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SPECTRAL REPRESENTATIONS AND ASYMPTOTIC WAVE
FUNCTIONS FOR LONG-RANGE PERTURBATIONS
OF THE D’ALEMBERT EQUATION

By

Hirokazu IWASHITA

Introduction.

In this paper, we shall investigate the asymptotic behaviour for t—co of the
acoustic wave w(x, t) governed by the equation:

(0.1) 2w(x, 1)— é”;l 8,a;(x)0sw(x, h=0 in R" (n=2).
J. k=

Here 0,=0/0t, d;=0/0x;, and jé)zl 0;a;:(x)d, is assumed to be a long-range per-
turbation of the Laplacian 4 in R™.

This problem has been studied by Wilcox for the d’Alembert equation (cf.,
e.g., Wilcox [9]). He has shown that as t—oo, each wave behaves asymptoti-
cally like a diverging spherical wave, the representation function of which is
called the asymptotic wave function in [9]. This result has been extended to
symmetric hyperbolic systems of first order with constant coefficents by Kitahara
and Wilcox [10]. In short-range problems, namely if a;.(x)—8,,=0(1-¢)
as r—oo, where »=|x| and ¢>0, then the corresponding asymptotic wave function
also forms a diverging spherical wave, but in long-range problems, the asymptotic
wave function is no longer a diverging spherical wave.

A long-range problem is investigated recently in Mochizuki for the

equation

(0.2) 2(x, t>—c<x>2p<x>v-{-j;(%t7w(x, H}=0
in an exterior domain of R", where V=V, is the gradient in R*. On the basis
of the spectral representation theory, he has determined the asymptotic wave

function w*=(x, t) as a modified diverging spherical wave:

W, D= PR P RED—1, B),

where :f(x)———grc(sf?)"ds, X¥=x/r, and the wave profile F(s, ¥)(s€R) is a gene-
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ralized Radon transform of the initial data. His remedy lies in employing an
approximate phase function for the stationary problem associated with [0.2). The
radiative derivative of the appoximate phase is obtained as an approximate solution
of a Riccati equation. Such an approximation is somewhat rough, and effective
under rather strong decay conditions on the angular derivatives of the coefficient
¢(x), namely, there assumed, e.g.,
Ve(x)=0@"%**), >0,

where V=V--%0, and 9,=%:V. In our problem, these conditions correspond to
the followings :

0.3) 07(a;p(x)—0;,)=0@ P 12%%), e>0, p=0,1, 2,

where 07 denotes an arbitrary derivative of p-th order.

The purpose of this paper is to construct the corresponding asymptotic wave
function to the wave governed by with more general decay conditions on
a;(x) than Throughout the present paper, we assume on a;(x) the
followings :

ASSUMPTIONS. The matrix A(x)=(a;:(x)) is real symmetric and positive
difinite uniformly in x€R". Furthermore there exists a constant ¢ (0<d0=1/2)
such that a;.(x)=C/**(R") and as r—o

07(a; (x)—0,,) =079 for »=0,1, 2,
0%a;(x)=0@"?%  for p=3, 4, -, j,+3,

where j, is the smallest integer such that (;j,+2)0=2, and

fﬂ’zany of 5{’155", aj:aj—fjar, %j———x]'/r,
n
b; 7=1, .-, n, are non-negative integers such that p= ;21 pi-

The essential part of our results is to construct an approximate phase function
p(x, o) (e R\{0}) for the selfadjoint operator L:——j,kiﬂajajk(x)ak in 9= L(R").
In Section 1, we determine p(x, o) as an approximate solution of the equation

a*+Vo(x, 0)- A(x)Vo(x, )=V -A(x)Vp(x, 0)=0.

Indeed, p(x, x) is given by

n—1
2

with K(x) solving approximately the equation

VK (x)-A(x)VK(x)—1=0.

log i log 0. K (x)

p(x, o)=—io K (x)+ 5
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We make use of this phase function to define the radiation condition (Definition]
1.5). In Section 2, we first justify the limiting absorption principle and then
apply it to construct the unitary operators &.:$—L*(R.XS*" ') as follows:

(F.f)o, J”c):\/g’-a lim e? "% (R 4100/ E) for o=R.,

where ®R,=(L—£?)"!, R,=(0, ), R.=(—o0, 0). . give the generalized Fourier
transforms associated with L. In Section 3, with the aid of the operators &.,

we can develop the same arguments as in Mochizuki to construct the
asymptotic wave function associated with (Theorem 3.1)).
Finally we list the notation to be often employed in this paper.

r=|x| and %=%%, -, %), X;=x;/r for x=R"\{0}.
A=A(x)=(a;x(x)) and P=0Q(x)=%-A(x)X.

