ON CONDUCTOR OVERRINGS OF AN INTEGRAL DOMAIN

by

Akira Okabe

Introduction. Throughout this paper, R will be an integral domain with identity, and K will be the quotient field of R. By an *overring* of R we shall mean any integral domain S between R and K. A *proper overring* of R is an overring S such that $R \neq S$. Any unexplained terminology is standard as in [3] or [6].

If I is an ideal of R, then $I: {}_{K}I = \{x \in K | xI \subseteq I\}$ is an overring of R and furthermore it is a subring of the *ideal transform* $T(I) = \bigcup_{n=1}^{\infty} \{x \in K | xI^n \subseteq R\}$. We shall call $I: {}_{K}I$ the *conductor overring* of R with respect to I.

In [8] Nagata has shown that if I is an ideal of R and R' is an overring of R such that $R \subseteq R' \subseteq T(I)$, then there exists a one-one correspondence between the set of all prime ideals P' of R' not containing IR' and the set of all prime ideals P of R not containing I. Furthermore, this correspondence can be realized in such a manner that if P corresponds to P', then $P = P' \cap R$ and $R_P = R'_{P'}$. Hence, if I is an ideal of R then $P' \to P' \cap R$ is a one-one mapping from the set of all prime ideals P' of $I:_K I$ not containing I onto the set of all prime ideals P of R not containing I.

Our results are divided into two sections. In Section 1 we show that if I is an ideal of R then $P \rightarrow (P \cap I):_{\kappa} I$ gives a one-one correspondence between the set of all prime ideals P of R not containing I and the set of all prime ideals P' of $I:_{\kappa} I$ not containing I.

In Section 2 we prove that if I is an ideal of R and P is a prime ideal of R not containing I, then $I:_K I/((P \cap I):_K I)$ is isomorphic to a subring of (I+P)/P: $_L(I+P)/P$ with L the quotient field of R/P. As a corollary, it will be shown that if P is a prime ideal of R properly contained in an ideal I of R, then $P:_K I$ is not a maximal ideal of $I:_K I$.

1. SOME PRELIMINARY RESULTS

We first establish some general results concerning conductor overrings.

LEMMA 1.1. Let I be an ideal of R and let S be a proper overring of R.

(1) I is an ideal of $I:_{K}I$.

- (2) If we set $I_{(S)} = R : {}_{R}S$, then $S \subseteq I_{(S)} : {}_{K}I_{(S)}$.
- (3) If J is an ideal of R such that $S \subseteq J : {}_{K}J$, then $J \subseteq I_{(S)}$.
- (4) If I is also an ideal of S, then $S \subseteq I : {}_{K}I$ and $I \subseteq I_{(S)}$.
- (5) $I:_RS$ is an ideal of R and is contained in I. Furthermore if I is also an ideal of S, then $I=I:_RS$.
 - (6) $I = I :_{R}(I :_{K}I)$.
 - (7) If J is an ideal of R such that $J \subset I$, then J: KI is a proper ideal of I: KI.

Proof. (1) This is trivial.

- (2) We first show that $I_{(S)}$ is an ideal of S. Let $x, y \in I_{(S)}$ and $s \in S$. Since $xS \subseteq R$ and $yS \subseteq R$, $(x-y)S \subseteq xS + yS \subseteq R$, and so $x-y \in I_{(S)}$. Next, since $x \in I_{(S)}$ and $s \in S$, $xs \in R$ and moreover $sS \subseteq S$, and therefore $(xs)S = x(sS) \subseteq xS \subseteq R$. Thus $xs \in I_{(S)}$, and therefore $I_{(S)}$ is an ideal of S as we required. Then, since $I_{(S)}$ is an ideal of S, it is clear that $S \subseteq I_{(S)} : {}_{K}I_{(S)}$.
 - (3) By hypothesis, $JS \subseteq J \subseteq R$ and so $J \subseteq I_{(S)}$.
- (4) The first assertion is evident. Next, since $S \subseteq I : {}_{\kappa}I$, the second assertion follows immediately from (3).
- (5) Let $x, y \in I:_RS$ and $r \in R$. Then $xS \subseteq I$ and $yS \subseteq I$, and so $(x-y)S \subseteq xS + yS \subseteq I$. Thus $x-y \in I:_RS$. Next, since $(rx)S = r(xS) \subseteq rI \subseteq I$, $rx \in I:_RS$. Thus $I:_RS$ is an ideal of R. Moreover, if $x \in I:_RS$ then $x=x1 \in xS \subseteq I$, and hence $I:_RS \subseteq I$. Assume furthermore that I is an ideal of S. If $x \in I$, then $xS \subseteq I$ and so $I \subseteq I:_RS$. Hence we have $I=I:_RS$ as we wanted.
 - (6) Since I is an ideal of $I:_K I$, our assertion follows from (5).
- (7) Let $x, y \in J:_K I$ and $t \in I:_K I$. Then $xI \subseteq J$ and $yI \subseteq J$, and therefore $(x-y)I \subseteq xI + yI \subseteq J$. Thus $x-y \in J:_K I$. Next, $(xt)I = x(tI) \subseteq xI \subseteq J$ and hence $xt \in J:_K I$. Therefore $J:_K I$ is an ideal of $I:_K I$. Assume that $J:_K I = I:_K I$. Then, since $1 \in I:_K I = J:_K I$, $I = 1I \subseteq J$ and so I = J, a contradiction. Therefore $J:_K I$ is a proper ideal of $I:_K I$.
- REMARK 1.2. Let I be a proper ideal of R. Then $I:_K I = K$ if and only if I=(0). If $I:_K I = K$, then, by (1) of Lemma 1.1, I is an ideal of a field K and hence I=(0). Conversely, if I=(0), then clearly $I:_K I=(0):_K (0)=K$.

