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(Dedicated to Professor A. Komatu on his 70th birthday)

By

Minoru NAKAOKA

1. Introduction,

This paper is a continuation of my previous paper [13], and is concerned with
generalizations of the following two classical theorems on a continuous map f of an
n-sphere S™ to itself.

THEOREM 1.1. If the degree of f is even then therve exists xeS™ such that

f(—2)=f().

THEOREM 1.2. If the degree of f is odd then therve exists zeS™ such that
f=8)=—f(@).

Throughout this paper, a prime p is fixed, and G={1, T, -, T?1} will denote
a cyclic group of order p.

Generalizing the situation in the above theorems, we shall consider the follow-
ing problems.

PrROBLEM 1. Let f: N-M be a continuous map between G-spaces. Under what
conditions does f have an equivariant point, i.e., a point xeN such that

(1.1 f(Tiz)=Tif(x)
fori=1,2,---, p—17?

ProBLEM 2. Let f: L—M and g: L—N be continuous maps of a space L to
G-spaces M and N. Under what conditions do there exist p points wy, -+, TpEL
such that

(1.2) f(@i)) =T (2)), gxi)=Tig(x;)
for i=1,2,-, p—1?

We shall denote by A(f) the set of points zeN satisfying (1.1), and by A(f, g)
the set of points (z;, -+, 2p)eL? satisfying (1.2).

If L=N in Problem 2, then A(f, id) may be identified with A(f). Therefore
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Problem 2 is more general than Problem 1; still Problem 2 can be reduced to
Problem 1. In fact, if we define 2 : LP->Mx N by

(1- 3) h’(xh Y xp) = (f(xl)’ g(x1)> (xie-L)’

and regard L? and Mx N as G-spaces by cyclic permutations and the diagonal action
respectively, then we have A(h)=A(f, g).

Throughout this paper, a manifold will always mean a compact connected
topological manifold which is assumed to be oriented if p is odd. The dimension
of manifolds M, N, --- will be denoted by m, »n, ---. By a G-manifold is meant a
manifold on which G acts topologically.

In this paper we shall consider Problems 1 and 2 in case M and N are G-
manifolds. Some answers have been obtained by Conner-Floyd [3], Munkholm [10],
Fenn [5], Lusk and others with respect to generalizations of [Theorem 1.1, and
by Milnor [9] and the author with respect to generalizations of [Theorem 1.2
By pushing the line of we shall prove in this paper more general results.

Throughout this paper the cohomology stands for the Cech cohomology and it
takes coefficients from Z,, the group of integers mod p.

2. Theorems

In this section we shall state our main theorems answering to Problem 2 and
then corollaries answering to Problem 1. The main theorems will be proved in §5
and §6.

Let wx€eH*(BG) (k=0,1,---) denote the usual generators, where BG is the
classifying space for G. If X is a paracompact space on which G acts freely,
H*(X/G) can be regarded as an H*(BG)-module via the homomorphism induced
by a classifying map of X; in particular we have wx=wir-1 e H*(X/G).

The first main theorem is stated as follows, and it generalizes
(see Remark 1 below).

THEOREM A. Let f: L—M and g : L—-N be continuous maps of a compact
space L to G-manifolds M and N. Suppose that

i) the action on M is trivial,

ii) the action on N is free and w.c H'(N|G) is not zero;

iii) n=(p—1m;

iv) f*: HI(M)—-HIL) (g>0) is trivial;

v) g*: H'(N)—H"(L) is not trivial.
Then we have A(f, g)+¢; if L is moreover a manifold, we have

dim A(f, @) =2pl—(p—1)(m+n) 20,
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where dim A denotes the covering dimension of A.
Putting L=N and g=id, we get

CoROLLARY. Let f: N—M be a continuous map of a G-manifold N lo a
manifold M. Suppose that

i) the action on N is free and w.c H'(N|G) is not zero;

ii) f*: HIWM)—HYN) (g>0) is trivial.
Then we have

dim A(f)zn—(p—m,

where M is regarded as a G-manifold by the trivial action.

