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ON CONDUCTOR OVERRINGS OF AN INTEGRAL DOMAIN
by

Akira OKABE

INTRODUCTION. Throughout this paper, R will be an integral domain with
identity, and K will be the quotient field of R. By an overring of R we shall
mean any integral domain S between R and K. A proper overring of R is an
overring S such that R+#S. Any unexplained terminology is standard as in [3] or [6].

If I is an ideal of R, then I:xl={xeK|xIC I} is an overring of R and fur-
thermore it is a subring of the ideal transform T(I )=O{xeleI "cR}. We shall
call I: xI the conductor overring of R with respect to "fl

In [8] Nagata has shown that if 7 is an ideal of R and R’ is an overring of
R such that R R’ T(I), then there exists a one-one correspondence between the
set of all prime ideals P’ of R’ not containing /R’ and the set of all prime ideals
P of R not containing 7. Furthermore, this correspondence can be realized in such
a manner that if P corresponds to P’, then P=P’N\R and Rp=R’p.. Hence, if [
is an ideal of R then P’ — P’N\R is a one-one mapping from the set of all prime
ideals P’ of I:xl not containing 7 onto the set of all prime ideals P of R not
containing 1.

Our results are divided into two sections. In Section 1 we show that if I is
an ideal of R then P—(PN\I): xl gives a one-one correspondence between the set
of all prime ideals P of R not containing I and the set of all prime ideals P’ of
I: %I not containing 1.

In Section 2 we prove that if 7 is an ideal of R and P is a prime ideal of R
not containing 7, then I:xI/((PN\I):xI) is isomorphic to a subring of (/+P)/P:
(I+P)/P with L the quotient field of R/P. As a corollary, it will be shown that
if P is a prime ideal of R properly contained in an ideal I of R, then P:kl is
not a maximal ideal of I: xl.

1. SOME PRELIMINARY RESULTS
We first establish some general results concerning conductor overrings.

LEMMA 1.1. Let I be an ideal of R and let S be a proper overring of R.
(1) I is an ideal of I:kl.
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(2) If we set Iis,=R:gS, then SCls,: xls).

(3) If J is an ideal of R such that SCJ: k], then J<Is,.

(4) If Iis also an ideal of S, then SCI: gl and IC I s,.

(5) I:gS is an ideal of R and is contained in I. Furthermore if I is also an
ideal of S, then I=1: gS.

6) I=I:g:gl).

(7) If J is an ideal of R such that JCI, then J:xlI is a proper ideal of I: kl.

Proor. (1) This is trivial.

(2) We first show that [(s, is an ideal of S. Let x,vyelws, and seS. Since
zSCR and ySCR, (x—y)SSxS+ySCR, and so x—yel,. Next, since xel, and
seS, xse€R and moreover sSCS, and therefore (zs)S=x(sS)cxSSR. Thus xsels,,
and therefore I, is an ideal of S as we required. Then, since [, is an ideal of
S, it is clear that SC /s : xles.

(3) By hypothesis, /SC/<S R and so JS (.

(4) The first assertion is evident. Next, since SCI: xI, the second assertion
follows immediately from (3).

(5) Let x,yel:gS and reR. Then xS</I and yS<I, and so (zx—y)SCxS+
yS<I. Thus x—yel:rS. Next, since (ra)S=r(xS)CrI<i, rxel:rS. Thus I:zS is
an ideal of R. Moreover, if x€l: zS then r=x1€xSC/, and hence I: pSCI. Assume
furthermore that 7 is an ideal of S. If xel, then xSC7and so IC/7:zS. Hence we
have I=1:gS as we wanted.

(6) Since [ is an ideal of [: I, our assertion follows from (5).

(7) Let z,yeJ:x[ and tel:xl. Then zI<] and y/</, and therefore (x—y)J
Caxl+ylc]. Thus x—yeJ:xl. Next, (xt)[=x(t)cxI=] and hence zfe]:kl.
Therefore J:xI is an ideal of [I:xl. Assume that J:xl=I71:xl. Then, since
lel: xkI=]:xl, I=11Ic] and so /=], a contradiction. Therefore /:x/ is a proper
ideal of 7: gl

REMARK 1.2. Let I be a proper ideal of R. Then [:x/=K if and only if
I=(0). If I:xI=K, then, by (1) of Lemma 1.1, 7 is an ideal of a field K and
hence I=(0). Conversely, if /=(0), then clearly 7:x/=(0): x(0)=K.

