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SHAPE FIBRATIONS AND FIBER SHAPE
EQUIVALENCES, 11
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0. Introduction.

In [2] and [3], Coram and Duvall introduced the notion of approximate fibrations
and they characterized this in terms of movability conditions for maps. Mardesié¢
and Rushing [11] defined shape fibrations and showed that for compact ANR’s,
those agree with approximate fibrations. In [8], we defined fiber fundamental
sequences and fiber shape equivalences.

In this paper, we show that fiber fundamental sequences have shape theoretic
properties analogous to the homotopy theoretic properties of fiber maps. In parti-
cular, we prove the following:

(1) Let E and B be compacta and let B be an FAR. Then a map p:E—B
is a shape fibration if and only if p is shape trivial.

(2) A proper map p: E—B between locally compact, separable metric ANR’s
is an approximate fibration if and only if p is locally shape trivial.

(3) Let p:E—B be a shape fibration from a compactum E to a connected
compact ANR B and let p’: E'—B be an approximate fibration between compact
ANR’s. Then a fiber map f: E—~E’ over B is a fiber shape equivalence over B if
and only if for some boeB, f|p~'(bo): p~"(be)—>p'~'(bo) is a shape equivalence.

It is assumed that all spaces are metrizable and all maps are continuous. If
x and y are points of a metric space, d(x, y) denotes the distance from z to y. For
maps f,g: XY of compacta, d(f, g)=sup{d(f(z),g(x))|zeX}. We denote by [ the
unit interval [0,1] and by @ the Hilbert cube. A proper map p:E—B between
locally compact, separable metric ANR’s is an approximate fibration [2] if given an
open cover U of B, a space X and maps /: X—FE, H: XX I-»B such that ph=H,
then there is a homotopy H : XX I—E such that H,=#% and pH and H are 9J-close,
where H(z)=H(x,t). Let E=(£;, qi;) and B=(B;, r:;) be inverse sequences of com-
pacta and let p=(p:) be a sequence of maps p;: £i—B;. p:E—B isalevel map if
for any ¢ and j=i, pigi;=rip;. A map p: E—~B between compacta is a skape fibra-
tion [11] if there is a level map p: E—B of compact ANR-sequences with invlim E=
E, invlim B=25 and invlim p=p satisfying the following property; for each ¢ and
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¢>0 there is j=i and 6>0 such that for any space X and any maps 4:X—Ej,
H: XxI-B; with d(p;h, H))<8, there is a homotopy ﬁ:Xx[—>Ei such that
d(ﬁ.,,qi,h)<e and d(p:H, riH)<e. Such a pair (E;3) is called a lifting pair for
(Eiye). Let E and £ and B be compacta in the Hilbert cube Q and let :Q-Q
and §:Q—Q be extensions of maps p:E—B and p’:E'—B, respectively. A
fundamental sequence (see [1]) S={fnE EYq is a fiber fundamental sequence
over B [8] if for any ¢>0 and any neighborhood U7 of E’ in @ there is a neigh-
borhood U of E in Q and a positive integer #, such that for each n=#n, there
is a homotopy F:UxI-U"’ such that Fo=fu U, Fi=f.|U and d(§'Flz, t), p(z))<e,
xzeU, tel. A fiber fundamental sequence J={fuFE, E'Yq.q over Bis fiber homotopic
to a fiber fundamental sequence 9={gn, E, E'}g.q over B (fr~ g) if for any >0
and any neighborhood I of E' in Q there is a neighborhoogd Uof £in @ and a
positive integer #, such that for each n=w, there is a homotopy K: UxI-U’
such that Ko=/fo|U, Ki=g.,|U and d(p'K(z, 1), j(z))<s, ze U, tel. A map p: E—B
over B is fiber shape equivalent to a map p’':E'—B over B if there are fiber
fundamental sequences over B f={(f,, E, E'lo.q and g={g,, B, E}¢.¢ such that
gf = 1z and fgg%-/_lp, where 1z denotes a fiber fundamental sequence over B
induced by the identity 1z: E~Z. Such [ is called a fiber shape equivalence over
B. A map p:E-B is shape trivial if p is fiber shape equivalent to the projection
n:p ()X B~B for some beB. A map p: E—B is shape shrinkable if p induces a
fiber shape equivalence from p to the identity 1z. Obviously if a map p: E—~B is
shape shrinkable, p is shape trivial. Note that a map p:E—B is shape shrinkable
iff p is a hereditary shape equivalence (see [8, Corollary 3.5)).

