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CONSTRUCTIONS OF MODULAR FORMS BY MEANS OF
TRANSFORMATION FORMULAS FOR THETA SERIES

By

Shigeaki TSUYUMINE

Let F be a positive ihtegral symmetric matrix of degree m, and Z a variable
on the Siegel space H, of degree n. Let @ be a spherical function of order v
with respect to F' which is of the form
(v=0)
o(G)= for mXn complex matrices G
I'GFY*y["  (v>0)
with an mX#n matrix 7 such that =0 if v>1.
We define a theta series associated with F by setting

Or,vv(Z; )= }; DG+ V) exp(tr(ZHG + VIYF(G+ V) +24(G+ V)U)),

where U, V are mXn real matrices, tr denotes the trace of a corresponding square
matrix and G runs through all m Xz integral matrices. We write simply 07 v v(Z2)
for the theta series 0z, v(Z;®) when @ is of order 0.

For congruence subgroups of SL,(Z) the transformation formulas for theta
series of degree 1 associated with F are well known. For example, we can find
transformation formulas for theta series of degree 1 in [7], [8], in which multi-
pliers are explicitly determined. Transformation formulas for the theta series
Oruv(Z; ®) of degree n>1 are also established in [1] in the case where F' is even
and U, V are zero (the condition on U, V is not necessary if @ is of order 0 [9)).
Using these results we can get many examples of Siegel modular forms for
congruence subgroups.

In this papef we determine a transformation formula for the theta series
Oruv(Z; @) associated with a positive integral symmetric matrix F' and any real
matrices U, V and using this, we get some examples of cusp forms for some
congruence subgroups I of Sp.(Z). Cusp forms of weight n#+1 for I induce
differential forms of the first kind on the nonsingular model of the modular
function field with respect to /7. Our result shows that the geometric genus of
the nonsingular model of the modular function field with respect to I’ is positive.
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For example, this is the case where (i) I"=I"(4) if »n>1, (ii) ["=I'(2N?) for N>1
if n=0 (2), (iii) ["=Spa(Z) if n=24 (cf. H. Maass [5)), (iv) I"=I(N) for N>2 if
n=0 8), (v) I"=I'(2,4) or I'(N? for N>1 if n=7 (8).

Notation.
We denote by Z,, Z,Q, R and C, the set of all positive rational integers, the

ring of rational integers, the rational number field, the real number field and the
complex number field. Let K be a subset of C. We denote by M, (K) the set
of all mXxXn matrices with entries in K; simply K™ denotes My (K) and SM,(K)
denotes the set of all symmetric matrices of degree m with entries in K. We
denote by 1, the identity matrix of degree n. For XeMp n(C) and YeM, .(C),
we set X[Y]='YXY.

We denote the modular group Sp.(Z) simply by I'. [I' acts on the Siegel
space H, by the usual modular transformations

Ze— s MZ=(AZ+B)(CZ+D)" for M=(§g )er.

Let I’ be a congruence subgroup of I', and yx a map of I to C*={ceClcx0}. A
holomorphic function f on H, is called a modular form of weight k(e—;—Z+) for

I with a multiplier y if f satisfles A(MZ)=y(M)|ICZ+D|*/(Z) for any Mel".
Here the factor of automorphy |CZ+D|'? is always determined by the condition

that —r/2<arg(|v/ —1C+D|¥?)<z/2 and |CZ+D|* is determined by |CZ+D|*=
(ICZ+D|v?)%*, Such f is called a cusp form of weight k for I with a multiplier
x if in the Fourier expansion

|CZ+D|"‘f(MZ)=§ a(S)e(tr(ZS)) for all Merl’,

a(S) vanishes for S with |S]=0, where e(x)=exp(v —1z*).

We introduce several congruence subgroups of I'. Let © denote the theta
AB
CD
degree n, (x:i;)s denotes “(xi1,-, Tan). Let N be a positive integer. Then we set
FN)={MeI'|C=0 (N)}, I'(N)={Mel'lA=D=1, (N), B=C=0 (N)} and 6((N)=
{MeIy(N)|(!BD)s=1/N(AC),=(BA),=1/N(D'C);,=0 (2)}. For two positive integers
Ny, N; we put I'o(Ny, No)={MeI'|B=0 (N,), C=0 (N,)}. For a positive even integer
N we put I'(N, 2N)Y={MeI'(N)|(CAC),=(BD),=0 (2N), 6,(N)={MeI'(N)|1/N(AC),
=1/ND'C)4=0 (2)} and Ox(N)={Me'(N)|(*BD)s=(B'A)s=0 (2)}.

M=( )GFI(’AC)AE(‘BD)AEO (2)} where for a square matrix (z;;) of

group
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We denote by (—) the generalized Legendre symbol to which we add the fol-

lowing significance ; (i) (—%):1 and (ii) if a is an odd integer congruent to 1 mod

4 and b is a positive even integer, then (%Z—):(%) (cf. [2])

1. Transformation formulas
For u,v, z and yeC" we define a theta series by setting

SudZim )= B Zlg+yl+2o(e+u)+ya),

where the summation is taken over all geC™ such that g—veZ” From Satz 8
in we get easily the following

AB

LEMMA 1. Let u,v,xz and yeC™, and M:(CD

) el’. Setting

uM=‘Du+‘Bv+%(‘BD)4, vM=tCu+tAu+-%—(tAc>A and

E(u, v, M)=e(—("Cu+*Av) *Du+Bv+(BD) ) +vu),
we have
Suo(MZ ; Az — By, —Cx+ Dy)

=y (M)Et, v, M)|CZ+D|*"*9y 0 (Z; 2, %)
where y(M) is the 8-th root of 1 depending only on M.

