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ON REFLECTION PRINCIPLES

By

Akito TSUBOI

Introduction.

In this paper, we shall consider various forms of reflection principles for

l-st order theories containing arithmetic. If a l-st order theory $T$ contains
arithmetic, we can express various notions concerning $T$ within $T$ itself, by

using the coding method developed by K. G\"odel. K. G\"odel assigned each formula
$\phi$ in the language of $T$ a number $\ulcorner\phi^{\urcorner}$ (the G\"odel number of $\phi$ ), but our method

is slightly different.
We assume that variables, individual constants, relation symbols and func-

tion symbols are numbers, and logical symbols $(*_{\wedge^{*}}, *v*\urcorner**\rightarrow^{*}\forall^{**}, \exists^{**})$ are
operations on numbers. Under these assumptions, a formula $\phi$ itself is a number

and a theory $T$ , which is a set of sentences, can be conceived as a subset of $\omega$

(the set of natural numbers). Let $S$ be a theory and $A$ a subset of $\omega$ . We say

a formula $\alpha(x)$ in the language of $S$ numerates $A$ in $S$ if, for any $ n\in\omega$ ,

$n\in A$ iff $S$ proves $\alpha(\overline{n})$ ,

where $\overline{n}$ denotes the n-th numeral, $i$ . $e.$ , the term of $S$ which expresses the

number $n$ . In this case, we call this $\alpha$ a numeration of $A$ in $S$ . If $\alpha$ numer-
ates $A$ in $S$ and $\urcorner\alpha$ numerates $\omega\backslash A$ in $S$ , we say $\alpha$ binumerates $A$ in $S$ , and
$\alpha$ is called a binumeration of $A$ in $S$ .

Let $A=\{n_{1}, \cdots , n_{m}\}$ be a subset of $\omega$ . Then $[A]$ denotes the formula
$x=\overline{n}_{1}^{\vee\ldots\vee}x=\overline{n}_{m}$ . Clearly $[A]$ binumerates $A$ in any theory $S$ which contains
arithmetic.

If a binumeration $\tau$ of a theory $T$ in a theory $S$ is given, we can construct

a provability formula $Pr_{\tau}(x)$ whose intuitive meaning is that a formula $x$ is
provable in $T$ . The reader should note that this $Pr_{\tau}$ cannot be uniquely deter-

mined by $T$ , but is determined by $\tau$ . (The explicit definition of $Pr_{\tau}$ can be

found in p. 59 of [1].)

Using this $Pr_{\tau}$, we define the $\tau$-reflection principle $Rfn(\tau)$ and the $\tau- reflec-$

tion principle $Rfn_{A}(\tau)$ based on $A$ :
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$Rfn(\tau)=\{Pr_{\tau}(\sigma)\rightarrow\sigma|\sigma\in S_{e}nf_{T}\}$ ,

$Rfn_{A}(\tau)=\{Pr_{\tau}(\sigma)\rightarrow\sigma|\sigma\in A_{\cap}S_{en}f_{T}\}$ ,

where $S_{e}nl_{T}$ is the set of all sentences in the language of $T$ .
A formula $\phi$ is said to be a $\Sigma_{n}$-formula ( $\Pi_{n}$-formula) if $\phi$ has the form

$Q_{1}x_{1}\cdots Q_{n}x_{n}\psi(x_{1}, \cdots, x_{n})$ for some quantifier bounded formula $\psi$, where $Q_{1}=\exists(\forall)$

and the quantifiers alternate in type. The set of all $\Sigma_{n}$-formulas ( $\Pi_{n}$-formulas)

is denoted by $\Sigma_{n}(\Pi_{n})$ .
Let $T$ be a l-st order theory containing arithmetic. We say $T$ is n-con-

sistent if the following two conditions are not simultaneously satisfied for any
$\Pi_{n-1}$-formula $\phi$ :

i) $T$ proves $\exists x\phi(x)$ ,

ii) $T$ proves $\urcorner\phi(\overline{m})$ for all $ m\in\omega$ .

If $T$ is n-consistent for all $ n\in\omega$, we say $T$ is $\omega$-consistent. If $T$ proves $Con_{[T_{0}]}$

$(=\urcorner Pr_{[T_{0}]}(\overline{1}=\overline{0}))-$ for all finite subtheories $T_{0}$ of $T,$ $T$ is said to be reflexive. If
each extension $T^{*}$ of $T$ with the same language is reflexive, we say $T$ is
essentially reflexive. We next define a more complicated notion A-reflexiveness.
Let $A$ be a set of sentences. We say $T$ is A-reflexive, if there exist a truth
definition $Tr_{A}(x)$ for $A$ in $T$ and a numeration $\alpha(x)$ of $A$ in $T$ for which $T$

proves $\forall x(\alpha(x)_{\wedge}Sent(x)_{\wedge}Pr_{[T_{0}]}(x)\rightarrow Tr_{A}(x))$ for all finite subtheories $T_{0}$ of $T$ , where
Sent $(x)$ is a formula which expresses that $x$ is a sentence. (See Definition 1.2
and 1.3 for reference.)

For three sets $A,$ $B$ and $C$ of sentences, we put:

$A\subseteqq {}_{B}C$ iff each sentence in $A$ is provable in $B\cup C$ ,
$A={}_{B}C$ iff $A\subseteqq {}_{B}C$ and $C\subseteqq BA$ ,
$A\subsetneqq {}_{B}C$ iff $A\subseteqq {}_{B}C$ and $A\neq {}_{B}C$ .