1. Fiber weak dominations preserve shape fibrations.

In [8, Corollary 3.6], we show that fiber shape equivalences preserve shape
fibrations. In this section, we show that fiber weak dominations preserve shape
fibrations. Also, we give a condition for a map, which implies that the map is an
approximate fibration. First, we have the following. (see [8] for the definition of
fiber weak domination.)

ProrosiTioN 1.1. Let p: E—B and p': E'—B be maps between compacta and
p:E—B be a shape fibration. Let S={fu, E, E")q.q be a fiber fundamental sequence
over B which is a weak domination in shape category (see [4)). Then f is a fiber
weak domination if and only if p': E'—B is a shape fibvation.

Proor. By [8, Lemma 2.1), it is enough to give the proof of necessity. Let
$:Q-Q and p’:Q—Q be extensions of p and p/, respectively. By induction, we
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can choose decreasing sequences of compact ANR- neighborhoods {E.), {E,'}) and
{Ba} of E, E’ and B, respectively such that [\ E.=E, ﬂ E,/=F and f\ B,=B and

n=1 n=t

HENCB,, p/(E)CB, Let ¢>0and i be a posmve integer. Since f is a fiber
fundamental sequence, there is j,=7 such that

(1) for any k=j,, there is a homotopy Gj,.x: Ej; X [—E;" such that
Gioilt, 0)=Ffi (@), Gjoulw, 1)=fi(x) for xeE;, and

@) dp(x), DG u(w, ))<el6 for wek;, tel.

Since p: E—B is a shape fibration, there is ji=j, and ¢,>>0 such that (£,,6,) is a
lifting pair for (E;,, ¢/6). Since f is a fiber weak domination, there is j;=j, and a
map ¢: Ejj—FE; and a homotopy K: EjXI-—E; such that

(3) d(pe(a), @) <b=3./2, weEy,
4) K, 0)=z, K=z, 1)=f;9(z), zeF; and
(5) dp'(z), 'Kz, 1)<el6, zeE),, tel.
Let &: X—E), be a map and let /{: XXI—B;, be a homotopy such that
(6) d(p'hx), Hm, 0))<0(<el6) for weX.
By (3) and (6), we have
(@) d(bgh(x), H(z, 0) =d(pgh(x), p'h(x))+d(p' x), H(w, 0))<ds+02=0: .

By [11, Proposition 1], we may assume that there is a homotopy I :XXI[—£Ej;,
such that

8 H'(x,0)=¢h(x), xeX and
9) dHx,t), pH (x,1)<el6, xeX, tel.
Define a homotopy A" : XX I—E; by H’=f; /. Then, by (2) and (9),

(10) d(p'H"(x,t), H(z, 1)) =d(p' fi,H (@, ), H{z, 1))
=dp'fi,H (x,8), BH (=, ) +d(pH (x, 1), Iz, 1))
<ef6+¢/6=¢/3, zeX, tel.

By (4), (5), (6) and (8),
1) Kh(x),0)=h(z), Kh(x), )=Figh(@)=FiH (x,0)=H"(x,0),

(12) d(p’K(W(x), ), H(z, 0) =d(p’' Klh(x), t), P’ h(x))+d(p' b(), H(x, 0))
<el6+e/6=¢/3, xelX, tel.

Since X is a metric space, there is a map s: X—(0,1] such that

(13) diam H{w X [0, s(x)]) <¢/3 .
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By (11), we can define a homotopy H : Xx />y by
K(h(z), 2ts(z)), 0=t=s(x)/2,
(14) Hw, ={1H"(z,2t—s(x)), sx)2=t=s(z),
H'(z, 1), s(z)=t=1.
Then by (10), (12) and (13), we have H(z, 0)=h(z) and d(p'H(x, 1), Hz, ) <e for
xeX, tel. Hence p’: E'—B is a shape fibration. This completes the proof.

CorOLLARY 1.2. Fiber shape dominations preserve shape fibrations.

In the following proposition, the implication (1)-(2) is a special case of M. Jani
[7, Theorem 5.2]. Here we give the direct proof.

