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ON THE MICROLOCAL HYPOELLIPTICITY OF
PSEUDODIFFERENTIAL OPERATORS

By

Minoru Koike

§1. Introduction

P. Bolley and J. Camus obtained some results on the microlocal hypo-
ellipticity of differential operators with real analytic coefficients. One of their
results is as follows. Let X be an open subset of R* and P(x, D) a differential
operator whose coefficients are real analytic in X. Let L’ be a sequence such
that

k+1SL]::SL;‘;+1SCLI,c, k=0, 1, 2, A

and

Ly =max (L, V"), 0<4<p<l, 7=

Then
WEF () C WFp.(Pu)U( QRZ’:',a(P)) , ued'(X).

Here WF.(x) is the wave front set of » with respect to the class C* (Cf. L.
Hoérmander [5]) and Y™,(P) is the complement of the set of all points (o, &o)e X X
(R"—0) satisfying the following condition: There exist constants C, R and a conic
neighborhood V of (xe,&o) such that for all multi-indices p, ¢

C|P(x, &)= |¢|™
and

| DEDEP(z, £)| <CP*1igl|g] =P Pz, £)]

when (z,8)eV, |&|>R. Where Di=(—+—19/dx).

In they obtained this result by extending the theory of T. Kotake—M. S.
Narasimhan [6]. In this paper we prove a more general result in which the operator
P belongs to a class of pseudodifferential operators. It contains all the differential
operators whose coefficients are of class C%, not necessarily analytic. The class
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C* is allowed to be larger than the Gevrey classes. Also, it can be quasi-analytic.
Our method is different from that of [I] We construct approximate parametrices
for the transposed operator, modifying the techniques used in Chapter V of F.
Treves [8]

The author wishes to express his gratitude to Professor M. Matsumura and
Dr. H. Suzuki for valuable advice.

§ 2. Statement of the results

Let F be a pseudodifferential operator with amplitude a:
Fu(z)=\ e0u(a, v, Our)dvds,  de=(myde.

Let Ly (k=0,1,2,---) be a sequence of positive numbers. We shall write Fe
I((Ly); po’,0',m’), if for every compact set Kc XXX there exists a constant Cxk
with

|D2DIDja(z, y, &) SCxPH 711 pI Mg, (O™ =0 1115 0571

when (r,y)eK, §eR"—0 (Cf. L. Boutet de Monvel and P. Krée [2Z]). Here, (&)=
(1+]¢12)** and

(2.1) My=Lk.

Note that any differential operator with coefficients of class CZ belongs to I((L:);
1,0, m,) where m, is the order of the operator.

In general, the singular support of the distribution kernel of a pseudodifferential
operator is contained in the diagonal ([4]), so we consider the behavior of the
amplitude in the diagonal. We shall define a set

Zras((Le) s F)c X< (R"—0)

as follows: (o, &0) ¢ 1 7:.s((Lk); F') if and only if there exist constants C, R and a
conic neighborhood V of (x,, &) such that for all multi-indices p, q, 7

Cla(z, z, )|z €™, if |§|=R, (x,§)eV,
|(DEDEDa) x, =, )| SCP 7 plM, g, EH~P 14 a(x, 2, €)]
if [§1ZR(Ip+q+7+1), (=, 6)eV.

2 7s.s((Le) ; ) is a closed cone in XX (R™—0) and decreases when s increases. If
F is a differential operator and if Ly=k+1, then the set 3™, ((Li); F) coincides
with X 7(F) of [1].

We impose the following condition on the sequence Ly :
(i) Ly satisfies that
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(22) k+1‘£LkSLk+1£CLk,
2.3) log (My/k!) is convex.

The condition (i) implies that the CZ is invariant under the C¥ class coordinate
changes [7]). We take other sequences:
(ii) Tx and T are sequences of positive numbers such that

(2.4) T, Ti also satisfy (i),
2.5) My <CHyHy,, Hpwn <C**HpHy,
where Hy=T¢t H,=T:

For any L, satisfying [2.2), such sequences T%, T always exist. For example, if

M;=¢*-k!* (i.e. the CL is the Gevrey class of order s), then (i) and (ii) are fulfilled

with Tw=Tr=L;. Also we can take L,=exp (sk°), 0<c<1, ¢s=>1 for instance, but

the corresponding space CE is never contained in the Gevrey class of any order.
Assuming that

(iii) 0<d’<p’'<l, 0<é<p<l,
we set

1 1 1
(26) T= 1—5 "’ g=max <';E—'6,", ;:—g) .

