CONSTRUCTIONS OF MODULAR FORMS BY MEANS OF TRANSFORMATION FORMULAS FOR THETA SERIES

By

Shigeaki Tsuyumine

Let F be a positive integral symmetric matrix of degree m, and Z a variable on the Siegel space H_n of degree n. Let Φ be a spherical function of order ν with respect to F which is of the form

$$\Phi(G) = \begin{cases} 1 & (\nu = 0) \\ |^{t}GF^{1/2}\eta|^{\nu} & (\nu > 0) \end{cases}$$
 for $m \times n$ complex matrices G

with an $m \times n$ matrix η such that ${}^t\eta\eta = 0$ if $\nu > 1$.

We define a theta series associated with F by setting

$$\theta_{F,U,V}(Z; \Phi) = \sum_{G} \Phi(G+V) \exp(\operatorname{tr}(Z^{\iota}(G+V)F(G+V) + 2^{\iota}(G+V)U)),$$

where U, V are $m \times n$ real matrices, tr denotes the trace of a corresponding square matrix and G runs through all $m \times n$ integral matrices. We write simply $\theta_{F,U,V}(Z)$ for the theta series $\theta_{F,U,V}(Z; \Phi)$ when Φ is of order 0.

For congruence subgroups of $SL_2(\mathbf{Z})$ the transformation formulas for theta series of degree 1 associated with F are well known. For example, we can find transformation formulas for theta series of degree 1 in [7], [8], in which multipliers are explicitly determined. Transformation formulas for the theta series $\theta_{F,U,V}(Z;\Phi)$ of degree $n\geq 1$ are also established in [1] in the case where F is even and U, V are zero (the condition on U, V is not necessary if Φ is of order 0 [9]). Using these results we can get many examples of Siegel modular forms for congruence subgroups.

In this paper we determine a transformation formula for the theta series $\theta_{F,U,V}(Z;\Phi)$ associated with a positive integral symmetric matrix F and any real matrices U, V and using this, we get some examples of cusp forms for some congruence subgroups Γ' of $Sp_n(Z)$. Cusp forms of weight n+1 for Γ' induce differential forms of the first kind on the nonsingular model of the modular function field with respect to Γ' . Our result shows that the geometric genus of the nonsingular model of the modular function field with respect to Γ' is positive.

For example, this is the case where (i) $\Gamma' = \Gamma(4)$ if n > 1, (ii) $\Gamma' = \Gamma(2N^2)$ for N > 1 if $n \equiv 0$ (2), (iii) $\Gamma' = Sp_n(\mathbf{Z})$ if n = 24 (cf. H. Maass [5]), (iv) $\Gamma' = \Gamma(N)$ for $N \ge 2$ if $n \equiv 0$ (8), (v) $\Gamma' = \Gamma(2, 4)$ or $\Gamma(N^2)$ for N > 1 if $n \equiv 7$ (8).

Notation.

We denote by \mathbb{Z}_+ , \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} , the set of all positive rational integers, the ring of rational integers, the rational number field, the real number field and the complex number field. Let K be a subset of \mathbb{C} . We denote by $M_{m,n}(K)$ the set of all $m \times n$ matrices with entries in K; simply K^m denotes $M_{m,n}(K)$ and $SM_m(K)$ denotes the set of all symmetric matrices of degree m with entries in K. We denote by 1_n the identity matrix of degree n. For $X \in M_{m,m}(\mathbb{C})$ and $Y \in M_{m,n}(\mathbb{C})$, we set $X[Y] = {}^t Y X Y$.

We denote the modular group $Sp_n(\mathbf{Z})$ simply by Γ . Γ acts on the Siegel space H_n by the usual modular transformations

$$Z \longmapsto MZ = (AZ + B) (CZ + D)^{-1} \text{ for } M = \begin{pmatrix} AB \\ CD \end{pmatrix} \in \Gamma.$$

Let Γ' be a congruence subgroup of Γ , and χ a map of Γ' to $C^* = \{c \in C | c \neq 0\}$. A holomorphic function f on H_n is called a *modular form* of weight $k\left(\epsilon \frac{1}{2}\mathbf{Z}_+\right)$ for Γ' with a multiplier χ if f satisfies $f(MZ) = \chi(M)|CZ + D|^k f(Z)$ for any $M \in \Gamma'$. Here the factor of automorphy $|CZ + D|^{1/2}$ is always determined by the condition that $-\pi/2 < \arg(|\sqrt{-1}C + D|^{1/2}) \le \pi/2$ and $|CZ + D|^k$ is determined by $|CZ + D|^k = (|CZ + D|^{1/2})^{2k}$. Such f is called a *cusp form* of weight k for Γ' with a multiplier χ if in the Fourier expansion

$$|CZ+D|^{-k}f(MZ) = \sum_{S} a(S)\varepsilon(\operatorname{tr}(ZS))$$
 for all $M\in\Gamma$,

a(S) vanishes for S with |S| = 0, where $\varepsilon(*) = \exp(\sqrt{-1}\pi^*)$.

We introduce several congruence subgroups of Γ . Let Θ denote the theta group $\left\{M = {AB \choose CD} \in \Gamma | ({}^tAC)_d \equiv ({}^tBD)_d \equiv 0 \ (2)\right\}$ where for a square matrix (x_{ij}) of degree n, $(x_{ij})_d$ denotes ${}^t(x_{11}, \cdots, x_{nn})$. Let N be a positive integer. Then we set $\Gamma_0(N) = \{M \in \Gamma | C \equiv 0 \ (N)\}$, $\Gamma(N) = \{M \in \Gamma | A \equiv D \equiv 1_n \ (N), \ B \equiv C \equiv 0 \ (N)\}$ and $\Theta_0(N) = \{M \in \Gamma_0(N) | ({}^tBD)_d \equiv 1/N({}^tAC)_d \equiv (B^tA)_d \equiv 1/N(D^tC)_d \equiv 0 \ (2)\}$. For two positive integers N_1 , N_2 we put $\Gamma_0(N_1, N_2) = \{M \in \Gamma | B \equiv 0 \ (N_1), \ C \equiv 0 \ (N_2)\}$. For a positive even integer N we put $\Gamma(N, 2N) = \{M \in \Gamma(N) | ({}^tAC)_d \equiv ({}^tBD)_d \equiv 0 \ (2N), \ \Theta_1(N) = \{M \in \Gamma_0(N) | 1/N({}^tAC)_d \equiv 1/N(D^tC)_d \equiv 0 \ (2)\}$ and $\Theta_2(N) = \{M \in \Gamma_0(N) | ({}^tBD)_d \equiv (B^tA)_d \equiv 0 \ (2)\}$.

We denote by (-) the *generalized Legendre symbol* to which we add the following significance; (i) $\left(\frac{0}{1}\right)=1$ and (ii) if a is an odd integer congruent to 1 mod 4 and b is a positive even integer, then $\left(\frac{a}{b}\right)=\left(\frac{b}{a}\right)$. (cf. [2])

1. Transformation formulas

For u, v, x and $y \in \mathbb{C}^n$ we define a theta series by setting

$$\theta_{u,v}(Z; x, y) = \sum_{g \equiv v \bmod Z} \varepsilon(Z[g+y] + 2^t g(x+u) + {}^t y x),$$

where the summation is taken over all $g \in \mathbb{C}^n$ such that $g - v \in \mathbb{Z}^n$. From Satz 8 in [10] we get easily the following

LEMMA 1. Let
$$u, v, x$$
 and $y \in \mathbb{C}^n$, and $M = \binom{AB}{CD} \in \Gamma$. Setting

$$u_{M} = {}^{t}Du + {}^{t}Bv + \frac{1}{2}({}^{t}BD)_{d}, \ v_{M} = {}^{t}Cu + {}^{t}Av + \frac{1}{2}({}^{t}AC)_{d} \text{ and}$$

$$E(u, v, M) = \varepsilon \left(-t({}^{t}Cu + {}^{t}Av)\left({}^{t}Du + {}^{t}Bv + ({}^{t}BD)_{d}\right) + {}^{t}vu\right),$$

we have

$$\begin{split} \vartheta_{u,v}(MZ;Ax - By, & -Cx + Dy) \\ = & \chi(M)E(u,v,M)|CZ + D|^{1/2}\vartheta_{u_M,v_M}(Z;x,y) \end{split}$$

where $\chi(M)$ is the 8-th root of 1 depending only on M.

Let F be a positive real symmetric matrix of degree m>0. For U, V, X and $Y \in M_{m,n}(C)$, we set

$$\theta_{F,U,V}(Z;X,Y) = \sum_{G \equiv V \bmod Z} \varepsilon(\operatorname{tr}(ZF[G+Y] + 2^t G(X+U) + {}^t YX),$$

where the summation is taken over all the matrices $G \in M_{m,n}(\mathbb{C})$ such that $G - V \in M_{m,n}(\mathbb{Z})$.

The idea of the proof of the next theorem is due to A. N. Andrianov and G. N. Maloletkin [1], whose idea is based on the interpretation of the theta series $\theta_{F,U,V}(Z;X,Y)$ of degree n associated with positive quadratic forms F of degree m as specializations of the standard theta series $\theta_{u,v}(Z;x,y)$ of degree mn.