ProrosiTioN 1.3. Let E and B be compacta and let B be an FAR. Then, for
« map p: E-B the following are equivalent.

@A) p is a shape fibration.
(2) p is shape trivial.

Proor. (2)—(1) follows from Corollary 1.2. We shall prove (1)-»(2). Embed
B into the Hilbert cube @ as a Z-set. Since p: E—B is a shape fibration and B is
an FAR, we may assume that there are compact ANR neighborhoods {Bi}i-o.1.s...
and {Ei}lizo.1.2... of B and £ in @, respectively such that

(1) each B; is homeomorphic to @, BiD B DB, D, EyDEDE,D - and _{‘i‘)\ Bi=

B, N\E:=E,
i=0
(2) P(E:)CB;, where p:Q—Q is an extension of p, and p=(p|[:): E=(E)—>B=
(B;) has the HLP and (:41) is a lifting index for i (see {11, Theorem 2)).

Let Fi=(p|E) (D). beB. Then (m\ B;x F;=BXp~'(b). Now we shall show that for
i=0

k=0,1,2, .-, there are maps fi : Bixi2 X Fixra—>Esk, gk 2 Esciry—>Bigso X Fixi and homo-

topies Hy: Eickor1y XI>FEur, K : Biksryre X Facgany+2 X [ Bigra X Fypse Such that

3) ﬁfk(?/y-r):?!’ (1, ©)€ Biksa X Fup vz,

7T4k+2{]A;(.17):§($) N .Z'EE,((/“ Ny where Tak+e - [)’4/.:;2><1"4[;;2—'>B4k42 is the Pro-

jection,
4) Hilz,0)=z, Hplz,1)=frgelz), veLix:in,
(5) Ki(z,0)=z, Kiz,1)=grxf1:(2), 2€Bikin+eXFackivre,
(6) pHilw,)=p(x), x€FEisr, tel and

oo (2, ) =y +2(2),  2€Byine X Fockiye, L1,
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Since B;=Q, there is a homotopy Gi: B;X[—B; such that
(7Y Giy,0)=y, Gy, 1)=b, veb;.
Let li: Binio X Faxio—Fukee and Lg: Bigis X Fagss X I— By, be defined by
®) lLly,z)=x, (y,x)€Bu+sXFixs, and
©) Lil(y, 2), )=Gukra(y,8), (¥, )€ Biwre X Faro, L€
Then we have
10) Lil(y, 2), D=Cur:oly, )=b= pli(y, x) .
By HLP, there is a homotopy L Buse X Fagsa X I>Egg,y such that
A1) Ly, ), D=lly, 2)=x, (y,x)€Baks2X Fuxsz and
(12) pLi=Ls.
We define fi: Buse X Fuiio—> B GEw by
(13) filv,»)=Lily, =,0).

Then pfily, z)=pLi(y, x,0)=Li(y, z,0)=y. Let 7, be the identity of Eix.., and
Rk:E4(k+1)XI—‘)B4(k+“ be deﬁned by

(14) Rulx, )=Giusr(p(2), ), x€Eicksry, Lel.
Then we have
(15)  Ri(w, 0)=G1cir)(B(®), 0)=plx)= pra(x).
Hence, there is a homotopy Rx: Eswsi, X = Eixss such that
16) Ry(z, 0)=r(w)=x, z€Eiw+ and
A7) pRi=R:.
We define gr: Eicksny—>Birss X FairsG Begve X Fagz DY
(18) (@)= (B(x), Re(,1)).

Then meaogu(®)=p(x). Also, we shall construct homotopies Hi: Eiwin X f=Euy.
Let. © . E4(/c+1) X (IXOU 1 X IU [X 1)—>E4[¢ L1 be deﬁned by

19) ¢a,t,0=FRu(@,1), olz,t,)=Lup), R(z,1),t) and
20) olx,1,5)=Ru=,1).

Then ¢z, 0, 0)=ﬁk(.’ﬂ, 0)=z, ¢(x,0, l)=5k(ﬁ(x), ﬁk(x, 1), 0)=fuge(x). Since By =@,
there is a map @ : Esik+1 X IX > By+: such that

(21) D Eig+X(IX0ULIXIUIX1)=pp and
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(22) O(z,0,s)=p(x), sel.
By HLP, there is a homotopy @ : Eykr1y X IX I—Ey; such that
23) (Z~)|E4(k+1)X([XOUIXIUIXD:gD and
@4) pb=0.
Define Hy: Esrn X I—Euw by
(25) Hi(w,s)=%,0,s).

