A RENEWAL THEOREM IN HIGHER DIMENSIONS

By

Kiyoshi Shikai

Summary

Let F be a probability distribution on d-dimensional Euclidean space R^d with mean 0 and finite $2\lceil d/2 \rceil$ -th moment. Let $U\{A\} = \sum\limits_{n=1}^{\infty} F^{n*}\{A\}$, where F^{n*} denotes the n-fold convolution of F and A is a measurable set on R^d . The purpose of this paper is to give an asymtotic expression for $U\{A+x\}$ as $|x|\to\infty$, in case that F is nonlattice and $d \ge 3$.

1. Introduction and the statement of the result

Let F be a probability distribution on R^d . For any measurable set A put

$$U{A} = \sum_{n=1}^{\infty} F^{n*}{A},$$

where F^{n*} denotes the *n*-fold convolution of F. A random walk associated with F is transient, if for any bounded set A

$$U{A}<\infty$$
.

For transient random walk of $d \ge 2$, it is well known

$$\lim_{|x|\to\infty} U\{A+x\}=0.$$

For lattice distributions it was shown by F. Spitzer [2] and P. Ney and F. Spitzer [1] that for aperiodic *d*-dimensional random walk $(d \ge 3)$ with mean 0 and finite second moments, such that for each n, $|x|^{d-2}p_n(0,x)\to 0$ when $|x|\to\infty$, the Green function has the asymtotic behavior

$$G(0,x)\sim c_d|Q|^{-1/2}(x,Q^{-1}x)^{1-d/2}$$
, when $|x|\to\infty$.

Here $G(0, x) = \sum_{n=1}^{\infty} p_n(0, x)$, $p_n(0, x)$ denotes the probability that a particle starting at the origin will be at the point x at time n, Q is the covariance matrix of p(0, x), Q^{-1} is its inverse, and |Q| is the determinant of Q, and the constants c_d are positive and depend on the dimension.

Received May 17, 1978. Revised November 2, 1978.

Our aim is to obtain the asymtotic expression of the Green function in case of a nonlattice distribution with mean 0 and finite 2[d/2]-th moment.

Let ϕ denote the characteristic function of F. We say that F is nonlattice if

$$|\phi(y)| < 1, \quad y \in \mathbb{R}^d - \{0\}.$$

In our case the quadratic form is given by

(1.2)
$$Q(y) = \int_{\mathbb{R}^d} (x, y)^2 F\{dx\}.$$

For $x=(x_1, \dots, x_d) \in \mathbb{R}^d$ and h>0, let $P_n(x, h)$ be the measures assigned by F^{n^*} to the set

$$\{y = (y_1, \dots, y_d) | x_k \leq y_k \leq x_k + h \text{ for } 1 \leq k \leq d\}.$$

For a fixed $\nu > 0$, we take a bounded set A as

$$A = \{y = (y_1, \dots, y_d) | 0 \le y_k < \nu \text{ for } 1 \le k \le d\}.$$

Noting that

$$U{A+x} = \sum_{n=1}^{\infty} P_n(x, \nu),$$

we get the following

THEOREM. If F satisfies the conditions below;

- (1.3) $d \ge 3$,
- (1.4) F is nonlattice,

$$\int x F\{dx\} = 0,$$

$$(1.6) \qquad \int |x|^{2[d/2]} F\{dx\} < \infty,$$

then

(1.7)
$$U\{A+x\} \sim \frac{\nu^d \Gamma(d/2)}{(d-2)\pi^{d/2}|Q|^{1/2}} (x, Q^{-1}x)^{1-d/2}, \text{ as } |x| \to \infty.$$

Here Q is the covariance matrix of F, Q^{-1} is its inverse, and |Q| is the determinant of Q.

2. Preliminaries

Before the proof we prepare two lemmas.

Lemma 1. (C. Stone [4]) If F is a nonlattice distribution with mean 0 and second moment, then for each $\nu > 0$

(2.1)
$$\lim_{n\to\infty} \left[(2n\pi)^{d/2} P_n(x,\nu) - \nu^d |Q|^{-1/2} e^{-1/2n (x,Q^{-1}x)} \right] = 0,$$

uniformly for all $x \in \mathbb{R}^d$.