REMARK 1. Taking
N=a mod p homology z-sphere

in the above corollary, we have the results due to Conner-Floyd [3], Munkholm
and the author [12], which are direct generalizations of [Theorem 1.1l

REMARK 2. Taking
L=N=a mecd p homology #-sphere,
M=S", deg f=0, deg g0 mod p

in Theorem A, we have the results due the to Fenn and Lusk [8].
To state the second main theorem and its corollaries, we shall make some

preparations.

For any indexing set I, consider the complement If=I"—dI of the diagonal in
I?, and define (iy, -+, ip), (3%, -, to)€I® to be equivalent if (i}, .-, ip) is a cyclic
permutation of (7, -+, 7p). We denote by R(I%) a set of representatives of the

equivalent classes.

Let f: L—»M and g : L—N be continuous maps of a manifold L to G-manifolds
M and N. Given homogenecus bases {ai}ier, {Bi}js of H*(M), H*(N) and sets
RUIY), R(J%), we define A(f, g), A (f, g)€Z, as follows.

Define 4 : M—M? by

@.1n A(x)=(z, Tz, ---, TP 12) (zeM),

and put

2.2) 4 (1= . Z) |, Civri@iy X o0 X iy (Cir-ip€2Zp)
1,0, ip)€lP

for the Gysin homomorphism 4; : H*(M)— H*(MP).
Similarly, put
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4= = , djrjpBiy X - X Bjy  (dj1j€2Zp)

Jl."‘,jp)e P
for the homomorphism 4 : H¥(N)—H*(NP).
We define
A, @)=X(f* X Ciyeipiy X -+ X i, )(g¥P41(1)), [L1?D,

(i1, -, ip)eR(ID)

l,(fy g)=<(f*pA'(1))(g*p . 2 djl"'jpﬁjl Xoee X/s]‘p), [L]p>-

G, ap)eRUD

Obviously we have A(f, g)=21'(g. f).
If L=N and g*=id, we write 2(f)=2(f, g). It follows that

A(fHHr= X CiyipXCf ¥, (THf *ati, )+ (T*P 7 *ai,), LN .

(i1, +,ip)eRUIE)

REMARK 3. By the definition of 4; we have

{d*(ap, X -+ X ar,), [M D=L ar, X+ xar,) A (1), [MI?).
From this we get

2.3 Yhyoky= ; > - (= 1)EG v ip ks s Bod Gy i Zhy iy Zhpigs
Ry

where
Yhyky=Lar,(T*ar,)---(T*? tap,), (M,
zri=<arai, (M 1),

-1
5(i1, ) ipy kb T k?>= Z:Ilais I(Iaksnl +".+lakpl)’
s=

being |a|=dega. The relations (2.3) for (ky, ‘-, kp)€I” characterize the coefficients
¢iyi, ([6]). In particular, if p=2 we see that the matrix (¢;;) is the inverse of
the matrix (yij).

Now the second main theorem is stated as follows, and it generalizes
1.2 (see Remark 5 below).

THEOREM B. Let f: L—M and g : L—N be continuous maps of a manifold L
to G-manifolds M and N. Suppose that

i) i : HI(M)—HIMS) is trivial for q=m/p, where MC is the fixed point
set of M, and i is the inclusion;

ii) the action on N is free;

iii) pl=(p—1(m+n).
Then A(f, g) and A'(f, g) are independent of the choices of {ai}ier, {Bj}jes, RUIY),



Equivariant Pcint Thecrems 113

R(JD), and we have 2(f, ©=2'(f, ) If A(f, & +0 we have A(f, g)+9.
Putting L=N and g=id in Theorem B we have

COROLLARY 1. Let f: N—M be a continuous map between G-manifolds, and
suppose that

i) o : HI(M)—HIM®) is trivial for q=m/p;

ii) the action on N is free;

iii) n=0(—Dm.
Then 2(f) is independent of the choices of {ai}ier and RUI%), and if 2(f)+#0 we
have A(f)+#¢.