For square matrices A and $B=(b_{ij})$ respectively of degree m and n, we define a tensor product by

$$A \otimes B = \begin{pmatrix} Bb_{11} \cdots Ab_{1n} \\ \cdots \\ Ab_{n1} \cdots Ab_{nn} \end{pmatrix}.$$

Let F be a positive real symmetric matrix of degree m. We define three maps which we shall denote by the same sign \sim , in the following way:

$$\sim: H_n \longrightarrow H_{mn}$$
 defined by $Z \longmapsto \tilde{Z} = F \otimes Z$

$$\sim: Sp_n(\mathbf{R}) \longrightarrow Sp_{mn}(\mathbf{R})$$
 defined by $M = \begin{pmatrix} AB \\ CD \end{pmatrix} \longmapsto \widetilde{M} = \begin{pmatrix} \widetilde{A}\widetilde{B} \\ \widetilde{C}\widetilde{D} \end{pmatrix} = \begin{pmatrix} 1_m \otimes A & F \otimes B \\ F^{-1} \otimes C & 1_m \otimes D \end{pmatrix}$

$$\tilde{}: M_{m,n}(C) \longrightarrow C^{mn}$$
 defined by $X = (x_1, \dots, x_n) \longmapsto \tilde{X} = {}^t({}^tx_1, \dots, {}^tx_n).$

Then under the above notation we have $\widetilde{M}\widetilde{Z} = \widetilde{MZ}$, $|\widetilde{C}\widetilde{Z} + \widetilde{D}| = |CZ + D|^m$, $\widetilde{Z}[\widetilde{G}] = \operatorname{tr}(ZF[G])$, ${}^t\widetilde{A}\widetilde{X} = \widetilde{XA}$, ${}^t\widetilde{B}\widetilde{X} = \widetilde{FBX}$, ${}^t\widetilde{G}\widetilde{X} = F^{-1}XC$, ${}^t\widetilde{D}\widetilde{X} = \widetilde{XD}$, $({}^t\widetilde{B}\widetilde{D})_{\mathcal{A}} = F_{\mathcal{A}}{}^t({}^tBD)_{\mathcal{A}}$, $({}^t\widetilde{A}\widetilde{C})_{\mathcal{A}}$ = $(F^{-1})_{\mathcal{A}}{}^t({}^tAC)_{\mathcal{A}}$ and ${}^t\widetilde{Y}\widetilde{X} = \operatorname{tr}({}^tYX)$. If both F and NF^{-1} ($N \in \mathbb{Z}_+$) are integral, then we have $F_0(N) \subset Sp_n(\mathbb{Z})$. Moreover, if both F and NF^{-1} are even, then $F_0(N)$ is contained in the theta group of degree mn.

We obtain $\theta_{F,U,V}(Z;X,Y) = \theta_{\widetilde{U},\widetilde{V}}(\widetilde{Z};\widetilde{X},\widetilde{Y})$, and hence by Lemma 1 we get the following

THEOREM 1. Let F be a positive real symmetric matrix of degree m>0. Let $M=\binom{AB}{CD}\in Sp_n(\mathbf{R})$ with $\widetilde{M}\in Sp_{mn}(\mathbf{Z})$. For $U,\ V\in M_{m,n}(\mathbf{C})$, set

$$U_{M} = UD + FVB + \frac{1}{2} F_{A}^{t}(^{t}BD)_{A}.$$
 $V_{M} = F^{-1}UC + VA + \frac{1}{2} (F^{-1})_{A}^{t}(^{t}AC)_{A}$ and

$$E_F(U, V, M) = \varepsilon(\operatorname{tr}(-{}^{t}(F^{-1}UC + VA)(UD + FVB + F_{\mathcal{A}}{}^{t}({}^{t}BD)_{\mathcal{A}}) + {}^{t}VU).$$

Then we have

$$\begin{aligned} \theta_{F,U,V}(MZ; X^{t}A - FY^{t}B, -F^{-1}X^{t}C + Y^{t}D) \\ = & \chi_{F}(M)E_{F}(U, V, M)|CZ + D|^{m/2}\theta_{F,U_{M},V_{M}}(Z; X, Y) \end{aligned}$$

where $\chi_F(M) = \chi_F^{(n)}(M)$ is the 8-th root of 1 depending only on n, F and M.

Suppose that $m = \deg(F)$ is $\geq n$. Let l be any integer such that $n \leq l \leq m$, and L any subset of $\{1, \dots, m\}$ with l elements. Put $L = \{j_1, \dots, j_l\}$ with $j_1 < \dots < j_l$. We denote by η_L the matrix in $M_{m,l}(Z)$ whose

- (i) j-th row= e_i if $j=j_i \in L$
- (ii) j-th row=0 if $j \notin L$,

 e_i being the *i*-th row of the identity matrix 1_l of degree l. Take a pair (η, ν) in $M_{l,n}(C) \times Z_+$ which satisfies both of the conditions that (i) ${}^t\eta\eta = 0$ if $\nu > 1$ and that (ii) $\nu = 1$ if l = n. For $G \in M_{m,n}(C)$ we set $\Phi(G) = |{}^tGF^{1/2}\eta_L\eta|^{\nu}$. We define a theta series with Φ by setting

$$\theta_{F,U,V}(Z; \Phi; X, Y) = \sum_{G \equiv V \mod Z} \Phi(G) \epsilon(\operatorname{tr}(ZF[G+Y] + 2^t G(X+U) + ^t YX)),$$

the summation being taken over all the matrices $G \in M_{m,n}(C)$ such that $G - V \in M_{m,n}(Z)$.

Let $\xi = (\xi_{ij})$ be an $l \times n$ variable matrix and $\partial = \left(\frac{\partial}{\partial \xi_{ij}}\right)$ the corresponding matrix of differential operators. We introduce the differential operator $\det^{\nu}({}^{\iota}\eta\partial)$. In Lemma 3 of [1], the following equation is proved. For $P \in SM_n(C)$ and $Q \in M_{l,n}(C)$ and for $c \in C$, we have

$$\det^{\nu}(t\eta\partial) \left(\operatorname{tr}(P^{t}\xi\xi + 2^{t}Q\xi) + c \right)$$
$$= |2\sqrt{-1}\pi(P^{t}\xi + tQ)\eta|^{\nu}\varepsilon \left(\operatorname{tr}(P^{t}\xi\xi + 2^{t}Q\xi) + c \right).$$

THEOREM 2. Suppose $n \le m = \deg(F)$. Let l be any integer with $n \le l \le m$ and L a subset of $\{1, \dots, m\}$ with l elements. Let $\eta \in M_{l,n}(C)$ and put $\Phi(G) = |{}^t GF^{1/2} \eta_L \eta|^{\nu}$ $(\nu \in \mathbb{Z}_+)$ for $G \in M_{m,n}(C)$. Then we have

$$\begin{split} &\theta_{F,U,V}(MZ\,;\,\varPhi\,;\,X^tA - FY^tB,\, -F^{-1}X^tC + Y^tD) \\ &= &\chi_F(M)E_F(U,\,V,\,M)|CZ + D|^{(m/2) + \nu}\theta_{F,U_{M},V_{M}}(Z\,;\,\varPhi\,;\,X,\,Y), \end{split}$$

in either case that (i) $\nu>1$, l>n and ${}^t\eta\eta=0$, or that (ii) $\nu=1$ and $l\geq n$, where $M=\begin{pmatrix}AB\\CD\end{pmatrix}$ is as in Theorem 1 and X, Y are matrices in $M_{m,n}(C)$ such that ${}^tXF^{-1/2}\eta_L={}^tYF^{1/2}\eta_L=0$.

Proof. Take an $m \times n$ matrix ξ' such that entries of its i-th rows $(i \in L)$ are independent variables and its j-th rows $(j \notin L)$ are 0. Then we have ${}^tXF^{-1/2}\xi' = {}^tYF^{1/2}\xi' = 0$. Setting $\xi = {}^t\eta_L\xi'$ and substituting X for $F^{1/2}\xi' + X$ in the formula of Theorem 1, we obtain

$$\begin{split} \sum_{G \equiv V \bmod Z} & \varepsilon (\operatorname{tr}(-(CZ+D)^{-1}C^t\xi\xi + 2(CZ+D)^{-1t}GF^{1/2}\eta_L\xi + MZF[G-F^{-1}X^tC + Y^tD] \\ & + 2^tG(U + X^tA - FY^tB) + {}^t(-F^{-1}X^tC + Y^tD) \left(X^tA - FY^tB\right))) \\ & = & \chi_F(M)E_F|CZ + D|_{G \equiv V_M \bmod Z}^{m \times 2} \varepsilon (\operatorname{tr}(2^tGF^{1/2}\eta_L\xi + ZF[G+Y] + 2^tG(U_M + X) + {}^tYX). \end{split}$$

Applying the differential operator $\det^{\nu}(t\eta\partial)$ at $\xi=0$, we get the desired result.

In the similar way as in the proof of Theorem 2, we get the following corollary.

Let $k \in \mathbb{Z}_+$. Let L_i $(1 \le i \le k)$ be subsets of $\{1, \dots, m\}$ with $l_i(\ge n)$ elements such that $L_i \cap L_j = \phi$ if $i \ne j$. For $i = 1, \dots, k$ take pairs (η_i, ν_i) in $M_{l_i,n}(\mathbb{C}) \times \mathbb{Z}_+$ which satisfy both conditions that (i) ${}^t \eta_i \eta_i = 0$ if $\nu_i > 0$ and that (ii) $\nu_i = 1$ if $l_i = n$. For

 $G \in M_{m,n}(C)$ we set $\Phi(G) = |{}^t G F^{1/2} \eta_{L_1} \eta_1|^{\nu_1} \cdots |{}^t G F^{1/2} \eta_{L_k} \eta_k|^{\nu_k}$. We define a theta series with Φ by

$$\theta_{F,U,V}(Z; \Phi; X, Y) = \sum_{G = V \mod Z} \Phi(G) \varepsilon(\operatorname{tr}(ZF[G+Y] + 2^{t}G(X+U) + {}^{t}YX)),$$

for U, V, X and $Y \in M_{m,n}(C)$.

