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DIMENSION OF SPECIAL -SPACES
By
Takemi MIZOKAMI

K. Nagami in called a space X a p-space if X is embedded in the count-
able product of paracompact g-metric spaces. Especially he called X a cubic u-
space if X is the countable product itself of paracompact g-metric spaces and
proved that if X is a cubic p-space, then the following statements are equivalent :

1) dim X<n, 2 X=1Q;Xi, where dim X,<0 for each i, (3) Ind X<n and (4)

there exists a closed mapping f of a g-space Z with dim Z<0 onto X such that
ord f<n+1, Recently he in defined the class of free L-spaces between those
of Lasnev and pu-spaces, and proved there that if C is the class of free L-spaces
and X<¢, then the above (1), (2), (3) and the following (4)’ are equivalent: 4y
there exists a closed mapping f of Z&C with dim Z=<0 onto X such that ord f=
n+1. In this paper we define the class C of special p-spaces which are spaces
which can be embedded in the countable product of special o-metric spaces and
study the dimension of such spaces. In Theorem 2 it is proved that every free
L-space is a special p-space and in Theorem 3 that every special u-space is the
perfect image of a free L-space. Though it is proved by K. Nagami that a space
X is a free L-space if and omly if X is embedded in the conutable product of
almost metric spaces, it is proved in Corollary 3 to Theorem 3 that if X is a

special p-space, then XC f[X,-, where each X, is an almost metric space plus
1

i=
one point. In Theorem 4 the above (1), (2), (3), (4) are shown to be equivalent
even if C is the class of special p-spaces.

All spaces are assumed to be Hausdorff, otherwise the contrary is stated.
All mappings are assumed to be continuous. N always denotes the positive
integers

DEFINITION 1 (K. Nagami [4]). A space X is called a o-metric space if
X= ngi, where each X, is a closed metrizable subspace of X. Such {X;} is

called a scale of X. A scale {X;} is called monotone if XiC X+ for every ieN.
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The following argument is due to K. Nagami [4]: If X is a paracompact
g-metric space with a monotone scale {X;}, then there exists a contraction p of
X onto a metric space X such that p|X: is a homeomorphism onto a closed sub-
space p(X;) of X for each ie N. Such a pair (X, p) is called a replica of X.

DEFINITION 2 (K. Nagami [6, Definition 4.4, 1.1]). Let F be a closed set of a
space X. An open cover of X—F is called an anti-cover of F. An anti-cover U
of F is said to be uniformly approaching (to F) if for every open set G of X,
S(X=G, U)NnFNG=0. U is said to be approaching (to F) if for every open
neighborhood G of F, S(X—G, U)NF=0.

Every closed set of a metrizable space has a uniformly approaching anti-
cover [6, Remark 4.5]. This fact is used frequently in the later discussion.

DEFINITION 3. A ¢-metric space X is said to have a special scale {X;:1€ N}
if {X;} is a scale of X such that each X; has a uniformly approaching anti-cover.
A space X is called a special o-metric space if X is a paracompact g-metric space
with a special scale. A space is called a special p-space if it is embedded in the
countable product of special o-metric spaces.

By a routine check it is easily seen that a space X has a special scale if
and only if X has a special and monotone scale. Therefore in the below discus-
sion, we do not distinguish between usual and monotone scales. As seen in [2,
Example 1] every paracompact o-metric space need not be special ¢-metric, and
every special g-metric space is M,;, but not the converse.

DEFINITION 4 (K Nagami [7, Definition 1.2]). For a space X, consider a pair
P=(F, {Up: FEF}) of a o-discrete closed collection & of X and a collection of
anti-covers Uy of FEF. @ is called a free L-structure if for each point p& X
and each open neighborhood U of p, there exist a finite collection F}, -, F) of

k k
< and a canonical neighborhood U; of each F; with pe _f\lFiC (\1 U,cU. Xis
1= 1=

called a free L-space if X is a paracompact space with a free L-structure. (U is
called a canonical neighborhood of F with respect to Uy if U is an open neigh-
borhood of F such that for each ie N SY(X—U, Up)NF=0. Especially when the
relation holds for i=1, U is called a semi-canonical neighborhood of F.)

DEFINITION 5 (K. Nagami [7, Definition 3.1]). Let X be a space. The set of
all points of X which have the metric neighborhoods is said to be the metric
part of X. The complement of the metric part is said to be the nonmetric part.
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X is said to be an almost metric space if the following three conditions are
satisfied :

a) X is perfectly normal and paracompact.

b) The collection of points of the nonmetric part X, is discrete.

¢) X, has an anti-cover approaching to X,.

THEOREM 1 (The embedding theorem for free L-spaces [7, Theorem 3.41).
A space X is a free L-space if and only if X is embedded in the countable prod-
uct of almost metric spaces.

THEOREM 2. Every free L-space is a special p-space.