Then we have

THEOREM. Let FeI(Ly); o', 0 ,m’) be properly supported and the conditions
(i)-(iii) hold. If L is a sequence satisfying (2.2), then

@.7) WEL () WEL (B0 Eha(La) B, we DX,
where Li!=max (L{%, T, B

We prove the in §3, constructing approximate parametrices microlocally
for the transposed operator ‘F.

Now we remark that the set X%, ((Lx); F) is independent of the lower order
parts of F. In fact, we have

PrOPOSITION 1. Let L be a sequence of positive numbers and Gel((Ly); p, o, m),
p<P, 6<8. If m<m, then

Zras(Li) s F+G)=200,:((Le) ; F)

for any s, F.

ProoOF. If (&, &0) & 22%s,s((Lx); '), then we have
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(2.8) |(DEDEDYg)(x, , §)| SCIEI™"CIP U7 1pIM g || 01712107 gz, 2, 6)|

for all (x,¢) in a conic neighborhood of (o, &) with |&|>R, where ¢ is the ampli-
tude of G. We take R so large that CR™™<1/2. Then |a(x, z,&)+g(x, z, &)|>
la(z, x,£)I/2 (|€|=R), so we obtain (x, &) & 5™;..((Li) ; F+G) from (2.8). Therefore

pas((L) s F+G)C 20 s(Le) s F).  Replacing F, G by F+G, —G respectively, we
have the conclusion.

§3. Proof of the Theorem

Let @ and & be the amplitudes of F and ‘F respectively. From the definition
of ‘F we have b(zx, y, p)=a(y, x, —7), thus we obtain

ProrosiTiON 2 (Cf. [1], Proposition 3.2).

Zras((Le); 'F)={(=, —n); (@, n)e Liss((Le); F)}

If (z0,60)¢ X7.((Ls); F), then there exists a conic neighborhood V of (zo, —&,)
such that

3.1) Clb(z, z, )| =p™, if |p|>R, (z,9eV,

3.2) |((DYDiDgb)(x, x, p)| KCP* 4 TPIM g 7] =012 219" p( 2, 2, )],
if [p|=ZR(|p+q+r|+1), (z,n)eV.

We set

(3.3) Gr=max (T¢, k°).

LemMA 1. Let
Pz, n)= 2 nl Dbz, z, v,  k>1 (dy=(/oy)").
There exist constants C, R>0 independent of k such that

(3.4) C|Pi(z, p| = |b(z, x, 9] when |y| > RGx,

3.9) | DY D3Pz, )| SC'PHpLH g || =121 2| b(, 20, 7))

when

(3.6) 9| ZR(Ge+1p+4ql),  (z,7eV.
Proor.

| DYDY Px(z, 7)—b(z, @, DI < To<iri<el (DF*(Da+ Dy Dib)z, z, )| /7!
<CPUp g |p| ~*17+99|b(z, 2, 7)| By)

where
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+r\/ CTi \'™ 2C \'"
B(77)=Zo<|r1<k(pr )( [nlpl_; ) _<_2[p]Z:0<ITI<k<_Rp—_E—>
in the set
(3.6) Ip| >RGr, (z,p)eV.
So we have
(3.5 | DYDY Pz, 7)—b(z, x, 1))| £%C’p*‘“p!H,q;lvl""”"*’”q'lb(x, z, ),

provided that R is large enough. Combining with this, we have [3.5). Let
p»=q¢=0 in [(3.5}). Then we have (3.4).

LEMMA 2. For each k=1,2, -+, we can find C* functions Q;x,n), 1=0,1, -,
k—1 such that

Z: D:Pk_](a?, v)'d;ij(.Z', 77)/7’!-“—'50)7, , /’l=0, 1, ey k—1 ,

in the set (3.6)o, where Y, denotes the sum for all j, v with j+\|r|=h, and d; de-
notes (0/0x)". Moreover, in the set (3.6), the inequalities

3.7 | DIDIQu(z, )| SCIP 4 pLH g 4l | =121 1= =0T b(, 2, )7

hold, where the constants C and R are independent of j, k.

