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A LIMIT THEOREM FOR CONDITIONAL RANDOM WALK

By

Michio SHIMURA

§1. Introduction

Let X, X3, X5, ---, be a sequence of real valued independent, identically dis-
tributed random variables defined on a probability space (@2, 8, P) such that

¢)) EX=0 and 0<¢’:=E(X?)<co.
Let {S,;#=0} be a random walk defined by
So=0 and S,:=Xi+---+X, for n=1.

The main purpose of this paper is to show the following
THEOREM. In addition to (1) suppose that

(1D E(X*log(1+]X])]7)> 00

for some constant a>1. Then
d

P(SploVn=x|S:>0 for every k,1=k=n) —> 1 —exp(—x?/2)
(convergence in distribution of distvibution functions on the semi-infinite interval
[0, co)).

The result of (without the condition was announced by Spitzer
[19], page 162, in a footnote “ Added in proof ”. But the proof was not published.
The rigorous proof was given by Iglehart [10], Proposition 2.1 under the condition
that random walk has finite third absolute moment and in addition the maximal
span one when it is integer-valued. It has been open whether his condition is
necessary or not (see Iglehart [11] page 177). Our asserts that his
condition is not necessary.

In §2 we discuss asymptotic property of probability distributions of random
walk. In §3 we prepare several lemmas which play important role in our proof
of [Theoreml In §4 we prove our
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§2. Asymptotic property of distributions of random walk

1. First of all we introduce a lemma, which is simple but plays a fundamental
role in our discussion. Define

e-Ddx the

Du() : =P(SaJov/'n=x) and O(x): =(2”)_1/ZSI
standard normal distribution. Then we have

LemMma 1. If (I) holds, then for each continuous function ¢(x) on (—oo, o)
such that ¢(x)/z*—0 (|x|]—>o00) we have

M lggggfw¢<x>d@n<x>=S:gzs(x)d@(x).

Proor ([6] Problem 14 in chapter 8). For arbitrary ¢>0 choose K,>0 such
that sup{|¢(z)|/x?; |x|=K}=¢/2. Note that

L= Sojooqs(x)dq)n(x)-—Siowqi(x)d@(x)‘§' S 3(2)dPn()
lz|<K,
- | s+ § |swlo.m+ § o).
lz|<K, lz|2K, x| 2K,
d

Since @, — @ by (I) and @(x) is continuous for all x, the first term of the right
hand side -0 (m—oc). For the second term
p@idtne)= | 2N a0,z saoum=2.

lz| 2K, lzl2K,
Similarly
|¢(x)|dD(z) =¢/2.
Izl 2K,

Hence we have lim I,<e. Since ¢>0 is arbitrary, we have lim I,=0. This com-

n—occ n—oo

pletes the proof.
2. In this paragraph we introduce the following two lemmas.
LemMmA 2. If (I) holds, then for all =0, n=1 and —oco<x<co
1) Pr=S,=z+e)=A/Vn,

where posilive constant A. depends only on e.
Lemma 3. If (I) holds, then there exist positive constants B and d such that

2) P(—d<S,<0)=B/vn for every n=1.
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Lemmas 2 and 3 relate to local limit theorem of sums of independent random
variables. Refer, e.g., to [9], [20], [6] and [21], where more refined results are
obtained under the stronger condition that X is centered nonlattice or centered
lattice in addition to (I). See for the definition of centered nonlattice and centered
lattice, [6], 10.4.

Lemma 2 is a simple modification of [9] or [21], and we omit the proof. For
Lemma 3, when X is centered nonlattice or centered lattice, it is a consequence
of [6], Theorem 10.17. Hence we prove it for the remaining case in the following
stronger form (refer to [20], E2in §7). We may assume without losing generality
X has span one, that is, P(Xe{xo+2;2=0, +1, +2, --})=1, where =z, is a constant
in [0,1). Let f(&): =E[exp(itX)]= X.2-.. ps explit(zo+2)]=exp(itz) f(£), where p,—
P(X==zo+2) and F(£): = 3,2 p» exp(itz).

LEMMA 4. In addition to (1) suppose that X has a lattice distribution with a
span one. Then we have the following results.

(i) There exists a t,>0 such that M=2x[t, a positive integer and

{t; —co<t<oo with | f(t)|=1}={lty; =0, 1, +2, ---}.

(ii) Let d>M and N be large enough. Then for each n=N there exists at
least one xe(—d,0) such that P(S,=z)>0. Moreover

lim max{ov'2znP(S,=x) ; —d<z<(}=lim min{ov/2znP(S,=x);

n—co

—d<x<0 with P(S,=x)>0}=M.