LEMMA 2. If F is nonlattice distribution with mean 0 and 2k-th ($k \ge 1$, integer) moment, then

(2.2)
$$\lim_{n\to\infty} \left(\frac{|x|}{\sqrt{n}}\right)^{2k} [(2n\pi)^{d/2} P_n(x,\nu) - \nu^d |Q|^{-1/2} e^{-1/2n (x,Q^{-1}x)}] = 0,$$

uniformly for all $x \in \mathbb{R}^d$.

Following C. Stone [4], we define g(x) and $\gamma(x)$, $x \in \mathbb{R}^d$ by

$$\begin{split} g(x) &= \left(\frac{1}{2\pi A_{2m}}\right)^d \prod_{j=1}^d \left(\frac{\sin x_j}{x_j}\right)^{2m} \ (m \ge k+1, \text{ integer fixed}), \\ \gamma(y) &= \int e^{i(y,x)} g(x) dx \\ &= \left(\frac{1}{\pi A_{2m}}\right)^d \prod_{j=1}^d \int_0^\infty \cos(y_j x_j) \left(\frac{\sin x_j}{x_j}\right)^{2m} dx_j, \end{split}$$

where
$$A_{2m} = \frac{1}{\pi} \int_0^\infty \left(\frac{\sin x}{x} \right)^{2m} dx$$
.

Set $|y|=(y_1^2+\cdots+y^2)^{1/2}$ and $||y||=\max_{1\leq j\leq d}|y_j|$. $\gamma(y)$ is a function of class \mathcal{C}^{2k} on R^d and $\gamma(y)\equiv 0$ on $||y||\geq 2m$. For a>0 set $g_a(x)=a^{-d}g(a^{-1}x)$ and $\gamma_a(y)=\gamma_a(ay)$. Then

$$\int g_a(x)dx = 1,$$

$$\int e^{i(x,y)}g_a(x)dx = \gamma_a(y).$$

Now $P_n(\cdot, h)$ is integrable and

$$\int \! e^{i(x,y)} P_n(\sqrt{n} \; x, \sqrt{n} \; h) dx = h^d \prod_{j=1}^d \frac{1-e^{-ihy_j}}{ihy_j} \phi^n \left(\frac{y}{\sqrt{n}} \right).$$

To complete the proof of Lemma 2 we need the following two propositions.

Proposition 1.

(2.3)
$$\lim_{n\to\infty} \Delta^k \left[\phi^n \left(\frac{y}{\sqrt{n}} \right) \right] = \Delta^k \left[e^{-1/2 Q(y)} \right], \ y \in \mathbb{R}^d;$$

(2.4) for an arbitrary fixed B>0

$$\left| \Delta^{k} \left[\phi^{n} \left(\frac{y}{\sqrt{n}} \right) \right] \right| \leq \text{constant}, \ |y| \leq B;$$

(2.5)
$$\left| \Delta^{k} \left[\phi^{n} \left(\frac{y}{\sqrt{n}} \right) \right] \right| \leq \text{constant} \quad |y|^{2k} \left| \phi^{n-2k} \left(\frac{y}{\sqrt{n}} \right) \right|, \quad |y| \geq 1;$$

(2.6)
$$\left| \Delta^{k} \left[\phi^{n} \left(\frac{y}{\sqrt{n}} \right) \right] \right| \leq \text{constant } e^{-1/4 Q(y)}, |y| \leq \varepsilon \sqrt{n};$$

where Δ^k is the k-th $(k=0,1,2,\cdots)$ iteration of Laplace operator Δ , the constant in (2.4) may depend on B but is independent of n and y, the constants in (2.5) and (2.6) are both independent of n and y, and as to $\varepsilon > 0$ in (2.6) see Appendix.

We can show Proposition 1 in the same way of P. Ney and F. Spitzer [1] and [2].

Using Proposition 1, we next prove the following proposition.

