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CONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT
THEOREM FOR STATIONARY ¢-MIXING SEQUENCES

By
Ryozo Yokovama

1. Introduction and result.

Let {X;, —oco<j<oo} be a strictly stationary sequence of random variables
centered at expectations with finite variance, which satisfies ¢-mixing condition

(1.1) sup |[P(ANB)—P(A)P(B)||P(A)=¢(n) | 0 (n—o0)..

Here the supremum is taken over all As M*. and Be Mgin, and M2 denotes the
o-field generated by X; (a=j=<b). Let S,=X,+---+X, and 6.2=ES,?, n=1, 2, ---.

For independent random variables, Brown has shown that the
Lindeberg condition of order v=2 is necessary and sufficient for the central limit
theorem and the convergence of E|S./¢.|" towards the corresponding moment of
the normal distribution. For dependent random wvariables, such a result seems
less well-known. We study here the convergence of moments for stationary ¢-
mixing sequences.

THEOREM. Let {X;} satisfy (1.1). If EX:®"<oo for some integer m=2, and if

1.2) or2=0n(1+o0(1))
as n—oo(6>0), then
(1.3) E(Snloa)*™—>Bem  (n—>00),

wheve B, is the vth absolute moment of N(O, 1).

We remark that under the assumptions of the theorem X satisfies the central
limit theorem (cf. [4, Theorem 18.5.1]). Also remark that any other conditions
beyond on the decays of mixing coefficients ¢(z) are not required.

2. Preparatory lemmas.

LEMMA 1 [4, Theorem 17.2.3]. Suppose that (1.1) is satisfied and that & and
n are measurable with respect to Mt.. and My (n=0) respectively. If E|§|P<co
and Elp|?<co for p, q>1 with (1/p)+1/q)=1, then

2.1) |E¢n)— E@)E)| = 2{gmEIE|"V {E|% .
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LEMMA 2. Let {X};} satisfy (1.1) and E\X,|'<oco for some v=2. If
Gp —> OO
as n—oo, then there is a constani K, for which
(2.2) E|S:|"=Koz, nz=l,
In this lemma, the assumption is not necessarily required. If holds,
the right-hand side of can be replaced by Kn'2.

Proor. We apply the method used in the proof of Lemma 7.4 of Doob to
that of Lemma 18.5.1 of Ibragimov-Linnik [4]. is true for v=2. We
assume therefore that holds when v is an integer m=2 and prove that it
then holds for v=m+4, 0<d=1. Let us write

A 2n+k
Sa= 2, X; an=E|Sy|™?

Jj=n+k+1

We only prove that, for ¢>0 there exist K; and % such that
2.3) E|Sa+Sa|™? <(2+6)an+ Ko7+,

The proof of then follows on the same line as in Lemma 18.5.1 of [4]
We have

(2.4) ElSn"*‘Sn["’H—béE{lSn+§n|m(|sn|a+ |§nlé)}§EISnlm+6+El§n|m+a
m—1 . m .
FECE (ISl 1Salm1 4 3 ()ISald|Salm-143).
i= P=

Since S, and S, have the same distribution,

(2.5) E|Sn|"‘+"=El»§nl"‘“=dn-
Using [2.1) with p=(m+6)/(j +9),
(2.6) E|Su]#+2| 8| ™9 = 2aa[ (k)]0 M+ 4 F|S, |5+ E|S,| ™,

and with p=(m+4/j,
2.7) E|Su)?|Sa|™=7+2 = 2aa[$(R)1' ™+9) 4 E| S| E|Sa| ™32,
By Holder’s inequality,
E|Sa|*=(E|SaI™*™, 0<u=m.
Thus, since is assumed to hold for v=m (with some K), for 0=j=m-—1,
(2.8) E|Sq|7%2 E|Sa|™I = (E]|Sp|™) ™™ = Koy .

and for 1=j=m,
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(2.9) E|Sa|? E|Sq|™7 < (E|Sa|™) ™+ 8™ < Ko *.
From through [2.9), we obtain
E|Sn+Sa|™ < (2 + Ku[ (k)] ™+9)a, + Ko7+,

for some constants K; and K,. To prove it suffices to take &k so large that
KZ[¢(k)]6/(m+6) <e.
We represent the sum S, in the form

'3 k+1
Sn=§Z i+ 2 =2+ 2 ks,
i=1 i=1

where

ip+{=1)g
§i= 2 X, (=sisk)

C-D(P++1

i(p+a) .
n=_ 2, X; (1=i=k)
ip+E—1)g+1
n
Ne+1= Z Xj)
E(p++1

where k=[n/({ +¢)], and p=p(x) and g=q(n) are integer-valued functions such that
as n—co

(2.10) D00, g—00, g=0(p), p=0(n), ng=0(p*) and ng(q)=o(p).