ProoOF. It is proved that every almost metric space is a special g-metric
space, and therefore by Theorem 1 every free L-space is embedded in the count-
able product of special g-metric spaces. Indeed, let X be an almost metric space
with its nonmetric part X,. Let {U(p): ps Xy}, {V(p): p=X,} be two discrete
open collections of X such that

peV(p)cV(p)cU(p)  for every peX,.

Let U be an approaching anti-cover of X, and set

Ue=(X—\I{V(P): p€ X HVU(V{V| U(f?) 1pEXD).

Then 9, is a uniformly approaching anti-cover of X,. Let

Xo= _F\lGn s Gri1CGnp for every neN,
i=
where each G, is open in X. Let ¢, be a uniformly approaching anti-cover of
X,=X—G, in the metric subspace X—X,. Set

Up=V,\J {Gn+1}-

Then €U, is a uniformly approaching anti-cover of X,. Therefore {X,:n=0,1, -}
is a special scale of X.

THEOREM 3. If X is a special u-space, then X 1is the perfect image of a free
L-space.

PrROOF. Part 1: As a special case, we shall show that if X is a special o-
metric space, then X is the perfect image of a free L-space. Let {X;:i€N} be
a special scale of X. Let (X, o) be its replica with respect to {X}. X is the
image of a metric space Y with dim Y<0 under a perfect mapping g. Construct
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Z as follows:
Z={(x, HEXXY: p(x)=g(»)}.

Let f, o be the restrictions of the projections onto X, Y, respectively. Then Z
is a paracompact og-metric space with a scale {Z;=f"%X;):i€N} such that
dim Z=<0 and ¢|Z; is a homeomorphism of Z; onto a closed subspace ¢(Z;) of Y.
Let {U;:i€N} be a sequence of uniformly approaching anti-covers of each X;
in X. Since every closed set of a metric space has a uniformly approaching anti-
cover, there exists a uniformly approaching anti-cover <V; of o(Z;) in Y. Set

W=(U;XV)|Z.

Then 9; is an anti-cover of Z; with the following property :
(*) If P, Q is a pair of open sets of X, Y, respectively, then

S(Z—PXQ, W N(PXQNZ:i=0.

We shall show that Z is a free L-space. Assume that each W;={W,: a€ A} is
locally finite in Z—Z; and finitely multiplicative, that is, every finite intersection
of members of 9, belongs to %;. Let p;: Z—Z;—K; be the canonical mapping

such that
pi(2) =2 {p(2)a: a€ A},

where each K, is the nerve of %; and ¢, is a continuous mapping of Z—Z; onto
[0, 1] such that W,=coz (¢,) and {@.: a<A;} is a partition of unity. We define
the topology I of the disjoint sum T,=K,JZ; as follows: Let I,(K;) be the ’
metric topology of K; and for an open set V of Z let A(V) be the totality of
subsets 6 of A; such that

LV, )=(VNZH)I(J{W,: asd})
is an open set of Z. For each d=d(V), set
MV, d)=(VNZH)I(J{St(a): a€d}),

where St#(a) means the star of the vertex a in K;. Thus g; is defined to be the

topology having as its base
T(K)J {M(V, 6): 6€4(V), V open in Z}.
Indeed, if 6,€4(V,), 0. 4(V,), where V,, V, are open in Z, then
M(V,, 6)NM(V,, 8,)=(V,NV)UZ)HU(J{St(a): asd})
for some 6C A; such that
((ViNnVINZ)I(I Wy : acd})=L(V,, 6)NL(V,, 0,)
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is open in Z. Hence 6=4(V,N\V;). Define a transformation f;: Z—(T;, I,) as
follows :

filZi;idZir fi'(Z_Zi):pi .

Then from the construction of I, f; is easily seen to be continuous and onto.

oo

Define a transformation f: Z— II (T, <) as follows:

i=1

FO)=(f(xDien, xe”Z.

Then f is a continuous mapping. Suppose x+#y, x, y€Z.' Then x, yeZ; for
some :€N. Then f,(x)#f.(y), implying f(x)#f(y). Hence f is one-to-one. We
shall show that f is an open mapping of Z onto f(Z). Let V be an open set of
Z. Suppose f(x)=f(V). Then for some meN xZ,NVCV. There exists a
pair P, Q of open sets of X, Y, respectively, such that x€(PXQ)NZCV. Apply
(*) for P, Q to get 0C A,, such that L(PXQ)NZ, d) is an open neighborhood of
x in Z, and LUPXQ)NZ, 0)C(PXQ)"Z. Then M{(PXQ)NZ, 6) is an open
neighborhood of f,(x). Set

0=(I10INf(2),

0,=T,; if i#m, On=M(PXQ)NZ, 9).