Proposition 2. Let

(2.7)
$$V_n(x, h, a) = |x|^{2k} \int g_a(x-y) P_n(\sqrt{n} y, \sqrt{n} h) dy.$$

For arbitrary fixed positive numbers ν and λ , set $h=\nu/\sqrt{n}$ and $a=\lambda/\sqrt{n}$. Then

(2.8)
$$V_{n}(x, h, a) = (-1)^{k} \left(\frac{\nu}{2\pi\sqrt{n}}\right)^{d} \int e^{-i(x, y)} \mathcal{L}^{k}[e^{-1/2Q(y)}] dy + o(n^{-d/2})$$
$$= |x|^{2k} \frac{\nu^{d}}{(2\pi n)^{d/2} |Q|^{1/2}} e^{-1/2(x, Q^{-1}x)} + o(n^{-d/2}).$$

PROOF. Put $\prod_{j=1}^d (1-e^{-ihy_j}) (ihy_j)^{-1} = f_h(y)$, then we have by Fubini's theorem and Green's theorem

$$\begin{split} V_n(x,h,a) &= \left(\frac{h}{2\pi}\right)^d |x|^{2k} \int_{|y| \leq 2ma^{-1}} e^{-i(x,y)} \gamma_a(y) f_h(y) \phi\left(\frac{y}{\sqrt{n}}\right) dy \\ &= \left(\frac{h}{2\pi}\right)^d |x|^{2k} \int_{|y| \leq 4\sqrt{d}} \frac{e^{-i(x,y)} \gamma_a(y) f_h(y) \phi^n\left(\frac{y}{\sqrt{n}}\right) dy \\ &= (-1)^k \left(\frac{h}{2\pi}\right)^d \int_{|y| \leq 4\sqrt{d}} \frac{\int_{|y| \leq 4\sqrt{d}} \frac{1}{ma^{-1}} \left[\gamma_a(y) f_h(y) \phi^n\left(\frac{y}{\sqrt{n}}\right) dy \right] \\ &= (-1)^k \left(\frac{h}{2\pi}\right)^d \int_{|y| \leq 4\sqrt{d}} \frac{e^{-i(x,y)} \int_{|y| \leq 4\sqrt{d}} \frac{1}{ma^{-1}} \left[\gamma_a(y) f_h(y) \phi^n\left(\frac{y}{\sqrt{n}}\right) dy \right] dy. \end{split}$$

Let

$$I_{1} = \int_{|y| \le R} e^{-i(x,y)} \left(\gamma_{a}(y) f_{h}(y) \Delta^{k} \left[\phi^{n} \left(\frac{y}{\sqrt{n}} \right) \right] - \Delta^{k} \left[e^{-1/2 Q(y)} \right] \right) dy;$$

$$\begin{split} I_2 &= \int_{B < |y| \le \epsilon \sqrt{n}} e^{-i(x,y)} \gamma_a(y) f_h(y) \varDelta^k \bigg[\phi^n \bigg(\frac{y}{\sqrt{n}} \bigg) \bigg] dy \;; \\ I_3 &= \int_{\epsilon \sqrt{n} < |y| \le 4 \sqrt{d} \, ma^{-1}} e^{-i(x,y)} \gamma_a(y) f_h(y) \varDelta^k \bigg[\phi^n \bigg(\frac{y}{\sqrt{n}} \bigg) \bigg] dy \;; \\ I_4 &= - \int_{|y| > B} e^{-i(x,y)} \varDelta^k [e^{-1/2 Q(y)}] dy \;; \\ I_5 &= \bigg(\int_{|y| \le B} + \int_{B < |y| \le \epsilon \sqrt{n}} + \int_{\epsilon \sqrt{n} < |y| \le 4 \sqrt{d} \, ma^{-1}} \bigg) e^{-i(x,y)} H(y) dy \;; \end{split}$$

where $H(y) = \Delta^k \left[\gamma_a(y) f_h(y) \phi^n \left(\frac{y}{\sqrt{n}} \right) \right] - \gamma_a(y) f_h(y) \Delta^k \left[\phi^n \left(\frac{y}{\sqrt{n}} \right) \right]$. H(y) is a polynomial of partial derivatives of $\gamma_a(y) f_h(y) \phi^n \left(\frac{y}{\sqrt{n}} \right)$ of the first 2k order, each term involving at least the first partial derivatives of $\gamma_a(y) f_h(y)$. Note that

$$(I_1 + I_2 + I_3 + I_4 + I_5) \times (-1)^k \left(\frac{h}{2\pi}\right)^d$$

$$= V_n(x, h, a) - (-1)^k \left(\frac{h}{2\pi}\right)^d \int e^{-i(x, y)} \Delta^k [e^{-1/2 Q(y)}] dy.$$

In order to prove (2.8) it is sufficient to show that

$$\lim_{n\to\infty} I_m = 0 \ (1 \le m \le 5) \text{ uniformly for all } x \in \mathbb{R}^d.$$

Since $|\gamma_a(y)| \le 1$, $|f_h(y)| \le 1$, and $\lim_{n \to \infty} \gamma_a(y) = \lim_{n \to \infty} f_h(y) = 1$, it follows from (2.3) and (2.4) that

(2.9)
$$\lim_{n\to\infty} I_1 = 0 \text{ uniformly for all } x \in \mathbb{R}^d.$$

Using (2.6) for each given $\varepsilon_1 > 0$, we can choose B > 0 independent of x such that (2.10) $|I_2| < \varepsilon_2$.

