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A RENEWAL THEOREM IN HIGHER DIMENSIONS

By

Kiyoshi SHIKAI

Summary

Let F be a probability distribution on d-dimensional Euclidean space R? with
mean 0 and finite 2[d/2]-th moment. Let U{A}:Z‘IF (A}, where F™ denotes the

n-fold convolution of F and A is a measurable set on R?% The purpose of this
paper is to give an asymtotic expression for U{A+z} as |z|-—>oo, in case that F is
nonlattice and d=3.

1. Introduction and the statement of the result

Let F be a probability distribution on R? For any measurable set A put
UfA}=3] F™{4},
n=1

where F™ denotes the #n-fold convolution of F. A random walk associated with F

is transient, if for any bounded set A
U{A} <oco.
For transient random walk of d=2, it is well known

lim U{A+x}=0.

1] -0

For lattice distributions it was shown by F. Spitzer [2] and P. Ney and F. Spitzer
[1] that for aperiodic d-dimensional random walk (d=3) with mean 0 and finite
second moments, such that for each #, |x|?2%p,(0, x)>0 when |zx|—oo, the Green
function has the asymtotic behavior

G0, z)~cq|Q|V ¥z, @ '2)'~%?, when |x|—>oco.

Here G(0, x)=§: (0, ), pn(0, z) denotes the probability that a particle starting at
n=1

the origin will be at the point x at time », @ is the covariance matrix of p(0, x),
Q! is its inverse, and |@| is the determinant of @, and the constants cq are positive
and depend on the dimension.
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Our aim is to obtain the asymtotic expression of the Green function in case
of a nonlattice distribution with mean 0 and finite 2[d/2]-th moment.
Let ¢ denote the characteristic function of F. We say that F is nonlattice if

(L1) lp(x)| <1,  yeR*—{0}.

In our case the quadratic form is given by
(12) Q)= (@, vrFda).

For xz=(x,, -+, xzq)e R% and ~2>0, let P,(x, &) be the measures assigned by F™ to
the set

y=(y1, -, ya)lxx=yx =z + 4k for 1=k=d}.
For a fixed v>0, we take a bounded set A as

A={y=(yy, -, ya)|0=yx <v for 1=k=d}.
Noting that

UtA+a)= 3, Pula, v,

we get the following

THeEOREM. If F satisfies the conditions below ;
(1.3) dz=3,

(1.4) F' is nonlattice,

(1.5) Sx Fidz) =0,

(16) SmﬂmF{dx} <o,

then

(1.7) U{A+zx}~ VId2) z, Q'x)' "%, as |x|—oo.

(d-—Z)rrd/leP/z

Here @ is the covariance matrix of F, @' is its inverse, and |Q] is the determinant

of Q.

2. Preliminaries

Before the proof we prepare two lemmas.

LemMmA 1. (C. Stone [4]) If F is a nonlattice distribution with mean 0 and
second moment, then for each v>0



A Renewal Theorem in Higher Dimensions 81
(2.1) lim [(277)? 2 Py(z, v) — 1| Q| 12~ 1/2m (2.Q 712 ] =(),

uniformly for all zeR<.

LemmMmA 2. If F is nonlattice distribution with mean 0 and 2k-th (=1, integer)
moment, then

REJD

2k
(2.2) 1"12(\/77) [(2na)t 2 Py(z, v)— 12| Q|1 2e-1/2n (. 1201 =(),

uniformly for all xeR¢.
Following C. Stone [4], we define g(x) and r(x), ze R¢ by

1 \¢& (sinag\™
= > fi ,
9(x) < AL ) ,Ul ( ) (m=k+1, integer fixed)

Zj

r)={er vtz
_ 1 \¢& (= [ sin z; )2"’ .
_< wAam > ;U1 So COS(y]xJ)( xj 4,

oo 1 am
where Azm:ls (smx > dzx.

T Jo X

Set |y|=(y:®+-+- +9?'? and |Iy]|=ma)§|yjl. 7(y) is a function of class C?% on
1575

R? and 7(y)=0on ||ly||=2m. For a>0 set g.(x)=a%(a'x) and ro{¥)=7r4lay). Then

Sga(w)dx =1,

Sei“"”’ga(x)dx =74(y).

Now Pn(-, %) is integrable and

W@WP (A 7z AR dr=ht O nf Y _

To complete the proof of Lemma 2 we need the following two propositions.

ProrosiTiON 1.

(2.3) lim Ak[an(:/%)]:m[e—l/z QQ/)]’ yeR?;

n—o0

(24) for an arbitrary fixed B>0

()]

=constant, |y|=B;
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g =),
2.6) |A’¢[¢"<j% >] <constant e4@W, [y|Zev/n;

where 4% is the k-th (£=0,1,2,---) iteration of Laplace operator 4, the constant in
(24) may depend on B but is independent of # and y, the constants in and
(2.€) are both independent of #» and v, and as to e>0 in see Appendix.

We can show Proposition 1 in the same way of P. Ney and F. Spitzer 1]

and [2]

Using Proposition 1, we next prove the following proposition.