Then O is an open neighborhood of f(x) in f(Z) such that OCf(V). Thus f(V)
-is an open set of f(Z), proving that f is an open mapping. It remains to prove
that each (T';, ;) is a free L-space, but this is proved in Part 3. ,

Part 2: For the later use, we shall show that Z;C(T;, 9;) is the countable
intersection of closures in 7'; of open sets containing Z;. From the construction

of Z, Z,— fi\l V., where each V, is open in Z. By the repeated use of (*) there

exists a d,€4(V,) such that

Then it follows that

Zi= (\ M(Va, 82)= \ MV, 3,07

Part 3: We shall show that ‘each (T';, g;) can be embedded in the countable
product of almost metric spaces. Since Z; is a zero-dimensional metric space,
there exists a sequence {4,: n<=N} of covers of Z; such that

(i) each #,={H,;: 2= 4,} is a discrete collection of closed and open sets
of Z,, '
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(i) H= UIJ{n is an open base for Z,.
n=

Let R, be the disjoint sum of K; and A, and define a transformation ¢, : T;—R,
as follows:

Qn(P)=P if pEK,;,
gn(p)=2 if peH,, Acs,.

Let the topology of R, be the quotient one with respect to ¢,:T;—R, Define

a transformation ¢: 7;— II R, by
n=1

q(x)=(gn(XNnew » x€T;.

Then ¢ is a continuous mapping. Suppose x#y, x, y€T;. If x, yEK;, then
x=¢a(x)#q.(y)=7y for every neN. If x, yeZ, then there exists an n€ N such
that »

x€H,, yeH, , 2#X, 3 2<d,.

Thus ¢.(x)=21#¢,(y)=A. If x€K,;, yeZ; then for each n€N and for some
€A, g.(x)=x#A=q.(y). Hence ¢ is one-to-one. To see that ¢ is an open
mapping of T; onto ¢(T,), let V be an open set of T; and g(x)=q(V). Without
loss of generality we can assume x<VNZ;. Since 4 is an open base for Z;
there exists an ne N such that xe H;CVNZ; for some i 4,. Let H} be an
open set of Z with Hi"\Z,=H, and H;Cf:;'(V). By the property (*) there exists
a 0 4(H%) such that H;CL(H}, d)CHj}. Then g.(M(H}, 8)) is an open neighbor-
hood of A in R, such that g,(M(H}, 6))Cg.(V). Set

0=(I10)Na(T9,

O;=R; if j#n, On=g¢g.(M(H}, 0)).

Then O is an open neighborhood of g(x) such that Ocg(V). Hence g is an em-
bedding. .

Part 4: Each R, is an M,-space. Obvicusly R, is Hausdorff. To see that
R, is regular, suppose p<V for an open set V of R, and a point pe R.. As
seen in part 2, A, is written as

An: M Wn= N WmRn ’
m=1 m=1
where each W, is an open set of R,. If pe K, then p& WnBr for some meN
and by the regularity of K, there exists an open set N such that

pe NCNRrC(R,—Wa)NV.
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Consider the case p=A. Since H,Cf7%(gz%(V)), there exists a closed and open
set U of Z such that
UnZi=H,, UCfi'(g:"(V)).

By (*) there exists a 6= 4(U) such that
LU, &)U, S(L(U, 9), w,)CU.

Then N=¢,(M(U, §)) is an open neighborhood of p such that N®»C V. Hence R,
is regular.

Since Z is paracompact, dim Z<0 and each 4, is a discrete collection of
closed and open sets of Z;, there exists a discrete collection {H%: 2 4,} of closed
and open sets of Z such that H;"N\Z;=H, for each A= 4,. For each 1€ 4, take
a 0, 4(H%) such that

Then {M(H}, 0;): A= 4,} is discrete in T;, for if

St(a)N\M(H?,, 62)+0,  St(@)N\M(H}, 02,)#0,
then
St(a)NSt(B)+#0,  St(@)NSt(B)#0
for some B8,€4;, B:€0,,. These mean
Waf\Wﬁliﬂ, WaenWeg,#0.
Hence L(Hj, 61,)NL(H}),, 0,,)#0, a contradiction. Since K; is paracompact, there
exists a locally finite (in K;) open cover &V={V,: €5} of K, refining {St(a):

acsA;}. For each 2= 4,, let 4,(2) be the collection of all subsets é of & such
that

is an open set of T; and H(Z, §)CM(H’, 6;). Then {H(A, 0):d=4,(2)} is closure-
preserving in T'; and therefore by the discreteness of {M(H}, d,): 1€ 4,} it fol-
lows that {H(Z, 8): 0= 4,(2), A= A,} is closure-preserving in T';. Since as seen
in part 2, 4, is the countable intersection of closures in R, of open neighbor-
hoods of 4, and K; is metrizable, there exists a o-locally finite (in R,) open
collection 8, of R, which is an open base for the subspace K;. Put

B,={BQ, O)={A} I J{V,: §€7}): d=4,(R), A= 4.},
B=3,( 791 B,).