Nextly we prove that there exists a positive constant δ independent of n (but may depend on ε , m, and λ) such that

(2.11)
$$|I_8| \leq \text{constant } n^{d/2+k} (1-\delta)^{n-2k}$$

Indeed since we can choose $\delta > 0$ such that

$$\left|\phi\left(\frac{y}{\sqrt{n}}\right)\right| < 1 - \delta \text{ for } \varepsilon\sqrt{n} < |y| \le 4m\sqrt{d} \lambda^{-1}\sqrt{n}$$

Using (2.5) we have

$$|I_3| \leq \text{constant } (1-\delta)^{n-2k} \int_{|y| \leq 4m\sqrt{d}} |y|^{2k} dy.$$

Now choosing B sufficiently large we get

$$(2.12) |I_4| < \varepsilon_2$$

for a given fixed $\varepsilon_2 > 0$. Finally we prove

(2.13)
$$\lim_{n \to \infty} I_5 = 0 \quad \text{uniformly for all } x \in \mathbb{R}^d.$$

Note that

$$\lim_{n\to\infty}\frac{\partial^{|r|}}{\partial y_1^{r_1}\cdots\partial y_d^{r_d}}(\gamma_a(y)f_h(y))=0 \quad \text{if} \quad |r|\neq 0.$$

Then it follows that

$$\lim_{n\to\infty}\int_{|y|\leq R}e^{-i(x,y)}H(y)dy=0 \quad \text{uniformly for all } x\in R^d,$$

because the derivatives of $\phi^n\left(\frac{y}{\sqrt{n}}\right)$ and $\gamma_a(y)f_h(y)$ are uniformly bounded on every compact set. Furthermore using the estimations similar to (2.5) and (2.6) for the derivative of $\phi^n\left(\frac{y}{\sqrt{n}}\right)$, we have

$$\lim_{n \to \infty} \int_{\substack{R < |y| \le \epsilon \sqrt{n}}} e^{-i(x,y)} H(y) dy = 0, \lim_{n \to \infty} \int_{\substack{\epsilon \sqrt{n} < |y| \le 4ma^{-1}\sqrt{a}}} e^{-i(x,y)} H(y) dy = 0$$

uniformly for all $x \in \mathbb{R}^d$. That completes the proof.

PROOF OF LEMMA 2. The proof of Lemma 2 is as same as C. Stone's [4]. But for completeness we repeat it here.

Put $p_k(x) = |x|^{2k} (2\pi)^{-d/2} |Q|^{-1/2} e^{-1/2} (x, Q^{-1}x)$ and $p = \max_{x \in \mathbb{R}^d} p_k(x)$. Since $p_k(x)$ is uniformly continuous, there is an $h_1 > 0$ such that $|p_k(x) - p_k(y)| \le 1/4 \varepsilon$ if $||x - y|| \le h_1$. We choose a $\delta > 0$ such that $(1+2\delta)^d \le 4/3$, $(1+2\delta)^d - 1 \le \varepsilon_1$, $(1-2\delta)^d - 1 \ge -\varepsilon_1$, and

$$\int_{||x||>1/\delta} g(x)dx \leq \varepsilon_2,$$

where ε_1 and ε_2 are positive numbers satisfying

$$\left(p+\varepsilon_1 p+\frac{1}{2}\varepsilon\right)(1-\varepsilon_2)^{-1}-p\leq \varepsilon$$

and

$$\varepsilon_1 p + \varepsilon_2 (p + \varepsilon) \leq \frac{1}{2} \varepsilon.$$