PROPOSITION 1.3. Let I be a nonzero ideal of R and let P be a prime ideal of R not containing I. Then

- (1) $(P \cap I): {}_{K}I = \{x \in K | xI \subseteq P \cap I\}$ is a prime ideal of $I: {}_{K}I$.
- (2) $((P \cap I) : {}_{\kappa}I) \cap R = P$.
- (3) If P' is a prime ideal of I: KI such that $P' \cap R = P$, then $P' = (P \cap I): KI$.
- (4) $R_P = (I: {}_{K}I)_{((P \cap I): {}_{K}I)}.$

- PROOF. (1) By Lemma 1.1 (7), $(P \cap I):_K I$ is a proper ideal of $I:_K I$. We shall next prove that $(P \cap I):_K I$ is a prime ideal of $I:_K I$. To prove this, let $x, y \in I:_K I$, $xy \in (P \cap I):_K I$, and $x \notin (P \cap I):_K I$. First, since $x \notin (P \cap I):_K I$, there exists an element $t \in I$ such that $xt \notin P \cap I$. Then $xt \notin P$, because $xt \in (I:_K I)I \subseteq I$. Now, if $r \in I$, then $rt \in I$, and hence $(xt)(yr) = (xy)(tr) \in P \cap I \subseteq P$. But then, since $xt \in R \setminus P$, $yr \in (I:_K I)I \subseteq I \subset R$, $(xt)(yr) \in P$ implies that $yr \in P$. Thus $yI \subseteq P$ and therefore $yI \subseteq P \cap I$, that is, $y \in (P \cap I):_K I$. Hence it follows that $(P \cap I):_K I$ is a prime ideal of $I:_K I$.
- (2) The containment $P \subseteq ((P \cap I):_K I) \cap R$ is clear. To prove the reverse containment, let $x \in ((P \cap I):_K I) \cap R$. Choose $t \in I \setminus P$. Then $t \in R \setminus P$, $x \in R$, and $xt \in P$ and so $x \in P$, because P is a prime ideal of R.
- (3) and (4) follow from Nagata's theorem mentioned in Introduction, but here we give direct proves.
- (3) First, let $x \in P'$. Since P' is an ideal of $I: {}_{K}I$, $xI \subseteq I \cap P' = I \cap (R \cap P') = I \cap P$ and so $x \in (P \cap I): {}_{K}I$. Thus $P' \subseteq (P \cap I): {}_{K}I$. Conversely, let $x \in (P \cap I): {}_{K}I$. Then $xI \subseteq P \cap I = P' \cap I$. Choose $t \in I \setminus P$. Then $xt \in P' \cap I \subseteq P'$, $t \notin P'$, and $x \in I: {}_{K}I$ and so $x \in P'$, because P' is a prime ideal of $I: {}_{K}I$. Thus we also have $(P \cap I): {}_{K}I \subseteq P'$.

To prove (4), we need the following

LEMMA 1.4. If I is an ideal of R and P is a prime ideal of R not containing I, then $P \cap I$ is also an ideal of $I:_{R}I$.