Let F be a positive real symmetric matrix of degree m>0. For U, V, X and
YeMn A(C), we set

Oruv(Z; X, Y)=G P dZs(tI‘(ZF[G—I- Y]+2'G(X+U)+'YX),

=¥ mo

where the summation is taken over all the matrices GeMy, .(C) such that
G—=VeMunn(Z).

The idea of the proof of the next theorem is due to A.N. Andrianov and
G.N. Maloletkin whose idea is based on the interpretation of the theta series
Oryv(Z; X, Y) of degree »n associated with positive quadratic forms F of degree
m as specializations of the standard theta series 9,,(Z; z, y) of degree mmn.

For square matrices A and B=(b;;) respectively of degree m and »n, we define
a tensor product by
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Let F be a positive real symmetric matrix of degree m. We define three
maps which we shall denote by the same sign ~, in the following way :

~+H,—> H.n defined by Z——Z=FQZ

~: Spu(R) —> Sbun(R) defined by M =(AB)’—’M = ( & >=(

1.0A FQ®B )
CD CD

F'®C 1,QD
~: Mpa(C)—> C™ defined by X=(xi,++, Tn)—> X=zy,, tzn).

Then under the above notation we have MZ =A72, IéZN +D|=|CZ+D|™, Z1G1=
((ZFIGY), AR =XA, BR=FBX, G X=FXC, DX =XD, (BD)s=FBD), AC),
— (F D CAC), and FX=tr¢YX). If both F and NF-! (NeZ.) are integral, then
we have l/“I]\/f)cSpn(Z). Moreover, if both F and NF-! are even, then ]?]\7) is
contained in the theta group of degree mmn. '

We obtain 0r v v(Z; X, Y)=19;7_;(Z~;)?,)~’), and hence by we get the
following

THEOREM 1. Let F be a positive real symmetric matrix of degree m>0. Let

M=<élg )eSp,,(R) with K1eSpmn(Z). For U, VeMna(C), set

U= UD+FVB+%F4”(‘BD)A. Vu=F'UC+ VA+%(F‘1)/(‘AC)A and

Ep(U, V, M)=¢(tr(—4FUC+ VA) (UD+FVB+F(BD)s)+'VU).
Then we have
Orvv(MZ; Xt A—FY'B, —F'X'C+Y'D)
=te(M)Ee(U, V, M)ICZ+D|™*0rv,.v,(Z; X, ¥)

where Xp(M)=X(M) is the 8-th root of 1 depending only on n, F and M.

Suppose that m=deg(F) is >». Let / be any integer such that n</<m, and
L any subset of {l,---,m} with / elements. Put L={j,,--,7)} with j;<---<ji.. We
denote by 7, the matrix in My, (Z) whose

(i) j-th row=e; if jzjieil
(i) j-th row=0 if j¢L,

e; being the i-th row of the identity matrix 1, of degree /. Take a pair (y,v) in
M, .(C)X Z, which satisfies both of the conditions that (i) ‘=0 if »>1 and that
(i) v=1 if I=n. For GeMna(C) we set OG)=|'GF'?p . We define a theta
series with @ by setting
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Oruvv(Z;9; X, Y)=G 2 , O(G)e(tr(ZF[G+ Y]+2'G( X+ U)+'Y X)),
=¥V mod Z

the summation being taken over all the matrices GeM, .(C) such that G—
VeMpnn(Z).

Let £¢=(&;;) be an /X#n variable matrix and 6‘=< g > the corresponding matrix

of differential operators. We introduce the differential operator det’(*50). In
of [1J, the following equation is proved. For PeSM,(C) and Qe M, .(C)
and for ceC, we have

det’("0) (tr(P%E+2!Q¢)+c)
=24/ —1x(P*% +'Q)y|"e(tr(PE +2'QE) +¢).
THEOREM 2. Suppose n<m=deg(F). Let [ be any integer with n<I<m and
L a subset of {1,--,m} with | elements. Let neM;n(C) and put O(G)=|'"GF**p.y|"
(veZ.) for GeMyu o(C). Then we have
Orov(MZ;®; X!t A—FY'B, —F-'X‘C+Y'D)
=Xr(M)Er(U, V, M)|ICZ+D|™®*0py v, (Z;P; X, Y),

in either case that (i) v>1, I>n and =0, or that (ii) v=1 and I>n, where

CD
IXF-1V2, =tYF1 %y, =0,

Proof. Take an mXn matrix & such that entries of its i-th rows (ieL) are
independent variables and its j-th rows (j¢L) are 0. Then we have ‘XF-12¢'=
'YF'26'=0. Setting £='5,¢ and substituting X for F¥?¢’4+ X in the formula of
Theorem 1, we obtain
2 Zs(tr(—(CZ+D)-1C‘E$+2(CZ+D)““GF"217L€+MZF[G—F-lX‘C+ Y'D]

G=V mod

JW=<AB> is as in Theorem 1 and X, Y are matrices in My (C) such that

+2G(U+X'A—FY'B)+Y—F-1X'C+ Y'D) (X!A—FY'B)))
=1e(M)Ep|CZ+D|™ 5 o(tr(2GF ;6 +ZF[G+ Y14+ 2G(Un +X)+ Y X).
z

=V 3 mod

Applying the differential operator det’(’50) at £=0, we get the desired result.

In the similar way as in the proof of we get the following
corollary.