COROLLARY. Let L_i , η_i , ν_i $(1 \le i \le k)$ and Φ be stated as above. Then we have $\theta_{F,U,V}(MZ;\Phi;X^tA-FY^tB,-F^{-1}X^tC+Y^tD)$

$$= \chi_F(M) E_F(U, V, M) |CZ + D|^{(m/2) + \Sigma^{\nu} i} \theta_{F, U_{M}, V_{M}}(Z; \Phi; X, Y),$$

where $M = \begin{pmatrix} AB \\ CD \end{pmatrix}$ is as in Theorem 1 and X, Y are matrices in $M_{m,n}(C)$ such that ${}^{t}XF^{-1/2}\eta_{Li} = {}^{t}YF^{1/2}\eta_{Li} = 0$ for $i = 1, \dots, k$.

2. Computation of χ_F I

We shall compute χ_F (cf. Theorem 1) in the following four cases (up to ± 1 when $\deg(F)$ is odd). Let F be a positive integral symmetric matrix of degree m>0. Let N be a positive integer such that NF^{-1} is integral.

- ① $M \in \Theta_0(N)$.
- ② F is even. $M \in \Gamma_0(2N)$, or $M \in \Theta_0(N)$, or $M \in \Theta_1(N)$ for an even N.
- (3) NF^{-1} is even. $M \in \Gamma_0(2, N)$, or $M \in \Theta_0(N)$, or $M \in \Theta_2(N)$ for an even N.
- ④ Both F and NF^{-1} are even. $M \in \Gamma_0(N)$. First we must generalize Lemma 5 in [1]. We put

$$P_U = \begin{pmatrix} {}^t U^{-1} \\ U \end{pmatrix}, \quad Q_S = \begin{pmatrix} 1_n & S \\ 0 & 1_n \end{pmatrix}, \quad R_S = \begin{pmatrix} 1_n & 0 \\ S & 1_n \end{pmatrix}$$

with $U \in SL_n(\mathbf{Z})$ and $S \in SM_n(\mathbf{Z})$.

Lemma 2. Let K be the group generated by the elements of $\Gamma_0(N_1, N_2)$ (resp. $\Theta_0(N)$, resp. $\Theta_1(N)$, resp. $\Theta_2(N)$) of the form P_U , Q_S and R_S . Then for any $M = \begin{pmatrix} AB \\ CD \end{pmatrix} \in \Gamma_0(N_1, N_2)$ (resp. $\Theta_0(N)$, $\Theta_1(N)$, $\Theta_2(N)$), there exist matrices M_1 and $M_2 \in K$ such that

$$M_{1}MM_{2} = \begin{pmatrix} a & b & 0 & 0 \\ 1 & 0 & 0 & 0 & \vdots \\ 0 & 1 & 0 & 0 & 0 \\ \hline c & 0 & 0 & 1 & 0 & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Moreover $|D| \equiv d \mod N_1 N_2$ (resp. mod N).

Proof. We treat only the case of $\Theta_0(N)$. Then K is generated by P_U , Q_S and R_T with $U \in SL_n(\mathbf{Z})$, even $S \in SM_n(\mathbf{Z})$ and $T \in SM_n(N\mathbf{Z})$ such that $\frac{1}{N}T$ is even.

We shall prove the assertion by induction on n. When n=1, the assertion is trivial. Let us suppose n>1. By the elementary divisor theorem there exist U, $V \in SL_n(\mathbf{Z})$ such that UDV is diagonal. Hence we may assume $D=\operatorname{diag}(d_1,\dots,d_n)$. Step I. We may assume $d_n=1$.

Putting $C=(c_{ij})$ we have g.c.d $(c_{n1},\dots,c_{nn},d_n)=1$. First we assume that d_n is an odd integer. There are even integers s_1,\dots,s_n such that $s_1c_{n1}+\dots+s_nc_{nn}=2$ g.c.d (c_{n1},\dots,c_{nn}) . Let us put

$$S = \begin{pmatrix} s_1 \\ 0 & \vdots & 0 \\ s_1 \cdots s_{n-1} & s_n \\ 0 & s_n & 0 \end{pmatrix}, \quad MQ_S = \begin{pmatrix} A'B' \\ C'D' \end{pmatrix} \text{ and } D' = (d'_{ij}).$$

Then we have $d'_{n,n-1}=2$ g. c. $d(c_{n1},\cdots,c_{nn})$ and $d'_{nn}=d_n+c_{n,n-1}s_n$, and hence g. c. $d(d'_{n,n-1},d'_{nn})=1$. Now again by the elementary divisor theorem we may assume that D' is of the form $D'=\operatorname{diag}(d_1',\cdots,d'_{n'},1)$. Secondly we assume that d_n is an even integer. Then for some i, c_{ni} is an odd integer. Take an integer j different from i with $1 \le j \le n$. There are integers $s_1, \cdots, s_{j-1}, s_{j+1}, \cdots, s_n$ and an even integer s_j such that $s_1c_{n1}+\cdots+s_nc_{nn}=g.$ c. $d(c_{n1},\cdots,c_{nn})$. Let us put

$$S = \begin{pmatrix} s_1 \\ 0 & \vdots & 0 \\ s_1 \cdots s_j \cdots s_n \\ 0 & \vdots & 0 \end{pmatrix}, \quad MQ_S = \begin{pmatrix} A'B' \\ C'D' \end{pmatrix} \text{ and } D' = (d'_{ij}).$$

Then we have $d'_{nj}=g.c.d$ (c_{n1},\cdots,c_{nn}) , $d'_{nn}=d_n+c_{nj}s_n$ and hence g.c.d $(d'_{nj},d'_{nn})=1$. Again by the elementary divisor theorem we may assume that D' is of the form $D'=\operatorname{diag}(d_1',\cdots,d'_{n-1},1)$.

Step II. The assertion is true.

Let us put $Q_SMR_T = {A'B' \choose C'D'}$. Then since $D = \text{diag } (d_1, \dots, d_{n-1}, 1)$, we can now select Q_S and R_T such that the last row of C and the last column of B are zero. The symplectic condition yields that A', B' and C' have the form

$$A' = \begin{pmatrix} A_1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B' = \begin{pmatrix} B_1 & 0 \\ 0 & 0 \end{pmatrix}, \quad C' = \begin{pmatrix} C_1 & 0 \\ 0 & 0 \end{pmatrix}.$$

By the induction hypothesis this proves the lemma.

In the case of $\Gamma_0(N_1, N_2)$, $\Theta_1(N)$ and $\Theta_2(N)$ the similar proof is applicable.

Applying Theorem 1 to the case ①, ②, ③ and ④ with U=V=X=Y=0, we have

$$\theta_{F,0,0}(MZ) = \chi_F^{(n)}(M)|CZ+D|^{m/2}\theta_{F,0,0}(Z).$$

Hence $\chi_F^{(n)}$ is a character if m is even. Let us denote by $\chi_F^{(n)}/\{\pm 1\}$ the composition map of $\chi_F^{(n)}$ and the quatient map: $C^* \longrightarrow C^*/\{\pm 1\}$. $\chi_F^{(n)}/\{\pm 1\}$ is a homomorphism whether m is even or odd. As we shall see in the next section, $\chi_F^{(n)}$ (resp. $\chi_F^{(n)}/\{\pm 1\}$) is trivial on K (see Lemma 2 for the notation) if m is even (resp. odd).

Assume that $M = \begin{pmatrix} AB \\ CD \end{pmatrix}$ satisfies at least one of the four conditions ①, ②, ③

and ④, and $\binom{ab}{cd}$ is the matrix in $SL_2(\mathbf{Z})$ corresponding to M in Lemma 2. Then using Siegel's Φ -operator we obtain

$$\chi_F^{(n)}(M) = \chi_F^{(1)} \binom{ab}{cd} = \operatorname{sgn}(d)^{m/2} \left(\frac{(-1)^{m/2}|F|}{d} \right) \text{ if } m \text{ is even,}$$

and

$$\chi_F^{(n)}(M) = \pm \varepsilon \left(\frac{d-1}{4}\right)$$
 if m is odd.

(see also Appendix).

Through easy calculation we get the following

THEOREM 3. Let F be a positive integral symmetric matrix of degree m, and N a positive integer such that NF^{-1} is integral. Put $|F| = 2^s K$ with g.c.d (2, K) = 1.

(1) In any one of the following four cases, we have for any even positive integer m

$$\chi_F^{(n)}(M) = \operatorname{sgn}(|D|)^{m/2} \left(\frac{(-1)^{m/2}|F|}{abs(D)} \right).$$

- ① 8|N and $M \in \Theta_0(N)$, 4|N and $M \in \Theta_0(2N)$, 2|N and $M \in \Gamma_0(2, 2N)$, 2|s and 4|N and $M \in \Theta_0(N)$, 2|s and 2|N and $M \in \Theta_0(2N)$, or 2|s and $M \in \Gamma_0(2, 2N)$,
- ② (F is even.) 8|N and $M \in \Theta_1(N)$, 4|N and $M \in \Theta_0(2N)$, 2|s and 4|N and $M \in \Theta_1(N)$, 2|s and 2|N and $M \in \Theta_1(2N)$, or $M \in \Gamma_0(2N)$,
- 3 (NF⁻¹ is even.) 8|N and $M \in \Theta_2(N)$, 2|s and 4|N and $M \in \Theta_2(N)$, or $M \in \Gamma_0(2, N)$
- (4) (Both F and NF⁻¹ are even.) $M \in \Gamma_0(N)$ with N > 1. In case (4) with N = 1 we have $\chi_F^{(n)}(M) = 1$ for all M.
 - (2) In any one of the following four cases, we have for any odd integer m

$$\chi_F^{(n)}(M) = \pm \varepsilon \left(\frac{d-1}{4} \right).$$

- ① $4|N \text{ and } M \in \Theta_0(N), 2|N \text{ and } M \in \Theta_0(2N), \text{ or } M \in \Gamma_0(2,2N),$
- ② $4|N \text{ and } M \in \Theta_1(N), \text{ or } 2|N \text{ and } M \in \Theta_1(2N),$
- 3 $4|N \text{ and } M \in \Theta_2(N), \text{ or } 2|N \text{ and } M \in \Gamma_0(2, N),$
- 4 $M \in \Gamma_0(N)$.