PROOF. To prove this, we need to show that $(P \cap I)(I:_K I) = P \cap I$. The containment $P \cap I \subseteq (P \cap I)(I:_K I)$ is clear. To prove the reverse containment, let $x \in (P \cap I)(I:_K I)$. Then we can write $x = \sum a_i x_i$, where $a_i \in P \cap I$ and $x_i \in I:_K I$. Now if we choose $s \in I \setminus P$, then $x_i s \in (I:_K I)I \subseteq I \subseteq R$. Hence $x = \sum a_i(x_i s) \in P \cap I \subseteq P$. But, since $x \in (P \cap I)(I:_K I) \subseteq I \subseteq R$ and $s \in R \setminus P$, $x \in P$ implies that $x \in P$. Thus $x \in P \cap I$, as desired.

Now let us return to the proof of (4) in Proposition 1.3. Since $P = ((P \cap I): \kappa I) \cap R$, $R_P \subseteq (I: \kappa I)_{((P \cap I): \kappa I)}$. Conversely, let $x \in (I: \kappa I)_{((P \cap I): \kappa I)}$. Then we can write x = a/b, where $a \in I: \kappa I$ and $b \notin (P \cap I): \kappa I$. Since $b \notin (P \cap I): \kappa I$, there exists $t \in I$ such that $bt \notin P \cap I$. Then necessarily $t \notin P$. Assume the contrary. Then, since $t \in I \cap P$, $bt \in (P \cap I)(I: \kappa I) = P \cap I$, a contradiction. Thus $t \notin P$ and therefore $t \notin (P \cap I): \kappa I$. Then $x = at/bt \in R_P$, because $at \in I \subseteq R$ and $bt \in I \setminus P \subseteq R \setminus P$. This completes our proof.

COROLLARY 1.5. Let I be an ideal of R and let P be a prime ideal of R not containing I. Then P is a prime ideal of $I:_{\kappa}I$ if and only if $P=(P\cap I):_{\kappa}I$. In particular, if P is properly contained in I, then P is a prime ideal of $I:_{\kappa}I$ if and only if $P=P:_{\kappa}I$.

Proof. This follows immediately from Proposition 1.3.

REMARK 1.6. If $J \subset I$ are ideals of R, then J is not necessarily an ideal of $I:_K I$. For example, let k be a field and $R=k[X^2,X^3]$ be the subring of k[X]. Then K=k(X) is the quotient field of R. If we set $M=X^2R+X^3R$, then M is a maximal ideal of R and $M:_K M=k[X]\neq R$. Furthermore, if we take $I=X^3R\subset M$, then I is not an ideal of $M:_K M$, because $X^3\in I$, $X\in M:_K M$, but $X^3X=X^4\notin I$.

2. THE MAIN THEOREM

LEMMA 2.1. Let I be an ideal of R and let P be a prime ideal of R not containing I. Then, for an element $x \in I : {}_{K}I$, $x \notin (P \cap I) : {}_{K}I$ if and only if $x \notin P \cap I$ for all $t \in I \setminus P$.

PROOF. The "if" half is trivial. Conversely, suppose that $x\notin (P\cap I):_K I$. Then there exists $t_0\in I$ such that $xt_0\notin P\cap I$. Since $xt_0\in (I:_K I)I\subseteq I$, $xt_0\notin P$. Moreover, it follows that $t_0\notin P$. Suppose the contrary. Then, $xt_0\in (P\cap I)(I:_K I)=P\cap I$ by Lemma 1.4. But this contradicts the choice of t_0 . Thus $t_0\notin P$ as required. Then, for any element $t\in I\setminus P$, $xt\in I\subseteq R$ and $(xt)t_0=(xt_0)t\notin P$, and therefore $xt\notin P$. Thus $xt\notin P\cap I$ for all $t\in I\setminus P$, and the proof is completed.

Now we shall prove the main theorem.

THEOREM 2.2. Let I be an ideal of R and let P be a prime ideal of R not containing I. Then $I: {}_{K}I/((P \cap I): {}_{K}I)$ is isomorphic to a subring of (I+P)/P: ${}_{L}(I+P)/P$, where L is the quotient field of R/P.