Proor. Let us prove (i). Let #: =inf{t>0; | f(#)|=1}. Then by the continuity
of characteristic function |f(#) =1, and by [9], Theorem 2 in §14 #>0. Put
7 (to)=exp(ia), 0=a<2z. Then 3,2 .p, expli(toz—a)]=1, and this implies

3 “P:>0 only if tiz—a=2rr r=0, +1, £2, ... 7",
Using (3), we have

fo)= ri}m Dzrrray sty €XPli(2rr +a)t[to]=exp(iat[te) X rﬁmp&"m sto €XP(2riri[t,).

Then for each /=0, +1, +2, ...,

) F¢+it0)=explila) expliat/ts) 33 (Barsam, eXD(2rirt]te) X

exp(2xily))=exp(ila) f ).

Note that |F(#)| <1 for 0<t<t,. Combining this and (4), we have (i).
- Let us prove (ii). Since |f(#)| <1 for ¢+, I=0, £1, +2, ..., and since 7(2r)=1,
there exists a positive integer M such that M#=2r. Since 1= F@n)= F(Mty)=
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exp(iMa) by (4), there exists a positive integer 7, such that
5) Ma=2nt,.

Now rewite f(¢), using (5). Then
(6) f (t)=exp(irot)rgmpm+,o exp(Mirt).

Let X,:=Xn.—z and S.: =X,+-+X, for n=1. Since S, has the charac-
teristic function F™#), we have by the inversion formula of Fourier series and
by (4)

2T~y

7) 27:P(§n=k)=2n:P(Sn=k+nxo)=S , 2’28_“5 Pt

0/

i

B expl—iklto+olf ot £)dt =1, expl2ril(nry— k) M]

1=0J~-ty/2
t9/2 ~
xS et

to/2

MS ()t if mry—k=integral multiple of M...(*)

—tos
0 otherwise.
Since |f(®)| <1 for 0<|¢|=#/2, we can apply similar technique as in 9],

to/2

in §49 to obtain the asymptotic behaviour of S 2e—““fN"(t)dt as n—oo, Then we
/

_to

have for arbitrary fixed d>0

@®) [ et~ ViV (nroo),

when k varies with »# such that

) —d<k+nr,<0.

By (7), (8) and (9)

10) oV 2znP(Sp=k+nzo)~M (n—>00)

when % varies with » such that (*) and (9). Hence in order to complete the proof
we check that we can choose for each #»=1 integer k£ which satisfies (*) and (9).

When d>M, we can really do this by choosing an integer m such that 7(r,+ )
<mM< n(re+x0)+d and by taking k=nro—mM. This completes the proof.

3. In this paragraph we show
THEOREM 5. In addition to (1) suppose (11) holds for some a>1. Then for all
=0, n=1 and =0

1) P(xémaX{Sk;Oékén}§x+e)§_c,/«/ﬁ,_



A Limit Theorem for Conditional Random Walk 85

where positive constant C, depends only on e.
ReEMARK. When X is integer-valued and has the maximal span one, a stronger
result than our is announced in without proof. Refer also to [I]

and [2]
Before proceeding to our proof of we introduce two lemmas. Let

S and S~* be the Fourier transformation and its inverse, that is, for », we L!(— oo, co)
(Sv) (¢): =S°° e v(x)dz, (S7'w) (x): =(1/2n)r e~ y(¢)dt.

LEMMA 6. (i) Lel H(x): =(3/8n) [sin(x/4)/(x/4)]*. Then H(x) is a probability
density, and the characteristic function h(t): =(SH) (¢) is given by
1-6£246|t)3 0=t <1/2
h()=42(1—¢])? 12=¢ <1
0 |¢=1
(i) For each >0, let H(xz):=cH(ex) and h(t): =h(tle). Then H(x) is a
probability density with the property; h(t)=(SH.) () and H.(x)=(S-h.) (x).
The functions H(x) and A(#) was first introduced and used in to estimate
the difference of two distribution functions.
Let f(¢): =FE[exp(itX)]. Then we have
LemMma 7. In addition to (1) suppose (1) holds for some a>0. Then
(1 S(&)=exp(—a*[1+1(8)]/2),
where y(t) is a continuous function such that y()=0(1/|log|t||*) (¢—0),
(ii) | f™(#) —exp(—o®nt*[2)| = o*nt®|y(¢)|exp(—a*nt?[4) for |t|=e,

where ¢ is a constant such that 0<e; <1 and max{|y(®)|; |t|=ea}=1/2.
Under the condition of the lemma

2) Re[ f(9)]=1—0t*[2+4-0(¢*/| log |¢]]%)
and
3) Im[ f(#)]=0(#*/| log |#]|*) (¢—0).

The first expansion is given in Theorem 11.3.4. In order to prove the second
estimate rewrite Im[ f(#)] as

Im[ f(O)1=[A()—Sf(=))/2) =1L f'(0t)—f""(—68)]/(4s),
where 0<0<1. Note that

If”(ﬁt) —f”(—ﬂt)] és‘:olei“‘”—e—iolzlxzdF(x)
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=Zgo;lsin(0tx)lx2dF(x),

where F(x):=P(X<x). For an estimate of the last term we apply the technique
in [12], Theorem 11.3.4, and obtain

Lf(0t)—f""(—068)| =0(1/|log [¢]|%)  (£-0).