In case $B$ is the empty set, we usually omit $B$ in the above definitions. In what
follows, we say $S$ is a subtheory of $T$ if $S\subseteqq T$ holds in this sense. If $T$ is a
theory and $A$ is a set of sentences in the language of $T$ , then we put $T-A=$
$t\phi|\phi$ is equivalent to some $\psi\in A$ in $T$ }.

It is now possible to state the main theorems of this paper.

THEOREM 1. Suppose that $A$ is a set of sentences. If $T$ is an A-reflexive
theory with a binumeration $\tau$ of $T$ in $T$ , then we can effectively construct a
binumeration $\tau^{\prime}$ of $T$ in $T$ for which $T$ proves each member of $Rfn_{A}(\tau^{\prime})$ .

THEOREM 2. Suppose that $T$ is a recursively enumerable theory ( $r$ . $e$ . theory)
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and $S$ is a subtheory of T. If $\tau$ binumerates $T$ in $S$ , then $Rfn(\tau)\backslash Rfn_{T-(\Sigma_{n}\cup\Pi_{n})}$

$(\tau)=_{T}Rfn(\tau)$ .

THEOREM 3. Suppose that $T$ is an $\omega$-consistent and essentially reflexive theory

and $S$ is a subtheory of T. If $\tau$ binumerates $T$ in $S$ , we can effectively construct

binumerations $\tau_{1}$ and $\tau_{2}$ of $T$ in $S$ for which $Rfn(\tau_{1})\subsetneqq\tau^{Rfn(T)\subsetneqq\tau^{Rfn(T_{2})}}$ .

Theorem 1, which appears in \S 2, is closely related to Theorem 5.9 of [1].

Theorem 2 shows that the strength of $Rfn(\tau)$ does not change even if the lower

part of it is taken away from it. Theorem 2 also appears in \S 2. Theorem 3,

which appears in \S 3, is an analogy of Theorem 7.4 and 7.5 of [1] and shows

that the choice of numerations must be done very carefully.

The reader who is accustomed to the coding method can skip \S 1 and may

refer to it as occasion demands.
The author wishes to express his heartfelt thanks to Prof. N. Motohashi

for a number of helpful suggestions.

\S 1. Preliminaries.

Notations, definitions and conventions in this paper largely correspond with

those of [1]. Especially, we assume that a formula $\phi$ itself is a number and

we do not use a notation $\ulcorner\phi^{\urcorner}$ (the Godel number of $\phi$ ).

For simplicity, we say $T$ is a theory when $T$ is a consistent l-st order

theory containing $PA$ (Peano arithmetic). We use $T,$ $S$ and $T_{i}(i=1,2, \cdots)$ as

syntactic variables ranging over theories, and usually assume that $S$ is a sub-

theory of $T$ .
It will be convenient to assume that for every theory $T,$ $L_{T}$ (the language

of $T$ ) has all the symbols for $p$ . $r$ . functions (primitive recursive functions) and
$T$ contains all the defining axioms for $p.r$ . functions. The function symbol

associated with a $p.r$ . function $f$ is denoted by $f$ or $f$. But symbols which are

used very often will be used without dots. For example, we write $vr_{x}$ and

$nm_{x}$ (the x-th variable and the x-th numeral, respectively) instead of writing

$vr_{x}$ and $n\gamma\mu_{x}$ . $Tm(x),$ $Fm(x),$ $Sent(x),$ $Prf_{\tau}(x, y),$ $Pr_{\tau}(x)$ and $Con_{\tau}$ are formulas

whose intuitive meanings are $x$ is a term”, $x$ is a formula”, $x$ is a sentence”,

$y$ is a proof of $x$ in a theory with a numeration $\tau$

’ and “a theory with a num-

eration $\tau$ is consistent”, respectively.

CONVENTION. Let $\alpha$ be a formula with a free variable $x$ and $A$ be a set of

formulas. We say $\alpha$ numerates $A$ in a theory $T$ , if $\alpha$ numerates $A$ in $T$ in the
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usual sense and $T$ proves $\forall x(\alpha(x)\rightarrow Fm(x))$ . (See Introduction for reference.)

The above convention Is trivial: If $\alpha$ numerates $A$ in $T$ in the usual sense
and $T$ does not prove $\forall x(\alpha(x)\rightarrow Fm(x))$ , then we can define $\alpha^{\prime}$ as $\alpha(x)_{\wedge}Fm(x)$ ,
and $\alpha^{\prime}$ will numerate $A$ in $T$ in the above sense.

In the following, we state some definitions which do not appear in [1].

1.1. DEFINITION. Let $T$ be a theory and $S$ a subtheory of $T$ . Then we
put:

Bin$(T, S)=$ {$\tau|\tau$ binumerates $T$ in $S$}.

1.2. DEFINITION. Let $T$ be a theory and $A$ a set of formulas in the
language of $T$ . We say a formula $Tr_{A}(x)$ is a truth definition for $A$ in $T$ , if
the following is satisfied:

$T\vdash Tr_{A}(\overline{\phi}(x_{1}, \cdots, x_{n}))\leftrightarrow\phi(x_{1}, \cdots, x_{n})$ for all $\phi(x_{1}, \cdots, x_{n})\in A$,

where $\overline{\phi}(x_{1}, \cdots, x_{n})=sub(\overline{\phi};\overline{x}_{1}, \cdots,\overline{x}_{n}/nm_{x_{1}}, \cdots, nm_{x_{n}}),$ $i.e.$ , the sentence obtain-
ed from $\phi$ by substituting $nm_{x_{1}},$ $\cdots,$ $nm_{x_{n}}$ for its free variables $x_{1},$ $\cdots,$ $x_{n}$ .