PROOF. For each $x \in I: {}_KI$, we shall denote its coset $x+(P \cap I): {}_KI$ by \tilde{x} , and, for each $r \in R$, we shall denote its coset r+P by \tilde{r} . Now we shall first define a mapping Φ of $I: {}_KI/((P \cap I): {}_KI)$ into $(I+P)/P: {}_L(I+P)/P$ as follows: For each $\tilde{x} \in I: {}_KI/((P \cap I): {}_KI)$, we set $\Phi(\tilde{x}) = \overline{xt}/\overline{t}$ where $t \in I \setminus P$. Let us first show that this mapping Φ is well-defined. If t and u are any two elements of $I \setminus P$, then $\overline{txu} = \overline{txu} = \overline{xtu}$ in R/P, and so $\overline{xt}/\overline{t} = \overline{xu}/\overline{u}$ in L. Next, if y is any other representative of the coset \tilde{x} , then $x-y \in (P \cap I): {}_KI$, and so, for any $t \in I \setminus P$, $(x-y)t \in P \cap I \subseteq P$. Hence $\overline{xt} = \overline{yt}$ in R/P, and so, $\overline{xt}/\overline{t} = \overline{yt}/\overline{t}$ in L. Thus $\Phi(\tilde{x}) = \overline{xt}/\overline{t}$ does depend only on the coset \tilde{x} , and not on the choice of a representative of \tilde{x} and an element t of $I \setminus P$, and therefore the mapping Φ is well-defined. Next, let us show that Φ is a ring homomorphism from $I: {}_KI/((P \cap I): {}_KI)$ into L. To prove this, let $\tilde{x}, \tilde{y} \in I$:

 $_{K}I/((P\cap I):_{K}I)$. Then, for any $t\in I$, P, $(\overline{x+y})t/\overline{t}=(\overline{xt+yt})/\overline{t}=\overline{xt}/\overline{t}+\overline{yt}/\overline{t}$, and hence it follows that $\Phi(\tilde{x}+\tilde{y})=\Phi(x+y)=(x+y)t/\overline{t}=xt/\overline{t}+\overline{yt}/\overline{t}=\Phi(\tilde{x})+\Phi(\tilde{y})$. Moreover, for any $t\in I$, P, $\overline{xyt^2}/\overline{t^2}=(xt)(yt)/\overline{t^2}=(xt/\overline{t})(yt/\overline{t})$, and so we have $\Phi(\tilde{x}\tilde{y})=\Phi(xy)=\overline{xyt^2}/\overline{t^2}=(xt/\overline{t})(yt/\overline{t})=\Phi(\tilde{x})\cdot\Phi(\tilde{y})$. Thus Φ is a ring homomorphism from $I:_{K}I/((P\cap I):_{K}I)$ into L. We shall now proceed to prove the injectivity of Φ . For this, assume that $\Phi(\tilde{x})=0$ for some coset \tilde{x} . Then xt=0 in xt=0 in xt=0 in xt=0. We have, by Lemma 1.4, xt=0 in xt=0. Hence it follows that xt=0. We have, by Lemma 1.4, xt=0 in xt=0. Hence it follows that xt=0. It has is, xt=0. That is, xt=0. It has is xt=0 in xt=0. It is a we asserted. It now remains to show that the image of x=0 in x=0 in x=0. Thus we asserted. It now remains to show that the image of x=0 in x=0. Then, for any x=0 in x=0. Thus we have x=0 in x=0. Thus x=0 in x=0. Thus we have x=0 in x=0. Thus x=0 in x=0. Thus we have x=0 in x=0. Thus we have x=0 in x=0. Thus we have x=0 in x=0. Thus our proof is complete.

REMARK 2.3. It would be worth noting that the ring homomorphism Φ defined in Theorem 2.2 is the identity mapping on R/P. In fact, by Proposition 1.3, $R/P \subseteq I: {_{K}I}/((P \cap I): {_{K}I})$ and moreover, for any $\bar{r} \in R/P$, $\Phi(\bar{r}) = \overline{rt}/\bar{t} = \bar{r} \cdot \bar{t}/\bar{t} = \bar{r}$ where $t \in I \setminus P$. Thus Φ is the identity mapping on R/P.

COROLLARY 2.4. Let I be an ideal of R and let P be a prime ideal of R not containing I. Then