Proor. For each k, determine recursively the functions @;, by means of the
relations ‘

(3.8) Qo(z, 7)=1/Pi(x, 1)
and for j=1,2, .-,
1
(3.8); @iz, n)= _mZKIrISj D Pr_jiir(x, DAQj—ir. x(x, DTl .
_iz,

We must estimate derivatives of Q. By (3.8), and (3.4)
(8.7 [D2DIQok| <CP+UptM, g 5| ~*1#1+0191 || =1 (in the set (3.6))

is certainly true when p=g=0. From there on we reason (3.7), by induction on
Ip+ql|, assumed to be >1. Differentiating Qox(zx, y)Pi(x,7)=1, we have by the
Leibniz formula

DDQu=—~Qu /(5 (% ) D DY PDE” DS Qe

where Y’ denotes the sum for all p’, ¢’ with |p’+¢’|>0, p'<p, and ¢’<q. The
inductive hypothesis and imply
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IDngQOk] Sclop+Q|le|q| !vl—PIPH'MfIIA

where

A= Z'(Z/>C'pl+quc<7m'1q"quﬂqu—q'l/Hm
with C in Since (Z')SG%)’ we obtain, in view of (2.3),
AL 3 1p4an>oClCo)' P+

We have A<1, provided that C, is large enough in comparison to C, whence
(3.7). Therefore, it holds that

(3.7); | DPDIQ | <CIPHU+2pl H g, 1| == =F1P1+a10l |y =1
where [9|>R(Ge+(j+]1p+4l)’), (z,meV,

for =0 and for all p, q. It suffices to show that (3.7); holds for j=1, ---, &, since
G+ (J+1p+q|)° <2 (Ge+|p+q|®) if j<k. From there on we reason by induction
on j, assumed to be >1. By (3.8);, the Leibniz formula implies

P! q! [
ID;’Dng"I SZ” p,!P'/!P’”! ql!q/l!qlll! F ID'I; D§ Qo.k-—j|

X|DY"* DY Pejuir || DY DS "Ry 1r1. 1
where 2" denotes the sum for all p’, p”, p"”', ¢’, ¢”, ¢"’, v with p/+p"+p""=p,
' +q"+q"=q, 0<|r|<j. In view of and (3.7),, the inductive hypothesis
implies that

lDf,’Dng SC{PHIIij! 'Ul —(p=3)j—p|PI+d|q] [bl-lB ,
B=T"(Co[C)P* W (CICy) P+ +7( p/" 1)l [p" 17!
X Hg\Hqgn Higi+ 910"\ q"\q"""!
Squl+jz//(co/cl)lp’+q’|(2C/Cl)|pu+q"+rl

lg1'Clqg” | +)!
lg"”"1}(1q] +)!
Since
lgl!(lg”’| + ! Il h
T T Ny — U —<1 ,
g+~ e
we have

B<Hq.y,

provided that C, is large enough in comparison to C, and to C. This completes
the proof.
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Now we use the following fact (F. Treves [8], Chapter V).

LemMA 3. There is a constant C, depending only on n, such that given any
open subset W of R", any number d>0, any integer k>0, there is a C™ function
gx in R", having the following properties.

0<gx <1 everywhere, gr=1 in W,

gx(x)=0 if dist (x, W)>d,

|D?gy| <(Cr/d)'?' for all p such that |p|<k.
Then we have

LeEMMA 4. Let I', I’ be open cones cR"—O0, such that '—0cI’. For any
R>0, there exist C* functions pir in R"™, such that

0<pr<l in R

Dr(n)=1 when |y|>2RGr and nel,
supp pxC{nel” ; |yl = RGu},
[DPgr(p)| <(CE/[7])'"" when |p|<E,

where the constant C is independent of k.

Proor. There exists a constant d such that 0<d<1/2 and
{n;dist (5, W)<d}cI”, where W={pel; |y|>1/2}.
Let gx be as in If 7(p)=gw(y/|yl), then we have

|DPri(n)| <(CR[I)'? (1pI<k).
We take another W, d:

W={neR"; || >3RG/2}, d=RGu/2.
Let gi be as in and set si(p)=gr(). We have
| D?s| <(Ck|Gx)'?' .

Since sx(n)=1 when |y| >2RGy, pr(n)=sk(p)rx(y) has the required properties.

Let V be as in (3.1), [3.2) We take open conic neighborhoods Iy, -+, Iy of
—¢&, and open neighborhoods U, ---, Uy of x, such that

U, is compact, [7j+1CUj, I';,,—0cl’y, l71x(f1—O)CV.