1.3. DEFINITION. Let $T$ be a theory and $A$ a set of sentences in the
language of $T$ . Then we say

i) $T$ is reflexive if $T\vdash Con_{[T_{0}]}$ for every finite subtheory $T_{0}$ of $T$ ,
ii) $T$ is essentially reflexive if every extension $\tau*$ of $T$ in the same

language as $T$ is reflexive,
iii) $T$ is A-reflexive if there exist a numeration $\alpha$ of $A$ in $T$ and a truth

definition $Tr_{A}$ for $A$ in $T$ for which

$T\vdash\forall x(\alpha(x)_{\wedge}Sent(x)_{\wedge}Pr_{[T_{0}]}(x)\rightarrow Tr_{A}(x))$

holds for every finite subtheory $T_{0}$ of $T$ .

1.4. COROLLARY. The following i), ii) and iii) are equivalent:
i) $T$ is essentially reflexive,
ii) $ T\vdash Pr_{\tau r\overline{n}}(\overline{\phi})\rightarrow\phi$ for every $\tau\in Bin(T, T),$ $\phi\in S_{e}m_{T},$ $ n\in\omega$, (where, of course,

$\tau[\overline{n}$ is an abbreviation for $\tau(x)_{\wedge}x\leqq\overline{n}.)$

iii) $T$ is $t\phi$ } -reflexive for every $\phi\in S_{el}\iota t_{T}$ .
Since there is no truth definition for all sentences, a reflection principle

cannot be formulated in a single sentence. Although there are many versions
of a reflection principle, we restrict our attention to the following two types.
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1.5. DEFINITION. Let $T$ and $S$ be theories with $S\subseteqq T$ and let $\tau$ be a
formula which binumerates $T$ in $S$ . Then:

i) Local Reflection Principle;

$Rfn(\tau)=\{Pr_{\tau}(\overline{\phi})\rightarrow\phi|\phi\in S_{e)?}r_{T}\},$ $Rfn_{A}(\tau)=\{Pr_{\tau}(\overline{\phi})\rightarrow\phi|\phi\in A\cap S_{e}nt_{T}\}$ ,

ii) Uniform Reflection Principle;

$RFN(\tau)=\{\forall x\in\Sigma_{n}\cup\Pi_{n}\forall y(Pr_{\tau}(x^{*})\rightarrow Tr_{n}(x^{*}))|n\in\omega\}$ ,

where $Tr_{n}$ is the standard truth definition for $\Sigma_{n}\cup\Pi_{n}$ and $x^{*}$ denotes the

sentence obtained from $x$ by substituting $nm_{(y)_{0}},$ $nm_{(y)_{1}},$
$\cdots$ for its free variables.

Does $T$ remain consistent when a reflection principle is added to it ? The

following theorem gives us a partial solution.

1.6. TNEOREM. (Refinement of Theorems 20 and 24 of [4]) Let $T,$ $S$ and
$\tau$ be as above. Then:

i) If $\tau\in\Sigma_{1}$ and $T$ is l-consistent, then $T\cup Rfn(\tau)$ is l-consistent,

ii) If $\tau\in\Sigma_{n}$ and $T$ is n-consistent, then $T\cup Rfn(\tau)$ is 2-consistent. $(n=2,3, \cdots)$ ,

iii) If $T$ is $\omega$-consistent, then $T\cup RFN(\tau)$ is 2-consistent.

REMARK. T. Miyatake showed that if $\tau\in\Sigma_{1}$ , then the converse of iii) also

holds. If $\tau\not\in\Sigma_{1}$ , the 2-consistency is not enough, but the weak converse of iii)

holds, and it can be stated as follows: if $\tau\in\Sigma_{n}$ and $T\cup RFN(\tau)$ is $n+1$-con-
sistent, then $T$ is $\omega$-consistent. It is not hard to give an example of $T$ for

which $T\cup Rfn(\tau)$ is inconsistent. The reader may refer to [4] for this purpose.

\S 2. Hierarchy Considerations.

By Godel’s Second Incompleteness Theorem, if $\tau\in Bin(T, T)$ is a $\Sigma_{1}$-formula,

$Con_{\tau}$ cannot be proved in $T$ . S. Feferman, however, in [1] showed that in case
$T$ is reflexive, we can choose $\tau\in Bin(T, T)$ for which $PA$ proves $Con_{\tau}$ . Since
$Con_{\tau}$ and $Rfn_{\Pi_{1}}(\tau)$ are equivalent over $T$ , we can also prove all elements of
$Rfn_{\Pi_{1}}(\tau)$ in $T$ for the above $\tau$ . The following theorem is a generalization of

this fact.

2.1. THEOREM. Suppose that $A$ is a set of sentences. If $T$ is an

A-reflexive theory with a binumeration $\tau\in Bin(T, T)$ , then we can effectively con-
struct from $\tau$ a binumeration $\tau^{\prime}\in Bin(T, T)$ for which $T$ prove each element of
$Rfn_{A}(\tau^{\prime})$ .
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PROOF. Since $T$ is A-reflexive, we can choose a numeration $\alpha(x)$ of $A$ in
$T$ and a truth definition $Tr_{A}(x)$ for $A$ in $T$ such that

$T\vdash\forall x(\alpha(x)_{\wedge}Sent(x)_{\wedge}Pr_{\tau r\overline{n}}(x)\rightarrow Tr_{A}(x))$ for all $ n\in\omega$ .