0;=0/0x;, 0,=0;—%;0,, 0,=%V,

V=%9,, -+, 0,) and V=V—%0,.

S(R)y={xeR"; |x|=R} for R>0.

B(R)={xeR"; |x|<R} for R>0.
ER)={xeR"; |x| >R} for R>O0,

B(R, R)={x€R"; R<|x|<R’} for 0<R<R’.

L¥G) (veR) denotes the Hilbert space of all measurable functions f such
that (14+7)*f(x) is square integrable over a domain G of R". The norm is
denoted by ||-|l,.c. When v=0 or G=R", we shall omit the corresponding sub-
script.

§1. Approximate phase function and radiation condition.

The purpose of this section is to define the radiation condition for the
stationary problem

(1.1) Lu—r?u=f in R",

which is associated with [0.1). Here L is a positive selfadjoint operator acting
in  defined by

D(L), the domain of L=H*R"),

(1.2)

Lu:-—V-A(x)Vuz——j%laja,-k(x)aku for ue9(L),
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where H*(R™) denotes the Sobolev space of order two (cf., e.g., Mochizuki [4]).
£ is a complex parameter which varies in a closed upper half plane and f lies

in a suitable weighted LZ-space.
For this purpose we need an approximate phase function p(x, £), which is

determined as an appropriate appoximate solution near »=co of the equation
(1.3) £*+Vo(x, £)- A(x)Vo(x, £)—V-A(x)Vp(x, £)=0.

(1.3) is derived from
{=V-A(x)V—g*er=0=(,
When 0>1/2, we can adopt as an approximate phase function, the function
po(x, k) defined by
. (r o~ n—1 1
1.4) oo, x):—mSoqxsx) Weds+ " log r-+ log O(x)

(cf., Mochizuki [5]). po(x, £) is constructed as a well behaved approximate
solution of the equation

{—A—%Z—/l—x2¢>(x)“1}e“f’0‘x"‘):0,

where A is the negative Laplace-Beltrami operater on the unit sphere S*-! in
R™. p(x, k) satisfies

(1.5) 2 +Voo(x, k) A(x)Vpo(x, £)—V-A(x)Vp(x, £)=0@F*)

as r—oo. In view of [I.5), we see that in our problem, i.e., in case 6<1/2,
0ox, £) is not adequate as an approximate phase to our requirement (cf., (1.29)
in mentioned below).

We shall construct p(x, £) below. Our tactics is to modify p.(x, ) by the
function Y (x), which is suggested by private communication with K. Mochizuki
and J. Uchiyama. As will be seen in the modifier Y (x) must be an
appropriate approximate solution of the equation

(1.6) 20(x) 2% - A(x)(—=¥ (x)+VY (x))
= (x)—VY (x))- A(x)(@(x)—VY (x)) .

Here and in the sequel, we put
Uf(x)::S:V@(si)‘”zds .

See Saitd and Isozaki [2], where stationary modifiers are investigated for
the Schrodinger operators with long-range potentials. We first construct the
modifier Y (x) and then difine p(x, &).



Spectral representations and asymptotic wave functions 341

LEMMA 1.1. There exists a real-valued C*(R™-function Y(x) having the
following properties: For some constant C>0,
1.7) 167Y (x)| <C(L+7)-7"%  for p=0,1,2,3,
(1.8) |20 (x)~12% - A(x)F (x)— VY (x))
+ W (x)—TY () A(x) T (x)—VY (x)) | =CA+7)7".

In the proof of this lemma, we shall find it convenient to use some functional
spaces and operators. Let k and / be non-negative integers such that 2=/, and
let » be a real number. We denote by Ct , the space of scalar or vector valued

functions defined by
Ch,={f €CHR™{0});
02 f(x)| EC(A+r)-2r7  if 0=p=k,
|32 f(x)| =CA+r)?*1  if 0=p=l}

For fec}, ,, we define operators [ and /' by
=\ fisds,

(j’f)(x):rf(sy”c)ds, only if this integral converges,
respectively.

