ON CONDUCTOR OVERRINGS OF AN INTEGRAL DOMAIN

by

Akira OKABE

INTRODUCTION. Throughout this paper, R will be an integral domain with identity, and K will be the quotient field of R . By an *overring* of R we shall mean any integral domain S between R and K . A proper overring of R is an overring S such that $R\!\neq\! \mathrm{S}\!$. Any unexplained terminology is standard as in [\[3\]](#page-5-0) or [\[6\].](#page-5-1)

If I is an ideal of R, then $I:_{K}I=\{x\in K|xI\subseteq I\}$ is an overring of R and furthermore it is a subring of the *ideal transform* $T(I) = \bigcup_{n\geq 1} \{x \in K | xI^{n}\subseteq R\}$. We shall call $I:_{K}I$ the *conductor overring* of R with respect to I .

In [8] Nagata has shown that if I is an ideal of R and R^{\prime} is an overring of R such that $R \subseteq R^{\prime} \subseteq T(I)$, then there exists a one-one correspondence between the set of all prime ideals P^{\prime} of R^{\prime} not containing IR^{\prime} and the set of all prime ideals P of R not containing I . Furthermore, this correspondence can be realized in such a manner that if P corresponds to P', then $P = P^{\prime} \cap R$ and $R_{P} = R^{\prime} P$. Hence, if I is an ideal of R then $P^{\prime}\rightarrow P^{\prime}\cap R$ is a one-one mapping from the set of all prime ideals P^{\prime} of $I:_{K}I$ not containing I onto the set of all prime ideals P of R not $containing I.$

Our results are divided into two sections. In Section 1 we show that if I is an ideal of R then $P\rightarrow(P\cap I):_{K}I$ gives a one-one correspondence between the set of all prime ideals P of R not containing I and the set of all prime ideals P^{\prime} of $I:_{K}I$ not containing $I.$

In Section 2 we prove that if I is an ideal of R and P is a prime ideal of R not containing I, then $I:_{K}I/((P\cap I):_{K}I)$ is isomorphic to a subring of $(I+P)/P$: $L(L+P)/P$ with L the quotient field of R/P . As a corollary, it will be shown that if P is a prime ideal of R properly contained in an ideal I of R , then $P:_{K}I$ is not a maximal ideal of $I:_{K}I$.

1. SOME PRELIMINARY RESULTS

We first establish some general results concerning conductor overrings.

LEMMA 1.1. Let I be an ideal of R and let S be a proper overring of R . (1) I is an ideal of $I:_{K}I$.

Received May 24, 1983.

70 Akira OKABE

(2) If we set $I_{(S)}=R:_{R}S$, then $S\subseteq I_{(S)}:_{K}I_{(S)}$.

(3) If *J* is an ideal of R such that $S \subseteq J :_{K}J$, then $J \subseteq I_{(S)}$.

(4) If I is also an ideal of S, then $S \subseteq I:_{K}I$ and $I \subseteq I_{(S)}$.

(5) $I:_{R}S$ is an ideal of R and is contained in I. Furthermore if I is also an ideal of S, then $I = I : {}_{R}S$.

(6) $I=I:_{R}(I:_{K}I).$

(7) If *J* is an ideal of R such that $J\subset I$, then $J:_{K}I$ is a proper ideal of $I:_{K}I$.

PROOF. (1) This is trivial.

(2) We first show that $I_{(S)}$ is an ideal of S. Let $x, y \in I_{(S)}$ and $s \in S$. Since $xS\subseteq R$ and $yS\subseteq R$, $(x-y)S\subseteq xS+yS\subseteq R$, and so $x-y\in I_{(S)}$. Next, since $x\in I_{(S)}$ and $s\in S$, $xs\in R$ and moreover $sS\subseteq S$, and therefore $(xs)S=x(sS)\subseteq xS\subseteq R$. Thus $xs\in I_{(S)}$, and therefore $I_{(S)}$ is an ideal of S as we required. Then, since $I_{(S)}$ is an ideal of S, it is clear that $S \subseteq I_{(S)}$: $_K I_{(S)}$.