This proves (3). Combining (2) and (3), we obtain (i). (ii) is obvious from (i).
Proor oF THEOREM 5. To simplify the notations we may take ¢=1. In our
proof we adopt the techniques shown in and Let

) Fu(2): =P(max(Se; 0=k=n}<z) and palt): = S " e F ()
for =0. By we have the identity ;

®) ont)= 5 FHOPn-(0),

where g,(#)=1 and px(t)=ox(t) —f(H)pr-1(¢) for k=1. Put d=¢,. Then
®) S puts) (2) =" Hie—v)dFu)= (" Hiw =)

X dF(y)=CP(x=max(S; ; 0=k =n} =z +0),
where C=H,(6)>0. Let

@ 25~ (pal) (2) = emepu(t)dt+ (" e 0u(t) (hal) —10dt= : T4,

Iziga e‘"”[f"(t)—e“("‘z/”]ﬁn_k(t)dt—i- igd e—(i£$+kt2/2)‘5n_k(l‘)dt: L+ L.

k=0J)—8 k=0J—3d

Note that

®) put)={_(1—e")dFn(a),

where S,: =max{Si;l<k=n} and Fn(z): =P(S.<z). By
[ adFuny=—am| zaFu@),

where Fa(z): =P(S.<zx). By (take ¢(2)=2Xco, (), Where Xco,»(x) is the
indicator function on the set (0, c0))

S:’xan(x)w«/“—n/(z“n‘),

so that we have

) —S" _2dFo(z)~ovImn (n->co).
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By (8)

0 —_
0= =14 2dFa(a),
and by (9) we have for all =1 and —oco<¢t<oo

(10) |52(8)| = K|t|[vn,
where K is a positive constant independent of »# and £ Applying and

we have

2 2 k
L=0( 3 48 (n—E)? expl — (n— k)t /4]dt)+0(a T

x[S:_l/4+S" ] |1o§ e /0 GF) = 0(1/«/n)+0(2 [k(1+

+log B)'Va—F1)+0( 3 ke~ FD N 7—F )=0(1/v/7).
k=1
Note that we used «>1 in the last estimate. Estimate of I, is as follows.

(11) Ig_g" e ”"’ﬁn(t)dt+g exp[ — (itz +nt?/2))dt +

+3 S‘” expl— (it +kt* 2))Pn- (D 5, Sm»exp[— (it +Ft?/2)] X
X pn-x(t)dt=: jzi:l i.
Obviously 7, i,=01/v%). i,=0(1/+%), because
i =0( %, (n—k)" wg te=xmdf)=0( 3, e~ 4R X (n— k)%= 0(1/ v/ 7).
Let us estimate 7;, using a technique in [15] Since

_ o fo. - A e
Pa(t)= S_mgxztei‘ dzd Fn(x) =zt§_wei F.(2)dz,

n—1 (too

i="5 S _mexp[—(itx+klz/Z)]itSo_we“”Fn—k(y)d?/dt=

k=1

=42z Z k- mg (x—y)et¥- (L) O —x(y)dy=

=1

=0 ke (| B oS k[ jyle-ornx

k=1
X Fo_i(y)dy)=: i +i".

For #, since

(12) [ Fustnidy=—{" vaFustw),
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we have by (9)
7 :(K 7:;_:"1 (n_k)—uzk—sxzxe_ (z2/2k)).
k=1
Applying the estimate (84) in [14], we have i’=0(1/+'n). For ¢/ divide i/’ by

=0 % + X Jk“”zgo_mlyle“‘”2’2"’Fn—k(y)dy)=Iil”+iz"-

1sksn/2  n/2<k<n

For 1=k=n/2 Fn—k(y)éﬁ[n/ﬂa(y), where [ale : =max{#n; integer such that n=a},

,‘{/:()(S0 [ 2 kyle V0] F 5 (y)dy)=

—co 15ksn/2

=o[" (vr B k) le o) B ()dy)

1sksn/2

Again applying (84) in we have
0 _— —_
i =0 Foum@)dy)=001/v/).

For i,/

n/2<k<n

=03 k" (Ve Fotyi)=
- (K 'n/2§c<n k—lgo_wﬁn_k(y>dy)= ((71/2<Zk<n k_l(n - k)—1/2)= 0(1/'\/5).

Hence we have i’/=0(1/4+n), and i;=0(1/v'%). Summarizing the above estimates,
we have I,=0(1/4+/n) and then I=0(1/47).
Let us estimate J.

J =§0S eI fH(t) — e KD n_i(t) (ha(t) —1)dt +

+k£-:o S:exP(_itx_ktz/z)p"_"(t) (hs()—1)dt=: J1+ /.