Then @ is a og-closure-preserving open collection of R,. To see that & is an
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open base for R,, let peV for an open set V and a point peR,. If peK,
then obviously pe BCV for some BE B,. Suppose p=A1€ A,. There exists a
d,=d(H%) such that -

S(M(H}, d0), {St(a): ac ATz (VINMHS, 62) .
v < {St(a): a= A;} implies that there exists a o 4,(2) such that

S(M(H}, 80), )=HQ, 5)Cga"(V)NM(H}, 82) -

Hence 1= B(2, §)cC V. This completes the proof of part 4.

Part 5: R, is shown to be an almost metric space. Obviously {2} : 2= 4}
is discrete in R,. To see that 4, has an approaching anti-cover, it suffices to
prove that Z; has an approaching anti-cover U= {St(a): a= A;}. Let U be an
open set of T; such that Z,CU. By (¥) there exists a 0C A; such that

W=2Z,J(U{St(a): asd})

is an open neighborhood of Z; such that WC U and S(W,, gy )Cf7{(U) for every
acd. It is easily seen that WNS(T;—U, U)=0. Hence R, is an almost metric
space.

Part 6: Let XC IT X;, where each X; is a special og-metric space. By the
i=1
above argument, there exists a perfect mapping f; of a free L-space Z; onto X;.

Construct a mapping f: EZi_”EXi by

f=(fdxdex, x=(xd M Z.

Let Z,=f-%X) and g=f|Z,. Then g:Z,—X is a perfect mapping of a free L-
space onto X. This completes the proof.

Since every free L-space is M,, every special u-space is an image of an M,-
space by a perfect and irreducible mapping, and therefore by [1, Theorem 3.4]
every special p-space is M.

COROLLARY 1. The following are equivalent:
(1) X is a free L-space with dim X=0.
2) XC f:IlXi, where each X; is a special o-metric space with dim X;=0.

PrOOF. (1)—(2) follows immediately from [7, Theorem 3.8]. (2)—1): By
the preceding proof each X; is a free L-space. dim X=0 follows from [7,

Lemma 3.7].
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COROLLARY 2. If X is a special o-metric space with dim X=mn, then there
exists a closed mapping f of a free L-space Z with dim Z=0 onto X snch that
ord f=n-+1.

PROOF. In part 1 of the preceding proof, f is chosen to be a mapping with
ord f=<n+1.

In the next corollary, a space R} is called an almost metric space plus one
point if R¥=R,\J{p,} with p,< R,, where R, is an almost metric space. Note
that R} need not be Hausdorff.

COROLLARY 3. If X is a special p-space, then X is embedded in the countable
product of almost metric spaces plus one point.

PrRoOOF. It suffices to prove that if Z is a special o-metric space then Z is
embedded in the countable product of such spaces. Let {Z;} be the special scale
and let W,;={W,: ac A;} be a uniformly approaching anti-cover of Z;,. Define a
space (T;, ;) in the similar way to part 1 of the preceding proof. Then we

have ZCE(T i, 3). Therefore it suffices to prove that each (T;, 9;) can be
embedded in the countable product of almost metric spaces plus one point. Let
,91“4[“ be an open base for the subspace Z;, where each 4,={H;: 2= 4,} is
discrete in Z;. Let R} be the disjoint sum of K; A, and {r.}, where r,<

K;\J( Ql/ln) and R, the disjoint sum of K, and A4,. That is,

R¥=R,\J{r,}, R,=K,\JA4,.
Define a transformation ¢, : T;—R¥ as follows:
wp=p  if pEK,,
(=2 if peH;, 1€ 4,,
gn(D)=7y if peZ;—\J{H;: 2 4,}.
We introduce into R} the quotient t0pdlogy with respect to g,. Define a trans-

formation ¢g: T;— ﬁ R} as follows:
n=1

q(p>:(Qn(p))neN, pe T;.

As seen in the preceding proof, ¢ is an embedding. Thus we shall show that
each R¥ is an almost metric space plus one point, that is, R, is an almost metric
space. First, we shall show that R, is an M,-space. To see that R, is regular,



230 Takemi MI1ZoKAMI

suppose A€V for an open set V and a point A= 4,. There exists a 6 4(HY)
such that

S(L(H%, 8), WHCf7 (g (V)INH?,

where Hj is an open set of Z such that

H:NZ;=H,, H¥ZNnH,=0 for every p+2, pcd,.
Set

Vi= {2} V(U {St(a) : a<d}).