Let keZ.. Let L; (1<i<k) be subsets of {1,---,m} with li(>#) elements such
that L;NL;=¢ if i#j. For i=1,--, k take pairs (y,v,) in M;(C)XZ, which
satisfy both conditions that (i) ‘p,=0 if v,>0 and that (ii) v,=1 if /;=n. For
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GeM, (C) we set O(G)=|'GF"?pp |’ |'"GF"?p,.m|"*. We define a theta series
with @ by

Orvv(Z;,0;X,Y)= VZmod Zq)(G)e(tr(ZF[G +Y1+2'G(X+U)+'YX)),

G=

for U, V, X and YeM, .(C).
CoroLLARY. Let L, %, v, (1<i<k) and @ be stated as above. Then we have

Oruvv(MZ;®; X*A—FY'B, —F-'X!'C+Y'D)
=Xr(M)Er(U, V, M)ICZ+D|™2**i0py v (Z;P; X, Y),

AB
where M—<CD

‘XF"”ZnLi=‘YF”27]M=O for i=1,-- k.

) is as in and X, Y are matrices in My (C) such that

2. Computation of x» I

We shall compute Xz (cf. [Theorem 1) in the following four cases (up to =*1
when deg(F) is odd). Let F be a positive integral symmetric matrix of degree
m>0. Let N be a positive integer such that NF-! is integral.

MeBy(N). |

F is even. MeI'y(2N), or MeBOyN), or MeO,(N) for an even N.
NF-1 is even. MeI'o(2, N), or MeByN), or Me®,(N) for an even N.
Both F and NF-! are even. Mel(N).

First we must generalize Lemma 5 in [1} We put

tg-! 1, S 1. 0
PU=( U>; QS=<0 1 )) RS:(S 1 >

with UeSL,(Z) and SeSM,(Z).
LEMMA 2. Let K be the group generated by the elemenis of I'o(N,, N;) (resp.
Ou(N), resp. O(N), resp. Ox(N)) of the form Py,Qs and Rs. Then for any

®e 606

Mz(AB)GF o(Ny, Np) (resp. Oo(N), O:1(N), OxN)), there exist matrices M, and MeK

CD
such that
a b \
1_0 0_0
MlMM2= - 0 1 d 0 0
0.0 1'0
0 0] 01

Moreover |D|=d mod NN, (resp. mod N).
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Proof. We treat only the case of ©(/N). Then K is generated by Py, Qs and
Ry with UeSL,(Z), even SeSM,(Z) and TeSMy(NZ) such that ]%[-T is even.

We shall prove the assertion by induction on #n. When z=1, the assertion
is trivial. Let us suppose #>1. By the elementary divisor theorem there exist
U, VeSLn(Z) such that UDV is diagonal. Hence we may assume D=diag(d,, -, dx).

Step I. We may assume d,=1.

Putting C=(c;;) we have g.c.d (Cni1,+*, Cnn, dn)=1. First we assume that d, is
an odd integer. There are even integers $,-:+, S, such that siCpi+4-++SnCrn=2
g.c.d (Cni,r++, Cun). Let us put

-?'1
O E 0 AIB/
S=| siwsns sn |, MQs=( p D,) and D'=(d,,).
0 s, O

Then we have d, ,-1=2 g.c.d(cn1,++, Cnn) and dj,=dn~+Cnn-15,, and hence g.c.d
(dn,n-1, dnn)=1. Now again by the elementary divisor theorem we may assume
that D’ is of the form D’=diag(d.’, -, d,.,1). Secondly we assume that d, is an
even integer. Then for some i, ¢,; is an odd integer. Take an integer j different
from ¢ with 1<j<n. There are integers si,---, $;-1, Sj+1,**, S» and an even integer
s; such that sicpi+4-++SnCun=g.c.d (Cni, -+, Can). Let us put

$1
0 0 A’B’
S=] s5:+---- ‘?J ...... Sn , MQs= C’D’) and D'=(d§j).
0 i 0
$n

Then we have d,;=g.c.d (Cn1,+++, Cun), dan=0dn+cn;$n and hence g.c.d (d,;, din)=1.
Again by the elementary divisor theorem we may assume that D’ is of the form
D’ =diag(d’,---, d}_1, 1).
Step II. The assertion is true.

A'B’
cD
select Qs and Rr such that the last row of C and the last column of B are zero.
The symplectic condition yields that A’, B/ and C’ have the form

7 (B 0) ,_(c1 0)
A‘(o 1)’ B“(o o) ““lo o)

By the induction hypothesis this proves the lemma.

Let us put QSMRT:< ) Then since D=diag (d,, -+, dn-1, 1), We can now
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In the case of I'y(Ny, Ny), ©,(N) and ©,(N) the similar proof is applivable.

Applying [Theorem 1 to the case @, @, ® and @ with U=V=X=Y=0, we
have

Or, 0, MZ)=2(M)|CZ+ D|™ %05 0,0(Z).

Hence x§” is a character if m is even. Let us denote by x{/{+1} the composition
map of X’ and the quatient map: C* — C*/{+1}. 2§’/{%1} is a homomorphism
whether » is even or odd. As we shall see in the next section, X (resp. X{&/{x1})
is trivial on K (see [Lemma 2 for the notation) if # is even (resp. odd).

Assume that M=<AB

CD) satisfies at least one of the four conditions @), @, ®

ab
and @, and (cd

using Siegel’s @-operator we obtain

) is the matrix in SLx(Z) corresponding to M in Then

__1\m/2
XM= X“’( 2>=sgn(d)”"2<(—lldl—Fl) if m is even,

and

x;w(M):ie(d“l) if m is odd.
(see also Appendix).
Through easy calculation we get the following
THEOREM 3. Let I be a positive integral symmetric matrix of degree m, and
N a positive integer such that NF~' is integral. Put |F|=2'K with g.c.d (2, K)=1.
(1) In any one of the following four cases, we have for any even positive
integer m

wpy=sgn( ({2 L),

abs(D)
@® 8|N and McOy(N), 4N and MeBOy2N), 2|N and Mel'«(2,2N), 2|s and 4|N and
MeOy(N), 2|s and 2|N and MeO,2N), or 2|s and Mel (2, 2N),
®@ (F is even.) 8|N and Me6:(N), 4|N and MeOy2N), 2|s and 4|N and MeO,(N),
2|s and 2|N and Mec©O,(2N), or Mel(2N),
® (NF-!is even.) 8| N and MeOy(N), 2|s and 4|N and MeO(N), or Mely(2, N)
@ (Both F and NF-* are even.) Mel'«(N) with N>1.