Set $i=(1,\cdots,1)\in R^d$. By Proposition 2 we can find N>0 such that for $n\geq N$ and $x\in R^d$

$$(2.14) V_{n}\left(x - \frac{\delta\nu}{\sqrt{n}}i, \frac{(1+2\delta)\nu}{\sqrt{n}}, \frac{\delta^{2}\nu}{\sqrt{n}}\right) \leq \left(\frac{(1+2\delta)\nu}{\sqrt{n}}\right)^{d} p\left(x - \frac{\delta\nu}{\sqrt{n}}i\right) + \varepsilon\left(\frac{\nu}{\sqrt{n}}\right)^{d}$$

$$\leq \left(\frac{(1+2\delta)\nu}{\sqrt{n}}\right)^{d} \left(p_{k}(x) + \frac{1}{4}\varepsilon\right) + \varepsilon\left(\frac{\nu}{\sqrt{n}}\right)^{d}$$

$$\leq \left(\frac{\nu}{\sqrt{n}}\right)^{d} \left(p_{k}(x) + \varepsilon_{1}p + \frac{1}{2}\varepsilon\right),$$

and

$$(2.15) V_{n}\left(x+\frac{\delta\nu}{\sqrt{n}}i,\frac{(1-2\delta)\nu}{\sqrt{n}},\frac{\delta^{2}\nu}{\sqrt{n}}\right) \geq \left(\frac{(1-2\delta)\nu}{\sqrt{n}}\right)^{d}p_{k}\left(x+\frac{\delta\nu}{\sqrt{n}}i\right) - \frac{1}{4}\varepsilon\left(\frac{\nu}{\sqrt{n}}\right)^{d}$$

$$\geq \left(\frac{(1-2\delta)\nu}{\sqrt{n}}\right)^{d}\left(p_{k}(x)-\frac{1}{4}\varepsilon\right) - \frac{1}{4}\varepsilon\left(\frac{\nu}{\sqrt{n}}\right)^{d}$$

$$\geq \left(\frac{\nu}{\sqrt{n}}\right)^{d}\left(p_{k}(x)-\varepsilon_{1}p-\frac{1}{2}\varepsilon\right).$$

Now

$$(2.16) P_n\left(\sqrt{n}\left(x-\frac{\delta\nu}{\sqrt{n}}\,i-y\right),(1+2\,\delta)\nu\right) \ge P_n(\sqrt{n}\,x,\nu), \quad ||y|| \le \frac{\delta\nu}{\sqrt{n}}$$

and

$$(2.17) P_n\left(\sqrt{n}\left(x+\frac{\delta\nu}{\sqrt{n}}i-y\right),(1-2\delta)\nu\right) \leq P_n(\sqrt{n}x,\nu), \quad ||y|| \leq \frac{\delta\nu}{\sqrt{n}}.$$

By (2.16) we get

$$(2.18) V_{n}\left(x-\frac{\delta\nu}{\sqrt{n}}i,\frac{(1+2\delta)\nu}{\sqrt{n}},\frac{\delta^{2}\nu}{\sqrt{n}}\right)$$

$$\geq |x|^{2k}\int_{||y||\leq\delta\nu/\sqrt{n}}g_{\frac{\delta^{2}\nu}{\sqrt{n}}}(y)P_{n}\left(\sqrt{n}\left(x-\frac{\delta\nu}{\sqrt{n}}i-y\right),(1+2\delta)\nu\right)dy$$

$$\geq |x|^{2k}P_{n}(\sqrt{n}x,\nu)\int_{y\leq\delta\nu/\sqrt{n}}g_{\frac{\delta^{2}\nu}{\sqrt{n}}}(y)dy$$

$$\geq (1-\varepsilon_{2})|x|^{2k}P_{n}(\sqrt{n}x,\nu).$$

Therefore by (2.14) and (2.18) we get

(2.19)
$$|x|^{2k} P_n(\sqrt{n} x, \nu) \leq \left(\frac{\nu}{\sqrt{n}}\right)^d (p_k(x) + \varepsilon_1 p + \varepsilon) (1 - \varepsilon_2)^{-1}$$
$$\leq \left(\frac{\nu}{\sqrt{n}}\right)^d (p_k(x) + \varepsilon).$$