Then V, is an open neighborhood of A such that V,,2C V. Thus R, is regular.
Since

Z(n)=K,I(J{H;: 2€ 44})

is paracompact and {H;: A= 4,} is a discrete closed collection in Z(n), there
exists an open collection {H}: A= 4;} of Zsuch that H;=H’"\Z; for every 1€ A,
and {H?Z™ :2e4,} is discrete in Z(n). Take a d,€4(H’) such that L(H’, J;)
CH), Let cv={V,: £ 5} be a locally finite (in K,) open over of K; refining
{St(a): = A;}. For each 1€ 4,, let 4,(2) be the collection of all subsets ¢ of &
such that

HQ, 0)=H,\Y(\J{V,: &€d})

is an open set of T; and H(A, §)CM(H,, ;). We repeat the essential part of the
proof of part 4. This completes the proof.

K. Nagami proved recently that the statements (1), (2), (3) and (4) in the next
theorem are equivalent for a free L-space X [7, Theorem 2.3]. In this section
we shall show that these statements are equivalent for every special p-space X.

LEMMA. Let X be a paracompact o-space with a closed network F= Qﬂ",-,
1=

where each F; is locally finite in X, and each F; has a locally finite open collec-
tion {V(F): FeF;} of X such that FCV(F) for every FEZF,;. Assume that if
pEG for an open set G and a point pE X, then there exists an F,€F and an
open set V, such that

peF,NV,CCGNV(Fp),

Ind B(Vy)=n—1.
Then Ind X=n.

PrRooOF. Let H, K be a pair of disjoint closed sets of X and H,, K, be a pair
of open sets of X such that

HCHl, KCK-; ﬁlmﬁlzﬂ.
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Take for each point p€ X an F,€Z an open set V, such that
PEF,CV,C(X—H, or X—K)NV(F,),
Ind B(V,)=n—1.
Choose a subset X,C X such that
Fo={F,: pe X} ={F,: pe Xy},
Fp#F, if p, peX, p+p’.
Since F, covers X, AW={V,: peX,} covers X. It is easily seen that <V is a o-

locally finite open collection such that W< {X—H, X—K}. Thus by [3, Theorem

11. 12] H, K are separated by a closed set P with Ind P<n—1 and we have
Ind X=n.

In the proof of the next theorem we use the following term: An anti-cover
U of F in X is said to be approaching (uniformly approaching) to F with respect
to an open collection <V if for every open set Ve with FCV (for every open
set VeW) S(X—V, UNF=0 (SX—V, YN VAF=0).

THEOREM 4. For a special p-space X the following are equivalent :
(1) dim X=Zn.

(2) There exists a closed mapping f of a special p-space Z with dim Z<0
onto X such that ord f<n-1.

3 X=7QIZ, where dim Z; =0 for each 1.
(4 Ind X<n.

ProoF. The implications (2)—(3)—(4)—(1) are already known. Thus it re-
mains to prove the implication (1)—(2). Suppose Xcif:I1 X; and dim X<#n, where
each X; is a o-metric space with a special scale {X;,:meN}. Let 9%,, be a
uniformly approaching anti-cover of X;,. Let Ef“i,n:ggim, be a network of the

subspace X;n,, where each Fn;={F;:2€ A;n;} is a discrete closed collection of
Xim. By [4, Theorem 2] there exists a replica Qi X;—X; such that
(1) if G is an open set of X; with p= G\ Xin, then there exists an open set
W of X; such that p€ WNX;nCG and p(W) is open in X..
Let Vimj={Vi::2€ Ain;} be a discrete open collection of X; such that F,CV;
for each A€ 4;,,;. Set
Fim=\I{F;:2€ Ain;}.

Since p;(Fimj) is a closed set of a metric space X,—, there exists an approaching
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anti-cover U;n; of Fim; in X; with respect to {p7'(V): V open in X3, Let
n;: X—X; be the restriction to X of the projection and set
im=77 (Xim) ,
Fimj=ni (Fim)= {Fi=a7(F2): A€ Ainj},
Uimi=r7 (Uims) »
Vimi=wi {Vim)={Vi: 2€ Ainj},
Win=a7(Win),
Him =17 (Fimp)=\J{F}: 2€ Ains},
Vim=\I{Vi: 2€ Ain;}.
Then Ujin; is an approaching anti-cover of Hinm; with_respect to {z7(p7'(V)): V
open in X.}. Let /91 Uimje is an anti-cover of H,,; in X refining Uimj, Where
each Uime={Uimjra: ®E Ainj:} is a discrete open collection of X—Hin; Set
Uinig="I{Uimjra: €S Aimjs}.
Uimin="J Kinjus
where each Kim;z, is a closed set of X. Similarly since Win is a uniformly
approaching anti-cover of X}, with respect to {z7'(V): V open in X;}, we can
get an anti-cover ]_Qlcwimj of X}» in X refining Wi, where each Wn;=
{Wimjs: BE Binjs is a discrete open collection of X—Xin. Set
Wini=\I{Wimjs: BE Bimj}.
Wim ;= glLimjk ’
where each Lin;. is a closed set of X. Write the countable collection of disjoint
pairs of closed sets as follows:
{(Kimjrty X—Uimje): 1, m, j, kb, tEN}
IA{Limjry X—Wimj): 1, m, j, REN}
={(Pi, Qi) : iEN}.