Applying and 4,(t)—1=0(?) (¢—0), we have

Fo= (e oty o5 [ A (ine-oa

=0(2=>)+0( 5, (6 A —F)")=0(L/ V7).

Similarly we have J,=0(1/+/n), and hence J/=0(1/+#).
Summing up the estimates on / and /, we have

13) S~ (onhs) (x)=C'[V'n,
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where C’ is a positive constant independent of #=1 and x=0. By (6) and
(14) P(r=max{S;;0=k=n}=x+38)=C"/Vn,

where C"”"=C’/C a positive constant independent of =1 and x=0. Obviously (1)
holds for 0=e=d by taking C.=C’’. For ¢>6 (1) holds by taking C=(1+¢/5)C",
in fact because by

Plx=max{Si;0=sk=n}=zx+e)= I /6P(x+5l§max{3k ;0=k=n}=zx

+oU+1)=A+¢/0)C" [V n.

This completes the proof.

4. In this paragraph we introduce some results from the theory of factori-
zation developed, e.g., in [20] and [5]. Define random functions S, and M, by

Spt=min{Sk;1=k=n}, M,: =max{0=k=#n; Sy=min{0, S,}}.
Then we have
LemMma 8 ([19])). If () holds, then
ey P(Sn>0)=P(5:>0, -+, Sp>0)~e"(man)V* (n—o0),

where a=X,5(1/k) [P(Sy>0)—1/2] is a convergent series.

REMARK. By [17] 2 5(1/R)| P(S;>0)—1/2] < co.

ProrosiTiON 9. If (I) holds, then theve exists mon-negative, nondecreasing
Sunction C(x) such that, for all n=1, 0=k<n and x>0

2) P(Mu=Fk, —2<Sy=0)=C(z) (k+1)"**(n—k+1)-12,
In order to prove we need
LemMmA 10. For all >0 and n=0

+0 +0

X\t ait o+ P(S, <g) AP S <)
Proor. By a simple change of [5], Theorem 2 in § 16,

3) 5, unBUMu=n; evsal=expl £ u'(1jn)| " enaP(s, <))

n=_

Expand the right hand side in the Taylor series. After the rearrengement of
summation, compare the coefficients of each term on both sides. Then we have

4 BMa=n; ¢5n]= 3% (1/k!) Ty, ., gy (Gr--e)
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X[ (7 explias 4+ +yeNAP(S), <) dP (S <ue)

By the linearity of summation and integration, (4) holds for c,e***+-.- 4+cpet*m®
for —oo<cy, 25<00 (1=j=m,m=1) in place of ¢***, and this completes the proof.

Proor or ProrosiTION 9. By P(M,=k, —x<Si=0)=P(Mr=k, —2x<Se=0)X
P(S,-x>0) for 0<k=n, and by Lemma 8 it is enough to prove (2) for k=n.
Applying we have

(5) P(My=n, —o<Sp=0)= 3 [d@)!/k 11X % g i = T

where d(x) is a positive, nondecreasing function defined below. In the above
estimate we used which implies

P(—x<5,=0)= sé P(—k—-1<S,=—-Rk)=A\(z+1)/vVn=:d(z)|Vn.
For 1=sk=n

n
P € Rt Ol e AL G
A Tk=n i=

where A=) j%2<co. Hence we have
Jj=1

(6) I= A“[éi R (Ad(x))E [k In* 2 =C(x)n=3"2,

where C(z): =X,3k%*(Ad(x))*/k! a positive nondecreasing function. This com-
pletes the proof.

§3. Auxiliary lemmas

First we consider the moment of the conditional distributions.
Lemma 11 ([19], Corollary 3.6). If (I) holds, then

11_.12 E[S"/(G’\/Z)_I:Sn> 0] = \/;/E: S:oxd(l — e-(zz/z)).

In the conditioning is not “S,>0” but “S,=0". But this difference is
not the matter.

REMARK. In addition to (I) suppose that [II) holds for a=1. Then we can
prove

Hm E[(Su/oV7)?|Sa>0]=2= S”xzd(l—e-w%).
N—sco 0

Let An: ={S,>0} and »S» :=min{Si; m<k=n} for 1<m<n. Now we take ¢=1
for simplicity without losing generality.
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LemMMA 12. Suppose that (1) holds. Let ¢eCy' ([0, 0)) the class of bounded
Junctions with bounded continuous derivative. Then for each ¢>0 theve exists
0.€(0, 1) and positive integer n. such that

| EL§(Sn-mn|V n—m)| Adn-m]— E[$(Sn| V1)| 4n]| <&

Sor all n=n, and m=o.n.