- (1) If I+P=R, then $I: {}_{K}I/((P\cap I):_{K}I$ is isomorphic to R/P.
- (2) P is a maximal ideal of R if and only if $(P \cap I):_K I$ is a maximal ideal of $I:_K I$.
- PROOF. (1) If I+P=R, then we have $(I+P)/P:_L(I+P)P=R/P:_LR/P=R/P$, where L is the quotient field of R/P, and then by Theorem 2.2 and Remark 2.3, $I:_KI/((P\cap I):_KI)$ is isomorphic to R/P as we asserted.
- (2) If P is a maximal ideal of R, then I+P=R, since I is not contained in P. Then, by the above result (1), $I:_K I/((P\cap I):_K I)$ is a field, and accordingly, $(P\cap I):_K I$ is a maximal ideal of $I:_K I$. Conversely, assume that $(P\cap I):_K I$ is a maximal ideal of $I:_K I$. If I+P=R, then, by the above result (1), P is also a maximal ideal of R. Hence, to prove that P is a maximal ideal of R, it suffices to show that I+P=R. We shall now recall that by Theorem 2.2 and Remark 2.3, $I:_K I/((P\cap I):_K I)$ is isomorphic to an integral domain T which is an overring of R/P and is contained in $(I+P)/P:_L (I+P)/P$. Now, by our assumption, T is a field, and so $T=(I+P)/P:_L (I+P)/P=L$. Hence, if I+P is a proper ideal of R,

then, by Remark 1.2, (I+P)/P=(0) in R/P and therefore $I\subseteq P$, a contradiction. Therefore we have I+P=R, as we wanted.

COROLLARY 2.5. If P is a prime ideal of R, then dim $P: {}_{\kappa}P \ge rank P$.

PROOF. If P=(0), then, by Remark 1.2, $(0):_{\mathit{K}}(0)=\mathit{K}$ and hence $\dim(0):_{\mathit{K}}(0)=$ rank(0)=0, whence our corollary is valid. Then assume that P is a nonzero prime ideal of rank $r<\infty$, and let $(0)\subset P_1\subset P_2\subset\cdots\subset P_{r-1}\subset P$ be a chain of distinct prime ideals of R. By Proposition 1.3, $(0)=(0):_{\mathit{K}}P\subset P_1:_{\mathit{K}}P\subset\cdots\subset P_{r-1}:_{\mathit{K}}P$ is a chain of distinct proper prime ideals of $P:_{\mathit{K}}P$. Since, by Corollary 2.4, $P_{r-1}:_{\mathit{K}}P$ is not a maximal ideal of $P:_{\mathit{K}}P$, the ideal $P_{r-1}:_{\mathit{K}}P$ is properly contained in a maximal ideal M of $P:_{\mathit{K}}P$. Then

$$(0) \subset P_1 : {}_{K}P \subset P_2 : {}_{K}P \subset \cdots \subset P_{r-1} : {}_{K}P \subset M$$

is a chain of length r of distinct proper prime ideals of $P: {}_{\kappa}P$. The assertion follows immediately from this fact. Lastly, we assume that rank P is infinite. Then, as in the case of finite rank, it follows from Proposition 1.3 and Corollary 2.4 that dim $P: {}_{\kappa}P$ is infinite, and hence our proof is complete.

REMARK 2.6. If P is a finitely generated prime ideal of R, then Corollary 2.5 is evident. For, in this case, $P: {}_{K}P$ is integral over R, and accordingly dim $P: {}_{K}P = \dim R \ge \operatorname{rank} P$.

COROLLARY 2.7. Let (R, M) be a quasi-local domain. Then every maximal ideal of $M:_KM$ lies over M.

PROOF. Let P be an arbitrary maximal ideal of $M:_{\kappa}M$. Then we always have $P \cap R \subseteq M$. If $Q = P \cap R \neq M$, then, by Proposition 1.3, $P = Q:_{\kappa}M$. But then, by Corollary 2.4, P is not a maximal ideal of $M:_{\kappa}M$, the desired contradiction. Thus we have $P \cap R = M$, as asserted.

References

- [1] Arnold, J. T. and Brewer, J. W., On flat overrings, ideal transforms and generalized transforms of a commutative ring, J. Algebra, 18 (1971), 254-263.
- [2] Fossum, R. M., The Divisor Class Group of a Krull Domain, Springer-Verlag, New York, 1973.
- [3] Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
- [4] ——, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, No. 12, Queen's Univ. Press, Kingston, Ontario, 1968.
- [5] Huckaba, J. A. and Papick, I. J., When the dual of an ideal is a ring, Manuscripta Math., 37 (1982), 67-85.
- [6] Kaplansky, I., Commutative Rings, Allyn and Bacon, Inc., Boston, 1970.

- [7] Larsen, M.D. and McCarthy, P.J., Multiplicative theory of ideals, Academic Press, New York and London, 1971.
- [8] Nagata, M., A treatise on the 14-th problem of Hilbert, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 30 (1956-57), 57-70.

Gunma Technical College Toba-cho, Maebashi 371 Japan