PROPOSITION 1.2. Let Ci ., J and J' be as above. Then we have for k<[—1

. Chi1.n+1 if np>-—1,
(1) J(Ch )T .
Ci+1.0 if p<-—1,
ckt  if n>—1,
©(1.9) 7. ](c,z,ﬁc{ T
Cllz,_—ll Zf 7]<—1,
(ii) ]/<C}c,7]>cclta+l.1}+1 if np<—1,
V- J/(ch eChy if p<—1.
8].1.1%0) C’l?'ﬂxcé::ﬂ’CCE}ggizizg.n+n’ .

Here we have put

JO@CEL )={J"f; fecty},
Ve JOChL ) ={NJ"f); fECL},
Ch,XCh p={f-g; fECLy gECk. 1}
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PROOF. Noting that

v<f<sf>>=%<ﬁf><sx> ,

~ ([T () 7 (00)
vg f(si)ds:S VF(s2)ds .
o(r) o(r)

we can easily prove the proposition.
We note that by Assumptions and Proposition 1.2,

{ a;(x)—0;,=CH*3,
(1.11)
U(x)eCiot}

Now we are ready to prove Lemma 1.1.

PROOF OF LEMMA 1.1. Without loss of generality, we may assume that 1/0
is not an integer. In order to obtain Y(x), we solve by the method of
successive approximation. Let j, be the integer such that (j;+1)0<1 and
(7, +2)0>1.

First Step. Put Y(x)=0 and define Y 4(x) for j=1, ---, j,, successively as
follows: For >0,

(1.12) Y (x)= j(%di”zG,_l-AG,-_lJri-(A——I)G 1)),

where we have put
GjIGj(X):W(X)ﬂVYj(X)

Then Y ;(x) has the following properties :

(L.13) Yixyechsd,
(1.14) VY (x)ecii/,
(1.15) A(x)Gj(X)—i———@(x)WG (x)- A(x)G (%) € CPLenrs

where j, is the constant appearing in Assumptions. In fact, using and
Proposition 1.2, (i), (iii), we can easily verify [1.13) and [1.14) by induction on
J. We shall show [1.15]. We begin by rewriting as follows:

(1.16) J?-A(x)Gj(x)—l—-;—¢(x)”sz(x)-A(x)G,-(x)

=% (A(x)—I)Gj(x)—l——;—q)(x)”zG,-(x) CA(x)Gy(x)+ % (x)—0.Y 5(x)

We note that %-¥(x)=0, and substitute the right-hand side of [1.12) into the
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last term of (1.16). Then we have
(1.17) J?-A(x)Gj(x)—&—%(D(x)“sz(x) cA(x)G (x)=R;x),

where

<1.18) RJ(X>:BJ(X) . (VY](x)—VY,_l(x)) ,

By =(I— A(NZ+ 5 O(){ -2 AP (X)+ AGW)TY fx)+TY s ().

Using (1.10), (1.11) and [(1.14), we have

(1.19) Bjx)eclry .

So it remains to estimate the term VY j(x)—VY,.,(x). Taking account of the

relation

(1.20) Yix)=Y;o1(x)=J(Bj-1- (VY jo,— VY ;_9))(x) ,
and using [(1.19), and (1.10), we can verify by induction on j
(1.21) VY ()Y ;oi(x) ECITH s -

Combining (1.17)~(1.19) and [1.2I), we have [1.15).

Second Step. For j>j;, we must improve the definition of Y ,(x). For if we
define Y;(x) for s>j, by [1.1Z), then we can also have and and
then [1.19). However, since (j+2)d>1 for j>7,, (1.20), (1.21) with j=j,, and
imply VY ;(x)—VY ,.(x)eC}*?7, so we can merely obtain R,(x)=C{*iz}
Now we construct Y ;(x) so as to satisfy [1.I5). To this end, we define Y x(x)
for j=7,4+1, -+, j, by adding the correction term:

(1.22) Y )= (503G 1w AG st E-(A=D)G 1Y)+ 445
where

—§:R,-1<sf>ds if j=j+1,
(1.23) $,(8) =

l¢j (X)— S R;_(sX)ds if j>7,+1

with R;(x) defined by (1.18). Then from and [1.23), we obtain the relation
€1.24) Y (x)=Y ;o1(x)=J(R;-)(x)+ @ ;(X)— ¢ ;-4(X)
=J(R;-1)(x), '

replacing [1.20). [1.1I5) and [1.17) with j=j, give ¢;,+.(¥)=C35=jt .. This and
the properties of Y;(x) show and [(1.14) with j=7,+1, and then [(1.19)
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with j=7,+1, Taking account of (1.24) and Proposition 1.2, (ii), as in the first
step, we can prove with j=j;+1, and then R; .,(x)ECi{**}/L,5 which
gives @, +(¥)€C9tiZH, . Iterating this argument, for any j>j,, we can verify
(L.13), and

(1.26) Rix)eC{*tiss -

Since 0.¢,(%)=0, we also have by (1.16), which together with imply
for j>7,. We now choose a real-valued C*(R™)-function X,(x) such that
Xo(x)=0 for r=1 and =1 for »r=2. Let us put

Y(x)=Xe(x)Y ;,(x).

Then by [(1.13) and [1.15) with j=7,, Y(x) satisfies all of the assertions of the
lemma. Q.E.D.
In view of (1.7), we can choose a large constant R,>0 so that for »=R,,

(1.26) S:di(sf)-lmds—)/(x)go and @(x)1—3,Y (x)=1/4 .
Let us fix such an R, below and put
(1.27) K(x):gbo(r){S:(D(sf)‘1’2ds—Y(x)} ,

where ¢,(s) is a C*-, monotone increasing function of s<[0, oo) such that ¢(s)=0
for s<R, and =1 for s=R,+1. K(x) depends on the choice of ¢, but we do
not specify it here. We remark that in virtue of [1.8), we have the following
inequality for K(x): For some positive constant C,

VK (x)- A(x)VK(x)—1]|=C(1+7r)2.

Now we introduce the approximate phase function p(x, k).

DEFINITION 1.3. Let R, and K(x) be as in (1.26) and (1.27), respectively.
We define a C3(R™)-function p(x, £) with k€ C by

(1.28) o(x, /c)————z'/cK(x)—i—ﬁ%l log r~% log 8,K(x)  for r=R,+1.

Then we have the following lemma.

LEMMA 1.4. Let K. (K.) be any compact set of {k=C;Rex>0 (<0) and
Imx=0}, respectively. Let p(x, k) be as in (1.28). Then the function po(x, k) is
a well behaved approximate solution of (1.3): As r—oo,

(1.29) £*+Vo(x, £)- A(x)Vo(x, £)—V-A(x)Vo(x, ©)=0F"*)+p(x, £)

uniformly in k€ K., where p(x, k) is a complex-valued function such that
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(1.30) | plx, £)| EC(147r)"2-° and |Vp(x, £)| <C(L-+r)"2°

for some C=C(K.,)>0. Furthermore p(x, k) with k=c+it€ K, has the following
properties: For any €>0, there exists a constant R.=ZR,+1 such that

(1.31) Re{%-A(x)Vp(x, £)} g%@(x)”z—%—n——zlr:i@(x) for r=R..

(1.32) Im {%- A(x)Vo(x, £)} =—a@(x)"2+0(r%) as r—oo.

PRrROOF. (1.31) and are immediate consequences of (1.7) and (1.28).
We shall show (1.29) and [1.30) We rewrite p(x, x) as follows:

o(x, £)=pox, £)+icY (x)+Z(x),
where p,(x, £) is defined by and

Z(x):—% log (1—®@(x)'%0,Y (x)) for r=R,+1.

Then we have for p=0, 1, 2,
(1.33) 107 Z(x)| <C(A+7)"P~2,
For the sake of simplicity, let us put
p=p(x, ), po=pox, k), Y=Y(x) and Z=Z(x).