Proor. To simplify the notations we may assume ||¢||=<1 and ||¢’||=<1, where
[lgl] : =sup{|g(x)] ; 0=x <o} for ¢eCy(0, o)) the class of bounded continuous func-
tions. Let fo: =E[$(Sa/v/%)|4n). Since for 0=m<# An=An-mN {n-nSs>0} and

(Sl V)= ¢<§%ﬂ) +(Su—Snem)’ (Snm+0(Ss—Sn-m) V) V7,

for some 6#¢(0,1), we have
1) P(A3) fo=E[An; $(Sal V)] =E[An-m ; P(Sn> — 2)12-5,_pn®(Sn-m/ V)]
+E[dn-m; E[Sn> —2 ; Sng’ (2 +0Sn)| V1) V1) izas,_ 1= T+].

Since

)=z (W=

@) I=E[An-m; $(Sn-m/ */%)] —E{Ap-m; P(Sn=— x)x=Snﬁm¢(Sn~m/ “/7—1)]

i e e O

—m

= P(A2) from+LP () — P(An)] faom A ( 4] 1= 75— 1) P( o)
n

| A m] E[/ln_m ; ¢(75ﬁ>

P(SnS =)y | = PUD fre+ 5 I
j=1

[(1 —P(Sn=—2)1z=8,_,,)9'(*) «/S" =

where ¢'(*)=¢'(Spn/Vu—m-+0"(V1—min—1)S,-m/vVn—m)). For I,

@) L] gE[An_m ; P(%é —m/_l/a—1>lx=sn_m/«m]§P(An_m, r > )
xP(Sm/«/%é—d«/__—l/a—l)-kP(An " j =m <d)_ L'+ L,
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where d>0. Let p=[{(n—m)/2)¢. Then for 0=m=dn
I/ <E[dp; P(— VD =Sn-m-p<—Vpx+~Vn—md)z_s, s
By
P(—Vpr=Snp-m-p<—Vpz+vVn—md)= I P( VNP HI=Sn-m-p< —VDx

ostsvYn—

+HHD)=A(Vr—md+1)|Vn—m—p=Kd+ K,/ Vn,
where K,=+2/(1—3)A; and K,=+/2](1—5). Hence we have
I <(Kid + Ky V1) P(Ap).
For 0=m=on,J is estimated as
) | ]| = V6P (Au-m)E[|Snl[Vm].
By the estimates from (1) to (4)
) frn=fn-mt+R,

where R is estimated as

PAn-m) P(An_n) Sn-m
© IR Dt [ e (o8| ot e [+ VEDISI
+P(Snl VM= —dN T =T)) + (Kd+ Kl V7 )ﬁgf’; 3R

For 0<0<1/2
0=<Iim max{R,;0=m=dn}=1/vV1—-6—1<2.

7N —00

By Lemma 1]
lim E(|Sn|/~/m)=(2r)" 1/2S lule- D dy=(2/r)'"?,

and then Ky;=sup{E[|Sn|/vVm];m=1}<co. By [Lemma 11
lm max{E[Sn_m/V1H—m|An-m]; 0=m=dn}=(z[2)">.

N —0

Then we have for 0<6<1/2
Oéll—m maX{R2+R3 5 0§m§5n}§[(n/2)“2+K3] ’\/g.

n—00

By (I) —Sn/+v/m converges in distribution to the one sided normal distribution

(refer, e.g., [4], 10), so that we have
Sup{P(Sm/vVm=—dv1/6—1) ;m=1}-0 as dd-2—0.

Combining (5), (6) and the succeeding estimates, we have R—0 as n—oo, d—+0
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and 0—+0 such that 6d-2—0. This completes the proof.
For 0<k<n let

E[Sk——l <O<Sk ; (n_k)—l/ZSkP(x+§7L—k>0)|z_—_sk]
P(Sk-1<0<Sk and xS»>0)

() Inw= if the denomnator=0

0 otherwise.
Then we have
LemMA 13. In addition to (I) suppose (1) holds for a>1. Then
lim lim max{Zl, »; 0<k<on}=0.

3=+0 n-oco

Proor. Since by [Theorem 5
P(x+Sn-x>0)=P(max{—S;; 0=j=n—k}<x)= é P(l=max{—S,;0=j

0s
=n—k<I+1)=Cyz+1)/vVn—F,
and since Sp<<Xj if Sp_1<0<S;, we have
the numerator of In ; =CiE[Sp-1<0<Sk; Xi®+ X/ V75— k.

Obviously
the denominator of I, =P (Sk-1<0<Sk)P(Sn->0).
Then

E[Sx-1<0< Sk ; Xi?+ X5
< — .
®) = b (Se <0< SOV = EP(does)

We estimate above by dividing it into two cases. In case P(X>d,)=0 for some
dy>0

0=1,x=(d®+do) (Vn—EP (U )] /V1—F

Hence we have the assertion of the lemma by In case P(X>d)>0
for all d>0, choose d>0 large enough. Then we have by

©) P(Sk-1<0<Sk) = P(—d<Sk-1<0, X5 >d)=P(X>d)P(—d<Sk-1<0)
=B/VE-].
and then

lim max{/, x ; 0<k<on} =(posi. const.) «/5/(1—5)—+0 (6—0).