Put L=M and f=id in Theorem B, and replace the notations M, N, g by N,
M, f respectively. Then we get

CorOLLARY 2. Let f: N—M be a continuous map between G-manifolds, and
suppose that

i) #*: HYI(N)—HYN€®) is trivial for q=n/p;

ii) the action on M is free;

iii) n=(p—1m.
Then the same conclusions as in Corollary 1 hold.

REMARK 4. The above two corollaries for p=2 have been obtained in [13].
The following proposition will be proved in §4 (see p. 407 of for p=2).

PrOPOSITION 2.1. If M is a G-manifold such that i* : H™?(M)— H™?(M¢)
is trivial, then
e T*a)---(T*P7 ), [M1>=0 (ae H*(M)).

Let M be the one in Proposition 2.1 for p=2. Then, the proposition and the
Poincaré duality show that H*(M) has a homogenecus basis {g, -, ttr, f1, = tt3}
such that

pi(T*p), LM 1>=0, {p;(T*pp), IM1>=0, {p:(T*p.), (M1>=0.
In terms of this basis we see that
20F) =i§1<<f*#i><T*f*ﬂ%>, LN
if p=2. In particular, if M=Nand f*=id then A(f) equals the semi-characteristic
Li2(M )=dim H*(M)/Z mod 2.

Thus, for p=2 we have the following



114 Minoru NARKAOKA

COROLLARY 3. Let M be a manifold with a free involution T, and assume
X12(M)+0. Let f, g: M—M be continuous maps such that f*=g*=id : H*(M)—
H*(M). Then there exist z, x'eM such that f(z')=Tf(z) and g(z')=Tglx). In
particular, there exists a point xeM such that fT(x)=Tf(x).

REMARK 5. Taking

M=a mod 2 homology m-sphere

in [Corollary 3, we have the result due to Milnor [9], which is a direct generaliza-
tion of [Theorem 1.2.

3. Method.

In this section we shall explain how to prove Theorems A and B.

Let M be a G-manifold. If we regard M? as a G-manifold by cyclic permutations,
the map 4 : M—-MP? in (2.1) is an equivariant embedding. Regard S%+! as a G-
manifold by the standard free action. Then we have a pair (S%*1 é MP?P, S2k+1 (>;< 4aM)

of manifolds, and hence the Thom isomorphism
Or : HI(S2k+1x AM )= HI+P-D™(S2k+1 >(<; (M?, M?—4M))
G

which is the composite of the duality isomorphisms for S +! c>:< 4AM and for (Sz"+1>G<
M?, S+l éAM ) (see p. 353 of [14]). We denote the Thom class k(1) by U.

The isomorphisms 6x for sufficiently large & define the Thom isomorphism
0: HI(AM)=H& P D™ (MP?, MP—4M)

of the equivariant cohomology. The element 6(1) is denoted by Uu, and is called
the equivariant fundamental cohomology class of M.

The image of Uw in Hg™P-D(MP) is denoted by Uy, and is called the
equivariant diagonal cohomology class of M.

If the action of G on M is free, the diagonal set dM is in M?P—4M. In this
case the image of Uy in He™P-V(MP? dM) is denoted by Uf, and is called the
modified equivariant diagonal cohomology class of M.

LEMMA 3.1. Let M and N be G-manifolds, and regard Mx N as a G-mani fold
by the diagonal action. If the action on N is free, we have
Ultxn==(g?*Ui)(@3*0 D,
where q?* : HE(MP)— HE((Mx N)®) and ¢%* : HE(N?, dN)—>HE((Mx N)?, d(Mx
N)) are induced by the projections q, : Mx N—M, q, : M x N—N.
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Proor. There are the following natural inclusions of manifolds:
<SZk+1é< AM) x Szzc+1(>;< 4AN) cC (Szkﬂz;< MP) x (SZk+1(>;< NP
U U
82k+1>G<A(MxN) C Sz"“é(MxN)"’

From properties of the Thom class (see 325 of [4]), it follows that the Thom class
for the pair in the upper line equals U’ x U (", and that it is sent to =0,
by the homomorphism #* induced by the natural inclusion of the lower line to the

upper. Therefore we have
U= (OPx U =% @T0P T 0E)==(q" 0P (@B 0§,

where p;, P, are the projections of (S2k+1 é< MP) x (S2k+1 (>;<N”) to S2k+1 é< M?, S2k+1x
G
N?. This fact proves immediately the desired result.