On the other hand

$$\begin{split} V_n \bigg(x + \frac{\delta \nu}{\sqrt{n}} \, i, \frac{(1 - 2\delta)\nu}{\sqrt{n}}, \frac{\delta^2 \nu}{\sqrt{n}} \bigg) \\ &= |x|^{2k} \!\! \int_{y \leq \delta \nu / \sqrt{n}} \!\! \frac{g_{\frac{\delta^2 \nu}{\sqrt{n}}}(y) P_n \bigg(\sqrt{n} \, \left(x + \frac{\delta \nu}{\sqrt{n}} \, i - y \right), (1 - 2\delta)\nu \bigg) dy \\ &+ |x|^{2k} \!\! \int_{y \geq \delta \nu / \sqrt{n}} \!\! \frac{g_{\frac{\delta^2 \nu}{\sqrt{n}}}(y) P_n \bigg(\sqrt{n} \, \left(x + \frac{\delta \nu}{\sqrt{n}} \, i - y \right), (1 - 2\delta)\nu \bigg) dy \\ &= J_1 + J_2. \end{split}$$

By (2.17) we get

$$J_1 \leq |x|^{2k} P_n(\sqrt{n} x, \nu).$$

Noting that the equality

$$V_n\left(x + \frac{\delta\nu}{\sqrt{n}}i, \frac{(1 - 2\delta)\nu}{\sqrt{n}}, \frac{\delta^2\nu}{\sqrt{n}}\right)$$

$$= \left(\frac{(1 - 2\delta)\nu}{\sqrt{n}}\right)^d p_k\left(x + \frac{\delta\nu}{\sqrt{n}}i\right) + o(n^{-d/2})$$

$$= \left(\frac{\nu}{\sqrt{n}}\right)^d p_k(x) + o(n^{-d/2})$$

holds by (2.8), we can see that

$$J_2 \leq \left(\frac{\nu}{\sqrt{n}}\right)^d (p+\varepsilon)\varepsilon_2.$$

Therefore we get

(2.20)
$$V_n\left(x + \frac{\delta \nu}{\sqrt{n}}i, \frac{(1 - 2\delta)\nu}{\sqrt{n}}, \frac{\delta^2 \nu}{\sqrt{n}}\right) \\ \leq |x|^{2k} P_n(\sqrt{n}x, \nu) + \left(\frac{\nu}{\sqrt{n}}\right)^d (p + \varepsilon)\varepsilon_2.$$

Thus by (2.15) and (2.20) we obtain

$$(2.21) |x|^{2k} P_n(\sqrt{n} x, \nu) \ge \left(\frac{\nu}{\sqrt{n}}\right)^d (p_k(x) - \varepsilon).$$

Since ε is independent of x we may replace x by x/\sqrt{n} in the inequalities (2.19) and (2.21). Thus the proof of Lemma 2 is complete.

PROOF OF THE THEOREM. By Lemma 1 and Lemma 2 we have for $x\neq 0$

(2.22)
$$|x|^{d-2}P_n(x,\nu) = |x|^{d-2}(2n\pi)^{-d/2}\nu^d|Q|^{-1/2}e^{-1/2n(x,Qx^{-1}x)} + |x|^{d-2}n^{-d/2}E_1(n,x),$$

and

(2.23)
$$|x|^{d-2}P_n(x,\nu) = |x|^{d-2}(2n\pi)^{-d/2}\nu^d|Q|^{-1/2}e^{-1/2n(x,Q^{-1}x)} + |x|^{d-2-2k}n^{-d/2+k}E_2(n,x),$$

respectively. Here k=[d/2]. Both of the error terms $E_1(n,x)$ and $E_2(n,x)$ have the property of tending to zero as $n\to\infty$, uniformly in x.

Let us investigate the asymptotic behavior of

$$|x|^{d-2}U{A+x} = \sum_{n=1}^{\infty} |x|^{d-2}P_n(x,\nu)$$

as $|x| \to \infty$. Set

$$S(x) = (2\pi)^{-d/2} \nu^d |Q|^{-1/2} |x|^{d-2} \sum_{n=1}^{\infty} n^{-d/2} e^{-1/2n(x,-1x)}.$$

Put $(x, Q^{-1}x)^{-1} = \Delta$, then

$$S(x) = \frac{(2\pi)^{-d/2} \nu^d |Q|^{-1/2} |x|^{d-2}}{(x, Q^{-1}x)^{d/2-1}} \sum_{n=1}^{\infty} (n\Delta)^{-d/2} e^{-(2n\Delta)^{-1}} \Delta.$$