PropPOSITION 1.3. Let I be a nonzero ideal of R and let P be a prime ideal
of R not containing I. Then '

1) (PN :kl={xeK|xI<PN\I} is a prime ideal of I:kl.

2) (PN :x)N\R=P.

3) If P is a prime ideal of I[:xI such that PN\R=P, then P'=(PNI):kl.

4) Rp=(I: KI)((PnI):KI)-
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Proor. (1) By Lemma 1.1 (7), (PN\I): I is a proper ideal of [:xl. We shall
next prove that (PN\I):x[ is a prime ideal of I:xl. To prove this, let x,yel: I,
zye(PNI): kI, and x¢(PN\I):xl. TFirst, since z¢(P\I):xl, there exists an ele-
ment ze/ such that zt¢PN\I. Then xzt¢P, because xte(l:xI)ISI. Now, if rel,
then 7tel, and hence (xt)(yr)=(xy)tr)ePN\ISP. But then, since xte R\ P, yre
(I:xDICICR, (xt)(yr)eP implies that yreP. Thus y/CP and therefore yIS PN/,
that is, ye(PN\I):xI. Hence it follows that (PN\I): &/ is a prime ideal of I: k.

(2) The containment PS((PN\I):xI)N\R is clear. To prove the reverse con-
tainment, let ze((PN\I): xI)\R. Choose teI\P. Then teR\ P, ze¢R, and xteP
and so zeP, because P is a prime ideal of R.

(3) and (4) follow from Nagata’s theorem mentioned in Introduction, but here
we give direct proves.

(3) First, let xzeP’. Since P’ is an ideal of I: kI, zxICINP =IN(RNP)=INP
and so ze(PN\I):xI. Thus PP<(PN\I):xI. Conversely, let ze(PN\I):xl. Then
zIc PN\I=P'NI. Choose teI\P. Then zteP’N\ISP’,t¢P’, and xel:xl and so
xzeP’, because P’ is a prime ideal of 7:xI. Thus we also have (PN\I):xISP’.

To prove (4), we need the following

LemMmA 1.4. If I is an ideal of R and P is a prime ideal of R not containing
I, then PN\ is also an ideal of I:kl.

Proor. To prove this, we need to show that (PN\I)({:xI)=PN\I. The con-
tainment PNIS(PNI)I:xI) is clear. To prove the reverse containment, let
ze(PNI)I: xI). Then we can write x= Y a:x;, Where a;€ PN\I and x;€l:xl. Now
if we choose seI\ P, then x;se(l:x[)ISICR. Hence xs=Yaixis)e P\ICP. But,
since xe(PN\)I: xI)CICR and se R\ P, xseP implies that zeP. Thus xePN],
as desired.

Now let us return to the proof of (4) in Proposition 1.3. Since P=((PNI):
kDR, RpS(L: gl)«pnn> : o D>- Conversely, let xe(l:xl)«pnn: o> Then we can
write z=a/b, where ael:xl and b&(PN\I):xl. Since b§(PNI):xl, there exists
tel such that b#2¢P"\I. Then necessarily t¢P. Assume the contrary. Then, since
teINP, bte(PNI)I: xI)=PN\I, a contradiction. Thus #¢P and therefore t¢(PN\[): xI.
Then z=at/bte Rp, because ateISR and bteIN\PSR\P. This completes our
proof.

COROLLARY 1.5. Let I be an ideal of R and let P be a prime ideal of R not
containing 1. Then P is a prime ideal of I:xI if and only if P=(PN\I):xl. In
particular, if P is properly contained in I, then P is a prime ideal of I: &l if and
only if P=P: gl
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Proor. This follows immediately from Proposition 1.3.

REMARK 1.6. If JcI are ideals of R, then J is not necessarily an ideal of
I:xl. For example, let £ be a field and R=Fk[X? X*] be the subring of A[X].
Then K=k(X) is the quotient field of R. If we set M=X2R+X*R, then M is a
maximal ideal of R and M:xM=F[X]#R. Furthermore, if we take I=X SRc M,
then 7 is not an ideal of M: xM, because X®el, XeM: xM, but X*X=X*¢l.