By [6, Lemma 3.6] there exists a contraction p of X onto a metric space X with
dim X<n such that each pair (p(Py), p(Qy) is a disjoint pair of closed sets of X.
Let 2,={G:,.: p= M.}, ic N be a sequence of locally finite open covers of X satis-
fying the following: For each i€N,
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1) mesh ¢;=1/1,

2) Gi41<4y,

3) @i<{X—p(P), X—p(Q)},

4) ord g;=n-+1.
Let p'*';: M;.,—M; be a transformation such that p**,(A)=p yields Gi112CGqp.
Set

Y={<pelim{M, p1}: () Giu#0),
g: Y—X is defined as follows:
glpd)=\Gips»  <pOEY.

Then as seen in the proof of [7, Theorem 2.3], g is a closed mapping of ¥ with
dim Y<0 onto X such that ord g<n-+1. Construct ZCXXY as follows:

Z={(x, NeXXY: o(x)=g(»)}.

Let f, o be the restrictions of the projections of XXY onto X, Y, respectively.
Then f is a closed mapping of Z onto X with ord f<n-+1 and ¢ is a contraction
of Z onto Y. The following statement (2) follows from Assertion 1 of the proof
of [7, Theorem 2.3]:

(2) For each iN, f~Y(Py), /(@) can be separated in Z by the empty set.
Since X is a special p-space, Z is also a special p-space. Therefore it remains
to prove dim Z<0. To prove this, we shall show the following statements (3),
(4) and (5).

(3) If D is a semi-canonical neighborhood of H;n; with respect to Ujin;,
then there exists a closed and open set V of Z such that ‘

S Himp VD).
PROOF. Set E=S(X—D, Uiny). Then D={f"YE), /[ (D)—f(Hinp} is an

open cover of Z—f "*(Hinj;). By '(2) for each i, m, j, k, t=N there exsits a closed
and open set R;mjz: of Z such that

S (Kimjre) CRim et &F *(Uimjr)
Set

Rimjrta=RimjpeeN S *WUimjra)
Pimjrt={Rimjrta: AE Aimj},
Rimj:U{Rimjkt: k, tEN}

Then R;n; is a o-discrete cover of Z—f *(H;n; consisting of closed and open
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sets of Z refining @. Thus by [3, Theorem 11. 12] there exists a closed and
open set V' of Z—f"'(H;n»;) such that

Z=(fFUENV T Him)TV' T D)= Hiny) -

Since D is semi-canonical, V=V'Uf Y (H;n,) is the desired set.
(4) If D is an open set of X; such that

Fim;CDC\I{V, : 2€ Ainj},
then there exists an open set V of Z such that
VN1 (X im)= @ ONN S (Xim)
Vi {(a7i(D))
and such that VN\(Z—f"Y(Xin)) is closed in Z—fY(X}n).

PROOF. Set E=S(X—=z7'(D), Win). Then
D={f"XE), [T a'(DNINZ—F X in)}

is an open cover of the subspace Z—f (X;in). By (2) for each i, m, j, kEN
there exists a closed and open set T;n;z 0of Z such that

F M Limpr) T imja CF " (Wimy) -
Set

Timsrp=F " Winis(N\T imje »
Timjg=A{Timjes: BE Bimj},
Timn=I{Timjr: J, REN}.

Then ', is a o-discrete cover of Z—f !(X},) consisting of closed and open sets
of Z and refining @©. Thus by [3, Theorem 11. 12] again, there exists a closed
and open set V’/ of Z—f~Y(X}») such that

Z=(TENVTXim)C V' S (w7 D) (X im) -

Then V=V'"U(f~Ux7*(D)NSf(Xin)) is the desired set.

(5) If U is an open set of X with x=U, then there exist a finite set
{21, -+, 2&} of indices with A, Adiwymw iy, t=1, =+, k, and a closed and open
set O of Z such that

FHOC O\ fHFISOST DN V).

PROOF. Let x=<{x;>=U. Then there exist an integer & and open sets U, of
Xiw, t=1, ---, k such that



Dimension of special p-spaces 235

k
xe Qﬁi—(lt)(Ut)CU-

For each t=1, ---, k, there exists an m()eN with x;» € Xiwvna because
{Xiw>m: meN} is a scale of X, Since Fiwymay forms a network of Xiwyme,
we can choose a 4, € Adiwymwja With x;€F;,CU,. By (1) there exists an open
set G, of X, such that

F,CGNXiwmnnwC Vai,NU;

and such that p;,(G,) is open in Xiw. Foreach 2#2;, A€ Aiwymejy choose by
(1) again an open set G, of X;, such that

FicGiNnXitymaerxT V2
and such that p;,(G,) is open in X.w. Set
GC(t)=G,\I(J{G;: A€ dicxmwrjtr» AFA}) .