REMARK. For even m the case ④ with N=1 is investigated in [11]. Corollary. Let F and N be as in Theorem 3. Then we have

$$\begin{split} &\chi_F^{(n)}(M)\!=\!\mathrm{sgn}(|D|)^{m/2}\!\!\left(\!\frac{(-1)^{m/2}|F|}{abs(D)}\right) \quad \text{if } m\!=\!\deg(F) \ \text{is even,} \\ &\chi_F^{(n)}(M)\!=\!\pm\varepsilon\!\left(\!\frac{|D|\!-\!1}{4}\right) \quad \text{if } m \ \text{is odd,} \end{split}$$

in the following four cases ① $M \in \Gamma_0(2, 2N)$, ② (F is even.) $M \in \Gamma_0(2N)$, ③ (NF⁻¹ is even.) $M \in \Gamma_0(2, N)$ and ④ (Both F and NF⁻¹ are even.) $M \in \Gamma_0(N)$.

3. Computation of χ_F II

Lemma 3. (The inversion formula) Let F be a positive real symmetric matrix of degree m. Then for U, V, X and $Y \in M_{m,n}(\mathbb{C})$ we have

$$\theta_{F,U,V}(Z;X,Y) = |F|^{-n/2} |-\sqrt{-1}Z|^{-m/2} \theta_{F^{-1},V,U}(-Z^{-1};Y,-X),$$

where $|-\sqrt{-1}Z|^{1/2}$ is determined to be positive for purely imaginary Z in H_n . Proof. We have the inversion formula for the standard theta series

$$artheta_{u,v}(Z;x,y) = |-\sqrt{-1}Z|^{-1/2} artheta_{v,u}(-Z^{-1};y,-x).$$

where $|-\sqrt{-1}Z|^{-1/2}$ is positive for purely imaginary $Z \in H_n$. From this we get the inversion formula for θ_F in the same argument as in the proof of Theorem 1.

COROLLARY. Let F be as in Lemma 3. Assume that there is a positive real number h such that hF is integral. Put $G=M_{m,n}(\mathbf{Z})$. Then we have

$$\begin{aligned} &\theta_{F,U,V}(-Z^{-1};X,Y) \\ &= |F|^{-n/2}|-\sqrt{-1}Z|^{m/2} \sum_{H: h^{-1}F^{-1}G/G} \theta_{h^2F,hFV,-h^{-1}F^{-1}U+H}(Z;hFY;-h^{-1}F^{-1}X), \end{aligned}$$

where $|-\sqrt{-1}Z|^{1/2}$ is positive for purely imaginary Z in H_n .

Hereafter we assume that F and $M = \begin{pmatrix} AB \\ CD \end{pmatrix}$ satisfy the condition ①, ②, ③ or ④ with N > 1. Let $H \in F^{-1}G$. We have the following two formulas:

$$\begin{cases} \theta_{F,0,H}(-Z^{-1}) = |F|^{-1/2}|-\sqrt{-1}Z|^{m/2} \sum_{K: F^{-1}G/G} \varepsilon(\operatorname{tr}(2^{t}HFK))\theta_{F,0,K}(Z), \\ (*) \end{cases}$$

$$\theta_{F,0,H}(Z) = \sum_{K: (dF)^{-1}G/G, K^tD \equiv \operatorname{mod} G} \theta_{dF,0,K}\left(\frac{1}{d}Z[D]\right)$$

for $D \in M_{n,n}(\mathbf{Z})$ such that |D| = 0 and for $d \in \mathbf{Z}_+$ such that dD^{-1} is integral.

Let us put $M' = {-B \ A \choose -D \ C} = M {1 \choose -1} \in Sp_n(\mathbf{Z})$. Let d be a positive integer such that dD^{-1} is integral. Then we have

$$\begin{split} \theta_{F,\,0,\,0}(M'Z) &= \sum_{G:\,G^{lD^{-1}/G}} \theta_{dF,\,0,\,G} \bigg(\frac{1}{d}\,M'Z[D] \bigg) \quad \text{(by the second formula of $(*)$)} \\ &= \sum_{G:\,G^{lD^{-1}/G}} \theta_{dF,\,0,\,G} \bigg(\frac{1}{d}\,{}^{t}BD - (dZ - dD^{-1}C)^{-1} \bigg) \\ &= \sum_{G:\,G^{lD^{-1}/G}} \varepsilon(\text{tr}({}^{t}BD^{l}GFG))\theta_{dF,\,0,\,G} (-(dZ - dD^{-1}C)^{-1}) \\ &= \sum_{G:\,G^{lD^{-1}/G}} \varepsilon(\text{tr}({}^{t}BD^{l}GFG)|dF|^{-n/2}| - \sqrt{-1}\,(dZ - dD^{-1}C)|^{m/2} \\ &\qquad \times \sum_{K:\,(dF)^{-1}G/G} \varepsilon(\text{tr}(2d^{l}GFK))\theta_{dF,\,0,\,K} (dZ - dD^{-1}C) \\ &\qquad \qquad \text{(by the first formula of $(*)$)} \\ &= |dF|^{-n/2}| - \sqrt{-1}\,(dZ - dD^{-1}C)|^{m/2} \end{split}$$

$$= |dF|^{-n/2} |-\sqrt{-1} (dZ - dD^{-1}C)|^{m/2}$$

$$\times \sum_{G: G^{t}D^{-1}/G} \sum_{K: (dF)^{-1}G/G} \varepsilon (\operatorname{tr}({}^{t}BD^{t}GFG + 2d^{t}GFK - d^{2}D^{-1}C^{t}KFK})) \theta_{dF, 0, K}(dZ)$$

Now

$$\begin{split} &\sum_{G:\,G^{t}D^{-1}/G}\varepsilon(\operatorname{tr}({}^{t}BD^{t}GFG + 2d^{t}GFK - d^{2}D^{-1}C^{t}KFK)) \\ &= \sum_{G:\,G^{t}D^{-1}/G}\varepsilon(\operatorname{tr}({}^{t}BD^{t}(G - dKD^{-1}C)F(G - dKD^{-1}C) + 2d^{t}AD^{t}GFK - d^{2t}AC^{t}KFK)) \\ &= \sum_{G:\,G^{t}D^{-1}/G}\varepsilon(\operatorname{tr}({}^{t}BD^{t}GFK)). \end{split}$$

Using the second formula of (*) for $D=d1_n$, we get

$$\begin{split} &\theta_{F,\,0,\,0}(M'Z) \\ &= |dF|^{-n/2} |-\sqrt{-1}\,(dZ - dD^{-1}C)|^{m/2} \sum_{G \,:\, G^{\dagger}D^{-1}/G} (\operatorname{tr}({}^tBD^tGFG)) \sum_{K \,:\, F^{-1}G/G} \theta_{F,\,0,\,K}(Z). \end{split}$$

Substituting $-Z^{-1}$ for Z and using the first formula of (*), we get

$$\begin{split} &\theta_{F,\,0,\,0}(MZ) \\ &= |dF|^{-n/2} |\sqrt{-1} \; dD^{-1}(CZ+D)Z^{-1}|^{m/2} \sum_{G \;:\; GtD^{-1}/G} \varepsilon(\operatorname{tr}({}^tBD^tGFG)) \\ &\times \sum_{K \;:\; F^{-1}G/G} |F|^{-n/2} |-\sqrt{-1} \; Z|^{m/2} \sum_{L \;:\; F^{-1}G/G} \varepsilon(\operatorname{tr}(2{}^tLFK)) \theta_{F,\,0,\,L}(Z). \end{split}$$

Observing that

$$\sum_{K: F^{-1}G/G} \varepsilon(\operatorname{tr}(2^t L F K)) = \begin{cases} 0 & \text{if } L \equiv 0 \mod G \\ |F|^n & \text{if } L \equiv 0 \mod G, \end{cases}$$

we obtain

$$\theta_{F,0,0}(MZ)$$

$$= |-\sqrt{-1} Z|^{m/2} |\sqrt{-1} D^{-1}(CZ+D)Z^{-1}|^{m/2} \sum_{G: G^{t}D^{-1}/G} \varepsilon(\operatorname{tr}({}^{t}BD^{t}GFG)) \theta_{F, 0, 0}(Z).$$

The above computation is well known for n=1. (cf. [4], [7], [8] the section 2). Thus we obtain;

LEMMA 4. Let $|\sqrt{-1}X+1_n|^{1/2}$ be a function on $SM_n(\mathbf{R})$ which is the branch taking the value 1 at X=0. Suppose that F and $M=\begin{pmatrix}AB\\CD\end{pmatrix}$ satisfy one of the four conditions ①, ②, ③ and ④ with N>1. Let us denote by $\varepsilon(C,D)$ the complex number given by

$$\varepsilon(C, D) abs(D)^{-1/2} |\sqrt{-1}C + D|^{1/2} = |\sqrt{-1}D^{-1}C + 1_n|^{1/2}.$$

Then we have

$$\chi_F^{(n)}(M) = \varepsilon(C, D)^m \ abs(D)^{-m/2} \sum_{G: G^t D^{-1}/G} \varepsilon(\operatorname{tr}({}^t B D^t G F G)).$$

COROLLARY. If M is in the form of P_U , Q_S or R_S (cf. §2), then we have

$$\chi_F^{(n)}(M)=1$$
 if m is even,

$$\chi_F^{(n)}(M) = \pm 1$$
 if m is odd.