Let g;x, pjx be such functions as gx, pr in [Lemma 3 [Lemma 4 respectively, satis-
fying

gjk=1 in Uj+1, supp gjkCUj,

pi(p)=1 when |y|>(2j+1)RGx and nel’:;,

supp pixC{n€lzj_1; |9 =2jRGy} .
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We denote by gk, %k, Wk, pr, gx the functions gix, gk, gsk, Pik, D2 respectively.
Let Q;x be as in and let us set

3.9) Q w, O)=0x(¥)ax(0) X ;< Qsx(y, &) -

We denote by K the pseudodifferential operator whose amplitude is Q*(x, £)2(y).
Since ‘F and K, are properly supported, so is Sy='FKy—I. We consider the
pseudodifferential equation

(3.10) Fu=fed'(X), ue9P'(X).
To prove our it suffices to show that
(0, §0) ¢ WF L (u)  when (xo,§0) ¢ WFL(f)U LT (Le); F)
for some m. Let V be as above. We may assume that
(3.11) W, —n); W, eVINn WFL(f)=¢.
From we have, for any ve (X)),
u, v) =<u, 'FKw)—u, Siw)=f, Kwv)—<u, Sev) .

In particular we take v(2)=wi(2)e **®, e R" considered as a parameter. We have

Wel€) =0u(€) — (), Lz, )

where
(3.12) Iz, §)=Skvi(x) , ve(2)=wi(2)e ",
(3.13) 0x(&)=<f, Kivi) .

Let I" be _an open conic neighborhood of /7, such that "'—0c—I,. We shall
estimate wku(S) when éel.

LemMA 5. If |pl,lql <k, then
| DEDIQ (y, O)| <C*plH q)|L| =111 b(y, y, {)| !
where C is independent of k.
Proor. By and we have
a9k (D (2 1p-p'1| DP-D
D204, O < £'( 5, N4 ) CRY™ 7| DE 7 qu(0)
X @ 1+3p/ ) || -pI?'1+310°1 | p| ~1 B
where 3’ denotes the sum for all j, p’, ¢’ with j<k, p'<p, ¢’ <q, and,

B=H,q. ||~ <C"H ¢ (C/R*) .
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As kr<hlek<C*H, we have
|DEDIQM(y, £)| <C'P+a+kpl H g |C| 1P+ |p| =
if R is large enough in comparison to C.

Since y;pw,c@):S =i DPyy(2)dz, it follows that

(3.14) |0x(n)| <(CR)(E+|5])"/ when j<k, neR".
In view of Peetre’s inequality, it also follows that
(3.15) |@u(p+ )| <Cilk+ [p))ik+C])  When j<k, 7 (eR".

Now we estimate [3.13). By [3.11), there exists a bounded sequence f;e&’,
J=1,2, --- such that

fr=fin Uy, |fs()|<C'My<{p>~7 when ne—1I";.
Since f, is bounded, there are constants C, »’ such that
|fs(p)| <Cp™  for any neR", J=1,2, ---

As supp Ko U,, Parseval’s formula implies
&)=\ Folp Ko~y
={ oo £y, e+ Davaz
where dE=dnd{. We split the integral into two parts;
ok(§)=8 +S =['+1?, say,
c4a Ja

where A={(»{); ne—TI,[C|/2<|y|<2|¢]}, CA is the complement of A. In the
integral I, there exists a constant ¢>0 such that

I+l =c(inl +1E1)
So we have by integration by parts and by when J<k,

1<\ O/l + 11 Fa ) C eI il + Ol
where m is as in (3.1). As |{|>% in the support of @* we have by [3.15)
II'lsckHJ<s>‘”S<r;>-"‘-*<c>”"d5 |

where #’=—(1—08J+N—m+n'+n+1, N<J. The last integral is convergent,
provided that #”<—n—1. Therefore, we have
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I <C*H ;<6>¥ when k>J>tN+C
for some constant C, where ¢ is as in It holds by that

12 < SA | F)1QK(y, DICYEY~¥ LIV dydE <CHM<Ey™ SA p™IKON™dE .

If —J+N—m<—2(n+1), then the last integral converges. Therefore we have
proved that
|0x(€)| <C* max (M}, H;}X¢)~¥ when k>J>tN+C.