Set $\beta(x)=\forall y(\alpha(y)_{\wedge}Sent(y)_{\wedge}Pr_{\tau rx}(y)\rightarrow Tr_{A}(y)),$ $\tau^{\prime}(x)=\tau(x)_{\wedge}\forall y\leqq\beta(y)$ . We prove

that this $\tau^{\prime}$ has the desired prooerties. Since $\tau^{\prime}\in Bin(T, T)$ is easily obtained

from the assumptions, we have only to show that $T$ proves each element of
$Rfn_{A}(\tau^{\prime})$ . First note that $T\vdash Pr_{\tau}(x)\leftrightarrow\exists yPr_{\tau\vdash y}(x)$ , then

$T\vdash\urcorner\forall x(\alpha(x)_{\wedge}Sent(x)_{\wedge}Pr_{\tau}(x)\rightarrow Tr_{A}(x))\rightarrow\exists y(\urcorner\beta(y))$ .

Now, by the assumption, $T\vdash\beta(\overline{0})$ , hence

$\tau\vdash\exists(\urcorner))\rightarrow\exists(\urcorner$

$\rightarrow\exists y(\beta(y)_{\wedge}\forall x(\tau(x)_{\wedge}x\leqq y\leftrightarrow\tau^{\prime}(x)))$

$\rightarrow\exists y(\forall z(\alpha(z)_{\wedge}Sent(z)_{\wedge}Pr_{\tau^{\prime}}(z)\rightarrow Tr_{A}(z))$ .

Thus we have

$T\vdash\urcorner\forall x(\alpha(x)_{\wedge}Sent(x)_{\wedge}Pr_{\tau}(x)\rightarrow Tr_{A}(x))$

$\rightarrow\forall x(\alpha(x)_{\wedge}Sent(x)_{\wedge}Pr_{\tau^{\prime}}(x)\rightarrow Tr_{A}(x))$ . (1)

On the other hand, by the definition of $\tau^{\prime}$ ,

$T\vdash\forall x(\alpha(x)_{\wedge}Sent(x)_{\wedge}Pr_{\tau}(x)\rightarrow Tr_{A}(x))$

$\rightarrow\forall x(\alpha(x)_{\wedge}Sent(x)_{\wedge}Pr_{\tau^{\prime}}(x)\rightarrow Tr_{A}(x))$ . (2)

Combining (1) and (2), we have

$T\vdash\forall x(\alpha(x)_{\wedge}Sent(x)_{\wedge}Pr_{\tau^{\prime}}(x)\rightarrow Tr_{A}(x))$ .
So

$ T\vdash Pr_{\tau\prime}(\overline{\phi})\rightarrow\phi$ for all $\phi\in A\cap S_{e}nl_{T}$ ,

as desired. $\square $

2.2. COROLLARY. Suppose that $T$ is an $r$ . $e$ . theory with the same language

as $PA$ . Then there is a theory $\tau*$ with $T^{*}=T$ , and for each $ n\in\omega$, there is a
$\tau_{n}\in Bin(T^{*}, T^{*})$ such that $\tau*$ prove each element of $Rfn_{\Sigma_{n}\cup\Pi_{n}}(\tau_{n})$ .

PROOF. By Theorem 4.13 of [1], there is a theory $\tau*$ with $T^{*}=T,fand$

there is a $\tau\in Bin(T^{*}, T^{*})$ . So it is sufficient to prove that

$T\vdash\forall x\in\Sigma_{n}\cup\Pi_{n}\forall y(Pr_{\tau r\overline{m}}(x^{*})\rightarrow Tr_{n}(x^{*}))$ for all $m,$ $ n\in\omega$ .

By formalizing a proof of the soundness of a l-st order logic, we have
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$T\vdash\forall x\in\Sigma_{n}\cup\Pi_{n}\forall y(Pr_{\tau\triangleright 0}^{-}(x^{*})\rightarrow Tr_{n}(x^{*}))$ for all $ n\in\omega$ .

Let $m,$ $ n\in\omega$ be given. If $\tau rm$ is equivalent to $i\leq lx=\overline{\chi}_{i}$ {then, for sufficiently

large $j\geqq n$ ,
$T\vdash\forall x\in\Sigma_{n}\cup\Pi_{n}\forall y(Pr_{\tau\triangleright 0}^{-}(\overline{\chi_{i}}\rightarrow x^{*})\rightarrow Tr_{j}(\overline{\chi}_{i}\rightarrow x^{*}))\hat{i}\hat{i}$

$T\vdash\forall x\in\Sigma_{n}\cup\Pi_{n}\forall y(Pr_{\tau\triangleright\overline{m}}(x^{*})\rightarrow(\chi_{i}\rightarrow Tr_{j}(x^{*})))\hat{i}$

$T\vdash\forall x\in\Sigma_{n}\cup\Pi_{n}\forall y(Pr_{\tau\vdash\overline{m}}(x^{*})\rightarrow Tr_{j}(x^{*}))$ .

Since $Tr_{n}$ and $Tr_{j}$ are standard ones, we have

$T\vdash\forall x\in\Sigma_{n}\cup\Pi_{n}\forall y(Tr_{j}(x^{*})\rightarrow Tr_{n}(x^{*}))$ ,

which completes our proof. $\square $

If $T=PA$ , we don’t have to choose $\tau*$ as in the above corollary. So the
following holds:

2.3. COROLLARY. For each $ n\in\omega$, there is a $\pi_{n}\in Bin(PA, PA)$ for which $PA$

proves each element of $Rfn_{\Sigma_{n}\cap\Pi_{n}}(\pi_{n})$ .