LemMa 3.2. Let f: N-M be a continuous map of a G-space N to a G-manifold
M, and define an equivariant map f: N—MP by
f@)=(f@), fT(@), -+, fTP(x)) (2eN).

If the action on M is free, and if f*(U)+0 for the homomorphism F*: H¥
(MP?, @M )—HE(N, NS, then we have A(f)+¢. If N is moreover a G-manifold,
we have

dim A(f)=n—(p—1)m=0.

Proor. In virtue of a commutative diagram

7%
HEMP, MP— AM)— HE(MP, dM)

HE(N, N—A(f))—HE (N, N©),

F*(O) +0 implies HZ® (N, N—A(f))+#0. Therefore A(f)+#¢. If N is a G-
manifold, we have isomorphisms

H""PB(A(f)]G) = Hnip-1;(N'[G, (N'—=A(f )]G
=H"®D(N'[G, (N'=A(f)]G)=HEPP(N', N'—A(f))
=Hg®V(N, N-A(f)),
where N'=N—N€¢. Therefore H" "P-D(A(f)/G)#0, and so dim A(f)=n—
m(p—1)=0. This completes the proof.

ProprosITION 3.3. Let f: L—M and g : L—N be continuous maps of a space
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L to G-manifolds M and N. Suppose that the action on N is free. Then if
(fP*U) (gP* U e HE+™P-D(LP, dL)
ts not zero, we have A(f, g)+#¢. If L is moreover a manifold, we have

dim A(f, g@)=pl—(p—1)(m+n)=0.

Proor. Consider 4 : LP—~Mx N defined by (1.3). Then, for the map /4 : L’—
(Mx N)? we have qRoh=f?, qtoh=g". Therefore by we have

P*(Oln) = ifz*((qi’*Uz’»f) (g:P*TU)
= (fP*U0u) (g?*U%).

This proves the desired result by Lemma 3.2

We shall prove Theorems A and B by making use of [Proposition 3.3. For
this purpose we are asked to examine the following:

(i) structure of the equivariant cohomologies H¢(X?) and H¥(X? dX) for
a compact space X.

(ii) the equivariant diagonal cohomology class Uj and the modified equi-
variant diagonal cohomology class U} for a G-manifold M.

As for (i) we have the results due to Steenrod and Thom, which are stated in
§4. Thus Theorems A and B will be proved by examining (ii), as seen in §5
and §6.

4. Preparations

In this section we shall recall some facts needed later.
Let X be a paracompact G-space. Then we have

H*(X)=lim H*(K),
H¥ (X, X = lim H*(K/G, KS/G),

where K ranges over the nerves of G-coverings of X (see Chap III, §6 and Chap
VII, §1 of [2]). For each K a cochain map

vk : C¥(K)—C*(K/G, K¢/G)
is defined by

Lpru), ($)>=Zu(T's),

where ueC*(K ), s is a simplex of K, and = : K——K/G is the projection. Thus
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we have a homomorphism

4.1 7y : H¥(X)— HE(X, X©)
defined by the cochain maps ¢x.

We define
(4.2) m : H*(X)— H§(X)

to be the composite j*om{, where j*: HE(X, X6)— HE(X) is induced by the
inclusion. It follows that m is the composite of the usual transfer H*(X)—
H*(X/G) and the canonical homomorphism H*(X/G)— H§(X).

We call # in (4.2) the transfer, and #; in (4.1) the modified transfer.