700

This completes the proof.
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For 0<k<n and M >0, let

P(Sk_1<0, Sk>M and k>n>0)

h_P(Sk—1<0<Sk and .5,50) if the denominator=+0

Jnku:=

0 otherwise.

Then we have
LEMMA 14. Under the same condition as Lemma 13, for each d¢(0, 1)

lim Tim max{ Ja.x x; 0<k<on}=0.

M- n-c

Proor. By a similar estimate as in (8), we have
(10) ]n P E[Sk—1<0, Slch; P(é‘n—k/'\/n—k> —x/\/n—k)pmsk]
= P(Sk-1<0<Sk)P(dn-1)

E[Si-1<0, Sy =M ; Xi+1]
P(Sk_1<0<Sr)Vn—EP(An-x)

=G,

We estimate above by dividing it into two cases.

In case P(X>dy,)=0 for some dy>0, Jax x=0 for all »n, &k (0<k<#n) and M>d,
by the definition. This implies the assertion of the lemma.

In case P(X>d)>0 for all d>0, choose d >0, large enough so that we have
(9) in the proof of Let us estimate the numerator. For v=0 or 1

E[Se-1<0, Xo> M—Si_1; X'1= 3 E[—i—1=Sk.1 < —i, Xe= M+i; Xi']
i=0

= EOP(—z‘—lgsk_l <—)E[X=M+i; X“]§A1E[§ Koot s, (X)X VE—1,
In the last estimate we used Hence we have
(11) T e n=AE[ g Koot 5,00 (X)X YV EP(Sk-1 <O < S)VA—EP (An_i)].
Note that for v=0 or 1, and M=0
0= io Koot o5, (Xi) X" = f.o Teh. o (X) X" < 00
almost surely, because
E[g}o Xt oo (X)X ] = f}i E[X>i; X" 1=K i [i(log §)]* < oo,

where K is a positive constant. The last estimate follows from the condition
that holds for a>1, because for v=0 or 1, and i=2

co>E[X>1; X%*(log X) 1= E[X >i; X" X**(log X)*]=i(log i) E[X >1; X"],
that is, E[X>i—2; X*]=K[i(logi)*]"'. Now applying the dominated convegence
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theorem twice, we have for v=0 or 1

(12) lim ET 5 Yo 1,(X0) Xi')=0.

M—oo

Combining (9), (11, and we have the assertion of the lemma. This

completes the proof.

§4. Proof of Theorem

1. Our idea of proof is suggested by the method of identification of the limit
process given in [3] (refer also to [10]). It really works when we use a limit
theorem for the fluctuation of a random walk given in [4]. Let E;: ={S;=0}U
{Si-1<0<S;}U{S;-1<0<S;} the event of zero crossing at 7, and Th(w): =max{0=~k
=n;wekEy} the last zero crossing step up to the xn-th step. Let B; (0=¢=<1, B,=0)
be the standard Brownian motion, and T': =sup{t€[0,1]; B;=0}. Then we have

ProrosiTiON 15. If (1) holds, then for each 6€(0,1) and ¢eCy([0, o0))

) lim E[¢< «/1—1T/n - f/;> 10< Taln <, sn>0]= Sj¢<x>d(1—e<—x2/z>).

n =00

_d
Proor. Since by 11 in [4] (Tu/n, SulovVn)—>(T, B,) and P(Tedt, Biedx)=
tg(t, x)dtdx, where for 0<¢<1 and —oco<zx<co

g(¢, )= (2r)x{t(1—1)]"%* exp(—2?/[2(1—1)])
we have

the left hand side of (1)=lim<E[O< Tu/n<d, S>0;

¢(¢1~;17~7J—,z 0%;)]/P(0< Tu/n <8, Su> 0)) =E[O< T<46, B;>0;

¢< «/1% T)]/P(0< T<4, Bi>0)= S:ng(x)d(l —e(-7/D),

This completes the proof.

2. Again we take ¢=1 for simplicity. Let us rewrite the left hand side of
(1) for ¢eGl([0, o0)). By a simple consideration on the last zero crossing step 77,

we have

1 s,
@) E[O< T n<sd, Su>0; ¢( =T «/17)]=0<§< ME[SFO, £Sa>0;

7zg) |+, 2, B[ Ser<0<s, 5:>059( g ) |- 4.
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By the stationality and the independence of increments of a random walk, we
have

I=o<§<mE[sk_0 E[ >0; ¢( - S k)]]— ¥ P(Se=0)P(Sn_s>0)

n— 0<k<dn

xE[¢(vS1;' E )|s,, k>0]_ % P(Si=0,15:>0) fa-s:

where fn: =E[¢(Sa/V'n)|4,). Similarly we have

. $+Sn k
f_o<,§mE[sk_l<o<sk,E[x+sn_k>o ¢( Th o )]w_sk].