4. Constructions of cusp forms

Let $k \in \frac{1}{2} \mathbb{Z}_+$ and let χ be a map of Γ' to \mathbb{C}^* . We denote by $[\Gamma', k, \chi]$ (resp. $[\Gamma', k]$) the space of cusp forms of weight k for Γ' with a multiplier χ (resp. a trivial multiplier).

We apply a differential operator $\det^{\nu}({}^{t}\eta\partial)$ to the formula in Corollary to Lemma 3. Then we get

$$\begin{split} \theta_{F,U,V}(-Z^{-1};X,Y) \\ = & (\sqrt{-1})^{mn/2}h^{n\nu}|F|^{-n/2}|-Z|^{(m/2)+\nu} \\ & \times \sum_{H: h^{-1}F^{-1}G/G} \theta_{h^2F,hFV,-h^{-1}F^{-1}U+H}(Z;\Phi;hFY,-h^{-1}F^{-1}X), \end{split}$$

where Φ and ν are as in Theorem 2. Any $M \in \Gamma$ can be written in the form of

a product of P_U , Q_S and $\begin{pmatrix} 1_n \\ -1_n \end{pmatrix}$ with $U \in GL_n(\mathbf{Z})$ and $S \in SM_n(\mathbf{Z})$ (cf. § 2 for the notation). Hence in the Fourier expansion

$$|CZ+D|^{-(m/2)-\nu}\theta_{F,U,V}(MZ;\Phi;X,Y) = \sum_{S\geq 0} a(S)\varepsilon(\operatorname{tr}(ZS))$$
 for all $M\in \Gamma$,

the coefficient a(S) vanishes for S with |S|=0, since $\Phi(G)$ vanishes if rank (tGFG) < n. Thus $\theta_{F,U,V}(Z;\Phi)$ will be a cusp form so long as it is a modular form.

(1) Cusp forms of weight $\frac{n}{2}+1$

Proposition 1. a) We have

$$\dim \left[\Gamma(2), \frac{n}{2} + 1, \chi \right] > 0$$

 $\label{eq:with continuous} \begin{aligned} \text{with } & \chi(M) \!=\! \chi_{1_n}\!(M) \varepsilon \! \left(\operatorname{tr}\! \left(\frac{1}{2} B \! + \! \frac{1}{2} (D \! - \! 1_n) \! - \! \frac{1}{4} C^t D \! - \! \frac{1}{4} B^t A \right) \right) . \end{aligned} \quad \text{Especialy we have} \\ & \dim \! \left[\varGamma(4,8), \frac{n}{2} \! + \! 1, \chi_{1_n} \right] \! > \! 0. \end{aligned}$

b) Let F be a positive even symmetric matrix and N a positive integer such that NF^{-1} is even. Then we have

$$\dim \left[\Gamma(hN), \frac{n}{2} + 1, \chi_{hF} \right] > 0 \quad for \ h \ge 3$$

and

$$\dim \left[\Gamma(2N), \frac{n}{2} + 1, \chi \right] > 0$$

with
$$\chi(M) = \chi_F(M) \varepsilon \left(\operatorname{tr} \left(\frac{1}{2} (D - 1_n) - \frac{1}{4} F^{-1} C^t D - \frac{1}{4} F A^t B \right) \right)$$
.

c) If N is divisible by a square of some odd prime, then we have

$$\dim \left[\Gamma(N), \frac{n}{2} + 1, \chi_F\right] > 0.$$

Proof. a) We apply Theorem 2 with n=l=m, $F=1_n$, $\Phi(G)=|G|$, X=Y=0, $U=V=\frac{1}{2}1_n$ and $M=\binom{AB}{CD}\in\Gamma(2)$. Then we have

$$\theta_{1_n, (1/2)1_n, (1/2)1_n}(MZ; \Phi) = \chi(M)|CZ + D|^{(n/2)+1}\theta_{1_n, (1/2)1_n, (1/2)1_n}(Z; \Phi)$$

with
$$\chi(M) = \chi_{1_n}(M) \varepsilon \left(\operatorname{tr} \left(\frac{1}{2} B + \frac{1}{2} (D - 1_n) - \frac{1}{4} C^t D - \frac{1}{4} B^t A \right) \right)$$
. Hence

 $\theta_{1_n,\,(1/2)1_n,\,(1/2)1_n}(Z;\Phi)$ is a cusp form for $\Gamma(2)$ with a multiplier χ .

Let us denote its Fourier expansion by $\sum\limits_{S>0}a(S)\varepsilon(\operatorname{tr}(ZS))$. a(S) is given by $a(S)=\varepsilon\left(\frac{n}{2}\right)_{G\equiv(1/2)1_n \bmod Z,\ tGG=S}\varepsilon(\operatorname{tr}(G))|G|$. We must show that $\theta_{1_n,\ (1/2)1_n,\ (1/2)1_n}(Z;\varphi)$ is a non-zero function. To do this, it sufficies to show that there is S>0 such that $a(S) \neq 0$. The Fourier coefficient for $\frac{1}{4}1_n$ is

$$a\left(\frac{1}{4}1_n\right) = \varepsilon\left(\frac{n}{2}\right)_{G \equiv (1/2)1_n \bmod Z, t_{GG} = (1/4)1_n} \varepsilon(\operatorname{tr}(G))|G|$$
$$= 2^{-n}\varepsilon\left(\frac{n}{2}\right)_{G \equiv 1_n \bmod 2Z, t_{GG} = 1_n} \varepsilon\left(\operatorname{tr}\left(\frac{1}{2}G\right)\right)|G|.$$

Since $G \equiv 1_n \mod 2\mathbb{Z}$, we have $|G| = |(g_{ij})| \equiv g_{11} \cdots g_{nn} \mod 4$. If $n \equiv 0 \mod 4$, then we have $g_{11} \cdots g_{nn} = 1$ or -1 according as $\operatorname{tr}(G) \equiv 0$ or $2 \mod 4$; hence $\varepsilon \left(-\frac{n}{2}\right) a \left(\frac{1}{4} 1_n\right) > 0$. Similarly we have $\varepsilon \left(-\frac{n}{2}\right) a \left(\frac{1}{4} 1_n\right) < 0$ if $n \equiv 2 \mod 4$, $\sqrt{-1} \varepsilon \left(-\frac{n}{2}\right) a \left(\frac{1}{4} 1_n\right) < 0$ if $n \equiv 1 \mod 4$ and $\sqrt{-1} \varepsilon \left(-\frac{n}{2}\right) a \left(\frac{1}{4} 1_n\right) > 0$ if $n \equiv 3 \mod 4$.

b) Let F and N be as in the proposition. Let us put $\Phi(G) = |G|$. It is shown in [5] that for an integer $h \geq 3$, $\theta_{hF,0,(1/h)1_n}(Z;\Phi)$ is a non-zero cusp form of weight $\frac{n}{2} + 1$ for $\Gamma(hN)$ with a multiplier χ_{hF} . It remains to show that $\theta_{F,(1/2)1_n,(1/2)1_n}(Z;\Phi)$ is a non-zero cusp form for $\Gamma(2N)$ with a multiplier $\chi(M) = \chi_F(M) \varepsilon \left(\operatorname{tr} \left(\frac{1}{2} (D - 1_n) - \frac{1}{4} F^{-1} C^t D - \frac{1}{4} A^t B \right) \right)$. By Theorem 2 we have a formula for $M = \binom{AB}{CD} \varepsilon \Gamma(2N)$. $\theta_{F,(1/2)1_n,(1/2)1_n}(MZ;\Phi) = \chi(M)|CZ + D|^{(n/2)+1} \theta_{F,(1/2)1_n,(1/2)1_n}(Z;\Phi)$.

If $\sum_{S>0} a(S) \varepsilon(\operatorname{tr}(ZS))$ is its Fourier expansion, then we have

$$\begin{split} a\bigg(\frac{1}{4}F\bigg) &= \varepsilon\bigg(\frac{n}{2}\bigg)_{G \equiv (1/2)1_n \bmod Z, \ t_{GFG = (1/4)F}} \varepsilon(\operatorname{tr}(G))|G| \\ &= 2^{-n} \varepsilon\bigg(\frac{n}{2}\bigg)_{G \equiv 1_n \bmod 2Z, \ t_{GFG = F}} \varepsilon\bigg(\operatorname{tr}\bigg(\frac{1}{2}G\bigg)\bigg)|G|. \end{split}$$

Using the same argument as in a), we get $a\left(\frac{1}{4}F\right) \neq 0$. Thus we get the desired result.

c) For an odd prime h>1 with $h^2|N$, it is easily checked that $\theta_{F,0,(1/h)1_n}(Z;\Phi)$ is in $\left[\Gamma(N),\frac{n}{2}+1,\chi_F\right]$. If $a\left(\frac{1}{h^2}1_n\right)$ is the Fourier coefficient for $\frac{1}{h^2}1_n$, then we

have

$$a\left(\frac{1}{h^2}1_n\right) = \sum_{G \equiv (1/h)1_n \mod Z, t_{GFG} = (1/h^2)F} |G|$$

$$= h^{-n} \sum_{G \equiv 1_n \mod hZ, t_{GFG} = F} |G| > 0.$$

Hence $\theta_{F,0,(1/h)_{1_n}}(Z;\Phi)$ is a non-zero cusp form.