Put

a*=’_”_j:ri* s H*(X)—r H*(X).
Then it is easily seen that
4.3) T*om) =g*

for the canonical homomorphism #* : H§(X)— H*(X), and that

(4.4) 71 (ay) i (ag) = i (g - 0% ag) = 7f (0% »a)
(a1, € H*(X)). We have also
(4.5) 0@ 0*B)=0  (aeH*(X), feHEX))

for the coboundary homomorphism 6* : H¥(X¢)— HE(X, X¢).
In fact

(=D m(2) -3%(B) = F*(i*m (a) - B)
= ¥ (i*j*n1(a) -B) =0,

where * : H(X)—H(X9).
If X is a paracompact G-space, the Smith special cohomology groups H$(X)

-1
are defined for p=0=3 T% and p=7t=1—7T, and we have the exact sequences
i=0

* %

..._LHG(X)_LH%(X)@Hq(XG)

o

J
— H3* (X)) —— H™* (X)) — -
for (p, p)=(0,7) and (7, 0). We have also an isomorphism

HI(X)=H§(X, X©).
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(See p. 143 of [2].)
It follows that

(4.6) i*=(ni, 1*) : H¥(X)— H¥X, X)DH*(X6).

LeMMA 4.1. If M is a G-manifold such that the action is not trivial, then it
holds
ny : H"(M)=HE (M, M¢S).

Proor. In the exact sequence

3%

t 3
H™M 2 Hr(M)Y@H™ (M) — Hr (M),

we have H™(M)=0, H™(M)=2Zp H"(M®)=Hy(M, M—M¢)=0, and moreover
H™(M)+0 is proved as follows. Therefore we get the desired result by (4.6).
Suppose H®(M)=0. Then, by the Smith cohomology exact sequence, we see
that #*: H™(M)=H™(M) and t*: H*(M)—H™(M) 1is onto. This implies
that z* : H™"(M)— H™(M) is onto and so H™(M)=0, which is a contradiction.
For a paracompact space X, consider the equivariant cohomology H¥(X?),
where G acts on X? by cyclic permutations. Then we have the external Steenrod

p-th power operation
P: HY(X)— Hz'(XP),

which is related to the Steenrod square Sg if p=2, and to the reduced p-th power
% and the Bockstein operation §* if p#2 as follows ([15]):

4.7 d*P(a)

lal

Z:owlal—ixsqia if p=2,
[le1/2] ) ‘ _ .
hq §0 (=11 1-2iyo-1> X Lt — O 1-2iyp-»-1 X F¥*F ) if p#2,
where d* : H¥(X?)— H¥%(X)=H*(BGx X) is induced by the diagonal map, and
(=192 if g is even,
(4.8) = . .
(=@ v2((p—1)[2)! if q is odd.
P is natural, and it satisfies also

(4.9 2*P(a) =a?

for the canonical homomorphism #* : HE(X?)— H*(X?).
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LEMMA 4.2. Let M be a G-manifold, and let acH*(M) satisfy i*(e)=0 for
i* . H¥*(M)—H*(M®). Then A4*P(a) is in the image of j*: HE(M, M¢)—
H (M) induced by the inclusion.

Proor. Consider a diagram

HE (MP) H*(BGXM)
| o+ 1 Cidx i)*
HE(M, MO) o () H*(BGXMO),

in which the rectangle is commutative and the lower sequence is exact. Then it
follows from (4.7) that #*4*P(a)=(idx {)*d*P(a)=0. Therefore 4*P(a)€Imj*.

ProoF oF PrROPOSITION 2.1. We may assume that the action is non-trivial
and |a|=m/p. Consider a commutative diagram

s %k
HE (M, MS) —2—> HZ (M)

\n'!' / 17;*

H™ (M) g H™ (M)

By Lemmas [4. 1] and we see
a*4*P(a) € Im o*.
Since o*H™(M)=0 and
w* 4*P(a) = 4*(a?) =a(T*a) - (TP~ 1*q)
by (4.9), the proof completes.
The following theorem is due to Steenrod (see also [127]).
THEOREM 4.3. Let X be a compact space, and {a;}icr be a homogeneous basts
of H¥*(X). Then the totality of elements
wjP(ai)  (el, j=20),
m(ai, X Xai) (@, ip)ERUT))

is a homogeneous basis of HE(XP).