In case @ with N=1 we have XP(M)=1 for all M.

(2) In any one of the following four cases, we have for any odd integer m

AWM= ie( d;l )
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4|N and MeOy(N), 2|N and MeO\2N), or MeIy(2, 2N),
4|N and Me®O,(N), or 2|N and MeO,(2N),

4N and MeOy(N), or 2|N and MeI\(2, N),

MeTI'o(N).

® e

REMARK. For even m the case @ with N=1 is investigated in [I1].
CorOLLARY. Let F and N be as in Theorem 3. Then we have

(=)™ F|

xgn(M)—_—sgn(lDDm/z( abs(D)

) if m=deg(F) is even,

X?”(M)=ie(—lDlT_l—) if m is odd,

in the following four cases ® Mel«(2,2N), @ (F is even.) MeI'\(2N ), ® (NF-! is
even.) Mel'«(2, N) and @ (Both F and NF-* are even.) MeIo(N).

3. Computation of y, II

LemMA 3. (The inversion formula) Let F be a positive real symmetric matrix
of degree m. Then for U, V,X and YeM, (C) we have

Ory(Z; X, Y)=|F|"2| =~ =1Z|"™ 05y y(—Z*; Y, —X),

where | —~'—1Z|"? is determined to be positive for purely imaginary Z in H,.
Proof. We have the inversion formula for the standard theta series

YulZ 2, 9)=| =V =1Z|729y (= Z7;y, —z),
where | —+'—1Z|-'2 is positive for purely imaginary ZeH, From this we get
the inversion formula for 6 in the same argument as in the proof of [Theorem 1.
COROLLARY. Let F be as in Lemma 3. Assume that there is a Dositive real
number h such that hF is integral. Put G=Myun(Z). Then we have
Orov(—2Z27;X,Y)
= lFl_n/ZI —'\/—:l—Zlm/z > 0h2F,hFV,—h—1F—1U+H(Z; hFY, —h_lF_lX),

H:n~TF-16/6
where |—+/—1Z|"% is positive for purely imaginary Z in H,.
CD
or @ with N>1. Let HeF-'G. We have the following two formulas:
J O, 0, 0(—Z")=|F|"?|— «/:TZ[”“ZK: Fgla/ge(tr(thFK))ﬁp,o,K(Z),

(*)

Hereafter we assume that F and M:(AB) satisfy the condition @, @, ®
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1
Or0.u(Z)= X 0dF,0,K<‘gZ[D:|>
K:(dF)~16/G, KtD=mod G

for DeM,..(Z) such that |D|x0 and for deZ, such that dD-' is integral.

Let us put M’:(:g é):M(_l 1)eSpn(Z). Let d be a positive integer such

that dD™! is integral. Then we have

Or.0.M'Z)= 3, 0di‘_o,a<% M’Z[D]) (by the second formula of (x))

G:GtD™Y/G

= 2 odp_o,()(l ‘BD—(dZ— dD“C)“)

G:GtD—1/6 d

= 3, e(tr(tBD'GFG))0ar,0,6(—(dZ—dDC)™)

G:GID™1/G

= Y1  (trCBD'GFG)|dF|-"?|—~ —1(dZ—dD~'C)|™*

G:GID™1/G

X > e(trRd'GFK))0ar,0,x(dZ—dD'C)

K:(@F)T16/6

(by the first formula of (x))
=|dF]_n/Zl-\/jf(dZ—dD"IC)lm/z

X 2 > e(tr(CBD'GFG+2d'GFK—d*D*C'KFK))0ur,0.x(dZ)

G:GID™1/G¢ K:(dF)™1G/G
Now

> e(tr((BD'GFG+2d'GFK—d*D'C*KFK))

G:GID™1/G

= 3  e(tr(BDYG—dKD'C)F(G—dKD~'C)+2d'AD'GFK—d*AC'KFK))

G:GID™1/G

= ), &tr(BD'GFK)).

0:GtD™1/G
Using the second formula of (x) for D=dl,, we get

Or,0.0(M'Z)
=|dF || — v/ =1 (dZ—dD-*C)|™* Y. (tr(BD'GFG)) 3, Or.0.x(Z).
G:G!D™1/G K:FT16/G
Substituting —Z-! for Z and using the first formula of (x), we get

Or,0,0(MZ)

=|dF|-*|+/=1dDYCZ+D)Z *|™* Y, e(tr(BD'GFG))
G /G

:GtD™1

X 3 |F|T——1Z™? Z/Ge(tr(Z‘LFK))OF,o,L(Z).