Now, we take another side view of the lower part of a reflection principle
$w$ . $r$ . to the formula hierarchy.

2.4. THEOREM. Suspose that $T$ is an $r$ . $e$ . theory and $S$ is a subtheory of $T$ .
Then, for each $\tau\in Bin(T, S)$ and $ n\in\omega$ ,

$Rfn(\tau)\backslash Rfn_{T-(\Sigma\cup\Pi}nn^{)}(\tau)=\tau Rfn(\tau)$ .

To prove Theorem 2.4 we need some lemmas.

2.5. LEMMA (KENT). If $\tau*$ is a consistent extension of an $r.e$ . theory $T$ ,

obtained by the addition of axioms in $\Sigma_{n}\cup\Pi_{n}$ , in which each sentence of $\Sigma_{n}\cup\Pi_{n}$

is decidable, then $\tau*$ is incomplete.

PROOF. See Theorem 3 of [3].

2.6. LEMMA. Suppose that $T$ is an $r$ . $e$ . theory and $\phi_{0},$ $\phi_{1}\in S_{e}m_{T}$ . $I.f\dot{o}_{v}$ and
$\phi_{1}$ satisfy

$T\vdash\phi_{0}\rightarrow\phi_{1}$ & $T|_{7^{\angle}}\phi_{1}\rightarrow\phi_{0}$ ,

then, for each $ n\in\omega$ , there is a $x_{n}\in S_{e}nt_{T}$ for which

$T\vdash\phi_{0}\rightarrow\phi_{n}$ & $T\vdash\chi_{n}\rightarrow\phi_{1}$ & $x_{n}\not\in T-(\Sigma_{n}^{l}\Pi_{n})$ .
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PROOF. By way of a contradiction, suppose that for an arbitrary $\phi\in S_{e}nt_{T}$ ,

$ T\vdash\phi_{0}\rightarrow\phi$ & $T\vdash\phi\rightarrow\phi_{1}$ implies $\phi\in T-(\Sigma_{n}\cup\Pi_{n})$ . (1)

For each $\phi\in S_{e}nt_{T},$ $(\phi_{0^{}}\phi)_{\wedge}\phi_{1}$ satisfies the left side of (1). Thus, for any $\phi$ ,

there is a $\sigma\in\Sigma_{n}\cup\Pi_{n}$ such that $T$ proves $(\phi_{0^{}}\phi)_{\wedge}\phi_{1}\leftrightarrow\sigma,$
$i$ . $e.$ ,

$ T\cup\{\urcorner\phi_{0}, \phi_{1}\}\vdash\phi\leftrightarrow\sigma$ . (2)

Adding $\Sigma_{n}\cup\Pi_{n}$-sentences to consistent $T\cup\{\urcorner\phi_{0}, \phi_{1}\}$ , we can construct a con-
sistent theory $\tau*$ which is complete for $\Sigma_{n}\cup\Pi_{n}$-sentences. But (2) holds,

therefore $\tau*$ must be complete. This contradicts the assertion of Lemma 2.5. $\square $

Now we can prove Theorem 2.4.

PROOF OF THEOREM 2.4. It is sufficient to show that

$ T\cup Rfn(\tau)\backslash Rfn_{T-(\Sigma_{n}\cup\Pi_{n^{)}}}(\tau)\vdash Pr_{\tau}(\overline{\phi})\rightarrow\phi$ ,

for $\phi\in\Sigma_{n}\cup\Pi_{n}$ such that $ T|7^{\angle}\phi$ . Fix such a sentence $\phi\in\Sigma_{n}\cup\Pi_{n}$ . By Lemma
2.6, there is a $\phi_{1}$ for which

$T\vdash\phi\rightarrow\phi_{1}$ & $\phi_{1}\not\in T-(\Sigma_{n}\cup\Pi_{n})$ . (3)

This $\phi_{1}$ is unprovable in $T$ . Hence, using Lemma 2.6 again, we can find $\phi_{2}$ for
which

$T\vdash\phi\rightarrow\phi_{2}$ & $T\vdash\phi_{2}\rightarrow\phi^{_{\urcorner}}\phi_{1}$ & $\phi_{2}\not\in T-(\Sigma_{n}-\Pi_{n})$ . (4)

Combining (3) and (4) yields

$\phi_{1},$ $\phi_{2}\not\in T-(\Sigma_{n}\cup\Pi_{n})$ & $T\vdash\phi\leftrightarrow\phi_{1\wedge}\phi_{2}$ .

Therefore, we have

$(Pr_{\tau}(\overline{\phi_{1}})\rightarrow\phi_{1})$ , $(Pr_{\tau}(\overline{\phi_{2}})\rightarrow\phi_{2})\in Rfn(\tau)\backslash Rfn_{T-(\Sigma_{n}\cup\Pi_{n})}(\tau)$

& $T\vdash(Pr_{\tau}(\overline{\phi_{1}})\rightarrow\phi_{1})_{\wedge}(Pr_{r}(\overline{\phi_{2}})\rightarrow\phi_{2})\rightarrow(Pr_{\tau}(\overline{\phi})\rightarrow\phi)$ ,

as desired. $\square $

The following is an easy consequence of the above theorem, and we can
safely leave its proof to the reader.