(2) Cusp forms of weight $\geq n$

Let F be a positive real symmetric matrix of degree m>0. Let V be an $m\times n$ matrix with entries in \mathbf{Q} , and h the least common multiple of the denominators of the entries of V. Suppose that there exists a prime p with p|h such that $\overline{hV}\in M_{m,n}(\mathbf{Z}|p\mathbf{Z})$ is of rank n, where \overline{hV} denotes the reduction of hV mod p. Then for all $G\in M_{m,n}(\mathbf{Q})$ with $G\equiv V$ mod \mathbf{Z} , F[G] is a nonsingular matrix; hence in the Fourier expansion $\theta_{F,U,V}(Z)=\sum_{S\geq 0}a(S)\varepsilon(\operatorname{tr}(ZS))$ ($U\in M_{m,n}(\mathbf{R})$), a(S) vanishes for S with |S|=0.

(i) Let F be a positive even symmetric matrix of degree $m \ge 2n$. Let N be a positive integer such that NF^{-1} is even. For $U, V \in M_{m,n}(\mathbb{Q})$ and $M = \begin{pmatrix} AB \\ CD \end{pmatrix} \in \Gamma_0(N)$, we have $(U, FV) \begin{pmatrix} DC \\ BA \end{pmatrix} = (U_M, FV_M) \mod \mathbb{Z}$. Let p be a prime with (p, N) = 1 (hence (p, |F|) = 1) and take $U, V \in M_{m,n}(\frac{1}{p}\mathbb{Z})$ so that $\overline{p(U, FV)} \in M_{m,n}(\mathbb{Z}/p\mathbb{Z})$ is of rank 2n. Then $\overline{p(U_M, V_M)}$ is also of rank 2n for all $M \in \Gamma_0(N)$. Using the notation in Corollary to Lemma 3, we have $(U, FV) \begin{pmatrix} 1_n \\ -1_n \end{pmatrix} \equiv (FV, F(-F^{-1}U + H))$ $\equiv (FV, -U) \mod \mathbb{Z}$; hence $\overline{(U, FV) \begin{pmatrix} 1_n \\ -1_n \end{pmatrix}}$ is also of rank 2n. Since $\Gamma_0(N)$ and $\binom{1_n}{-1_n}$ generate Γ , in the Fourier expansion

$$|CZ+D|^{-m/2}\theta_{F,U,V}(MZ) = \sum_{S\geq 0} a(S)\varepsilon(\operatorname{tr}(ZS))$$
 for all $M = \binom{AB}{CD}\varepsilon\Gamma$,

a(S) vanishes for S with |S|=0. For $M \in \Gamma(pN)$ we have $U_{\mathbf{M}} \equiv U$, $V_{\mathbf{M}} \equiv V \mod \mathbf{Z}$ and hence $\theta_{F,U,V}(Z) \in \Gamma(pN)$, $\frac{m}{2}$, χ for some multiplier χ .

(ii) For $F=1_m$ we get $2(U,V)\binom{DC}{BA}\equiv 2(U_M,V_M) \mod \mathbf{Z}$ for $U,V\in M_{m,n}(\mathbf{R})$ and $M=\binom{AB}{CD}\in \Gamma$. Hence for an odd prime p if we take $U,V\in M_{mn}\left(\frac{1}{p}\mathbf{Z}\right)$ so

that $\overline{2p(U,V)} \in M_{m,n}(\mathbf{Z}/p\mathbf{Z})$ is of rank 2n, then $\theta_{F,U,V}(\mathbf{Z})$ is in $\left[\Gamma(2p), \frac{m}{2}, \chi\right]$ for some χ .

(iii) Suppose $m \ge 2n+1$ and set $F=1_m$. Take $T \in M_{m,2n}\left(\frac{1}{2}\boldsymbol{Z}\right)$ so that $2\left(T+\frac{1}{2}\binom{0}{\iota_{\boldsymbol{u}}}\right) \in M_{m,2n}(\boldsymbol{Z}/2\boldsymbol{Z})$ is of rank 2n for any $u \in \boldsymbol{Z}^{2n}$. Then for any M in $GL_{2n}(\boldsymbol{Z})$, TM also has this property. Set

$$W = \begin{pmatrix} 1 & -1 \\ 1-1 \\ 1 \end{pmatrix} \in M_{m,m}(\mathbf{Z}).$$

Then we have $W(U_{M}, V_{M}) = W(U, V) \binom{DC}{BA} + \frac{1}{2} \binom{0}{\iota_{U}}$ for $M = \binom{AB}{CD} \in \Gamma$ and for some $u \in \mathbb{Z}^{2^{n}}$. Thus if W(U, V) has the property stated above, so does $W(U_{M}, V_{M})$. Especially $\overline{2V_{M}} \in M_{m,n}(\mathbb{Z}/2\mathbb{Z})$ is of rank 2n for any $M \in \Gamma$. Hence we get $\theta_{F,U,V}(\mathbb{Z}) \in [\Gamma(2), m/2, \chi]$ for some χ .

Examples of non-zero cusp forms

(i)' Let F be a positive even symmetric matrix of degree $m \ge 2n$ which is of the form $F = \begin{pmatrix} F_1 & 0 \\ 0 & F_2 \end{pmatrix}$ with $\deg(F_1), \deg(F_2) \ge n$. Let N be a positive integer such that NF^{-1} is even and let p be a prime such that (p, N) = 1. It is easily checked that for

$$U = \begin{pmatrix} \frac{1}{p} \mathbf{1}_n \\ 0 \end{pmatrix}, \quad V = \begin{pmatrix} 0 \\ \frac{1}{p} \mathbf{1}_n \end{pmatrix} \in M_{m,n} \left(\frac{1}{p} \mathbf{Z} \right)$$

 $\overline{p(U,FV)} \in M_{m,2n}(\mathbf{Z}/p\mathbf{Z})$ is of rank 2n, and $\theta_{F,U,V}(\mathbf{Z})$ is in $[\Gamma(pN), m/2, \chi]$ with $\chi(M) = \varepsilon(\operatorname{tr}(2^tVFVB - {}^tC^tUF^{-1}UD - {}^tA^tVFVB))$. $\theta_{F,U,V}(Z)$ is a non-zero function. In fact, we have $\theta_{F,U,V}(Z) = \theta_{F_1,U',0}(Z)\theta_{F_2,0,V'}(Z)$ with

$$U' = \begin{pmatrix} \frac{1}{p} 1_n \\ 0 \end{pmatrix} \in M_{\deg(F_1), n} \left(\frac{1}{p} \mathbf{Z} \right), \quad V' = \begin{pmatrix} 0 \\ \frac{1}{p} 1_n \end{pmatrix} \in M_{\deg(F_2), n} \left(\frac{1}{p} \mathbf{Z} \right).$$

Here $\theta_{F_2,0,V'}(Z)$ is obviously non-zero and so is $\theta_{F_1,U',0}(Z)$ (for example, use the inversion formula).

(ii)' Set $F=1_m$ with $m\geq 2n$. Let p be an odd prime, and U,V the same matrices as in (i)'. Then we have a non-zero cusp form $\theta_{1_m,U,V}(Z)$ of weight m/2 for $\Gamma(2p)$ with the multiplier $\chi(M)=\chi_{1_m}(M)\varepsilon\Big(\mathrm{tr}\Big(\frac{2}{p^2}B-\frac{1}{p^2}C^tD-\frac{1}{p^2}A^tB\Big)\Big)$.

- $\frac{\text{(iii)'} \quad \text{Set } F = 1_m \quad \text{with } m \geq 2n+1 \quad \text{and let } U, V \text{ be as above with } p = 2. \quad \text{Then } 2W(U,V) + \binom{0}{\iota_{\boldsymbol{u}}} \in M_{m,2n}(\boldsymbol{Z}/2\boldsymbol{Z}) \text{ is of rank } 2n \quad \text{for any } u \in \boldsymbol{Z}^{2n}. \quad \text{Hence we have a non-zero cusp form } \theta_{1_m,U,V}(Z) \in [\Gamma(2),m/2,\chi] \quad \text{with } \chi(M) = \chi_{1_m}(M) \in \left(\text{tr}\left(\frac{1}{2}B \frac{1}{4}C^{\iota}D \frac{1}{4}A^{\iota}B\right)\right).$
 - (3) Cusp forms of weight n+1 with a trivial multiplier

THEOREM 4. a) We have

$$\dim[\Gamma(4), n+1] > 0$$
 for $n>1$.

Let $F = {F_1 \choose F_2}$ be a positive even symmetric matrix of degree 2n+2 with $\deg(F_1)$, $\deg(F_2) > n$, and N a positive integer such that NF^{-1} is even. Then we have

$$\dim[\Gamma(h^2N), n+1] > 0$$
 for an odd $h > 1$

and

$$\dim[\Gamma(2N,4N), n+1] > 0$$
 if N is odd.

b) Let n be even. Then we have

$$\dim[\Gamma(2h^2), n+1] > 0$$
 for an odd $h > 1$.