Noting that
Vo=%0,00+Vpo+ikVY +VZ ,

we have by a straightforward calculation,
(1.34) k*+Np-AVp—V-AVp

1

= [@{ ‘1x2+(arpo)2—a?.oo~£;‘ arPO}‘” 'VA-Vp,

— Ek ;10,0 kpo——TlT(Trace (A)—n@)0,p,—2% Aaﬁpo-——i—f -Avpo]
J»

+1{20,00% - ANV 0o +iEVY ) +(V po+ixVY ) - A(V py+ieVY )}
+{2VZ - AN po+irVY)+VZ - ANZ—N- ANZ +irY )}
=T, +T:+Ts.
Here we have put

_ (n—=1(n—3)

(1.35)  T,= o

5 -1 2___]‘_ 2 ___1_ -1 8.5
@+-16@ (ard)> 461‘@ 4¢ j'zl:eaJkaJak@

+—L11—d>-2ﬁ@-Aﬁd>—~%£-Aar(d>'W~7®)
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——(Trace (A)— n(p)( +—q) 19, q))——@ 1%- AVQ
+VA- (x-—»+—<z> Vo)
it]— ODD, D+ 5 ATO)+ 25+ AU VA (30124

i 1
=+ 2;, ajksoajakdi—uzds—}—?(’l‘race (A)—n@)q)-l/z} ,
(1.36) Tom e 20125 A(—W+VY)— (@ —TY)- AT —TY)}

—(D {( +—q> 19 d>> +—q) lvq)} AVO
+ix{—%¢-3fﬂf-AW+(":l £+%¢‘1V@)-A(—W+VY)} ,

(1.37)  T,=VZ- A( ~4—~+—-q) 1v¢+vz)—v-sz

+ie {297 - A(— 2@ 12— VY )—-V-AVY}.
Combining (1.34)~(1.37), we have by Assumptions, Lemma 1.1l and (1.33),
(1.38) £*4+Np-AVp—V-AVp=0@ ")+ p(x, k),

where for »r=R,+1,

3

(1.39)  p(x, x)=—z'/c{(D""’2((Dar(D+§5E Aw)—%z-Allf—tVA-(w-wwf)

+ > aj,,Sra,-akd)"’zds-—l(Trace (A)—n@)D-1/2
it 0 r

("7 £+ 07V0+29Z)- AT —TY)

+20-12% -AVZ—V~AVY} .

and (1.39) imply (1.29) and Q.E.D.

Now we are in a position to state the radiation condition for (1.1).

DEFINITION 1.5. A solution of (1.1) with k= K,(K.) is said to satisfy the
radiation condition if
(1.40) ueLli o and X-AX)N+Vo(x, £)uc Lioiipn(E(R)),
where R, is the same constant as in Definition 1.3 and «, 8 are positive constants

satisfying
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asf and a+p=2.

§2. Limiting absorption principle and spectral representations.

First we prove the limiting absorption principle. Our improved approximate
phase function p(x, #) and definition of the radiation condition contribute essenti-
ally to the following lemma which plays a crucial role in this section.

LEMMA 2.1. Let K. be as in Lemma 1.4 and a, B be positive constants with
a+pB<2 and a<p. Let u be a solution of (1.1) with r=o+it€K, and
f&€L%ip0s satisfying the rvadiation condition. Then there exist constants C>0
and R,=R,+1, independent of k, f and u such that

(2.1) I(V+Vol-, )ullt-1+p /2 £y SC{lulli-1-ar o1 f G prred -
PROOF. Putting
0=0(x, £)=(N+Vp(x, £)u,
we rewrite (1.1) as follows:
(2.2) —V-A0+Vp-Ab=f+x*+Vp- AVp—V-AVp)u .
Let »=y(x, £) be defined in E(R,+1) by
p(x, £)=ImVp(x, £)/Im 0. p(x, £)=%+7,

where 7=7(x, £)=Im ﬁp(x, £)/Im0,p(x, k). Choose a sufficiently large constant
R,=R,+1 and a C'-, monotone increasing function @(s) of s<[0, o) such that
#(s)=0 for s<R,; and =1 for s=R,+1.

First Step. We have the following two identities: For R=R,+1,

. 1 ]
2.3) -—SS(R)rﬁ[Re{x-Aﬁ()y-Aﬁ)}—7x-A77(0-A0)]dS

1 B . B
SB(R1,3)¢(7)rﬁ [{Re (7 'AVP)’—f(V'AU)—‘gx 'A77}0 - A6
+_’1,‘{[A0l2+(,3—1) |%-A6|*+Re[B%x-A0(5 <A}

+Re (8- AV)7)- A} —30- (7 AV)AYW

+Re{, 3 am@ar)niOndi) |dx

¢'(r)rﬁ[Re{f-A0<;7-Aé)} —%z-An(o-Aé)]dx

SB(Rl.R1+1)
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:SB(RI,R)QS(’,)”[S Re [f(n-Af)+*+Vp-AVp
—V-AVp)u(n-Af)ldx ,
@4) SB(RI R)¢(7’)rﬁRe {p(x, K)u(n-Ab)}dx