Using the Taylor expansion of

(o157 o( ) o ()

where 0<0<1, we have
)]I.’L‘ssk]

). JeET

where M is a large positive number which will be suitably chosen later.
Let us rewrite /. Since for >0

6) J= 3 E[s,c , <0< Se=M; E[x+Sn >0 ¢(

0<k<In

vVn—
Sn-

+ E[Sk 1<0, Se>M; E[.’U‘f‘sn >0; ¢<,\/

0<k<dn

=:/1i+R®+R®,

E[x+§n>o;¢(sn/«/ﬁ>]='k§j:E[Mk=k, —2<Se=0;

E[gn_k>o;¢(i*jil—-k)]|vask +E[My=n, — 2 <Su=0; §(Su/ V7)),

and since

)l e e )
N 5]

for some 6€(0,1), we have

@ E'[x+Sn>0;¢(Sn/ﬁ)]=:§E[Mk=k»_'”<S’°§O;E[S""‘>O;¢(j;_—’f )]]

+ElMy=n, — <5503 p(Sa/ VAN +(_Z E—l)E[Mk=k,

0sk<in dn sx<n)< n
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—x<sk§0;E[§n_k>o;¢'<*> 1/877@] . ]+"2‘E[Mk=k, — <5, =0;
- 1y=Spg

k=0
(Se/ VA ElSnt>0; ¢/ (Niyms,] = : & P(Mu=F, =2 <S=0) fu-s

+E[Mu=0, —2<S2=0; ¢(Sa/ VN)]+ R + RE? + R$®,

where

¢'<*>=¢'(f;;‘i‘k+0[<x/ ’Z:E—lﬂsilkf I/%Z‘])

Using (4), we have
n—k-—
Ji= % E[Si1<0<Si=M; j.go‘P(Mn-k——-j, — < S;=0) pmsy frnims]

+R. T.= 3 E[Si1<0<Si=M; 3 PMui=j, —x<S;=0) 3-8, n-it—1]

0<k<dn 0sj<3(n—kK)
F+(R.T.)Y =:]+RW,
where R® is given as

R®= 3 E[Si1<0<Se=M; 5 = P(Mn-r=j, —2<S;=0)iz-8; fn-k-7]

0<k<on sn-gp)sj<n-k

+ 2 EI:SIC—1<0<S]¢§M; E[Mn_kzn—k, —2<Snx=0; ¢(,\/S’:_kk)] s ]
— |z=Sg

0<k<dn

-+ Z E[Sk—l <0<Slc§M, R§%hl>-k)]+o<kz<:mE[Sk-1 <O<Sk§M; R,§?;f)_k)

0<k<sn

+ 2 ElSi1<0<Si=M; R$}]=": Zﬁ Rw“.©,

o<k <én i=1
Zummarizing these calculations, we have

(5) E[0<Tn/n<a, s,,>o;¢( vr—lT/% j%>]=z+fz+zeﬂ>+zem+>i R,

i=1

3. In this paragraph we estimate the remainder terms. To simplify the
notations we may assume [|g||=1 and [|¢’'||=1. For R®

(6) IRW| = kzd P(Sk-1<0, Sg> M and xS,>0)=P(0<3k<én such
0<k<in

that S].;..1<0<Sk and k§'n>0) maX{fn,k,M;0<k<5n},

where Ja.x,x is the one in In the above estimate we used the fol-
lowing wellknown inequality; for real numbers a, ---, @, and positive numbers

bl’ .es, bn

@yt +an

Y ‘1<k=
byt + b, =max{ax/bx; 1=k=n}.
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Similarly for R®

@ IR®|= X E[sk L <0<Se;
0<k<in

k>0)|x-sk:|<P(0<'=‘k <on

such that S;-;<0<Si and xS,>0) max{l, x; 0<k<on},
where I, is the one in For R

®  IR|=0 ¥ P(Mi=k, —x<sk<0)E[sn >0 \/S”"‘]
<k <
Sn k
—5 % P(Ma=k, —x<sk_0)E[V S0 k>0]
0<k<dn
for R&?
_ . Sn—k
©) RGP|S, 5 P(Mi=k, —2<S:SOE| Sni>0; 2
Sn k
= ¥ P(Ma=h, —x<sk_o>E[~/ |5 k>o]
msk<n
and for R$?®
(10) |RE| (2 V) 5 P(Ma=, —2<SeSO)=(a/ VP (@ +5:>0).

|R4D|+|R4D|= 3 E[sk-1<o<sk§M;("ij P(Myor=j, —x
o<k<dn Jj=

2
<Sy=0)snsy >(f

P(Myx=7, —x<Sj§0)|z-Sk
X P(Mu =7, —x<5;=0)5-5, )}

Since P(M,=0)=P(S,>0)~e"(zn)""* by we have from

11 wlpan’ M=k, —2<5=0) 0<z=M\l< P(M.=F
(1) Sup| St = s, Z0y O <P =M=supl % P(M.=k,
osksn