Obviously, H, satisfies (4) and (6). By the same way as above, we obtain
Ky i Bigry+2 X Fugevy e X I Byre X Fuiee satisfying (5) and (6).

Now, choose a decreasing sequence {cx}x-o.1.s... Of positive numbers such that
,1;1}01 &=0. By (3), (), and (6), we can easily see that for £=0,1,2,.-- there are
compact ANR neighborhoods Fix:s of Furis in @ and extensions f % : Buera X Fgra—
Ey and I?k:Bmmmxﬁummle—»&“zxﬁww of fi and K, respectively such

that ’éﬁ4k+z:é Fie»=p7'(b) and

(26) dpfly, x) )<ex, (U, 2)eBisax Fuir and
@) Ki2,0=z, Ruz1)=gfe(z) and
d(ﬁdki-zkk(z» 1), Tackrny+2(2)) < ek, ZGB«((/H-x)mXﬁulcu);z, tel, where

Takre s Bigra X F ygr0—>Buges 18 the projection.

By (3), (4), (6), (26), (27) and Borsuk’s homotopy extension theorem, we can easily
see that there are fiber fundamental sequences over B f={fn, BXp7'(b), E}oxe.¢
and g={gn, £, BX p~(b)}q.¢x¢ induced by {Feteoor.o,. and {ge}eo.1.2... respectively
such that gf _f};ﬁlgxpﬂm and _fg%lE. This completes the proof.

In [3], D. Coram and P. Duvall introduced the notion of movability for maps
and they characterized approximate fibrations in terms of the movability condition.
A proper map p: E—B between locally compact, separable metric spaces is com-
Dletely movable [3] if for each beB and each neighborhood U of the fiber Fy=p"'(b)
in F there is a neighborhood V of F; in U such that if F.=p"Y(c) is any fiber in
V and W is any neighborhood of F, in V, then there is a homotopy H: VXI-U
such that H(x,0)=x, H(z,1)e W for zeV and H(x,t)=x for zekF,, tel.

THEOREM [3, Theorem 3.91. For a proper map p: E— B between locally compact,
separable metric ANR'’s, then p is an approximate fibvation if and only if p is com-
pletely movable.
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Now, we give another condition. A proper map p: E—B between locally com-
pact, separable metric spaces is locally shape trivial if for each beB there is a
compact neighborhood ¥V of 4 in B such that p|p~(V):p~"(V)—V is shape trivial.
We have the following.

THEOREM 1.4.  For a proper map p:E—B between locally compact, separable
metric ANR's, then p is an approximate fibration if and only if p is locally shape
trivial.

Proor. Suppose that p is an approximate fibration. Define a map px1lg: EX
Q—->BxQ by (px1g)e, q)=(ple), ) for ecE, geQ, where Qzﬁ I; (I;=[0,1]) and con-
sider the map p: E—B as the restriction px1,|Ex{0} :EXT{(“)E»BX{O}, where 0=
0,0,---)e@. Choose any point beB. Since BxQ is a @Q-manifold, there is a com-
pact neighborhood W of (b,0) in BX@Q such that W is homeomorphic to Q. Since
pX1g is an approximate fibration and W is of trivial shape and the restriction of
a shape fibration is a shape fibration, by Proposition 1.3 px1o|(pX1g)~"(W): (pX
19)""(W)—>W is shape trivial. By [8, Proposition 1.7], the restriction pX1g|(pX
1) (WN Bx{0}) : (px 1) (WnN Bx{0})—Wn Bx {0} is shape trivial. Note that (px
1g)7'(b,0)=p"1(6)x{0}. This implies that p is locally shape trivial.