K:F~1G/G L:F™16G
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Observing that
0 if L0 mod G
> e(tr(2‘LFK))={
K:F16/G |F|* if L=0 mod G,
we obtain

Or.0,o(MZ)
=|=~—=1Z|™2|~ =1 DXCZ+D)Z-*|™* 3. (tr((BD'GFG))0r,0,(Z).
G

:GIDT1/G
The above computation is well known for n=1. (cf.[4], [7] [8] the section 2).
Thus we obtain;
LEMMA 4. Let |~/ —1X+1,|"% be a functiou on SM(R) which is the branch

taking the value 1 at X=0. Suppose that F and M=<élg

conditions @, @, ® and @ with N>1. Let us denote by (C,D) the complex
number given by

) satisfy one of the four

¢(C, D) abs(D)~?|+/ =1 C+D|?= |+ =1 D*C+1,|"2

Then we have

X@(M)=e(C, D)™ abs(D)~™2 3 Ge(tr(‘BD‘GFG)).
/

G:GlD™1
CorROLLARY. If M is in the form of Py, Qs or Rs (¢f. §2), then we have
1B(M)=1 if m is even,

P (M)==x1 if m is odd.

4. Constructions of cusp forms

Let k€~]2'—Z+ and let y be a map of I/ to C*. We denote by [I”,k, x] (resp.

[I”,k]) the space of cusp forms of weight & for I/ with a multiplier y (resp. a
trivial multiplier).

We apply a differential operator det'(‘s9) to the formula in [Corollary| to Lemmal
3. Then we get

Orvv(—Z271;X,Y)
=('\/—':T)mn/2kmlFl_n/2| _Zl(m/2)+v

X o Oner nrv,-n—1r-1w+51(Z 3 @ RFY, —h'F-1X),

H:h—1IFT1G6/G

where @ and v are as in Any Mel' can be written in the form of
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a product of Py, Qs and <_1 1") with UeGLr(Z) and SeSM,(Z) (cf. §2 for the
notation). Hence in the Fourier expansion

|CZ+D\~™®=0p v v(MZ; ®; X, Y)=SZ a(S)e(tr(ZS)) for all Mel,
20

the coefficient a(S) vanishes for S with |S|=0, since @(G) vanishes if rank (‘GFG)
<n. Thus 0p,v,v(Z;®) will be a cusp form so long as it is a modular form.

(1) Cusp forms of weight %+1

ProrosiTiON 1. a) We have
. n
dlm[F(Z), S+, x]> 0

with X(M):xln(M)e(tr<%B+%(D——ln)—%C‘D—%—B‘A)). Especialy we have

dim[P(4, 8) o+1, xln]>o.

b) Let F be a positive even symmetvic matrix and N a positive integer such
that NF-! is even. Then we have

dim| PN, +1, th]>0 for h>3
and

dim| I2N), %+1, x]>0

with X(M)=XF(M')s(tr(% (D—ln)——}l—F-‘C‘D—%

FA‘B)).
¢) If N is divisible by a square of some odd prime, then we have

dim[F(N), 2+, xp]>0.

Proof. a) We apply with n=I/=m, F=1,, ®(G)=|G|, X=Y=0,

1 AB\
U= V——z—ln and M—(CD>GI(2). Then we have
01, 1215, y201,(MZ 3 @)=y (M)ICZ+D| P10y, (1,01,. a,21,(Z 5 P)
. 1 1 1 1
with X(M)=X1n(M)s(tr<—2—B+-—2~(D—ln)—zctD——-ZB‘A . Hence

O1p. 1215, 1,01,(Z 3 @) is a cusp form for I'(2) with a multiplier .
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Let us denote its Fourier expansion by SZ,‘ a(S)e(tr(ZS)). a(S) is given by
-0

e(tr(G))|G|. We must show that 01, a,21,.a,21,(Z; @) is

>GE(1/2)1n mod Z, !{GG=S8

a(S)=e<—’2£
a non-zero function. To do this, it sufficies to show that there is S>0 such that

a(S)=0. The Fourier coefficient for %17, is

a(_h,,) ~(%) 2 e(tr(G))[G
4 2 ] g=/2)1, mod Z, t6G=1/D1,

Ed 1
=2 s<2)051nmo§z,tGG=lne<tr(2 G)>|Gl

Since G=1, mod 2Z, we have |G|=|(gi;)|=g11-gnn mod 4. If =0 mod 4, then we

have gi1:-:gna=1 or —1 according as tr(G)=0 or 2 mod 4; hence e(——’é—)a(—i—ln)

>0. Similarly we have e(—g>a<%1n><0 if #=2 mod 4, «/_—_Te(———g)a(—i—ln)

<0 if =1 mod 4 and «/——ls<—~%>a<%—1n>>0 if #=3 mod 4.

b) Let F and N be as in the proposition. Let us put @®(G)=|G|. It is shown
in that for an integer 42>3, Our,o,1,11,(Z; @) is a non-zero cusp form of weight
n

5 +1 for I'(hN) with a multiplier Z,7. It remains to show that 65, a1, a,21,(Z 3 D)

is a non-zero cusp form for I'(2N) with a multiplier X(M)=Xz(M )e(tr(%(D——ln)

——}F“C‘D—%A‘B)). By we have a formula for M=(‘é§>el’(2N).

Or, 1,01, a,m1,(MZ; O)=X(M)|CZ+ D|™>+1gp, 21y, 01,(Z 5 D).
If 2 a(S)e(tr(ZS)) is its Fourier expansion, then we have
8>0

a(lp>=e(£) 3 (tr(G))|G
4 2 ] =1/2)1, mod 2, tGFG=(1/4)F

n 1
—o-ne( 2 =6))Gl.
2 5( 2 >GElnmode;, tGFG:Fe(tr< 2 >) lGI

Using the same argument as in a), we get a<%F>$O. Thus we get the desired

result.
c) For an odd prime ~2>1 with A2%|N, it is easily checked that Or,0.a,m1,(Z ; D)

is in [F(N ), —g—+1, XF]. If a(% ln) is the Fourier coefficient for %ln, then we
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have

1
a5 1n)= > Gl
G=(1/h)1y, mod Z, tGFG=(1/h2)F

=h" 2 |G1>0.