(3) By hypothesis, $JS\subseteq J\subseteq R$ and so $J\subseteq I_{(S)}$.

(4) The first assertion is evident. Next, since $S \subseteq I:_{K}I$, the second assertion follows immediately from (3).

(5) Let $x, y \in I: R S$ and $r \in R$. Then $xS \subseteq I$ and $yS \subseteq I$, and so $(x-y)S \subseteq xS+$ $yS\subseteq I$. Thus $x-y\in I:_{R}S$. Next, since $(rx)S=r(xS)\subseteq rI\subseteq I$, $rx\in I:_{R}S$. Thus $I:_{R}S$ is an ideal of R. Moreover, if $x \in I:_{R}S$ then $x = x1\epsilon xS \subseteq I$, and hence $I:_{R}S \subseteq I$. Assume furthermore that I is an ideal of S. If $x \in I$, then $xS \subseteq I$ and so $I \subseteq I:_{R}S$. Hence we have $I=I:_{R}S$ as we wanted.

(6) Since I is an ideal of $I:_{K}I$, our assertion follows from (5).

(7) Let $x, y \in J:_{K}I$ and $t \in I:_{K}I$. Then $xI\subseteq J$ and $yI\subseteq J$, and therefore $(x-y)I$ \subseteq $xI+yI\subseteq J$. . Thus $x-y\epsilon J:_{K}I$. Next, $(xt)I=x(tI)\subseteq xI\subseteq J$ and hence $xt\epsilon J:_{K}I$. Therefore $J:_{K}I$ is an ideal of $I:_{K}I$. Assume that $J:_{K}I=I:_{K}I$. Then, since $1\in I:_{K}I=J:_{K}I, I=1I\subseteq J$ and so $I=J$, a contradiction. Therefore $J:_{K}I$ is a proper ideal of $I:_{K}I$.

REMARK 1.2. Let I be a proper ideal of R. Then $I:_{K}I=K$ if and only if $I=(0)$. If $I:_{K}I=K$, then, by (1) of Lemma 1.1, I is an ideal of a field K and hence $I=(0)$. Conversely, if $I=(0)$, then clearly $I:_{K}I=(0):_{K}(0)=K$.

PROPOSITION 1.3. Let I be a nonzero ideal of R and let P be a prime ideal of R not containing I . Then

- (1) $(P\cap I):_{K}I=\{x\in K|xI\subseteq P\cap I\}$ is a prime ideal of $I:_{K}I$.
- (2) $((P\bigcap I):_{K}I)\bigcap R=P$.
- (3) If P^{\prime} is a prime ideal of $I:_{K}I$ such that $P^{\prime}\cap R=P$, then $P^{\prime}=(P\cap I):_{K}I$.
- (4) $R_{P}=(I:_{K}I)_{((P\cap I):_{K}I)}$

PROOF. (1) By Lemma 1.1 (7), $(P \cap I):_{K}I$ is a proper ideal of $I:_{K}I$. We shall next prove that $(P \cap I):_{K}I$ is a prime ideal of $I:_{K}I$. To prove this, let $x, y \in I:_{K}I$, $xy\in(P\cap I):_{K}I$, and $x\notin(P\cap I):_{K}I$. First, since $x\notin(P\cap I):_{K}I$, there exists an element $t \in I$ such that $xt \notin P \cap I$. Then $xt \notin P$, because $xt \in (I:_{K}I)I \subseteq I$. Now, if $r \in I$, then $rt\epsilon I$, and hence $(xt)(yr)=(xy)(tr)\epsilon P\cap I\subseteq P$. But then, since $xt\epsilon R\setminus P$, $yr\epsilon$ $(I:_{K} I) I \subseteq I \subseteq R$, $(xt)(yr)\in P$ implies that $yr\in P$. Thus $yI \subseteq P$ and therefore $yI \subseteq P\cap I$, that is, $y\in(P\cap I):_{K}I$. Hence it follows that $(P\cap I):_{K}I$ is a prime ideal of $I:_{K}I$.