:%Sm)lm {£- A0 ¢(r)rP(Im d,0)~'p(x, £)u}dS

1

2 SB(R;[, Ri+1)

1

2 SB(Rl,R

&' (rP(Im d,p) ' Im{%X- A0p(x, K)u}dx
)¢(r)rﬁ(1m 0-0)7} Im[ﬁ{gp(x, £)X+Vp(x, k)

— 5%, ®(Im 3,p)~* Im V,p} - A6

- px B0 Ab— fa—(*+Vp- AVp—V- A¥p) | u [2}]dx .
Here p(x, ) is the function defined by (1.39). In fact, multiplying the both
sides of by ¢(r)rPn-Af and taking the real part, we have (2.3) by inte-
grating by parts over B(R,, R). And also, multiplying by ———;—¢(r)r‘3

-(Im 8,p)"*p(x, k)u and taking the real part, we have by integrating by
parts over B(R,, R).

Second Step. Using two identities (2.3) and [2.4), we shall show (2.1} Let
us put
I=the integrand in the second integral term in the left-hand

side of (2.3).
If 1<B<2, by (1.7), (1.28), (1.31) and Assumptions, we see that there exist
positive constants C, and e=e¢(R,) such that in E(R,+1),

Igrﬂ[Re {%- AV p} —clfr-ﬁ——"_z—?f*-’id)—clr—l—ﬁ]a . AG

. 8( e Ll—e _ -5__ n—l—e 2—p+e _ -1-3\A. A
>r (2@ -+ o O—C,zr o D+ 9y Q@—Cyr )0 Ab.
Since 2> and R, is sufficiently large, we have for some C,>0,

(2.5) I=C,r*8 |02 in E(R,+1).

If 0<B=1, we have for some positive constants C, and C,,

@7 Igrﬁ[Re {%-AVp}) —cazr-ﬁ—"—“-zl;'iq)—csr—l-«’]o-Aé
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+A—=B)r B A2~ |- A0 | H=Cr~*E |0 |*
in E(R.+1).

In fact, if we take R, sufficiently large, we can choose a small constant ¢ in
(1.31) so that e< /2. Noting that

(2.8) -;—f'Aﬁ(ﬁ'Aé)——Re{f'Aﬁ(fj'Aé)} =0 in E(R+1),

and combining (2.4)~(2.8), we see by (1.29) and the condition a-+§<2,

(2.9) =810 |2dx

SE(RI+1)

=c[|{, ., #0r® Relpix, Dutp-AD}dx | +lulter-ers

SB(RI‘R)

+||f||%1+ﬂ>/2+5 ]ledx+SS(R)(rﬁ[£~A0|2—{—r““|u IZ)dS] .

B(Ry, R1+1)

Using [2.4), we can estimate the first term in the right-hand side of (2.9) as
follows: For any ¢>0,

(2.10) Uml  $Ir? Re{p(x, Ru(y- AD)} dx

<

(e+Cr=0r*2|0*dx +Cellullt-1-are

SB(R1+1, R)

[0|de+S R)(rﬂli-Aﬁlz—l—r‘“lulz)dS].

B(Ry, Ri+1) S¢

+C[ 1 Mgt
Combining (2.9) and (2.10), we have for some C>0,

2.11) P01 d x SC{lwltos- st /e porn

SE(81+1)
+ (P15 A0 |47 [u]*)dS}.

Thus the radiation condition allows us to let R—co in which completes
the proof of the lemma.

With the aid of Lemma 2.1, we can follow the same line as in the proof
of Mochizuki-Uchiyama to verify the following theorem, the limiting absorption
principle (cf., §2 and the proofs of Theorems 1~5 of [6]).

THEOREM 2.2. Let L be defined by (1.2) and K. be as in Lemma 1.4. Let
a, B be constants satisfying 0<a=p and a+p<2. For t€K.\R, let us put
R=(L—k*"% Then the following assertions hold.
(i) There exists a constant C=C(K.)>0 such that for any f& L% .5, and k=K.,
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uk, [)=R.f satisfies
(2.12) | u(k, f)”(—1—a)/2§C”f”(1+,8)/2 ,

(2.13) II(V+VP(', K)u(k, f)”(—1+/3>/2,E(Ro)§c”f”<1+ﬁ)/2 .