G=1, mod hZ, IGFG=F

Hence 0r,o.1,n1,(Z; @) is a non-zero cusp form.

(2) Cusp forms of weight >#

Let F be a positive real symmetric matrix of degree m>0. Let V be an
mXn matrix with entries in @, and % the least common multiple of the denomi-
nators of the entries of V. Suppose that there exists a prime p with p|4 such
that ZVe My, (Z/pZ) is of rank »n, where 2V denotes the reduction of 2V mod p.
Then for all Ge M, (@) with G=V mod Z, F[G] is a nonsingular matrix; hence
in the Fourier expansion @r.vv(Z )=S§Oa(8)s(tr(ZS)) (Ue M. «(R)), a(S) vanishes for
S with |S|=0.

(i) Let F be a positive even symmetric matrix of degree m>2n. Let N be

a positive integer such that NF-! is even. For U, VeM, .(Q) and M=(ég>e

DC

I'o(N), we have (U, FV) ( o

):(UM, FVy) mod Z. Let p be a prime with (p, N)

—1 (hence (p, |[F|)=1) and take U, VeMm_n(%Z) so that 5T, FV)e M o(Z|pZ) is
of rank 2n. Then p(Uyx, Vy) is also of rank 2n for all Mel'o(N). Using the
notation in |Corollary| to [Lemma 3, we have (U, FV)(_1 1">E(FV, F(—F'U+H))

=(FV,—-U) mod Z; hence (U, FV)( 1“) is also of rank 2. Since I'((N) and

-1,

(__1 1") generate [, in the Fourier expansion

(CZ+D|-"05. 5 y(MZ)=" a(S)e(tr(ZS)) for all M= (AB )eF,
s3>0 CD

a(S) vanishes for S with |S|=0. For MelI'(pN) we have Uy=U, Vy=V mod Z
and hence 0F,U_V(Z)G[F(pN), %2—, x] for some multiplier X.

DC

(ii) For F=1, we get 2(U, V)(BA

)sz(U,,,, Va) mod Z for U, VeMn (R)

AB

and Mz(CD

)GF. Hence for an odd prime p if we take U, Vean(ji—Z> so
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that 2p(U, V)e My o( Z[pZ) is of rank 2u, then O y.v(Z) is in [1’(2p), %, X] for
some X.

(iii) Suppose m>2n+1 and set F=1,. Take TGMm,2n<%Z> so that

Z(T—i—%(tg))eMm,gn(Z/ZZ) is of rank 2 for any w#eZ?". Then for any M in

GLy(Z), TM also has this property. Set
1 -1
W=| 1-1|eMn.n(Z).

1
Then we have W(Uyw, Vu)= W(U, V)(gj)+%(‘2> for M=<élg)ef and for
some u€Z?". Thus if W(U, V) has the property stated above, so does W(Ux, V).
Especially 2Vy€ Mmn, o(Z|2Z) is of rank 2z for any MeI'. Hence we get Or,v.v(Z)
e[I"(2), m/2, X] for some X.
Examples of non-zero cusp forms
(i)Y Let F be a positive even symmetric matrix of degree m>2n which is of

the form F= <51F0> with deg(F}),deg(F.)>n. Let N be a positive integer such
2

that NF-! is even and let p be a prime such that (p, N)=1. It is easily checked

that for
1 0
=2 v 1. lens (lz>
’ —171, e p

0 y 24

U, FV)eMn 2n(Z[pZ) is of rank 2z, and Or .y v(Z) is in [['(pN), m/2, X] with
IM)=e(tr(2'VFVB—-'CUF*UD—'A'*VFVB)). 0rv.v(Z)is anon-zero function. In
fact, we have 0r v v(Z)=0r,v.,o(Z)0F,.0,v(Z) With

_']-n 1 1
U=\ eMdeM,),n(—z), vr={ 1 eMdeng).n(—z).
0 b
Here 0r,0,v(Z) is obviously non-zero and so is 0, r.«(Z) (for example, use the
inversion formula).
(iiy Set F=1, with m>2n. Let p be an odd prime, and U, ¥V the same
matrices as in (i). Then we have a non-zero cusp form 0:1,,.v.v(Z) of weight
2 1

m/2 for I'(2p) with the multiplier X(M)=le(M)e(tr<—E—B—z;C‘D——;7A‘B>).
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(iii)’ Set F=1, with m>2xr+1 and let U, VV be as above with p=2. Then

0
u

2W(U, V)+(z )eMm,zn(Z/2Z) is of rank 2» for any u#eZ?". Hence we have a

non-zero cusp form 6., v.v(Z)e[l'(2),m/2,X] with X(M):xlm(M)s<tr<lB——lC‘D

3 B—1
1 t
—5a B)).

(8) Cusp forms of weight #+1 with a trivial multiplier
THEOREM 4. a) We have

dim[I"(4), n+1]1>0 for n>1.

Let F= (F1F> be a positive even symmetric matrix of degree 2n+2 with deg(F,),
2

deg(Fo)>n, and N a positive integer such that NF-' is even. Then we have

dim{I'(A:N), n+11>0 for an odd h>1
and
dim[I"(2N, 4N), n+11>0 if N is odd.

b) Let n be even. Then we have
dim[I(2h%), n+11>0 for an odd h>1.