Let F be a positive even symmetric matrix of degree n, and N a positive integer such that NF^{-1} is even. Then we have

$$\dim[\Gamma(hN), n+1] > 0$$
 for $h \ge 2$

and

$$\dim[\Gamma(N), n+1] > 0$$
 if N is divisible by a square of some odd integer > 1 .

For n=24 we have

$$\dim[\Gamma, 25] > 0.$$

Proof. a) Suppose n>1. From (2)

$$\theta_{1_{2n+2},U,V}(Z)$$

is a non-zero cusp form for $\Gamma(2)$ with the multiplier $\chi(M) = \chi_{1_{2n+2}}(M) \varepsilon(\operatorname{tr}(2^t VVB - UUD^tC - VVB^tA))$ where we put

$$U = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & \ddots \\ 1 & \dots & 1 \\ 0 \end{pmatrix}, V = \frac{1}{2} \begin{pmatrix} 0 \\ 1 \\ 0 & \ddots \\ 1 & \dots & 1 \end{pmatrix} \in M_{2n+2,n} \left(\frac{1}{2} \mathbf{Z} \right).$$

Since $\chi_{1_{2n+2}}(M)$ is trivial on $\Gamma(4)$ (cf. Corollary to Theorem 3) and since both 4^tUU and 4^tVV are even, χ is trivial on $\Gamma(4)$. Thus we get dim[$\Gamma(4)$, n+1]>0 for n>1.

The remaining cases have already investigated in (2).

b) Let n be an even integer. Throughout the proof $\Phi(G)$ denotes the determinant of G.

For an odd h>1, we have $\theta_{1_n,0,(1/h)1_n}(Z)\in [\Gamma(2h),n/2,\chi]$ and $\theta_{1_n,0,(1/h)1_n}(Z;\Phi)\in [\Gamma(2h),n/2+1,\chi']$ with $\chi'(M)=\chi_{1_n}(M)\varepsilon(\operatorname{tr}(1/h^2(2\,1_n-A)^tB))$. Hence we have $\theta_{1_n,0,(1/h)1_n}(Z;\Phi)\in [\Gamma(2h),n+1,\chi]$ with $\chi(M)=\varepsilon(\operatorname{tr}(1/h^2(2\,1_n-A)^tB))$. Since χ is trivial on $\Gamma(2h^2)$, $\theta_{1_n,0,(1/h)1_n}(Z)\theta_{1_n,0,(1/h)1_n}(Z;\Phi)$ is a cusp form for $\Gamma(2h^2)$ with a trivial multiplier. It remains to shows that both $\theta_{1_n,0,(1/h)1_n}(Z)$ and $\theta_{1_n,0,(1/h)1_n}(Z;\Phi)$ are non-zero functions. Obviously the former is non-zero, and it is easy to check that the latter is non-zero, using the same method as in the proof of Proposition 1 c).

Let F and N be as in the theorem. For $h \ge 3$, $\theta_{hF,0,0}(Z) \times \theta_{hF,0,(1/h)1_n}(Z; \Phi)$ is a non-zero cusp form of weight n+1 for $\Gamma(hN)$ by Proposition 1 b). Hence we get $\dim[\Gamma(hN), n+1] > 0$ for $h \ge 3$.

If N is odd, then $\theta_{F,(1/2)1_n,(1/2)1_n}(Z)$ is non-zero modular form, since we have $\theta_{F,0,(1/2)1_n}(MZ) = \chi_F(M)E_F(0,(1/2)1_n,M)\theta_{F,(N/2)1_n(1/2)1_n}(Z) = \chi_F(M)E_F(0,(1/2)1_n,M)\theta_{F,(N/2)1_n(1/2)1_n}(Z) = \chi_F(M)E_F(0,(1/2)1_n,M)\theta_{F,(N/2)1_n,(1/2)1_n}(Z) = \chi_F(M)E_F(0,(1/2)1_n,M)\theta_{F,(N/2)1_n}(Z) = \chi_F(M)E_F(0,(1/2)1_n,M)\theta_{F$

If N is divisible by a square of some odd integer h>1, then $\theta_{F,0,0}(Z)\theta_{F,0,(1/2)} {}_n(Z;\Phi)$ is a non-zero cusp form for $\Gamma(N)$ with a trivial multiplier by Proposition 1 c). Hence we have $\dim[\Gamma(N), n+1]>0$.

For n=24 H. Maass has shown an existence of an even matrix of degree 24 with the determinant 1, for which $\theta_{F,0,0}(Z;\Phi)$ is a non-zero cusp form of weight 13 for Γ with a trivial multiplier. Hence $\theta_{F,0,0}(Z)\theta_{F,0,0}(Z;\Phi)$ is a non-zero cusp form of weight 25 for Γ with a trivial multiplier and we get $\dim[\Gamma,25]>0$.

REMARK 1. A cusp form of weight n+1 for $\Gamma(4)$ corresponds to a differential form of the first kind on the nonsingular model $\overline{H_n/\Gamma(4)}$ of the modular function field with respect to $\Gamma(4)$. Our result shows that the geometric genus of $\overline{H_n/\Gamma(4)}$ is positive if n>1. On the other hand we know that for n=1, $\overline{H_1/\Gamma(4)}$ is a rational curve.

REMARK 2. When n=2, the cusp form (**) is just the example of a cusp

form of weight 3 found by S. Raghavan in [6]. In fact we get

$$(**) = \prod_{i} \vartheta_{u_i, v_i}(Z, 0, 0)$$

where (u_i, v_i) varies over the set

$$\left\{ \begin{pmatrix} 0 & 1/2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1/2 \end{pmatrix}, \begin{pmatrix} 0 & 1/2 \\ 0 & 1/2 \end{pmatrix}, \begin{pmatrix} 1/2 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1/2 & 0 \end{pmatrix}, \begin{pmatrix} 1/2 & 0 \\ 1/2 & 0 \end{pmatrix} \right\}.$$

(4) Examples of cusp forms of degree 2 and weight 3

Let F be a positive even symmetric matrix of degree $m \in 2\mathbb{Z}$, >n, and N a positive integer such that NF^{-1} is even. We have a transformation formula

$$\begin{array}{l} \theta_{F,U,V}(Z\,;\Phi) \\ = \varepsilon (\operatorname{tr}(A^tB^tVFV + 2(D-1_n)^tVU - C^tUFU))|CZ + D|^{(m/2)+v}\theta_{F,U,V}(Z\,;\Phi) \end{array}$$

for $M = {AB \choose CD} \in \Gamma(N)$ and $U, V \in M_{m,n}(\frac{1}{N}\mathbf{Z})$ with $NF^{-1}U \in M_{m,n}(\mathbf{Z})$, where Φ and ν are as in Theorem 2. Let us denote its Fourier expansion by $\sum_{S=0}^{\infty} a(S) \varepsilon(\operatorname{tr}(ZS))$. Then a(S) is given by

$$a(S) = \varepsilon(2 \operatorname{tr}({}^tVU)) \sum_{G \in \mathcal{M}_{m+n}(Z), F[G+V] = S} \varepsilon(2 \operatorname{tr}({}^tGU)) \varPhi(G+V).$$

Using this formula, we give some examples of non-zero cusp forms of degree 2 and weight 3 for principal congruence subgroups with a trivial multiplier. It seems that we answer a question in [3] concerning "konkrete Beispiele von Spitzenformen".

 $\theta_{F,U,V}(Z; \Phi)$ becomes such a cusp form for I'(N) in the following cases. Let us set

$$G = \begin{pmatrix} g_1 & g_5 \\ g_2 & g_6 \\ g_3 & g_7 \\ g_4 & g_8 \end{pmatrix} \in M_{4,2}(\mathbf{Z}), \quad G_1 = \begin{pmatrix} g_3 & g_7 \\ g_4 & g_8 \end{pmatrix}, \quad G_2 = \begin{pmatrix} g_1 & g_5 \\ g_4 & g_8 \end{pmatrix}, \quad G_3 = \begin{pmatrix} g_2 & g_6 \\ g_4 & g_8 \end{pmatrix}.$$

(i)
$$N=5$$
; $F=\begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 2 & 1 & 2 \\ 1 & 1 & 2 & 1 \end{pmatrix}$, $\Phi(G)=|G_2|$, $U=\frac{1}{5}\begin{pmatrix} 1 & 4 & 1 \\ 2 & 3 & 2 \\ 3 & 2 & 4 & 1 \end{pmatrix}$, $V=\frac{1}{5}\begin{pmatrix} 4 & -1 \\ -3 & 2 & 2 \\ 2 & -3 \\ -1 & 4 \end{pmatrix}$

(ii)
$$N=13$$
; $F=\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 4 \end{pmatrix}$, $\Phi(G)=|G_1|$, $U=\frac{1}{13}\begin{pmatrix} 5 & 0 \\ 3 & 0 \\ 1 & 0 \\ 7 & 0 \end{pmatrix}$, $V=\frac{1}{13}\begin{pmatrix} 4 & 1 \\ -8 & 2 \\ 12 & -3 \\ -3 & 4 \end{pmatrix}$

(v)
$$N=4h-1 \ (h\geq 2); F=\begin{pmatrix} 2 & 1 & \\ 1 & 2h & \\ & 2 & 1 \\ & 1 & 2h \end{pmatrix}, \ \Phi(G)=|G_3|, \ U=0, \ V=\begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 0 & -1 \\ 0 & 2 \end{pmatrix}$$

(vi)
$$N=20h-7 \ (h\geq 2) \ ; \ F=\begin{pmatrix} 4 & 1 & & \\ 1 & 2 & 1 & \\ & 1 & 2 & 1 \\ & & 1 & 2h \end{pmatrix}, \ \Phi(G)=|G_2|, \ U=0, \ V=F^{-1}\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