(2) The containment $P\subseteq ((P\cap I):_{K}I)\cap R$ is clear. To prove the reverse containment, let $x \in ((P \cap I):_{K}I) \cap R$. Choose $t \in I \setminus P$. Then $t \in R \setminus P$, $x \in R$, and $xt \in P$ and so $x \in P$, because P is a prime ideal of R .

(3) and (4) follow from Nagata's theorem mentioned in Introduction, but here we give direct proves.

(3) First, let $x \in P^{\prime}$. Since P' is an ideal of $I:_{K}I, xI \subseteq I\cap P^{\prime}=I\cap (R\cap P^{\prime})=I\cap P$ and so $x\in(P\cap I):_{K}I$. Thus $P^{\prime}\subseteq (P\cap I):_{K}I$. Conversely, let $x\in(P\cap I):_{K}I$. Then $xI\subseteq P\cap I=P^{\prime}\cap I$. Choose $t\in I\diagdown P$. Then $xt\in P^{\prime}\cap I\subseteq P^{\prime}$, $t\notin P^{\prime}$, and $x\in I:_{K}I$ and so $x \in P^{\prime}$, because P' is a prime ideal of $I:_{K}I$. Thus we also have $(P \cap I):_{K}I \subseteq P^{\prime}$.

To prove (4), we need the following

LEMMA 1.4. If I is an ideal of R and P is a prime ideal of R not containing I, then $P\bigcap I$ is also an ideal of $I:_{K}I.$

PROOF. To prove this, we need to show that $(P\cap I)(I:_{K}I)=P\cap I$. The containment $P\bigcap I\subseteq (P\bigcap I)(I:_{K}I)$ is clear. To prove the reverse containment, let $x\in(P\cap I)(I:_{K}I)$. Then we can write $x=\sum a_{i}x_{i}$, where $a_{i}\in P\cap I$ and $x_{i}\in I:_{K}I$. Now if we choose $s\in I\setminus P$, then $x_{i}s\in(I:_{K}I)I\subseteq I\subseteq R$. Hence $xs=\sum a_{i}(x_{i}s)\in P\cap I\subseteq P$. But, since $x\in(P\cap I)(I:_{K}I)\subseteq I\subseteq R$ and $s\in R\diagdown P,$ $xs\in P$ implies that $x\in P$. Thus $x\in P\cap I,$ as desired.

Now let us return to the proof of (4) in Proposition 1.3. Since $P=(P\cap I)$: $K/I\cap R, R_{P}\subseteq(I:_{K}I)_{((P\cap I):_{K}I)}$. Conversely, let $x\in(I:_{K}I)_{((P\cap I):_{K}I)}$. Then we can write $x=a/b$, where $a\in I:_{K}I$ and $b\notin(P\cap I):_{K}I$. Since $b\notin(P\cap I):_{K}I$, there exists $t\in I$ such that $bt\not\in P\cap I$. Then necessarily $t\not\in P$. Assume the contrary. Then, since $t\in I\cap P$, $bt\in(P\cap I)(I:_{K}I)=P\cap I$, a contradiction. Thus $t\not\in P$ and therefore $t\notin(P\cap I):_{K}I$. Then $x=at/bt\in R_{P}$, because $at\in I\subseteq R$ and $bt\in I\setminus P\subseteq R\setminus P$. This completes our proof.

COROLLARY 1.5. Let I be an ideal of R and let P be a prime ideal of R not containing I. Then P is a prime ideal of $I:_{K}I$ if and only if $P=(P\cap I):_{K}I$. In particular, if P is properly contained in I, then P is a prime ideal of $I:_{K}I$ if and only if $P=P:_{K}I.$

72 Akira OKABE

PROOF. This follows immediately from Proposition 1.3.