The following is due to Thom (see also [1], [11], [17D.
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THEOREM 4.4. Let X be a compact space, and {a;}ir be a homogeneous basis
of H*(X). Then the totality of elements

*(wjxa;)  (Gel, 0=i<(p—Dlai),
ni(aix Xoeee xaip) ((ih °ty iP)GR(Ig))

is a homogeneous basis of H¥%(X?,dX), where 6*: H*(BGx X)=H¥(dX) —
H¥(X?, dX) is the coboundary homomorphism. Furthermore we have

lal—1 .
T(axa)= 3 0*(@ig1-i-1 X Sqia)
1=

if p=2, and

[lel/2] .
m(aX - Xa)= .2(-) €i0*(W(p-1> g 1-207—1 X )

L=

with some €;%0 mod p if p+#2.

REMARK. Theorems and [4. 4 are proved in the literatures for a compact
polyhedron. However we can extend them to compact spaces by the device seen in

5. Proof of Theorem A,

The equivariant diagonal cohomology class U}, in case the action on M is
trivial has been studied by Haefliger. By Theorem 3.2 in his paper [6] and

6.1 2+ (0" =4 (),
we have the following (see the proof of Theorem 9.1 in [13]).

PROPOSITION 5.1. If the action on M is trivial, then
- [(m/2]
Ui =k20 -2, P(VE) + %_(Cii —ciicij)m(a; X aj)
=i <J

if p=2, and

[m/2p3

Uh=hm kg}) (=D wp-13m-2umP(Vi)

> (Ciyorvipg=Ciyoriy ***Ciprerip)T( @iy X oo+ X @)
(i, -, ip)eRUE)

if p#2, where {a:}ir is a homogeneous basis of H*(M), ci,,- i hm are those in
(2.2), (4.8), and VieH*(M) are the Wu classes given by

(Sqka, (M 1> if p=2,

Vi-a, [M]>={
(GF¥ka, [M]> if p#2.
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We shall next prove
PROPOSITION 5.2. If the action on M is free and wom€H*(M|G) is not zero,
it holds
onUl=0%(0p-pm-1 %X 1),

where p is a generator of H™(M).

PrRoOOF. Let V be an equivariant open neighbourhood of dM in M?, and put
W=M?—AM—dM, C=M?"—4AM-V.

Then C/G is a closed connected and non-compact subset of W/G, and hence we have
H™(W|G, W/G—C|G)=0 (see p. 260 of [4]). Therefore it follows that

HE*"(MP—AM, V)=HEZ*(W, W-C)=H"(W/|G, W|G—C|G)=0.
This shows that #* : HF?(M?, MP— AM)— HZ?(MP?, dM) is onto, and so is
t*o0 : HE(AM)— HGP(MP®, dM).

It follows from [Lemma 4.1 and the assumptions that HZ2(4AM)=2Z, is generated
by wm. By HZF?(MP, dM)=2Z, is generated by 6*(&p_1m X ). Since
7*00 is a homomorphism of H*(BG)-modules and it sends 1 to U%, we have the
desired result.

We shall now give

Proor orF THEOREM A. By the assumption ii) and Proposition 5.2, it holds
0n Uk =*(0cp-1yn-1 X v),
where v is a generator of H"(N). Therefore we have
on(gP*UR) =0*(0p-1>n-1 X g¥v),

and this is not zero by the assumption v) and [Theorem 4.4. Since #=(p—1)m by
the assumption iii), it holds

Op-pm(gP¥UL) #0.

On the other hand, it follows from the assumptions i), iv) and [Proposition 5. 1]
that

fp*(UIIW)=hmw(p—1)m
with 2»%%0 mod p. Consequently we have
£ - g7*(U4) = hmwp-1mg?*(U4) #0,

which completes the proof by [Proposition 3. 3.
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6. Proof of Theorem B and an example.

The following proposition has been proved in if p=2. By the similar
method we shall prove it for any p.