(ii) u(k, f) is continuous in L% i_ny» with respect to k€ K.\R and f&L%ips,
and as a function of k& can be extended in L% ,_,y,s to K.. The extended function
u(a+10, f) satisfies (2.12) and (2.13) with k=o0-+10.

(iii) u(o+20, f) is a unique solution of (1.1) with k=0+i0= K. and [ <€ L%14p)ss
satisfying the radiation condition.

(iv) L s absolutely continuous.

Now we shall establish the spectral representations for L. For o<R\{0}
and fe& L%.p. with 0<8<2, let us put

2.14) [F(o, r)f](a?)z\/%ae"“i" NHRf)rE)
Then we have

PROPOSITION 2.3. Let a, B satisfy 0<a=p, a+pB<2 and a<d. For any
d=R\{0} and feL%.p) s there exists a sequence {rn} tending to infinity such
that
2.15) limSS( (a8 | (T Tp(x, )ul)dS=0,

m—oo

where u=R,f, and
(2.16) AR~ Rof, =DM F(0, ra)fIL2es™ -

PROOF. is an immediate consequence of [2.12) and [2.13) with =g +0.
follows from (1.28) and [(1.32) and [2.14) through the Green formula.
Q.E.D.
We shall show the strong convergence of {F(e, rn)f} in L% S™ ).

PROPOSITION 2.4. Let a, B satisfy 0<a=p, a+p<2, a<od and a+2(1—06)< B,
and let 6=R\{0} and feL%.p. Let {rn} be any sequence satisfying [(2.15)
with a, B, above. Then {F(o, rn)f} defined by (2.14) converges strongly in
L¥(S™-Y).

In order to prove this proposition, we need the following lemma.

LEMMA 2.5. Let ¢=D(AY?), where A is the negative Laplace-Beltrami
operator on S™ . Then under the same assumption as in Proposition 2.4, we have
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for vp>rn>Ry+1,

(2.17) (F (o, ri)f—F (o, ¥u)f, §)r2s™ Y]
SCm)rml=*2(|lgl L2sm-1,+ 1 AY2 | L2 s7-1))
(2.18) N A2 F (o, rm)fllL2sm-H =Clm)ri, #/2,
where
1/2
2.19) c<m):c[ls§£[ss(m w2 B | (T Vo(x, o))ul?) dS]

Flull -1-arse 2 IV o -, oDl 14512 B

S Nasgorn s |
with u=R,f.

SKETCH OF THE PROOF OF LEMMA 2.5. Let ¢ be a C=-function of s=[0, oo)
such that ¢(s)=1 for s=R,+1 and =0 for s<R, For a smooth function

o=¢(X), let us put
ve=v4(x, 0)27%?8”"”'“%(5)95(7’)-

Then we have as r—oo,

(2.20) V=0~ D12
2.2 X 'A(x)(V—I—Vp(x, a))v¢:O(r“1‘5‘<”‘1’/2) ,
(2.22) ge=g4(x, 0)=(—V-A(x)V—0vy4(x, 6)=0(r 1-0-(n-D1z)

Using (2.20)~(2.22), by the Green formula, we have for ¢=D(A?), rn=R,+1,

(2.23) i(F (o, rm)f, ¢)L2<sn—1>=SB (ugs—fvg)dx

(r

—SS(){fuMV+Vphw¢—u£qﬂv+va¢+0@4“m*”5mﬂdS,

P S 0% AYGu dS— -5
@20 | ugdx= \/27gs(rm)e 0% AVu dS—| o7

B(rm) B(rm)

X {u(a®+Vp-AVp—V-AVp)pdp—uVp- AN(pp)—Vu- AN(JP)} d x .

Combining (2.23) and (2.24), we obtain [2.17). can be seen by a direct
calculation from [2.14), Q.E.D.
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PROOF OF PROPOSITION 2.4. We see by and its proof that the
weak limit F of {F(o, rn)f} exists in L%S""!) and F does not depend on the
choice of the sequence {rn} specified in Proposttion 2.3. By we
have
2.25) |(F—%(a, rn)f, F(o, rm) )it | SCm) {CHClm)yrpl-a/o+1=8r2}

where C is a positive constant independent of m. We see by that C(m)—0
as m—oo. Letting m—oco in (2.25), we have

(2.26) lim [F (o, rm) fll?sm=h =[F ™ -

and the existence of the weak limit imply the strong convergence of
{F(o, rn)f} in LAS™7Y). Q.E.D.