Let F be a positive even symmetric matrix of degree n, and N a positive integer
such that NF~ is even. Then we have

dim[I"(AN), n+11>0 for h>2

and
dim{I'(N), n+11>0 if N is divisible by a square of some odd
integer >1.
For n=24 we have
dim[[", 25]>0.
Proof. a) Suppose n>1. From (2)
(**) 012,“_2.17.1’(2)

is a non-zero cusp form for I'(2) with the multiplier X(M)=2X,,,, (M)e(tr(2'VVB—
tUUD'C—-tVVB'A)) where we put

1 0 0
I R ey Minson(~Z
—_2— 1..--- 1b “'_2— 0 € Z'n+2,n<’_2" >
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Since Xi,,,,(M) is trivial on I'(4) (cf. [Corollary] to [Theorem 3) and since both
4'UU and 4'VV are even, X is trivial on I'(4). Thus we get dim[/(4), %+1]>0
for n>1.

The remaining cases have already investigated in (2).

b) Let » be an even integer. Throughout the proof &(G) denotes the deter-
minant of G.

For an odd %>1, we have 6., c1,n1,(Z)e[I(2h), n/2, X] and 01,0, 1/031,(Z 3 D)€
[I°(2h), n]2+1, '] with X' (M)=1%,,(M)e(tr(1/A%2 1,— A)'B)). Hence we have 0y,.0, 1,51,
(2)01,.0,1,m31,(Z 5 Y[ (2h), n+1, 2] with X(M)=e(tr(1/A%21,—A)B)). Since X is
trivial on I'(2A%), 01,0, 1,11,(Z)01,.0,1m1,(Z; @) is a cusp form for I'(24?) with a
trivial multiplier. It remains to shows that both O1,.0,a,m1,(Z) and 01,0, 1,m1,(Z ; D)
are non-zero functions. Obviously the former is non-zero, and it is easy to check
that the latter is non-zero, using the same method as in the proof of
1¢).

Let F and N be as in the theorem. For 4>3, Onr,0.o(Z)X0ur,0. am1,(Z; P) is

a non-zero cusp form of weight n+1 for I'(AN) by b). Hence we
get dim[I"(AN), n+1]1>0 for A>3.

If N is odd, then 6r, 1,91, ,21,(Z) is non-zero modular form, since we
have  0r,o, a,21,(MZ) = Xp(M)EF(0, (1/2)1n, M)0F, v/ 15¢1,21,(Z ) = Xe(M)E#(0, (1/2)1,,
1, NF-!

0 1,
@) is a non-zero cusp form by b). Hence we get dim[I"(2N), n+1]
>0 for an odd N. If N is even, then obviously dim[/(2N), n+1] is positive
since [I'(4), n+1] is contained in [I'(2N), n+1].

If N is divisible by a square of some odd integer 2>>1, then 0z, ¢.o(Z)0r.o, a,21,(Z;
@) is a non-zero cusp form for I'(N) with a trivial multiplier by c).
Hence we have dim[I'(N), #+1]>0.

For n=24 H. Maass has shown an existence of an even matrix of degree 24

M)aF.(l/Dln.(l/Z)ln(Z) for M=< ) Hence 0F,(1/2)1n,(1/2)1n(2)0F.(1/2)1n.(1/2)1n(Z;

with the determinant 1, for which 0,0, (Z; @) is a non-zero cusp form of weight
13 for I with a trivial multiplier. Hence 0r,0,o(Z)0r,0,o(Z; @) is a non-zero cusp
form of weight 25 for I" with a trivial multiplier and we get dim[I", 25]>0.

REMARK 1. A cusp form of weight z+1 for I'(4) corresponds to a differential
form of the first kind on the nonsingular model H,/I'(4) of the modular function
field with respect to 7I'(4). Our result shows that the geometric genus of H,/I'(4)
is positive if #>>1. On the other hand we know that for =1, H,/'(4) is a rational
curve.

ReEMARK 2. When #=2, the cusp form (x*) is just the example of a cusp
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form of weight 3 found by S. Raghavan in [6] In fact we get
(**): n 19%i.1)i<Zr 07 O)

where (u;, v;) varies over the set
6 ) 6 oo G vz (5 o) (52 o) (2 o)}

(4) Examples of cusp forms of degree 2 and weight 3

Let F be a positive even symmetric matrix of degree me2Z, >n, and N a
positive integer such that NF~! is even. We have a transformation formula

o) Or.v.v(Z;®)
sk sk
=e(tr(A'BVFEV +2(D—1,.)VU—-CUFU))|CZ+D|™® *0p v v(Z ; D)
AB 1 .
for M=<CD)GF(N) and U, VeMm,n<WZ> with NF-'UeMn (Z), where @ and

v are as in [Theorem 2. Let us denote its Fourier expansion by 3] a(S)«(tr(ZS)).
S 0
Then a(S) is given by

a(S)=e2 tr(*VU)) 2 2tr(GU)OG+ V).

GEM o n(Z), FIG+V]=S

Using this formula, we give some examples of non-zero cusp forms of degree
2 and weight 3 for principal congruence subgroups with a trivial multiplier. It
seems that we answer a question in concerning “ konkrete Beispiele von
Spitzenformen ”.

0r.v.v(Z;®) becomes such a cusp form for /'(N) in the following cases. Let

us set

gs ¢ Js (s gs s

G=(g; gE)GM,;_g(Z‘), G1=(g3 97), Gy= g1 ga>' G3=(?2 gc).
ds Gs

21 { 1 4 1 4 -1

: e o121 N 12 3\ _1[-3 2
(i) N=5; F= 121) O(G)=|Gsl, U—‘s‘ 3 2) V= 5 2 3
12 4 1 -1 4

21 5 0 4 1

. e (121 . 13 0| ,_1{-8 2
(i) N=13; F—( 12 1): O(G)=1Gl, U_E(l 0), V—E( 12 —3
14 7 0 -3 4

21 1 0 4 i 421 -1

iy N=17; F={1 2 L) ec)=161, U=c{0 23} V5| 76 _3
12 0 5 3 10
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21 N 2L
: —oq. ;121 o _ _ 10 _Llf-4 2
12 0 7 -3 16