(2.5)

=constant |y|**

ProrosiTION 2. Let
@.7) Vilz, b, @)= ]x\z"gga(x )PV 7y, 7 h)dy.

For arbitrary fixed positive numbers v and 2, set Z=y/vn and a=2/v'n. Then

v

2rv'n

2.8) Vil &, a)=(—1)"< )dge—“”'”’d"[e‘“zQ(”’]dy+0(n‘d/z)

Dd

(22n)@?| Q|2 e 12 @@ 4 o(n=d'%),

=l

Proor. Put ﬁ (1—e—"¥3) (ihy;)~' =fn(y), then we have by Fubini’s theorem and
j=1

Green’s theorem

Vit b= ) 1el™) e vr (i

1Ylls2ma—1

:({%)d]kas e—“”'?f’ra(y)fn(y)qﬁ"(f )dy

n

1¥/s4¥dma?

=) | sty nms (o )a
1¥|s4vYdma—1

=x(4e) | s rtnswe(J5) v
\¥1s4vdma™

Let

1=\ e (ranma () |- aterewr)ay;

1YI<B
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L=\ e na] o (F=) Javs

B<|ViseVn

b=\ e iwa] o) Javs

eYn<lyls4avd ma—1

]4 = __S e—i(a:.y)Ak[e—x/z Q(y)]dy ;
¥1>B

[5=<S +S + )e”i(x'”)H(y)dy;

WIsB B<ylseVn «Va<|yssVdma—l

where =2 1) /uw)s"( 5 ) |-7ew 4] 6(F=) | Hw) s a potynomial

of partial derivatives of r,(y) fh(y);b"( \/yﬁ) of the first 2k order, each term involv-

ing at least the first partial derivatives of ra(¥) fn(y). Note that

d
(Il+12+Is+14+15>><(—1>k(-2-’%>

d
— Vn(x, /2, a)_(_l)k(%) Se~i(a:.y)dk[e—1/2 Q(z/)]dy_

In order to prove it is sufficient to show that

lim /=0 (1=m=5) uniformly for all xeR¢?.

n—oc0

Since |ra(¥)| =1, | fa(y)| =1, and lim yo(y)=lim f1(y)=1, it follows from [2.3) and (24)
that

(2.9) lim ;=0 uniformly for all zeR¢.

n-oo

Using for each given &,>0, we can choose B>0 independent of z such that
(2.10) |I2] <es.

Nextly we prove that there exists a positive constant 6 independent of # (but may
depend on ¢, m, and 2) such that

(2.11) |I;] =constant 74/2+¥(1— §)"~2k,

Indeed since we can choose 6>0 such that

I¢<«7yn:> ' <1-9¢ for evVn<|y|=dmvVdi'‘vVn

Using we have
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|I;] =constant (1-—5)"-2'68 ly|2*dy.

W samvVd i Vn
Now choosing B sufficiently large we get
(2.12) |, <ex
for a given fixed ¢;>0. Finally we prove

(2.13) lim I,=0 uniformly for all xeR?.

-0

Note that
Ir

. 3" .
Inl_IE, W (Ta(?/)fh(l/))—o if |r|=0.

Then it follows that

limS e~ VH(y)dy=0 uniformly for all xzeR¢,

n-—oo

1Y1sB

because the derivatives of ¢"( j%) and rq(¥)fa(y) are uniformly bounded on every

compact set. Furthermore using the estimations similar to (2.5) and [2.6) for the

derivative of ¢”( \/yh_ ), we have

n—oo

limS i@ H(y)dy =0, limg o-i@.9 )y =0

B<wlsevn YeVva<lyl sama—IVa

uniformly for all xe R? That completes the proof.

Proor or LEmMMA 2. The proof of Lemma 2 is as same as C. Stone’s [4].

But for completeness we repeat it here.

Put pu(z)=|z|®*(2x)-%?|Q| 212 =.@7'® and p=max pi(x). Since pi(x) is uni-
reRd

formly continuous, there is an /,>0 such that |pu(z)—pu(y)|=1/4¢ if llz—y|| =
We choose a 6>0 such that (1+26)¢=4/3, (1+26)?—1=e;, 1-20)—1=—¢,, and

g(x)dx =e,,
Irxel>1/8

where ¢, and e, are positive numbers satisfying

<1)+5x ﬁ+%e>(1—az)‘1—p§s

and

1

€1p+€2(p+€)§§ E.
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Set i=(1, ---,1)e R% By [Proposition 2] we can find N>0 such that for =N
and xeR?