DEFINITION 2.6. Let a, B be as in Proposition 2.4. For c=R\{0} and
fE&L%spye let F(o)fe LYS™) be defined by

F(g) f=strong lim (o, rm)f,

where F(o, 7)f is defined by (2.14) and {r,} is any sequence satisfying (2.15)
with these «, S.

Let B satisfy 0<j3<20. Then as in Lemma 3.2 of Ikebe [1] or Lemma 3.2
of Mochizuki-Uchiyama [7], the operator Z(s) can be extended to a bounded
linear operator from L?%.,5,, to L*S"™), which will be denoted by (o) also.

Making use of Propositions 2,3 and 2.4, and the above fact, we have the
following spectral representation theorem for L. Since the theorem can be
verified in the same way as in Ikebe [1] or Mochizuki-Uchiyama [7], we may
omit the ;Sroof.

THEOREM 2.7. (i) Let B satisfy 0<B<20 and let the operator F. from
L%:% s to O.=L*(R.xS™ ) (R,=(0, o0) and R-=(—0, 0)) be defined by

(F:)o, )=L[F(a)f1) for (o, H)eR.XS"*'.
Then F. can be extended to a unitary operator from O to ., which will be also

denoted by F ..
(i) For any bounded Borel function a(d) on R and any f€9, we have

a(L)f=Fta(e?)F.f

:stroj&gwlimg F (oY a(c®)F. ), Ydo in P,

ex N

where e,y=(1/N, N) and e-y=(—N, —1/N).
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§3. Asymptotic wave functions.
We consider the Cauchy problem
{ 2w(x, t)—V-A(x)Vw(x, t)=0 for (x, ))eR"XR,

3.1
w(x, 0)=f.(x) and d,w(x, 0)=f,(x) for xeR",

where 6,=0/8t. Let H be the positive square root of L, H=+/L >0 and let
P(H™Y) denote the closure of 9(H?), the domain of H-! in the norm [H~!-|.
Then H-!' can be extended to a unitary operator from 2(H-!) onto $, which
will be denoted by H-*. For {f,, f.} €DXD(H?!) and t<R, we define the weak
solution w(-, )P of as follows:
32) w(-, Do U o )+ 3 o (i),

We shall determine the asymptotic wave function as ¢—co, associated with
the solution [3.2). With the aid of the generalized Fourier transforms .
associated with L, constructed in Section 2, we can develop the same arguments
as in Mochizuki to construct the asymptotic wave function w>(x, t). So we
state only the results without any proof.

For f={f,, fo} €OXD(H™Y), let us define the wave profile F(s, %) (s€R) as
follows :

3.3) F(s, m:X’/jrzghemmm+z"H'-?f2>]<a, ¥do

+27'—/%Sx_em[5-(fr*iFfz)](o, Ddo .

Then the correspondence DX D(H > f—F(s, ¥)€ LA(RXS™"?) is unitary.
Let ¢(s) be a C~-, non-decreasing function of s=0 such that ¢(s)=1 for
s=K,+1/4 and =0 for s<K, where K,= sup K((R,+1)w), and the function

wssn-1
K(x) is defined by Let us define the asymptotic wave function w™(x, 1)
corresponding to by the following modified diverging spherical wave:

3.9 w(x, D= P @K K)o~ RFK ()=, D),
Then we have

THEOREM 3.1. For arbitrary Cauchy data {fi, f:} €OXDH™), let w(-, 1)
be the solution of (3.1) defined by (3.2) and let w>(-,t) be the corresponding
asymptotic wave fuuction defined by (3.4). Then we have

ltlgi lw(-, y—w=(-, HI=0,
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and w*=(-, t) has the following properties: w=(-, t)c9 is continuous in all t<R
and |w=(-, t)|| is monotone increasing in t. Furthermore

lim (-, Dl = (| £ o4 TEf o2
—oo ’\/ 2

lim (-, )=0.

Finally, we remark that we can also calculate the asymptotic distribution of the
wave energy for t—oo as in Wilcox [9] and Mochizuki [5].
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