PROPOSITION 6.1. If i*: HI(M)—— HI(MS) is trivial for q=m/p, then we
have

U= S Chipmlai X e X aiy),
Gy, ip9ERAID)

¢i.i=0 (teD),

where {a;}ia is a homogeneous basis of H*(M), and ci,..i, are those in (2.2).
Before we proceed to proof we make some preparations.
The equivariant homology group H§(X ”)=H*(EG>(<; XP) is canonically identified

with Hy(G; Hx(X)?), the homology group of the group G with coefficients in
Hy(X)P= He( X)X Q@ Hx(X) on which G acts by cyclic permutations. Taking
the standard G-free acyclic complex W, we have an element of Hy(G; Hx(X)P)
represented by wr®a®-:-®a, where wixeW is the basis of degree £ and aeHy(X).
The corresponding element in H$(X?) will be denoted by Pk(a).

LEMMA 6.2. Suppose that i* : HI(M)—— HY(ME) is trivial for g=m/p. Then,
for any k=0 and for any acH*(M), we have
<¢01ﬁ1'm Pk+1(a"\[MD>=0

if p=2, and
<U}’vh P2k+1(a’-\[M:D>=07

Uy PorsrCa~[MD>=0
if p+2.

PROOF. Similarly to Lemma 4.4 in [13], the result for p+#2 is proved as
follows.
It follows that Po+1([M]) is in the image of

iks @ Hppay1pm(SZH1 z M?) —"Hgk+1+pm (M%)

induced by the inclusion, and that #$(U}) is the image of 1 under the homomor-
phism
(id(>3< ) : H*(SZ"”éM)——»H*(SZ"*lg MP).

From these facts we see that Ul —~Po+1([M]) is in the image of
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l.k* A* ¢
Hék+1+m(52k+1 >C<; M)‘—"Hgk+1+m (M)—””sz+1+m (Mp)-

Therefore it follows that

Oy Psa(@an[MD)>=<Dy P ~Poiss (MD)>
=<P(@, UlemPoenr((MD) =8CP(e), dain[ SP+1X M1

= {d*P(a), ir[ SZ**? x M1  (eeZp),

and similarly

$an Uty Popsr(a~[M1)> =6 4¥P(a), ipa[S2+1 >é M.

To prove the desired two equalities, we may suppose pla|=m+1 in the first,
and pla|=m in the second. Consequently it suffices to prove that

4*P(a)=0 if plaj=m+1,
0, 4*P(a)=0 if plaj=m.
By 4*P(a) and @;4*P(a) are in the image of 7* : H%(M, M¢)——

H¥(M), and the Smith cohomology exact sequence implies H&(M, M¢)=0 (g>m).
Therefore we have the desired results, and the proof completes.

Proor oF ProposiTioN 6.1. In virtue of it can be written
uniquely that

Uh=ZioiPlad+ 3 pieimla X Xai,)
L%

(i1, i) eRUD)
with some &;j, 7;,..i,€Zp. Since it is easily seen that
Im my~Pr(a)=0,
{wjP(), Pr(a))>=0jila, @y

(ae H*(M), ac Hx(M)), it follows from that &;=0. We see from (5.1)
that 7i-i,=Ciyip if 4y, o+, 1p)ERIY) and ci..;i=0 for any iel. This completes the
proof.

REMARK 1. Working in the smooth category, Hattori has given formulae
for U}, with no assumption on MG.
The following is immediate from [Proposition 6.1 and Theorem 4. 5.

PROPOSITION 6.3. If the action on M is free, then it can be written uniquely
that
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U/'(fz(- z; R(I?)Ci"""p 7y (e, X - X atip)
1,4, ip € I

+ > 0% (W(p-1ym—ye;1-1 X ;)
l@; | 2m—m/p

with some €.€2Z5.