2. THE MAIN THEOREM

LEMMA 2.1. Let I be an ideal of R and let P be a prime ideal of R not
containing 1. Then, for an element xel: xl, x6(PN\I): xI if and only if xzt¢PNI
Jor all teI\ P.

Proor. The “if” half is trivial. Conversely, suppose that z¢(P\I): xI. Then
there exists #,€/ such that xt¢PN\I. Since xtoe(l:xI)IC I, xt,4P. Moreover, it
follows that #,¢P. Suppose the contrary. Then, xtoe(PNI)XI: xI)=PNI by Lemma
1.4. But this contradicts the choice of #. Thus #&P as required. Then, for any
element te/\ P, xteIC R and (xt)t,=(xt,)t¢ P, and therefore zt¢P. Thus zt¢ PN\ for
all te/\ P, and the proof is completed.

Now we shall prove the main theorem.

THEOREM 2.2. Let I be an ideal of R and let P be a prime ideal of R not
containing 1. Then I.xI|(PNI):kl) is isomorphic to a subring of (I+P)/P:
L(I+P)|P, where L is the quotient field of R|P.

Proor. For each zel: kI, we shall denote its coset xz+(PN\I):xI by #, and,
for each reR, we shall denote its coset r+P by #. Now we shall first define a
mapping @ of I:xI/(PN\I):x[) into (I+P)/P: (I+P)/P as follows: For each
zel: g IJ(PNI): xI), we set O(%)==xt/f where teI\ P. Let us first show that this
mapping @ is well-defined. If ¢ and # are any two elements of /\ P, then fzu=
txu=xtu in R|P, and so xfff=zufi in L. Next, if y is any other representative
of the coset & then z—ye(PNI):xl, and so, for any teI\P,(z—y)te PN\ICP.
Hence zt=yt in R/P, and so, z¢/f =yt/f in L. Thus &(z)=x/f does depend only on
the coset %, and not on the choice of a representative of # and an element # of
I\P, and therefore the mapping @ is well-defined. Next, let us show that @ is
a ring homomorphism from I: xI/((PN\I): &) into L. To prove this, let &, gel:
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=IJ(PN\I): xI). Then, for any tel\ P, (z+)t/F=(wt+yb)]T = (xt+yb)[f =zt T +yt/f,
and hence it follows that @(a?+g7)=(b(m)=(m/f = xt/f +yt/T=0(%)+D(F). More-
over, for any teI\ P, zyt*/t*=(zt)(yt)/f*=(zt/T)(yt/f), and so we have @(5@):@(%)
=zyljE=(2t/H)(t/[)=0(%)-0(F). Thus @ is a ring homomorphism from I: gl
((PNI):xI) into L. We shall now proceed to prove the injectivity of @. For
this, assume that @(#)=0 for some coset Z. Then zt=0 in R/P for all teI\ P,
so that xte PN\I for all te/\P. Moreover, for any se P\, we have, by Lemma
1.4, zse(PN\I){: xI)=PN\I. Hence it follows that /< PN\I, that is, ze(PNI) ixl,
and so =0 in I: xI/(PNI):x[) as we asserted. It now remains to show that the
image of I:xI/(PN\I):&I) under @ is actually contained in ([+P)/P: . (I+P)/P.
To prove this, let #el: xI/(PN\I):xI). Then, for any 7e(/+P)/P with rel, we
have O(z)7=((zt)[f)7=atr/f =zr-T/f=zre(I+P)/P, where teI\P. Thus we have
O(x)e(I+P)/P: t(I+P)|P for all zel: xI[(PNI): &I, and accordingly, Im(®) is act-
ually contained in (/4 P)/P: (I+P)/P. Thus our proof is complete.

REMARK 2.3. It would be worth noting that the ring homomorphism @ defined
in Theorem 2.2 is the identity mapping on R/P. In fact, by Proposition 1.3,
R|PCI: xI/(PN\I):xI) and moreover, for any 7€R/P, O(F)=rt/f=7-F/f=F where
teI\P. Thus @ is the identity mapping on R/P.

COROLLARY 2.4. Let I be an ideal of R and let P be a prime ideal of R
not containing I. Then

Q) If I+P=R, then I.xI|((PNI):kl is isomorphic to R/P.