Conversely, suppose that p is locally shape trivial. We shall show that p is
completely movable. Let 6,¢B and U be any neighborhood of F;, in E. Since p
is locally shape trivial, there is a compact neighborhood B, of &, in B such that
plp~'(By):p'(Bi)—B; is shape trivial. By [8, Proposition 1.7], we may assume that
p{(BycU. Choose a neighborhood B,c B: of b, in B such that for any ceB, there
is a homotopy [, : By X I—B, such that Hy(b, 0)=b, H.(b,1)=c, for beB; and Hy(c, )=
¢, for tel. Let V=p~'(B,). Let F. be any fiber in V and W be any neighborhood
of Fein V. Define a homotopy G: VXI—B, by Gle,t)=HJple), ), for ecV, tel.
Since p: E—B is a proper map, there is a positive number ¢ >0 such that p~'(B(c; &)
W, where B(c; ¢)={beBld(b, c)<e}. By Corollary 1.2, p|p~'(B)) : p~"(B)—B, is a shape
fibration. By [12, Proposition 1 and Remark 1], there is a homotopy H: VxI-U
such that H(e,0)=e, d(pHe, 1), G(e,1))<e, for ecV, tel and Hie, t)=e, for ecF,, tel.
Clearly, H(Vx{l})cW. Thus p is completely movable, hence p is an approximate
fibration.

Remark 15. In the statement of Theorem 1.4, if £ is not an ANR, we can
not replace approximate fibration by shape fibration. Let £ be the continuum
which consists of all points in the plane having the polar coordinates (r,8) for
which =1, r=2 or r=(2+¢*)/(1+¢?) and B be the unit circle in the plane. Define
a map p: E—B by p(r,0)=(1,0). Since p is a locally trivial fiber space with totally
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disconnected fibers, it is locally shape trivial. But, p is not a shape fibration (see
[13, p. 641)).

2. Fiber shape equivalences and shape of fibers.

In this section, we prove the following theorem.

THEOREM 2.1. Let p: E—B be a shape fibration from a compactum E to a con-
nected compact ANR B and let p': E'—~B be an approximate fibration between com-
pact ANR's. Then a fiber map f: E—~E' over B is a fiber shape equivalence over
B if and only if for some byeB, f|p 7 (bo): p7'(be)—p'"(be) is @ shape equivalence.

We need the following propositions.

ProroOSITION 2.2. Let p: E—B and p': E'—>B be shape fibvations between com-
pacta and let f={f., E, E'}q.q be a fiber fundamental sequence over B. If B is a
pointed 1-movable continuwm and for some boe B, f|p~'(bo)={fn, 07'(bo), 2’ '(bo)}a.q is
a shape equivalence, then for any beB, flp~'(b) is a shape equivalence.

SKETCH OF THE PROOF. By the same way as the proof of [10, Theorem 2], there
are fundamental equivalences g={gn, p~'(0),p™'(bo)g.@ and h={ls, p'~'(bo), ' "*(b)}e.q-
Since f is a fiber fundamental sequence over B and p’: E’'—B is a shape fibration,
by the constructions of g and b we can conclude that kef|p'(bo)og is homotopic
to flp~'(b). Hence f|p~'(b) is a shape equivalence (cf. Proposition 1.3).

Note that if Bis an FAR and a Z-set in the Hilbert cube @, there is a decreasing
sequence B2 B,DByD---, of compact neighborhoods of B in @ such that _(m\Bi:B
and each B; is homeomorphic to €. The proof of the following propo;;;,ion is
similar to one of Proposition 1.3 and Proposition 2.2. Hence we omit it.

PrOPOSITION 2.3. Let p: E—B and p’' : E'—B be shape fibrations between com-
pacta and let f={fu, E, E'}q.q be a fiber fundamental sequence over B. If B is an
FAR and for some byeB, f|p'(b,) is a shape equivalence, then f is a fiber shape
equivalence over B.

PrOPOSITION 2.4. Let p: E—~B and P’ : E'—B be shape fibvations between com-
pacta and let f: E—LE' be a fiber map over B. Suppose that B is a continuum with
@ finite closed cover {Bili-i.s,.. consisting of FAR’s such that for each subset

{i1, 1, -2y {1, 2, ---m}, fs \ Bi; is a pointed 1-movable continuum (it may be the empty
i=1

set) and it has a finite fundamental dimension (ie. Fd ((s\ Bij)<co). If there is a
=t
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point bee B such that Fd (p~'(by))<co, the number of the components of p~'(b,) is
Sinite, each component is pointed 1-movable and f|p='(by): p~"(bo)—p'""(bo) is a shape
equivalence, then [ is a (strong) shape equivalence.