Then z:,(G(t)) is a semi-canonical neighborhood of Hiwymeyjw With respect to
Uiwmarjar- By (3) there exists a closed and open set V(t) of Z such that

Y Hirme ) SV (miay(G(2)) .
Set

D(t)=U,NV )V I{V: A€ dicomw jar, AFAL) .
Then D(t) is an open set of X« such that
Fitomw ;i CDOCULV 1t A€ Aiymas s} -
Therefore by (4) there exists an open set W(¢) of Z such that
WHNS Xicwme) =" (@id(DONNS Xiwmw)
W) f(z7d: (D))

and such that W)~ (Z—f*X}wmw)) is closed in the subspace Z—f" Y Xiwrmw)-
Set
O)y=WtNf(Vai)NV(),

0=\ 0(®).
Then O is a closed and open set of Z with the required property. Set
Timpp=F"HFim) Ao (P () 1 p€ M}
={P;: E€ 5 mjr},
Qimpr=F" Vi) N {o" Dz (1)) : pE My}

= {QE: Eegimjk} ’



236 Takemi MIZOKAMI

where each p,:Y—M, is the restriction to Y of the projection. Then each
Qim;x is a discrete open collection of Z and P;n, . is a discrete closed collection
of Z such that P.CQ. for each é=5&,,;. By (5) the following statement is
easily shown to be true.

(6) If zeU for an open set U of Z and a point zZ, there exist a finite
subset {§,, -+, &} S I{Eimjre: i, m, j, keN} and a closed and open set O such
that

k k
2€ [} P,,cOC () Qe,nU.
Thus by the above lemma, we have Ind Z<0. This completes the proof.

The author proved that the characterization (A) of dim X stated in the next
theorem is possible for a special o-metric space X [2, Theorem 1] and for a free
L-space X [2, Theorem 2]. Since by Theorem 2 every free L-space is a special
p-space, these two results can be regarded to be the corollaries to the next
theorem.

THEOREM 5. Let X be a special p-space. Then
(A) dim X=Zn if and only if there exists a o-closure-preserving open base W
for X such that dim BWW)<n—1 for every Wew.

PrROOF. The if part of (A) follows from [8, Lemma 7] because every special
p-space is M,. The only if part: If we can show the validity of (A) for the
case n=0, then the only if part of (A) for the general case follows from [2,

Lemma 1] and Theorem 1, (1)«~(2). Suppose AC i_g[1 X; and dim X<0, where cach

X; is a special o-metric space with a scale {X;,: me N} such that each X;, has
a uniformly approaching anti-cover %,;,. Let

Uimi={Uimja: @€ Aim;}, Fimi=A{Fimja: @€ Aimy},
JEN,
be sequences of locally finite open covers of X; and of locally finite closed covers
of X, such that
FinijaCUimja for every ac Ain;
and such that

(1) if p=G for an open set G of X; and a point p= X;.., then there exists
an a< A;n; for some  je N such that

pEFimjaCXimmUimjaCG .
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Set
Vimi={Uinja=77"Uinja) : @€ Aims},
imi= AFimia=17 Fimja) t A€ Aimj},
Wim={Wing: BE Bin}=17(Win),
Xim=77(Xin)

where 7;: X—X; is the restriction of the projection. Since X is hereditariry
paracompact, we can assume that each 97 is locally finite in the subspace X—X'im.
Then W), admits its closed shrinking {Himg: BE Bin} With HingCWing for
every 8€ Byn. Since Ind (X—Xin)=0, for every Be& B.» there exists a closed
and open set Pins of X—Xi, such that

For each a< A;nj, let 4;n(@) be the totality of subsets & of B;n such that

(2) Pinja®)=UinjaNXin)\ I {Ping: BE})
is an open set of X such that

F;ijaCPimja(a)CU;mja—
Set v
N={N,: EEN}={ACNXNXN: |A|<R,}.

Take an arbitrary N, Jl such that
Ny=1{G(t), m(t), &) : t=1, =, s}

with i(¢), m(t), j()eN, t=1, -, s. For each a=(ay, -, as)E ﬁAi(t)m(t)j(t)

8 8
I\ Fliymwijwa, is closed and O Uitsmaw jwra, 1S open in X such that

8 8
tQ Fécwm(c);‘(na,CtQ Uiwrmw jrag -
Since Ind X=<0, there exists a closed and open set V,, of X such that
b I4 S ’
tf_\l Fiymw jora,CVieaC zQ Uirmwijwayg -
Set

® Wial®=( ) Pecismcs scra @D Via»

0=(0,, -+, 05)E clj{ dicrmerjen(ay) ,
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Wila)={W,.00): o< tlj{ dicomwyjwrlan},

8
W=J{Wi(a): ac E Aicomw i},

W=\J{W,: ke N}.