Next we estimate <u(z), Ii(x,£)). Since supp. Ii(x,£) is contained in a compact
set K independent of &, &, there exist C, m” such that

(3.16) <o), Ie(@, €)1 CXp15m SUPrex | DL, £)] .
It follows from that
3.17) Ii(x, §)=Bx(x, &) —wi(x) ¥,

B(z, §)="FKw(x)
= Se"’Ak(J«‘, Y,2,7, C)dW

Where ¢=¢(.Z', Y,2,7), C)=<.'B_y, ﬂ>+<y—‘z, C>——<z3 E>’ dW:ddedEr
Az, v, 2,7, )=b(x, y, PRy, Hw(2) .

We split the integral into two parts;

Bi(z, &)= Se“pk(y)Akd W+ Sewu — PO AW
=I+]', say.
By Taylor’s formula

b, v, )= Znar L i), @, )+ Bimien (427, .7
and by the relation
(y—zYe=(—D,ye#,
we have that I=J2%+J3*+ I, where
Ji= Z'SewD;(pk(n)br(x, v, M@y, Dwe(2)dW,

Q*(y, O =0:x(¥)ae0)Q(v, ) ,
7=z et () D3 21X D5 ), 2, IR, Q)W
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= zmgem@)m_,(x, D@y, Owil2)dW,

Y’ (resp.X”) denotes the sum for all j, » with j+|r|=k and j<k (resp.j+|r| <k).
By the Taylor’s formula ‘

Py, 1= Dol Py, O+ Binean—0"Pesz,7,0)

and by integration by parts, it follows that I’=J*+ 1", where
J= 27\ e4Pr s 2,1, DI, D)W

= Sewzku, v, 2, Opeln)dW

Zk(.l', v, 2, C)= Z”Zfﬂc(wr Y, C)u)k(Z) ’
Zej(x, Y, §)=DePre-fz, H)dyQ™(y, D7l .

Splitting the integral I” into two parts;
III=I’III+]'5 ,
r=\epe—vziaw, r={ewzaw,

and using the Fourier inversion formula, we obtain
17 =\e42(o,2,2,0dade, oz, 2, 0= (o, O 840

Moreover we devide the integral I’” into two parts;
I//l=]6+l(4) ,
Jt= Z"Se“’DEPk_j(x. 0)dx(gu(x)—1)Q (=, £))gr(Q)wi(2)d2ds .
By we have
I®H=J" +f8+wk(x)e"iw'e> ,

where
Ji= SS £2.9(g(0)— D€+ 0L,

]8=S . where S={CeR"; |¢| <5RG4} .

CcSs

By we have
(3.18) Iz, §)=T"+--<+]%.
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We shall estimate each /7. First, note that

(3.19) [p—Cl=c(nl+IC])  when vesupp(l—m Lesupp gx

for some constant ¢>0. Usmg the operator

0
3.20 -1 )
( ) . . |7] Clz Z:J (7” ) ?/j

we have (by integration by parts with respect to y-variables)
|IDEJ<CEH(EY™™  if k>tN+C, |pl<m”
for some constant C, where m” is as in (3.16). Similarly it follows that
|DRJ7| <Cr¥H(EY™N if k>oN+C, j=3,5.
It is easily cheked that
IDETTISC*GRE™  if k=N+C.
Since
[€+CI=c(€]+1C1)  if Cesupp (gx—1), &€l €S,
it also follows that .
DEJYI<CANKE™  if k=N+C.
In the integral /¢, it holds thaf
|z—z|>c  for some constant ¢>0.

Therefore we can use the operator

0
g Lz — zj)‘f ,

lz— ZI2
and we get
|DRT ¢ <C*H 5>~ if k>aN+C.
To estimate /%, we use the operator on the set
A={(10); In|=2[¢| or || =2nl}.
(It holds that |p—C|>(|p|+1¢])/4 on A.) Since |y is dominated by 2[{| on the
complement of A, and as

bi(z, v, 7 I”S (@b (@, to+(1—L)y, PET-1dt,

we can get

DR <CrH(EY™Y when k>oN+C.
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It remains to estimate /¢ Note that

L+ A=)l >c@C]+A—=)ly))  if 0<¢<1, nesupp pr, LESUPD Gk

Since

Pz, 7, C)Z—IrLIl-SO (d;Py)(x, A=)+t ~1dt

we have for >0 and |p|<m”

| D2P; (22, 7, )| SCH(|| + Sy +om (gyeiri+e

Using the operator

i,
2 Gy

we have

| D2 <CEH(EY™Y if k>aeN+C.

This completes the proof of the
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