2.7. COROLLARY. Suppose that $T$ is an $r$ . $e$ . theory $audS$ is 1 subtheory of
T. Suppose that $\tau$ is a binumeration of $T$ in S. Then, for each finite subset $A$

of $Rfn(\tau)$ ,
$Rfn(\tau)\backslash (T-A)=TRfn(\tau)$ .
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\S 3. The 0rdering of The $\tau$-Reflection Principles.

So far, we have investigated the behavior of the lower parts of the $\tau- reflec-$

tion principles ( $w$ . $r$ . the formula hierarchy). In this section, we compare the

strength of the whole $Rfn(\tau)s$ as new axioms of $T$ , and show that for a fixed
$\omega$-consistent and essentially reflexive theory $T$ , there are no maximal elements

and no minimal elements in $\{Rfn(\tau)|\tau\in Bin(T, S)\}w$ . $r$ . to $\subsetneqq_{T}$ .

3.1. THEOREM. Suppoe that $T$ is an essentially reflexive theory. Then for
each $\tau\in Bin(T, S)$ , we can effectively construct a $\tau^{\prime}\in Bin(T, S)$ for which

$Rfn(\tau^{\prime})\subsetneqq TRfn(\tau)$ .

PROOF. A simple diagonal argument shows that there is a $(Pr_{\tau}(\overline{\sigma})\rightarrow\sigma)\in$

$Rfn(\tau)$ which is not provable in $T$ . Using this $ Pr_{\tau}(\overline{\sigma})\rightarrow\sigma$ , we define $\alpha(x)$ by

$\alpha(x)=\tau(x)^{\vee}x=\urcorner(\overline{Pr_{\tau}(\overline{\sigma})\rightarrow\sigma})$ .

For each formula $\gamma(x)$ , define $f_{\gamma}(m)$ by

$f_{\gamma}(m)=\bigwedge_{\phi\leq m}(Pr_{\gamma}(\overline{\phi})\rightarrow\phi)$ .

Using these, we define a diagonal sentence $\phi_{n}$ such that

$PA\vdash\phi_{n}\leftrightarrow\forall x(Prf_{\alpha}(\overline{\phi}_{n}, x)\rightarrow\urcorner f_{\tau\triangleright x}(n))$ .
$\phi_{n}$ can be constructed effectively from $n$ (in fact primitive recursively from $n$ ).

Hence, there is a corresponding $p$ . $r$ . function symbol $\dot{\phi}$ such that $PA\vdash\overline{\phi}_{n}=\dot{\phi}(\overline{n})$ .
Now define $\tau^{\prime}(x)$ by

$\tau^{\prime}(x)=\tau(x)_{\wedge}\forall y,$ $z\leqq x\urcorner Prf_{\alpha}(\dot{\phi}(y), z)$ .
First we prove that

$T\mu_{\urcorner}(Pr_{\tau}(\overline{\sigma})\rightarrow\sigma)\rightarrow\phi_{n}$ for all $ n\in\omega$ . (1)

Assume that $T\vdash\urcorner(Pr_{\tau}(\overline{\sigma})\rightarrow\sigma)\rightarrow\phi_{n}$ , then $T\vdash Prf_{\alpha}(\overline{\phi}_{n},\overline{m})$ for some $ m\in\omega$ . Hence,

using the definition of $\phi_{n}$ , we have $T\vdash\urcorner(Pr_{\tau}(\overline{\sigma})\rightarrow\sigma)\rightarrow\urcorner f_{\tau\vdash\overline{m}}(n)$ . On the other
hand, by the essential reflexiveness of $T,$ $T\vdash f_{\tau\triangleright\overline{m}}(n)$ . So $ T\vdash Pr_{\tau}(\overline{\sigma})\rightarrow\sigma$ . But

this is a contradiction, which leads us to conclude (1). Next we prove that

$T\vdash\urcorner\phi_{n}\rightarrow f_{\tau},(n)$ for all $ n\in\omega$ .

Since we can assume $T\vdash\forall y(\dot{\phi}(y)>y),$ $T\vdash\forall y\geqq x\forall z\leqq x\urcorner Prf_{\alpha}(\dot{\phi}(y), z)$ . So we
have

$T\vdash\forall x(\tau^{\prime}(x)\rightarrow\tau(x)_{\wedge}\forall z\leqq x\urcorner Prf_{\alpha}(\overline{\phi}_{n}, z))$ for all $ n\in\omega$ .
Now, using the definition of $\phi_{n}$ , we have
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$T\vdash\urcorner\phi_{n}\rightarrow\exists x(Prf_{\alpha}(\overline{\phi_{n}}, x)_{\wedge}f_{\tau\mu x}(n))$

$\rightarrow\exists x(f_{\tau\triangleright x}(n)_{\wedge}\forall y(\tau^{\prime}(y)\rightarrow\tau(y)_{\wedge}y\leqq x))$

$\rightarrow f_{\tau^{\prime}}(n)$ ,

as desired. From (1) and (2), we conclude that

$T\mu f_{\tau},(n)\rightarrow(Pr_{\tau}(\overline{\sigma})\rightarrow\sigma)$ for all $ n\in\omega$ .

This directly gives $Rfn(\tau^{\prime})\subsetneqq TRfn(\tau)$ . What is left to prove is that $\tau^{\prime}$ binumer.
rates $T$ in $S$ . But this is easily proved by (1). $\square $

Theorem 3.1 asserts that $\{Rfn(\tau)|\tau\in Bin(T, S)\}$ has no minimal elements
$w$ . $r$ . to $\subsetneqq_{T}$ , if $T$ is essentially reflexive. Maximal elements also do not exist,
if $T$ is $\omega$-consistent.