Then we shall show that 9 has the required property. To see this, we shall
establish the following statements (4), (5) and (7).

(4) 9 consists of closed and open sets of X.

This follows (3) and from the fact that each V,,, Ping, BEBin are closed
and open in X, X— Xi,, respectively.

(5) 9 is a o-closure-preserving collection in X.

Note that each {V,,: a< t]_ji Aicrmarjwo} 1s locally finite in X in the sense
that every point of X has a neighborhood in X which intersects V,, for finitely
many different ac }iAi“’m“>f<‘>' Since by (3) Wia(d) C Via for every e

L4
zHA“”"‘“’ jw(ay), it follows that it suffices to show that each %.(a) is closure-
=1

preserving in X in order to show (5). Let N,e3 with |N,|=s and a be as
follows :

Nk:{(z(t)) M(t), ](t)): t:]-; ) 3}7
a=(a,, -+, at)et:l-:]l: Ascomew s -

To show that % ,(a) is closure-preserving in X, we shall show by induction on
n=1, ---, s the following proposition (P,):

(Py) For every subset MC {1, :--, s} with |M|<n
P(M)= {Wu(a):(tg Piormwiwa,0)NVia:
0=00)ien< II dicrmewrjer(a}
=y

is closure-preserving in X.

Take MC{l, ---, s} with |M|=1. If M={(, m, j)} with (i, m, j)€N,, then
it is easily seen that ®(M) is closure-preserving in X because V,, is closed and
open in X and {PingN\Via: BE Bin} is locally finite in X—X;,. Assume that
(Pn) is true for every m=1, ---, n—1. Let MC{l, ---, s} with |M|=n, and let
4, be an arbitrary subset of tg{dimm(mm(at). Suppose that

(6) peI{Wy(0): 0€4,}.
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If peX—téﬂjl Xiwrmay, then pe Wy(d) for some d= 4, because
{( tQMPi(t>m(t)ﬁt>m Via: (ﬁ:)zeuet:gl Birmen}

is locally finite at p. If petr){ Xiwme, then pe Wy (0) for every 0 is obtained
(S
from the relation

Ut Wy(0): o4} f\(tQMXﬁnmcz))
C Vkam(tQMXg(t)m(t))C Wi () .

As the final case, we consider the case pe \{lXécomcn—tQ[XQmmm- Set
te

M={teM: pE Xiwymw}.
Then 1=|M’|<n. Obviously from (6)

PEI{W . (0): 0=(0:)tensdo}.

By the induction assumption, p= Wy, () for some 6=(5,)cn € do. Since p& Wi . (5),
pEWy(6). This shows that @(M) is closure-preserving in X. Therefore it fol-
lows from (P;) that @({1, ---, s})=%,(a) is closure-preserving in X.

(7) 9 is an open base for X.

Suppose that p=G for an open set G and a point p of X. There exist an
s€N and an open set U, of Xy, t=1, ---, s, such that

pe [:\1 Tie(U)CG .

We have an m(f)eN such that p;yS Xiymer. By (1) chose a j(t)eN and an
a:€ Aiaymajay such that

PivsEFiwnmwiwea, CUiwomw jwa,N\Xicwmear s CUs

Since Wicyme» is a uniformly approaching anti-cover of Xicmeo in Xie, and
{Pi(t)m(c)ﬁ: BE Biwymw} <Wiwyme, there exists a 0:€dictymenr jer(a,) such that
Piymaw jara,(0,) defined by (2) is an open set of X such that

’
Fiwymwjwa,C Picormer jer a,(0r)

CUiwrmwjwra,N\Tity(Us)
Set

0=(0y, - , 05)E€ tll Ai(z)m(c)j(t)(ac) ’

a=(ay, -+ ’ as)EHAi(t)m(t)j(t) ’
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N,={(2), m(t), j(t)): t=1, ---, s}y ET.
Then we have
peWi.l0)CG.
This completes the proof.

Finally we propose the problem:
PROBLEM. Is every special p-space a free L-space ?

If there exists a space that is a special pg-space which is not a free L-space,
then from Theorem 3 it follows that the problem of K. Nagami [7, Problem 2.11]
is answered negatively.
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Addendum

[ am informed by the refree and S. Oka that Theorem 4 is generalized to
the class of p-spaces, which is strictly weaker than that of special u-spaces.
This is stated in S. Oka’s paper “Free patched spaces and fundamental theorems
of dimension theory”, which is forthcoming in Bull. Acad. Polon.

Quite recently, in the letter to the author, S. Oka has pointed the following:

THEOREM. If X is a paracompact o-metric space with a scale {X;:i€N}
such that each X; has an approaching anti-cover in X, then X is a free L-space.

Therefore the problem stated in the final part is solved by him positively.
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