REMARK 1.6. If $J\subset I$ are ideals of R, then J is not necessarily an ideal of I: K . For example, let k be a field and $R=k[X^{2}, X^{3}]$ be the subring of $k[X]$. Then $K=k(X)$ is the quotient field of R. If we set $M=X^{2}R+X^{3}R$, then M is a maximal ideal of R and $M:_{K}M=k[X]\neq R$. Furthermore, if we take $I=X^{3}R\subset M$, then I is not an ideal of $M:_{K}M,$ because $X^{s}\in I,$ $X\in M:_{K}M,$ but $X^{s}X=X^{s}\notin I.$

2. THE MAIN THEOREM

LEMMA 2.1. Let I be an ideal of R and let P be a prime ideal of R not containing I. Then, for an element $x\in I:_{K}I, x\notin(P\cap I):_{K}I$ if and only if $xt\notin P\cap I$ for all $t \in I \setminus P$.

Proof. The "if" half is trivial. Conversely, suppose that $x \notin (P \cap I):_{K}I$. Then there exists $t_{0}\in I$ such that $xt_{0}\notin P\cap I$. Since $xt_{0}\in(I;_{K}I)I\subseteq I$, $xt_{0}\notin P$. Moreover, it follows that t_{0} $\not\in$ P . Suppose the contrary. Then, xt_{0} \in $(P\cap I)(I:_{K}I)=P\cap I$ by Lemma 1.4. But this contradicts the choice of t_{0} . Thus $t_{0}\notin P$ as required. Then, for any element $t\in I\diagdown P, \ xt\in I\subseteq R$ and $(xt)t_{0}=(xt_{0})t\in P,$ and therefore $xt\in P.$ Thus $xt\in P\bigcap I$ for all $t \in I \setminus P$, and the proof is completed.

Now we shall prove the main theorem.

THEOREM 2.2. Let I be an ideal of R and let P be a prime ideal of R not containing I. Then $I:_{K}I/((P\cap I):_{K}I)$ is isomorphic to a subring of $(I+P)/P$: $L(I+P)/P$, where L is the quotient field of R/P.

Proof. For each $x \in I:_{K}I$, we shall denote its coset $x+(P\cap I):_{K}I$ by \tilde{x} , and, for each $r \in R$, we shall denote its coset $r + P$ by \bar{r} . Now we shall first define a mapping Φ of $I:_{K}I/((P\cap I):_{K}I)$ into $(I+P)/P:_{L}(I+P)/P$ as follows: For each $\tilde{x}\in I:_{K}I/((P\cap I):_{K}I)$, we set $\Phi(\tilde{x})=\overline{xt}/\overline{t}$ where $t\in I\setminus P$. Let us first show that this mapping Φ is well-defined. If t and u are any two elements of $I\setminus P$, then $\overline{txu}=$ $\tau xu = xtu$ in R/P , and so $\overline{xt}/\overline{t} = xu/\overline{u}$ in L . Next, if y is any other representative of the coset \tilde{x} , then $x-y\in(P\cap I):_{K}I$, and so, for any $t\in I\setminus P$, $(x-y)t\in P\cap I\subseteq P$. Hence $xt = yt$ in R/P , and so, $xt/\overline{t} = yt/\overline{t}$ in L . Thus $\Phi(\tilde{x}) = \overline{xt}/\overline{t}$ does depend only on the coset \tilde{x} , and not on the choice of a representative of \tilde{x} and an element t of $I\diagdown P$, and therefore the mapping Φ is well-defined. Next, let us show that Φ is a ring homomorphism from $I:_{K}I/((P\cap I):_{K}I)$ into L. To prove this, let $\tilde{x},\tilde{y}\in I$:

 $\begin{aligned} KI\vert\langle\left(P\cap I\right):_{K}I\rangle. \end{aligned}$ Then, for any $t\in I\diagdown P, (\alpha+y)t/\overline{t}=(xt+yt)/\overline{t}=(xt+yt)/\overline{t}=xt/\overline{t}+yt/\overline{t},$ and hence it follows that $\Phi(\tilde{x}+\tilde{y})\!=\!\Phi(x+y)\!=\!(x+y)t/\bar{t}=xt/\bar{t}+yt/\bar{t}=\Phi(\tilde{x})+\Phi(\tilde{y})\hspace{0.5mm}.$ Moreover, for any $t \in I \setminus P$, $\overline{xyt^2/t^2} = \overline{(xt)(yt)}/t^2 = \overline{(xt/t)}/\overline{(yt/t)}$, and so we have $\Phi(\tilde{x}\tilde{y}) = \Phi(xy)$ $=\overline{xyt^{2}/t^{2}}=(\overline{xt}/\overline{t})(\overline{yt}/\overline{t})=\Phi(\tilde{x})\cdot\Phi(\tilde{y})$. Thus Φ is a ring homomorphism from $I:_{K}I/\overline{t}$ $((P \cap I):_{\mathbf{K}} I)$ into L. We shall now proceed to prove the injectivity of Φ . For this, assume that $\Phi(\tilde{x})=0$ for some coset \tilde{x} . Then $\overline{x}t=0$ in R/P for all $t\in I\setminus P$, so that $xt\in P\cap I$ for all $t\in I\setminus P$. Moreover, for any $s\in P\cap I$, we have, by Lemma 1.4, $xs\in(P\cap I)(I:_{K}I)=P\cap I$. Hence it follows that $xI\subseteq P\cap I$, that is, $x\in(P\cap I):_{K}I$, and so $\tilde{x}=0$ in $I:_{K}I/((P\cap I):_{K}I)$ as we asserted. It now remains to show that the image of $I:_{K}I/((P\cap I):_{K}I)$ under Φ is actually contained in $(I+P)/P:_{L}(I+P)/P$. To prove this, let $\tilde{x}\in I:_{K}I/((P(\bigcap I):_{K}I)$. Then, for any $\tilde{r}\in(I+P)/P$ with $r\in I$, we have $\Phi(\tilde{x})\tilde{r}=((\overline{xt})/\tilde{t})\tilde{r}=xt\tilde{r}/\tilde{t}=xr\cdot\tilde{t}/\tilde{t}=xr\epsilon(I+P)/P$, where $t\in I\diagdown P$. Thus we have $\Phi(\tilde{x})\epsilon(I+P)/P:_{L}(I+P)/P$ for all $\tilde{x}\epsilon I:_{K}I/((P\cap I):_{K}I,$ and accordingly, $Im(\Phi)$ is actually contained in $(I+P)/P:_{L}(I+P)/P$. Thus our proof is complete.

REMARK 2.3. It would be worth noting that the ring homomorphism Φ defined in Theorem 2.2 is the identity mapping on R/P . In fact, by Proposition 1.3, $R/P\subseteq I:_{K}I/((P\cap I):_{K}I)$ and moreover, for any $\overline{r}\in R/P, \Phi(\overline{r})=\tau t/\overline{t}=\overline{r}\cdot\overline{t}/\overline{t}=\overline{r}$ where $t \in I \setminus P$. Thus Φ is the identity mapping on R/P .

COROLLARY 2.4. Let I be an ideal of R and let P be a prime ideal of R not containing I. Then

(1) If $I+P=R$, then $I:_{K}I/((P\cap I):_{K}I$ is isomorphic to R/P .

(2) P is a maximal ideal of R if and only if $(P\cap I):_{K}I$ is a maximal ideal of $I:_{K}I.$

PROOF. (1) If $I+P=R$, then we have $(I+P)/P:_{L}(I+P)P=R/P:_{L}R/P=R/P,$ where L is the quotient field of R/P , and then by Theorem 2.2 and Remark 2.3, $I:_{K}I/(P\cap I):_{K}I$ is isomorphic to R/P as we asserted.