2 1 -1 0

W N= -1 Gz2); P=| 2, | eG)=16., U=0, V= 2 9

1 2% 0 2

1 10

vi) N=20a-7 (h=2); F=(1 2 1 | eo)=16.l, U=0, v=F-(3
1 2% 0 1

2 1 0 0

(viiy N=20n-3 (h22); F=(1 ¥ 1 | eG)=16.l, v=0, v=r-{) O

1 2% 0 1

2 1 0 0

(viii) N=24r—11 (222); P=(1 2 3, . | 0G)=(G), U=0, v=F-) O

1 4 0 1

2 1 0 0

(ix) N=24h—7 (h>2); F= 1 ‘11 % L b 26)=1G|, U=0, V:F_l(l) 8
1 2% 0 1

REMARK. Let p be a prime integer with 3</p<{100. Then p is one of the
following : 5, 13, 17, 29, 44-1, 204-3, 204-7, 24A4-11, 24%-7 for some A>2. Hence
noting cusp forms which appear in the proof of we can easily obtain
a non-zero cusp forms of weight 3 for I'(N) with a trivial multiplier where N is
any integer with 3</~N<100.

Now we shall prove the above 0z . v(Z;®) are non-zero cusp forms of weight
3 with a trivial multiplier. We treat only the cases (i) and (v). To the remaining
cases almost the same argument is applicable.

. 1/ 4-1\,,,. 2(01 »
Case (i). We get ‘VFV—€<_1 4>, VU—5<1 0>, SF-1UeM, (Z) and

‘UFUzl(z 1). Then it is easy to check that 0y v(Z;®) is a cusp form of

5\1 2
weight 3 with a trivial multiplier, using the formula (xxx). We must show that
it is a non-zero function. Put So=%<_£1l _D Then we have

a(So)= %.‘ (2/5(g1+29:+3gs +494+ 495+ 396 +29:+95)) |Gz +Sol,

where G runs over the set of all 4X2 integral matrices such that ‘G,+G;+'GFG
=0. The equation ‘G:+G,+!GFG=0 has the following twenty integral solutions.
Let us put @:=%-1,0,0,0), @e=%—1,1,0,0), as=4—1,1, —1,0), a,=%(—1,1, —1, 1),
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bhi=as—ay, bo=a—a,, bs=a,—a,, by=—a, and 0=%0,0,0,0). Then all the integral
solutions are
G=(0,0), (0, by), (0, b2), (0, bs), (@1, 0), (@i, b1), (@1, b2), (@1, by),
(as, 0), (az, by), (@3, bs), (@2, by), (as, 0), (as, bs), (as, bs), (as, bs)
(a4, b1), (a4, b2), (a4, bs), (a4, by).

Then we have
3
a(SO)= 1 +6<§) .

Thus 0r.v.v(Z; ®) is a non-zero function.
Case (v). Obviously 0r.uv v(Z;®) is a cusp form of weight 3 for I'(N) with

a trivial multiplier. We shall show that it is a non-zero function. Put S,= ]l\/'(g (2))

Then we have
a(So)=§ |Gs+Sal,

where G runs over the set of all 4X2 integral matrices such that ‘Gs+G:;+'GFG
=0. The integral solution of the equation ‘Gs+G3;+‘GFG=0 is only G=0. Hence
we have

4
a(So):|So|=—ﬁ2—.

Thus 0p.y.v(Z;®) is a non-zero function.

5. Appendix

Let F be a positive integral symmetric matrix of degree m >0 and Mel’

satisfy one of the four conditions @), ®, ® and @ in §2. If ((CZCZDGSLz(Z) is the

matrix corresponding to M in then it satisfies one of the four condi-
tions @, @, ® and @ below;

@ b=0 (2), c=0 (2N),

®@ (F is even.) b=0 (2), c=0 (N),

® (NF-!is even.) b=0 (2), c=0 (),

@ (Both F and NF-! are even.) ¢=0 (N).

In these cases XF(Z(?):F'(C’ d)™|d| PN s(tr(bd'GFG)) can be computed as in [8]
G:d~1Zm/zm

Moreover the invariance of xF(Zfi) by <(1)71n> with meZ (resp. me2Z) for an even
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F (resp. an integral F') gives some informations on F and N.

ProrosiTiON. (i)
®@ Suppose that F is even and NF ' is integral. If m is odd, then 4|N, or 2|N
and |F|=2"*"K with r>0 and an odd K. If m is even, then 4|N, or 2|N and
|F|=2"K with v>0 and an odd K, or |Fl=m+1 (4).
® Suppose that F is integral and NF-' is even. If m is odd, them 4|N, or 2|N
and |F|=2"K with r>0 and an odd K. If m is even, then 4|N, or 2|N and |F|=
2K with v>0 and an odd K, or |Fl=m+1 (4).
@ Suppose that both F and NF-* are even. If m is odd, then 8|N, or 4|N and
|F|=2*""K with r>0 and an odd K. If m is even, then 8|N, or 4N and |F|=2"K
with v>0 and an odd K, or 2|N and |F|=2"K with v>0 and K=m+1 (4), or
|[Fl=m+1 4).
1t is known that m=0 (8) if |F|=1.
ab
cd
and @ mentioned above. In case @ with N=1, we have

(i) Swuppose that M=< > and F satisfy one of the four conditions @D, @), @

AP(M)=1 for all MeSLy(Z).

In the remaining cases d is always non-zero. If m is odd, then we have

1 ()= sgnieyreonco-vrag 2O ) ()LL),

If m is even, then we have

Shilh}

x;r><M>=sgn<d>m’2( o
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