A

ov . (1420w 5%)

2.14) Vn(x_ g A2 Ty (1+25>»> ( Y

( v
( (1 +25)u > (Pk(x) %5
(+ +5e)

) (8uta)+erp+

\/
Y
'R
NN
S—

(=%

IA

A
N

and

(1 25)u 52v

v

(o) ol v -27)

n
=(507) (=3935
(

ihY

v

= (=) (por—ap—5¢).
Now
(216) Pn(«/;t(x——j—yh—i—y),(1+25)u>?;Pn(«/h—x,v), ==
and
(217) («/n<x+:/:z y) 1- 25)u><Pn(«/nx,u), [|y|[<vn

By we get

V”(x ov . (1420 62v)

(2.18) VR P Vm o Vn

ilxlz'cg 952.(¥)Pn («/n(x——:/fz y> (1+25)u)

Tonsowva %

= | 2| Pu(V 7 2, ,J)S gss()dy

y<av/Vn Va

=(1—e)|x|*Pu(~ 7 2, v).
Therefore by (2.14) and (2.18) we get

(2.19) | 2| Po(NV 7 u)<( ) (prlx)+eip+e)(1—ex)™?

= (7”—;7)(1( pul@)+e).
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On the other hand
ov . (1—28) 5214)
V”(”* Vi n ' Vn

=Ll G_a_zu_(y)P,.<«/n (x+ 2 ><1 25)u>

Yn

ysov/ Vi

+laf| gi_z,(y)Pn(«/ﬁ(x+%—i—y>,(l-—25)u>dy

yzdv/vn vn

=/i+/.

By we get
Ji= 2| Po(vV' 0 x, v).

Noting that the equality

=( (1«/35 =) i+ i) ot

= () pe@r+otne)

holds by [2.8), we can see that

r=(7r ) (p+eks.

Therefore we get

(1—-20)» &%
(2.20) Vn($+v— z, ’\/n 3 '\/’7)

<|z*PuvT 2, v)+(¢ > (p+e)ea.
Thus by (2.15) and we obtain
—_ v d
2.21) |2 Py V7 , u)é(ﬁ) (pe(z)—e).

Since ¢ is independent of x we may replace x by x/v% in the inequalities
and [2.21). Thus the proof of Lemma 2 is complete.

Proor oF THE THEOREM. By Lemma 1 and Lemma 2 we have for x+0
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(2.22) 12|22 Polm, v) = | 2|42 2nr) =9 28| Q| -1/ 2e=1/2n (@)

+led—2ﬂ_d/2E1(n, .Z‘),
and
(2.23) || 2Pz, v)= |x|d—2(2mr)—d/2vdIQI—uze_l/Zn(x,Q—x,)

+ lxld—z—zkn—d/HkEz(n’ .Z'),
respectively. Here k=[d/2]. Both of the error terms Ei(n,x) and Ex(n,x) have

the property of tending to zero as #—oo, uniformly in z.
Let us investigate the asymptotic behavior of

oo

|z|¢2U{A+x} =3 |2|*2Pu(x, v)
n=1
as |x]—oo. Set

S(x)=(27)~%2%|Q| 2|z |42 i n—42p-1/20 @, Tl
n=1

Put (x, Q'x)'=4, then

(2r)~42 Q| 12| x4 & —d/2,—(2nd)~1
(z, Q1x)d21 nZ=:1 (nd) ¢ 4.

S(x)=

Since 4—0 as |z|—>co, the sum on the righthand side tends the convergent im-

proper Riemann integral

= 241(d|2)
~d/2,—1/28 Jf —
Sot e dt g_o
Therefore
(2.24) S(x)~vin=4%d—2)"I'(d|2)|Q|~**(x, @ x)'~¥*|z|¢"* as |x|—oo.

We now only have to explain why the error terms do not contribute to our result.
We shall use for the range 1=»n=[|x|?]. Since the contribution of the
principal terms in is positive, we have to show that

[lz]2]
(2.25) lim | |22 35 24| By, )

| T |00

+lim @) 3w Ex(n, z)| =0.

[Z =00 n=[|z|2]+1

From any finite number of terms in the first sum is zero. We choose M so
large that sup |Ex(n, z)| <e¢ whenever n=M. Then

P
||¢-2-2% ZMW‘Z ¥ Ey(n, )]
n=



88 Kiyoshi SHikAI

[lz(2]
éelxld—-z—Zk ZMn—d/2+k

n=

[lxi2

(2]
éelxld—z—% Z Nk <ch.
n=1

for some positive k, independent of ¢ and x. Since ¢ is arbitrary. the first limit
in is zero. The second limit is also zero since

2l 3 n\En, 2)| = |alet sup |Bin,z)| ) m
n=[2T21+1 n>[|x|2) n=[|z|2|]+1

ékz Sup IEl(nv x)lr
n>[x|2)

where k; is a positive constant independent of x. This completes the proof.

Appendix

can be shown by expanding the derivative on the left and then taking
limits #—oco.
Since

S(ei(”' ) 1), Fda)

' 3(:/:' ¢(\/y; )‘:\/1;{

< vl (laiFiaz)

n
and for |r|=2
o'7! Y
ay:l...ayzd ¢< 72)

we get (2.4) and [2.5).
Next, using the fact that

§n—7'/2§lxrl...:L-:.lle{(lm}, rl +...+7’d= ITI’

=g 1 as |y|—0 (see P7.7 of [2]),

Qy) 2
we see that ¢ can be chosen sufficiently small so that
n(_Y _\|<p-174Qw <er/7
p <«/n ) =e for |yl=ev7.

Then we have immediately.
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