Since $\Delta \to 0$ as $|x| \to \infty$, the sum on the righthand side tends the convergent improper Riemann integral

$$\int_{0}^{\infty} t^{-d/2} e^{-1/2t} dt = \frac{2^{d} \Gamma(d/2)}{d-2}.$$

Therefore

$$(2.24) S(x) \sim \nu^{d} \pi^{-d/2} (d-2)^{-1} \Gamma(d/2) |Q|^{-1/2} (x, Q^{-1}x)^{1-d/2} |x|^{d-2} \text{ as } |x| \to \infty.$$

We now only have to explain why the error terms do not contribute to our result. We shall use (2.23) for the range $1 \le n \le \lfloor |x|^2 \rfloor$. Since the contribution of the principal terms in (2.24) is positive, we have to show that

(2.25)
$$\lim_{|x| \to \infty} |x|^{d-2-2k} \sum_{n=1}^{\lfloor |x| \rfloor 2} n^{-d/2+k} |E_2(n, x)| + \lim_{|x| \to \infty} |x|^{d-2} \sum_{n=\lfloor |x| \rfloor 2 \rfloor + 1}^{\infty} n^{-d/2} |E_1(n, x)| = 0.$$

From (1.6) any finite number of terms in the first sum is zero. We choose M so large that sup $|E_2(n,x)| < \varepsilon$ whenever $n \ge M$. Then

$$|x|^{d-2-2k} \sum_{n=M}^{\lceil |x|^2 \rceil} n^{-d/2+k} |E_2(n,x)|$$

$$\leq \varepsilon |x|^{d-2-2k} \sum_{n=M}^{\lceil |x|^2 \rceil} n^{-d/2+k}$$

$$\leq \varepsilon |x|^{d-2-2k} \sum_{n=N}^{\lceil |x|^2 \rceil} n^{-d/2+k} \leq \varepsilon k_1$$

for some positive k_1 independent of ε and x. Since ε is arbitrary, the first limit in (2.25) is zero. The second limit is also zero since

$$|x|^{d-2} \sum_{n=\lceil |x|^2 \rceil+1}^{\infty} n^{-d/2} |E_1(n,x)| \leq |x|^{d-2} \sup_{n>\lceil |x|^2 \rceil} |E_1(n,x)| \sum_{n=\lceil |x|^2 \rceil \rceil+1}^{\infty} n^{-d/2}$$

$$\leq k_2 \sup_{n>\lceil |x|^2 \rceil} |E_1(n,x)|,$$

where k_2 is a positive constant independent of x. This completes the proof.

Appendix

(2.3) can be shown by expanding the derivative on the left and then taking limits $n\to\infty$.

Since

$$\left| \frac{\partial}{\partial y_{j}} \phi\left(\frac{y}{\sqrt{n}}\right) \right| = \frac{1}{\sqrt{n}} \left| \int \left(e^{i\left(x, \frac{y}{\sqrt{n}}\right)} - 1\right) x_{j} F\{dx\} \right|$$

$$\leq \frac{|y|}{n} \int |x|^{2} F\{dx\},$$

and for $|r| \ge 2$

$$\left|\frac{\partial^{|r|}}{\partial y_1^{r_1}\cdots\partial y_d^{r_d}}\phi\left(\frac{y}{\sqrt{n}}\right)\right|\leq n^{-r/2}\int |x_1^{r_1}\cdots x_d^{r_d}|F\{dx\}, r_1+\cdots+r_d=|r|,$$

we get (2.4) and (2.5).

Next, using the fact that

$$\frac{1-\phi(y)}{Q(y)} = \frac{1}{2}$$
 as $|y| \to 0$ (see P7.7 of [2]),

we see that ε can be chosen sufficiently small so that

$$\left|\phi^n\left(\frac{y}{\sqrt{n}}\right)\right| \le e^{-1/4 Q(y)} \quad \text{for} \quad |y| \le \varepsilon \sqrt{n}.$$

Then we have (2.6) immediately.

Bibliography

- [1] Ney, P. and Spitzer, F.: The Martin Boundary For Random Walk, Trans. Am. Math. Soc. 121, 116-132, 1966.
- [2] Spitzer, F.: Principles of Random Walk, Van Nostrand, 1964.
- [3] Stam, A. J.: Renewal theory in dimensions (1), Compositio Mathematica, vol. 21, Fac, 4, 383-399, 1969.
- [4] Stone, C. J.: A local limit theorem for multidimensional distribution functions, Ann. Math. Stat. 36, 546-551, 1965.

Institute of Mathematics University of Tsukuba Ibaraki, 300–31, Japan