—2<S;=0)/P(M,=0); 0<z=M}=K,C(M)o~**n"12,
where K, is a positive constant independent of 4, » and M. Hence we have
12) |R4D| 4+ |R4»| <K, 5-%2(1—0)""*C(M)n~'"?P(0<3k<on

such that Si_;<0<Skr=M and xS,>0).
In order to estimate R“® to R“%® we use (8), (9) and For R“®

(13) |IR&®|= T E[Sea<0<Si=M; K 3 P(Mpi=j, —x

0<k<dn 0<j<i(n=k)
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<Sj§0)|x=sk]§K55P(0<;k<5n such that Sk—1<O<Sk§M and k§n>0),

where Ks=Ssup{E[S./vVn|4.];n=1}<co by For R“*® applying as
in the estimate of |R“P|+|R“®| we have

(14) |[R¢4®| < kZ E[Si-1<0<Se=M; K; 2 P(Mu_x=j, —x
o<k <on

sn—-KkySjsn—k
<Sj§0)|$=sk]§K4Ks5“3/2(1—5)"1/ZC(M)n_1/2P(0<5k <on such
that Sx-:<0<Sy=M and ;S,> 0)
For Ret:®

S.
(15) 1R(4.5)|§0<ZME|:SIC—1 <0<LSk=M; ‘%‘k_—k Plz+S —-k>0)1x=sk:|

k<

=M[(1—-0)n]""2P(0<2k<én such that S;-;<0<S; and S,>0).

4. By Fok=fote for all n=n, and k=20n, 25<5, Here and
hereafter we take the compound notations =+, = in signs and inequalities in order.
Then we have

(16) I =(faxe)P(0<3k<n such that Sy=0 and :S,>0),

and

17) Jo=(foxe) T E[Si-1<0<Si=M; 2 P(Mpi=j, —x<S;
0<k<on 05 j<3(n~k)

=0)iz-5,]1=(fate) (P(0<3k<on such that S;_;<0<S; and ;S,>0)
—P(0<3k<dn such that Sy-,<0, Sie>M and S,>0)

0<k<din

- X E[Sk—1<0<sk§M; (onéz—kP(Mn_kz_j’ —x<sf§0)|$=sk)

P(Mn—kzj, —(L‘<S_1<O)|x=sk

Z . . .
(( )Z.{ }’;(Mn—k=j; —x<S;=0) )}: ((fnxe) (J1—Ja—Js).

0sfsn—k

Combining (5), (16) and [I7), we have

1 Sn ..
18) E[¢( T W)|0<Tn/n<a,sn>o]§fnis+[—<fnie> (jati) +R®

+R® +§: R&DYPO< Ty/n<d, Sp>0).

By (6) and 0={|R™|, 7o}/ P(0< To/n<0, Sp>0)=max{jn, & ux;0<k<n}, so that
we have by

(19) lim Lm{|R®, 72}/ P(0< Tu/n <8, Sn>0)=0.
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By (7) and
(20) lim lim |R®|/P(0< T/n<4, Sn>0) =lim lim max{ln ;0 <k <on}=0.

—40 Moo —+0 N—co

By [12), [14) and [17) we have for each fixed 6¢(0,1) and M>0

@21 0={|R“V|+|R%?|, |[R“®], ja} P(0< Tafn <5, Sa>0) = K| vV1n—0

(n—o0), where K is a positive constant. By |[R4®||P0L Ty/n<d, Sn>0)< K0,
then

(22) ~ lim Tm [RD|[PO< Tofn<3, 52> 0)=0.
By
(23) lim|R% 8|/ P(0< Ta/n <8, Su>0)=0.

T —~0c0

Taking e>0 arbitrary small, we have from (1), (18) to

(24) lim fn= li_l'gS:osD'(x)dP(Sn/ Vrn=x|S,>0)= S:o¢(x)d(1 — o=@/

N —00 n

for ¢eG'([0, o0)).

For the final step of the proof, we show that holds for every ¢(x)=
Yra.0y(x) 0=a<b<co. We can do this, approximating X,s(x) by two sequences
of functions in G;!([0, )) from above and below. Hence we have P(Si/vVn=

d
z|S,>0)—>1—exp(—=2?/2). This completes the proof.

Added in proof. After this paper was received the author was informed by
Professor F. Spitzer that our had been proved under only condition (I)
by Erwin Bolthausen: On a functional central limit theorem for random walks
conditioned to stay positive, Ann. Prob. 4 (1976), 480-485.

Our proof is different from that of Bolthausen, and is based on the fact that
random walk excursion after the last zero crossing step can be approximated by
the conditional random walk (see for the detail, §4).
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