(2) If P is a maximal ideal of R, then $I+P=R$, since I is not contained in P. Then, by the above result (1), $I:_{K}I/((P\cap I):_{K}I)$ is a field, and accordingly, $(P\cap I):_{\kappa}I$ is a maximal ideal of $I:_{\kappa}I$. Conversely, assume that $(P\cap I):_{\kappa}I$ is a maximal ideal of $I:_{\kappa}I$. If $I+P=R,$ then, by the above result (1), P is also a maximal ideal of R. Hence, to prove that P is a maximal ideal of R, it suffices to show that $I+P=R$. We shall now recall that by Theorem 2.2 and Remark 2.3, $I:_{K}I/(P(\gamma I):_{K}I)$ is isomorphic to an integral domain T which is an overring of R/P and is contained in $(I+P)/P:_{L}(I+P)/P$. Now, by our assumption, T is a field, and so $T=(I+P)/P:_{L}(I+P)/P=L$. Hence, if $I+P$ is a proper ideal of R,

74 Akira OKABE

then, by Remark 1.2, $(I+P)/P = (0)$ in R/P and therefore $I\subseteq P$, a contradiction. Therefore we have $I+P=R$, as we wanted.

COROLLARY 2.5. If P is a prime ideal of R, then $\dim P: {}_{K}P \geq$ rank P.

PROOF. If $P=(0)$, then, by Remark 1.2, $(0): K(0)=K$ and hence dim(0): $K(0)=$ rank(0)=0, whence our corollary is valid. Then assume that P is a nonzero prime ideal of rank $r < \infty$, and let $(0) \subset P_{1} \subset P_{2} \subset \cdots \subset P_{r-1}\subset P$ be a chain of distinct prime ideals of R. By Proposition 1.3, $(0) = (0):_{K}P\subset P_{1}:_{K}P\subset\cdots\subset P_{r-1}:_{K}P$ is a chain of distinct proper prime ideals of $P: {}_{K}P$. Since, by Corollary 2.4, $P_{r-1}: {}_{K}P$ is not a maximal ideal of $P:{}_{K}P$, the ideal $P_{r-1}: {}_{K}P$ is properly contained in a maximal ideal M of $P:_{K}P$. Then

$$
(0) \subset P_1: {}_K P \subset P_2: {}_K P \subset \cdots \subset P_{r-1}: {}_K P \subset M
$$

is a chain of length r of distinct proper prime ideals of $P:{}_{K}P$. The assertion follows immediately from this fact. Lastly, we assume that rank P is infinite. Then, as in the case of finite rank, it follows from Proposition 1.3 and Corollary 2.4 that dim $P:{}_{K}P$ is infinite, and hence our proof is complete.

REMARK 2.6. If P is a finitely generated prime ideal of R, then Corollary 2.5 is evident. For, in this case, $P: {}_{K}P$ is integral over R, and accordingly dim $P:_{K}P=\dim R\geq \text{rank }P.$

COROLLARY 2.7. Let (R, M) be a quasi-local domain. Then every maximal ideal of $M:_{K}M$ lies over M.

PROOF. Let P be an arbitrary maximal ideal of $M:_{K}M$. Then we always have $P\cap R\subseteq M$. If $Q=P\cap R\neq M$, then, by Proposition 1.3, $P=Q:_{K}M$. But then, by Corollary 2.4, P is not a maximal ideal of $M:_{K}M$, the desired contradiction. Thus we have $P\cap R=M$, as asserted.

References

- [1] Arnold, J. T. and Brewer, J. W., On flat overrings, ideal transforms and generalized transforms of a commutative ring, J. Algebra, ¹⁸ (1971), 254-263.
- [2] Fossum, R. M., The Divisor Class Group of a Krull Domain, Springer-Verlag, New York, 1973.
- [3] Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
- [4] --------, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, No. 12, Queen's Univ. Press, Kingston, Ontario, 1968.
- [5] Huckaba, J.A. and Papick, I.J., When the dual of an ideal is a ring, Manuscripta Math., 37 (1982), 67-85.
- [6] Kaplansky, I., Commutative Rings, Allyn and Bacon, Inc., Boston, 1970.

- |7| Larsen, M. D. and McCarthy, P. J., Multiplicative theory of ideals, Academic Press, New York and London, 1971.
- |8| Nagata, M., A treatise on the 14-th problem of Hilbert, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 30 (1956-57), 57-70.

Gunma Technical College Toba-cho, Maebashi 371 Japan