Proor. Since B is a pointed 1-movable continuum, by Proposition 2.2 for any
beB, f1p7'(b) is a shape equivalence. Hence for any beB, Sh (p~'(b))=Sh (p'~1(b))=
Sh (p7'(by)). In particular, the number of the components of p'~'(b) is equal to one
of p7'(b,), each component of p'~'(b) is pointed 1-movable and Fd (p='(b))=Fd (p’~'(b))
=Fd (p~'(b,))<co. By Proposition 2.3, f|p~'(B):p "(Bi)—p'~"(B;) is a fiber shape
equivalence over B; for each i=1,2,---n. By [8, Proposition 1.7], f] p"‘(ﬁ\l B

p“(f\=l Bif)_’p,_l(](i B;;) is a (unpointed) shape equivalence. By Proposition 1.3, we
easily see that 1‘)"‘(](;3\1 B;;) has a finite components and each components of
17"‘(](: \i B;)) is pointed l-movable. By [5 Theorem 3.6], f] p"(][i\lBij) is a pointed
shape equivalence for each Jcosp'"‘(jfs\:1 B;;). Also, by Proposition 1.3 Fd ( p"‘(j(j\l B;y))=

Fd (p"‘((S\ B;;))<co. By [6, Theorem 7.3], flp"((s\ B;)) is a strong shape equival-
j=1 =1

ence. By the proof of [9, Theorem], we can conclude that f is a (strong) shape

equivalence. This completes the proof.

Proor or THeorREM 2.1. Define maps fX1lg: EXQ—E' XQ, pxXly: EXQ—BX
Q and p'X1g: E' XQ—BXQ by (f X1g)e, q)=(f(e), q), (px1o)e, @)=(p(e), g) and (p’ X
1o)e!, @=(p'(¢'), q) for eek, ¢’cE’ and quzﬁ I;, where [;=[0,1]. Consider the
map f: E—FE’ as the restriction fXx1g|E X% {0} :LEX {0} F" x {0}, where 0=(0,0, ---)eQ.
Note that fX1q is a fiber map over BXQ and BXQ is a compact @-manifold. By
the triangulation theorem for @-manifolds, we may assume that BXQ=KXQ,
where K is a finite polyhedron. Then A'X Qz_k;ﬂj {4;xQ|4; is a simplex of K}, for
some positive integer #. Note that fxlgl(pxll—;)“l(bo,O) is a shape equivalence.
By [12, Corollary 2], (9’ X1g)™"(bo, 0) is a pointed FANR, hence (px1g)~'(bo, 0) is so.
Obviously Fd ((px1g)"(by, 0))<<co. By Proposition 2.4, we can conclude that fX
1o EXQ—E' XQ is a shape equivalence. By [8, Theorem 23], fx1q is a fiber
shape equivalence over BX@. By [8, Proposition 1.7}, f: E—~E’ is a fiber shape
equivalence over B. This completes the proof.

By [8, Theorem 2.3, Corollary 3.5 and 3.6] and Theorem 2.1, we have following
theorem.

THEOREM 2.5. Let p: E—B be a map from a compactum E to a compact ANR
B. Then the following are equivalent.

(L) p is a cell-like shape fibration.
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(2) p is a shape fibration and a shape equivalence.
3) P is shape shrinkable.
4) p is a heredilary shape equivalence.

REMARK 2.6. In the statement of Theorem 2.5, the assumption about B can-
not be omitted. Edwards and Hastings (Springer Lecture Note, Vol. 542, Berlin,
1976, pp. 196-200) give an example of a cell-like shape fibration p:E—B which
fails to be a shape equivalence.

REMARK 2.7. In the statement (1) of Theorem 2.5, we cannot replace shape
fibration by strong shape equivalence. It is well-known that there is a cell-like
map p: E—Q from a continuum £ to the Hilbert cube @ which fails to be a shape
equivalence (see [14]). By taking the cone C(E) and ({(Q)=Q over E and Q, respec-
tively, we have a map C(p):C(E)~»C(Q)=Q which is a cell-like map. Clearly, C(p)
is a strong shape equivalence. But, C(p) is not shape shrinkable. We know

that if a map p: E—~Bis shape shrinkable, it is a strong shape equivalence (see [8,
Corollary 3.3]).
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