REMARK 2. The author does not know how to determine ¢; in the above. If
M is a mod p homology sphere, it follows from Propositions 5.2 and 6.3 that

o [mQxp) if p=2,
U=
T(IX pX oo X p) +e0*(@p-pm-1 X ) if  p#2,
where ¢#0 mod p, and pe H™(M) is a generator such that {g, [M]>=1.
We shall now give

Proor or THEOREM B. By the assumption i) and [Proposition 6.1 we have

Pk}, =m f*P Ciroi, O, X oo Xai.),
f M f ((i.,---,%eRU%’) 1yeer1p Uz, lp)

and by the assumption ii) and Proposition 6.3 we have

O =mg*( S dii Bi X X Bi)
ETERERETR G Serap “’

+ > ;0% (w(p_yn—18;1-1 X g*Bi).
|Bjlzn—n/p

It follows from (5.1) and [Proposition 6.1 that

0*(_ Z): R(II')Cilmipail XX aip:A!Cl)’
11, 2p € °

o* = djy, e, jpBiy X o+ X Bjy= A1 (D).
Guo f3eRGEy I ’

Thus, by (4.4), (4.5) and the assumption ii), we have
(frU - (gr*UD

— *p fyeed i X Xay *PA_ 1
m(f (il,...,fgéze(lz;)c’ e ;) (g*7 4 (1))

=m(f*r4))(g* X djr, e, By X 00 X Bjp)

(G, ip)eRGE)

in HE'(L?, dL).
It follows from that HBY(L?, dL)=Z, is generated by 6*(&(p-13i-1 X
p) or m(pX-xp), where pe H'(L) is a generator such that <{p, [L]>=1.
Consequently we have

(U (gr* UL =2(f, ©mi(px - X p)
=(f, Dri(px - xp),
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which completes the proof by [Proposition 3. 3.

Theorem B for p=2, particularly corollary 3 in § 2, has interesting applications as
is seen in [18]. The author does not know so interesting applications of Theorems
B for p#2. However there is the following example for which Theorem B for p=

3 is applicable.
Let #=1,3 or 7, and take in Theorem B

L=S"xS", M=S"xS", N=S",
where the action on N is any free G-action, and action on M is given as follows:
T2, y)=Cy, y7lz7b),

%, ¥y being complex numbers, quaternions or Cayley numbers according as #=1,3 or
7. It follows that the fixed point set of M is homeomorphic to S™!+point. Thus
the assumptions i), ii), iii) in Theorem B are satisfied.

Let veH"(S™) denote a generator, and put v;=vXx 1, v,=1xveH"(S"xS™). Then,
by Remark 3 in §2, it can be seen that

41(1) =0%(1 X vy X vy — ) X vy X v1vs — vg X Up X v1vs— vg X vp X V1V5)
for the homomorphism 4, : H*(M)—xg *(M?), and
4(1)=0*(1xyxXv)

for the homomorphism 4;: H*(N)——H*(N3). Therefore, if continuous maps
f:L—M, g: L—N satisfy

f*())z) =iy + Qiovs, g*(u) = b]_lJl + bz))z

| )

This yields by Theorem B the following

THrEOREM 6.4. Let #n=1,3 or 7, and let fi, fo, g : S"xS"——S" be continuous
maps of tybe (@u, @1z), (@1, @), (by, by) respectively. Let T:S"—S" be a
homomorphism of period 3 without fixed points. Then, if

|

there exist z, y, zeS"x S™ such that

(f2(®), f2(9), f2(2))=([i(y), f,(2), fi(®)),

(aij, bieZs), simple calculation shows
Q11 Giz| (|G G2

by b,

a3 Ao

by by

2(f, 8=

Aoy Ao

ay1 Qiz| [|G11 Cr2

by b,

Az Qg

by b

)520 mod 3,
Q1 Gy
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(Tg(®), Tg(y), Tg(2))=(g(y), g(2), g(x)),
H@ AW fr()=1.

In particular, taking f;=projection to the i-th factor, we have

COROLLARY. If b;+b,%0 then there exist z, y, zeS™ such that

Tglx, y)=gy, 2), Tgly, 2)=g(z, z), zyz=1,

where n, g and T are those in Theorem 6. 4.
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