(vii)
$$N=20h-3 \ (h\geq 2) \ ; \ F=\begin{pmatrix} 2 & 1 & & \\ 1 & 2 & 1 & \\ & 1 & 4 & 1 \\ & & 1 & 2h \end{pmatrix}, \ \ \varphi(G)=|G_1|, \ \ U=0, \ \ V=F^{-1}\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(viii)
$$N=24h-11$$
 $(h\geq 2)$; $F=\begin{pmatrix} 2 & 1 & & \\ 1 & 2 & 1 & \\ & 1 & 2h & 1 \\ & & 1 & 4 \end{pmatrix}$, $\Phi(G)=|G_1|$, $U=0$, $V=F^{-1}\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 \end{pmatrix}$

(ix)
$$N=24h-7 \ (h\geq 2); F=\begin{pmatrix} 2 & 1 & & \\ 1 & 4 & 1 & & \\ & 1 & 2 & 1 \\ & & 1 & 2h \end{pmatrix}, \ \Phi(G)=|G_3|, \ U=0, \ V=F^{-1}\begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Remark. Let p be a prime integer with 3 . Then <math>p is one of the following: 5, 13, 17, 29, 4h-1, 20h-3, 20h-7, 24h-11, 24h-7 for some $h \ge 2$. Hence noting cusp forms which appear in the proof of Theorem 4, we can easily obtain a non-zero cusp forms of weight 3 for $\Gamma(N)$ with a trivial multiplier where N is any integer with $3 < N \le 100$.

Now we shall prove the above $\theta_{F,U,V}(Z;\Phi)$ are non-zero cusp forms of weight 3 with a trivial multiplier. We treat only the cases (i) and (v). To the remaining cases almost the same argument is applicable.

Case (i). We get ${}^tVFV = \frac{1}{5} \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix}$, ${}^tVU = \frac{2}{5} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $5F^{-1}U \in M_{4,2}(\mathbf{Z})$ and ${}^tUFU = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Then it is easy to check that $\theta_{F,U,V}(\mathbf{Z}; \boldsymbol{\Phi})$ is a cusp form of weight 3 with a trivial multiplier, using the formula (***). We must show that it is a non-zero function. Put $S_0 = \frac{1}{5} \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix}$. Then we have

$$\alpha(S_0) = \sum_G \varepsilon(2/5(g_1 + 2g_2 + 3g_3 + 4g_4 + 4g_5 + 3g_6 + 2g_7 + g_8))|G_2 + S_0|,$$

where G runs over the set of all 4×2 integral matrices such that ${}^tG_2 + G_2 + {}^tGFG = 0$. The equation ${}^tG_2 + G_2 + {}^tGFG = 0$ has the following twenty integral solutions. Let us put $a_1 = {}^t(-1, 0, 0, 0)$, $a_2 = {}^t(-1, 1, 0, 0)$, $a_3 = {}^t(-1, 1, -1, 0)$, $a_4 = {}^t(-1, 1, -1, 1)$,

 $b_1=a_3-a_4$, $b_2=a_2-a_4$, $b_3=a_1-a_4$, $b_4=-a_4$ and $0={}^t(0,0,0,0)$. Then all the integral solutions are

$$G = (0, 0), (0, b_1), (0, b_2), (0, b_3), (a_1, 0), (a_1, b_1), (a_1, b_2), (a_1, b_4),$$

$$(a_2, 0), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, 0), (a_3, b_2), (a_3, b_3), (a_3, b_4)$$

$$(a_4, b_1), (a_4, b_2), (a_4, b_3), (a_4, b_4).$$

Then we have

$$a(S_0) = 1 + \varepsilon \left(\frac{3}{5}\right).$$

Thus $\theta_{F,U,V}(Z;\Phi)$ is a non-zero function.

Case (v). Obviously $\theta_{F,U,V}(Z; \Phi)$ is a cusp form of weight 3 for $\Gamma(N)$ with a trivial multiplier. We shall show that it is a non-zero function. Put $S_0 = \frac{1}{N} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. Then we have

$$a(S_0) = \sum_{G} |G_3 + S_0|,$$

where G runs over the set of all 4×2 integral matrices such that ${}^{\iota}G_3 + G_3 + {}^{\iota}GFG = 0$. The integral solution of the equation ${}^{\iota}G_3 + G_3 + {}^{\iota}GFG = 0$ is only G = 0. Hence we have

$$a(S_0) = |S_0| = \frac{4}{N^2}$$
.

Thus $\theta_{F,U,V}(Z; \Phi)$ is a non-zero function.

5. Appendix

Let F be a positive integral symmetric matrix of degree m>0 and $M\in\Gamma$ satisfy one of the four conditions ①, ②, ③ and ④ in § 2. If $\binom{ab}{cd}\in SL_2(\mathbf{Z})$ is the matrix corresponding to M in Lemma 2, then it satisfies one of the four conditions ①, ②, ③ and ④ below;

- (1) $b \equiv 0$ (2), $c \equiv 0$ (2N),
- ② (F is even.) $b \equiv 0$ (2), $c \equiv 0$ (N),
- ③ $(NF^{-1} \text{ is even.}) \ b \equiv 0 \ (2), \ c \equiv 0 \ (N),$
- (4) (Both F and NF^{-1} are even.) $c \equiv 0$ (N).

In these cases $\chi_F \binom{ab}{cd} = \varepsilon(c,d)^m |d| \sum_{G: d^{-1}Z^m/Z^m} \varepsilon(\operatorname{tr}(bd^tGFG))$ can be computed as in [8].

Moreover the invariance of $\chi_F \begin{pmatrix} ab \\ cd \end{pmatrix}$ by $\begin{pmatrix} 1m \\ 01 \end{pmatrix}$ with $m \in \mathbb{Z}$ (resp. $m \in 2\mathbb{Z}$) for an even

F (resp. an integral F) gives some informations on F and N.

Proposition. (i)

- ② Suppose that F is even and NF^{-1} is integral. If m is odd, then 4|N, or 2|N and $|F|=2^{2r+1}K$ with $r\geq 0$ and an odd K. If m is even, then 4|N, or 2|N and $|F|=2^{2r}K$ with r>0 and an odd K, or $|F|\equiv m+1$ (4).
- 3 Suppose that F is integral and NF^{-1} is even. If m is odd, then 4|N, or 2|N and $|F| = 2^{2r}K$ with $r \ge 0$ and an odd K. If m is even, then 4|N, or 2|N and $|F| = 2^{2r}K$ with $r \ge 0$ and an odd K, or |F| = m+1 (4).
- ① Suppose that both F and NF^{-1} are even. If m is odd, then 8|N, or 4|N and $|F| = 2^{2r+1}K$ with $r \ge 0$ and an odd K. If m is even, then 8|N, or 4|N and $|F| = 2^{2r}K$ with r > 0 and an odd K, or 2|N and $|F| = 2^{2r}K$ with r > 0 and K = m+1 (4), or |F| = m+1 (4).

It is known that $m \equiv 0$ (8) if |F| = 1.

(ii) Suppose that $M = {ab \choose cd}$ and F satisfy one of the four conditions (1), (2), (3) and (4) mentioned above. In case (4) with N=1, we have

$$\chi_F^{(n)}(M) = 1$$
 for all $M \in SL_2(\mathbf{Z})$.

In the remaining cases d is always non-zero. If m is odd, then we have

$$\chi_F^{(n)}(M) = \operatorname{sgn}(c)^{m (\operatorname{sgn}(d)-1)/2} \varepsilon \bigg(\frac{m(d-1)}{4}\bigg) \bigg(\frac{c}{d}\bigg)^m \bigg(\frac{|F|}{d}\bigg).$$

If m is even, then we have

$$\chi_F^{(n)}(M) = \operatorname{sgn}(d)^{m/2} \left(\frac{(-1)^{m/2} |F|}{|d|} \right).$$

References

- [1] Andrianov, A. N. and Maloletkin, G. N., Behavior of theta series of degree N under modular substitutions, Math. USSR Izvestija 39, 227-241 (1975).
- [2] Eicheler, M., Einführung in die Theorie der algebraischen Zahlen und Funktionen, Birkhäser Verlag Basel-Stuttgart, (1963).
- [3] Fritag, E., Holomorphe Differentialformen zu Kongruenzgruppen der Siegelschen Modulgruppe zweiten Grades, Math. Ann. 216, 155–164 (1975).
- [4] Hecke, E., Zur Theorie der elliptischen Modulfunktionen, Math. Ann. 97, 210-242 (1926).
- [5] Maass, H., Konstruktion von Spitzenformen beliebigen Grades mit Hilf von Thetareihen, Math. Ann. 226, 275-284 (1977).
- [6] Raghavan, S., Cusp forms of degree 2 and weight 3, Math. Ann. 224, 149-156 (1976).
- [7] Schoeneberg, B., Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann. 116, 511-523 (1939).

- [8] Shimura, G., On modular forms of half integral weight, Ann. Math. 97, 440-481 (1973).
- [9] Siegel, C.L., On the theory of indefinite quadratic forms, Gesam. Abh. II, 421-466, Springer-Verlag Berlin·Heiderberg·New York, (1966).
- [10] —, Moduln Abelscher Funktionen, Gesam. Abh. III, 373-435,
- [11] Witt, E., Eine Identität zwischen Modulformen zweiten Grades, Abh. Math. Sem. Hansischen Univ. 14, 323-337 (1941).