3.2. THEOREM. Suppose that $T$ is an $\omega$-consistent theory. Then, for each
$\tau\in Bin(T, S)$ , we can effectively construct a $\tau^{\prime}\in Bin(T, S)$ for which

$Rfn(\tau)\subsetneqq TRfn(\tau^{\prime})$ .

PROOF. Set $T^{\prime}=T\cup Rfn(\tau)$ . Then Theorem 1.6 guarantees the consistency
of $T^{\prime}$ . Let $\beta^{\prime}(x)$ be a $\Sigma_{0}$-formula which binumerates $Rfn(\tau)$ in $PA$ . Using this
$\beta^{\prime}$ define $\beta(x)$ by

$\beta(x)=\tau(x)^{\vee}\beta^{\prime}(x)$ .
Clearly, $\beta$ is a binumeration of $T^{\prime}$ in $S$ . By Godel’s theorem,

$T^{\prime}\models\nu_{\beta}$ , (1)

where $\nu_{\beta}$ is a fixed point of $\urcorner Pr_{\beta}(x)$ . Next define $\tau^{\prime}(x)$ by

$\tau^{\prime}(x)=\tau(x)^{\vee}Fm(x)_{\wedge}\exists y<xPrf_{\beta}(\nu_{\beta}, y)$ .
Then $\tau^{\prime}$ is a binumeration of $T$ in $S$ . Since

$PA\vdash\urcorner\nu_{\beta}\rightarrow\in xPrf_{\beta}(\overline{\nu_{\beta}}, x)$

$\rightarrow\exists y\exists x<\urcorner(vr_{y}=vr_{\nu})Prf_{\beta}(\nu_{\beta}, x)$

$\rightarrow\exists y\tau^{\prime}(\urcorner(vr_{\nu}=vr_{y}))$

$\rightarrow\urcorner Con_{\tau},$ ,

we have $PA\vdash Con_{\tau},\rightarrow\nu_{\beta}$ . This together with (1) implies

$T^{\prime}\mu Con_{\tau},$ .
Thus we have $Rfn(\tau)\subsetneqq TRfn(\tau^{\prime})$ as desired. $\square $
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The following theorem shows that $\subsetneqq_{T}$ is a dense ordering of

$\{Rfn(\tau)|\tau\in Bin(T, S)\}$ .

3.3 THEOREM. If $\tau_{1},$ $\tau_{2}\in Bin(T, S)$ and $Rfn(T_{1})\subsetneqq\tau^{Rfn(T_{2})}$ , then there is a
$\tau^{\prime}\in Bin(T, S)$ for which

$Rfn(\tau_{1})\subsetneqq\tau Rfn(\tau^{\prime})\subsetneqq\tau^{Rfn(T_{2})}$ .

PROOF. Since $Rfn(\tau_{1})\subsetneqq\tau Rfn(\tau_{2})$ , there is a sentence $\phi\in Sent_{T}$ for which
$ Pr_{\tau_{2}}(\overline{\phi})\rightarrow\phi$ is not provable in $T\cup Rfn(\tau_{1})$ . For this $\phi$ , set $ T^{\prime}=T\cup Rfn(\tau_{1})\cup$

$\{\urcorner(Pr_{\tau_{2}}(\overline{\phi})\rightarrow\phi)\}$ . Then $T^{\prime}$ is a consistent theory. Let $\beta^{\prime}(x)$ be a $\Sigma_{0}$-formula

which binumerates $Rfn(\tau_{1})$ in $PA$ , and define $\beta(x)$ by

$\beta(x)=\tau_{1}(x)^{\vee}\beta^{\prime}(x)^{\vee}x=\urcorner(\overline{Pr_{\tau_{2}}(\overline{\phi})\rightarrow\phi})$ .

Clearly, $\beta$ is a binumeration of $T^{\prime}$ in $S$ . If we set

i) $\theta(x, y)=Prf_{\beta}(\urcorner y, x)_{\wedge}\forall z\leqq x\urcorner Prf_{\beta}(y, z)$ ,

ii) $x$ ; a fixed point of $\exists x\theta(x, y)$ ,
iii) $\tau^{\prime}(x)=\tau_{1}(x)^{}Fm(x)_{\wedge}\exists y_{1},$ $y_{2}<x(\theta(y_{1},\overline{\chi})_{\wedge}Prf_{\tau_{2}}(\overline{\phi}, y_{2})_{\wedge^{\urcorner}}\phi)$ , then $\tau^{\prime}$ is a bi-

numeration of $T$ in $S$ . By Rosser’s theorem,

$ T\mu\chi$ , (1)

$ T\mu\urcorner\chi$ . (2)

First we show that
$PA\vdash(Pr_{\tau},(\overline{\phi})\rightarrow\phi)_{\wedge}\chi\rightarrow(Pr_{\tau_{2}}(\overline{\phi})\rightarrow\phi)$ . (3)

Note that

$PA\vdash\theta(y_{1},\overline{\chi})_{\wedge}Prf_{\tau_{2}}(\overline{\phi}, y_{2})_{\wedge^{\urcorner}}\phi\rightarrow y_{1},$ $y_{2}<(\urcorner(vr_{y_{1}}=vr_{\nu_{1}})_{\wedge}\urcorner(vr_{y_{2}}=vr_{y_{2}}))$

$\wedge\theta(y_{1},\overline{\chi})_{\wedge}Prf_{\tau_{2}}(\overline{\phi}, y_{2})_{\wedge^{\urcorner}}\phi$

$\rightarrow\tau^{\prime}(\urcorner(vr_{y_{1}}=vr_{y_{1}})_{\wedge}\urcorner(vr_{y_{2}}=vr_{y_{2}}))$ .
Then, clearly, we have

$PA\vdash\exists y_{1}\theta(y_{1},\overline{\chi})_{\wedge}Pr_{\tau_{2}}(\overline{\phi}_{\wedge^{\urcorner}}\phi\rightarrow Pr_{\tau^{r}}(\overline{\phi})$ .