(2) P is a maximal ideal of R if and only if (PN\I):xl is a maximal ideal
of I:gl

Proor. (1) If I+P=R, then we have (/+P)/P: [+ P)P=R|P: . R/P=R|P,
where L is the quotient field of R/P, and then by Theorem 2.2 and Remark 2.3,
I:xI/((PN\I): gI) is isomorphic to R/P as we asserted.

(2) If P is a maximal ideal of R, then I+ P=R, since I is not contained in
P. Then, by the above result (1), I:xI/(PN\I):xI) is a field, and accordingly,
(PNI): kI is a maximal ideal of I:xl. Conversely, assume that (PN\I):x[ is a
maximal ideal of I:xl. If [+ P=R, then, by the above result (1), P is also a
maximal ideal of R. Hence, to prove that P is a maximal ideal of R, it suffices
to show that I+P=R. We shall now recall that by Theorem 2.2 and Remark
2.3, I:xI|/((PN\I): gI) is isomorphic to an integral domain 7" which is an overring
of R/P and is contained in (/+P)/P:(I[+P)/P. Now, by our assumption, T is a
field, and so T=({+P)/P: .(I+P)/P=L. Hence, if I+P is a proper ideal of R,
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then, by Remark 1.2, (/+P)/P=(0) in R/P and therefore Ic P, a contradiction.
Therefore we have I+ P=R, as we wanted. -

CorROLLARY 2.5. If P is a prime ideal of R, then dim P:xP=rank P.

Proor. If P=(0), then, by Remark 1.2, (0): x(0)=K and hence dim(0) : x(0)=
rank(0)=0, whence our corollary is valid. Then assume that P is a nonzero prime
ideal of rank r<oo, and let (0)cP,cP,c---CcP,_,CP be a chain of distinct prime
ideals of R. By Proposition 1.3, (0)=(0): xPcP,:xPC---cP,_,: P is a chain of
distinct proper prime ideals of P:xP. Since, by Corollary 2.4, P,_,:xP is not a
maximal ideal of P: kP, the ideal P,_,: P is properly contained in a maximal ideal
M of P:xP. Then

O)cP :xkPcP,:xPC---CP,_,: xPcM

is a chain of length » of distinct proper prime ideals of P:xP. The assertion
follows immediately from this fact. Lastly, we assume that rank P is infinite.
Then, as in the case of finite rank, it follows from Proposition 1.3 and Corollary
2.4 that dim P:xP is infinite, and hence our proof is complete.

ReEMARK 2.6. If P is a finitely generated prime ideal of R, then Corollary
2.5 is evident. For, in this case, P: P is integral over R, and accordingly dim
P: xP=dim R=rank P.

CorOLLARY 2.7. Let (R, M) be a quasi-local domain. Then every maximal
ideal of M: xM lies over M.

Proor. Let P be an arbitrary maximal ideal of M:xM. Then we always
have PNRS M. 1If Q=PN\R+M, then, by Proposition 1.3, P=Q:xM. But then,
by Corollary 2.4, P is not a maximal ideal of M:xM, the desired contradiction.
Thus we have P\R=M, as asserted.

References

[1] Arnold, J.T. and Brewer, J. W., On flat overrings, ideal transforms and generalized
transforms of a commutative ring, J. Algebra, 18 (1971), 254-263.
(2] Fossum, R.M., The Divisor Class Group of a Krull Domain, Springer-Verlag, New

York, 1973.
[3] Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
[4] ——— Multiplicative Ideal Theory, Queen’s Papers in Pure and Applied Mathemat-

ics, No. 12, Queen’s Univ. Press, Kingston, Ontario, 1968.

[5] Huckaba, J. A. and Papick, I.]J., When the dual of an ideal is a ring, Manuscripta
Math., 37 (1982), 67-85.

[6] Kaplansky, I, Commutative Rings, Allyn and Bacon, Inc., Boston, 1970.



On conductor overrings of an integral domain 75

| 7] Larsen, M.D. and McCarthy, P.J., Multiplicative theory of ideals, Academic Press,
New York and London, 1971.

| 8| Nagata, M., A treatise on the 14-th problem of Hilbert, Mem. Coll. Sci. Univ. Kyoto
Ser. A Math., 30 (1956-57), 57-70.

Gunma Technical College
Toba-cho, Maebashi
371 Japan



	ON CONDUCTOR OVERRINGS ...
	1. SOME PRELIMINARY RESULTS
	2. THE MAIN THEOREM
	References