For such a pair of p and ¢, see for example [4, Theorem 18.4.1]. Under the re-
quirements imposed on p and ¢, we shall show that Z’; is negligible, and that
consequently FE(Sn/0s)*™~E(Zi|/a,)*™. We note that, because of the stationarity,
is applicable to &; and 7:. In the following, for convenience’ sake the
conditions of the theorem are assumed to hold and K denotes generic constant.

LEMMA 3. As n—co

(2.11) EZ2=FESZ2 +o0(c%), [=1, 2, .-+, m,
Proor. We first show that

(2.12) EZ'% =0(c%).

We have

(2.13) EZP.=EZ'¢+ 5, () EZ' b+ B,

By Minkowski’s inequiality, and [2.10),
(2.14) EZ} =RRERt = K(k*q)=o0(d2),
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by

(2.15) Evt = Kn—k(p+q))=o(d%),

and by Holder’s inequality, [2.14) and [2.15),

(2.16) |EZ{ piti? | S(BEZ)7 Bl ) P 2 =0(0%) .

Then follows from (2.13)-(2.16).
20—1
EZ}=E(Su—Z's)"=ES¢+ 3, (~ 1)~ ESL 2",
i=0

and by Holder’s inequality, and [2.12),
|ESh Z'33| < (ESE)2(EZ'E, ) * =P =0(a}}),

for j=0, 1, .-+, 2/—1. Thus the lemma is proved.
Let r2=EZ} for i=1, 2, -, k. Then implies that

(2.17) 72 =a% (L+0(1)).

Since
EZ zil = E(Si(p+q) - Z’i)m»

it follows from the proof of that

(2.18) EZ} =ES¥pro t0(0%m+0),

which together with implies that

(2.19) EZ} = K(Gp),

for i=1, 2, -, k, I=1, 2, -, m. Also [2.10) and [2.18) imply that
(2.20) d=aty(l+o(1)), i=1, 2, -, k.

3 Proof of

E(Snlon)?=1, n=1, 2, ---. Assume inductively that as #—co
(3.1) E(Sulon)?—Ba, =1, 2, -+, m—1.
In view of and [2.17), the assumption is equivalent to the one that as
n—>00
3.2) E(Z|t)?— B, (=1, 2, -, m—1,
Using again, we have only to prove under the assumption that as n—>co
(3.3) E(Z[ti)*™ > Bam .

We have
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2m—1

(3.4) EZm= Z,' Z (M EZi_ &7, where Z,=0,

Il
il Ma‘

EE”"—I—Zm Z EZme, 4+ Z (Y EZ3 282 + ;i ,Z (7") EZI_
By and [2.20),

3.5) :;1 Esm< Kkp™=o0(ci™).

By Lemmas 1, 2, (2.10), (2.19) and (2.20),

(3.6) pllozre

<A@ 3 (BZim)om/m (B

k
=KIp(@Fp™ T, (i=1)em-
=K'[kp(@T"*(kp)" =0(z").
For j=1, .-, 2m—3, by Lemma 2, (2.19) and (2.20),

k

(3 .7) Z (EZ%TI)j/Zm (E&-im) @m-—75/2m é Kk—(Zm—j—z)/z(kp)m=()(T’2€m) ,
and so

k
(3.8) % |EZi, g =o(er)

Further, by Lemmas 1, 2, (2.19) and (2.20),
k

3.9) Z EZ7r 8 — Z EZ7: E6% )
=1

=2[g(gm-rm i (EZT2)m-Dm(EET) ™

=KIp(@1 ™D ™(kp)™=0(z™).
Consequently, by (3.4)-3.9), as n—oco

(3.10) EZP= Z (™ EZ2 1 EE% +o(ti™).

By (2.20) and (3.2),

k

3.11) 2 G E(Zia[re-n)*™ 2 E(§D) 157

= (6" fam-s +o(}ob 3 2 +O(1)

i=1

2m—- Jj
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~{E foms +O(D)}0T" Z (=11 +0(1)
) Bam—s +O(L)}o3 (K™ )+ O(L)
(@1 —1) Bams -+ (L)} + O(L) ~ Pamei™.

Hence, by (3.10) and (3.11), follows, and the proof of the theorem is com-
pleted.

ReMARk. If E|Xi|" <oco(v'>v>2), then by {I1Sa/onl’, n=1} is uni-
formly integrable. By the central limit theorem we have, without the assump-

tion [1.2),
E\|Salan|"—B, (n—>00).
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