This directly gives (3). Next we show that

$PA\vdash(Pr_{\tau_{1}}(\overline{\psi})\rightarrow\psi)_{\wedge}\urcorner\chi\rightarrow(Pr_{\tau^{i}}(\overline{\psi})\rightarrow\psi)$ for all $\psi\in S_{e}ntr$ . (4)

But it is sufficient for this purpose to show that

$PA\vdash\urcorner\chi\rightarrow\forall x(\tau^{\prime}(x)\leftrightarrow\tau_{1}(x))$ .
And this is verified by the fact that $PA\vdash\urcorner\chi\rightarrow\forall X^{\urcorner}\theta(x,\overline{\chi})$ . Now, from (2) and
(3), we have
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$ T\cup Rfn(\tau_{1})\mu Pr_{\tau^{\prime}}(\overline{\phi})\rightarrow\phi$ . (5)

On the other hand, from (1) and (4),

$ T\cup Rfn(\tau^{\prime})\mu Pr_{\tau_{2}}(\overline{\phi})\rightarrow\emptyset$ . (6)

Since $Rfn(\tau_{1})\subseteqq_{T}Rfn(\tau^{\prime})\subseteqq\tau Rfn(\tau_{2})$ is clear from the equivalence of $\tau^{\prime}$ and $\tau_{1}$ over
$T\cup Rfn(\tau_{2}),$ (5) and (6) will complete our proof. $\square $

NOTES TO THEOREMS 3.1, 3.2 AND 3.3. In the first two theorems, if $\tau$ is a
$\Sigma_{0}$-binumeration of $T$ , we can choose $\tau^{\prime}$ in $\Sigma_{0}$ . Hence there are also infinitely

many kinds of the $\tau$-reflection principles, even if $\tau$ is restricted to $\Sigma_{0}$ . The
author doesn’t know whether $\tau^{\prime}$ of Theorem 3.3 can be chosen in $\Sigma_{0}$ if both $\tau_{1}$

and $\tau_{2}$ are given in $\Sigma_{0}$ .

The following theorem shows that there are incomparable elements in
$\{Rfn(\tau)|\tau\in BinT, S)\}w$ . $r$ . to $\subsetneqq\tau$ . Since its proof is very similar to that of
Theorem 2.14 of [2], we shall give only a sketch of the proof.

3.4. THEOREM. Suppose $th\tau tT$ is an essentially reflexive and $\omega$-consistent
theory. Then, for each $\tau\in Bin(T, S)$ , we can effectively construct a $\tau^{\prime}\in Bin(T, S)$

for which
$Rfn(\tau)\not\leqq rRfn(\tau^{\prime})$ & $Rfn(\tau^{\prime})Sr^{Rfn(\tau)}$ .

SKETCH OF THE PROOF. Using Theorem 3.1, we choose $\sigma\in S_{e}nt_{T}$ and $\tau^{*}\in$

$Bin(T, S)$ such that

$Rfn(\tau^{*})\subsetneqq TRfn(\tau)$ & $ T\cup Rfn(\tau^{*})\vdash Pr_{\tau}(\overline{\sigma})\rightarrow\sigma$ .
Putting $A_{1}=T\cup Rfn(\tau)$ and $A_{2}=T\cup Rfn(\tau^{*})\cup\{\urcorner(Pr_{\tau}(\overline{\sigma})\rightarrow\sigma)\}$ , we construct $\tau_{1}\in$

$Bin(A_{1}, S)$ and $\tau_{2}\in Bin(A_{2}, S)$ . Then we construct $\tau^{\prime}$ as

$\tau^{\prime}(x)=\tau^{*}(x)^{\vee}Fm(x)_{\wedge}\exists y<X^{\urcorner}M_{\alpha_{1}\alpha_{2}}(\overline{\mu}, y)$ ,

where $M_{\alpha_{1}\alpha_{2}}(x, y)=(Prf_{\alpha_{1}}(x, y)^{\vee}Prf_{a_{2}}(x, y))\rightarrow\exists z<y(Prf_{a_{1}}(\urcorner x, z)^{}Prf_{a_{2}}(\urcorner x, z))$

and $\mu$ is a fixed point of $\forall yM_{\alpha_{1}\alpha_{2}}(x, y)$ . If we note that $\mu$ is independent of
$A_{1}$ and $A_{2}$ , we can easily show the desired properties of $\tau^{\prime}$ . $\square $

DISCUSSIONS. The well-known theorem of Lob states that $ Pr_{\tau}(\overline{\psi})\rightarrow\phi$ is
provable in $T$ iff $\phi$ is provable in $T$ . This does not contradict our results. The
reason is that Lob’s theorem holds only for $r$ . $e$ . theories $T$ and their $\Sigma_{1^{-}}numer-$

ations $\tau$ . There are many results that hold only for $r$ . $e$ . theories, and it would
be interesting to give examples of them. But we do not go further into these
matters.
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In this paper, we largely dealt with local reflection principles. The analogous

results for uniform reflection principles will be contained in our forthcoming

paper.
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