideal of $M:_{K}M$, the desired contradiction.
Thus we have $P\cap R=M$, as asserted.
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