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1. Introduction.
This paper is a continuation of my previous paper [13], and is concemed with

generalizations of the following two classical theorems on a continuous map $f$ of an
n-sphere $S^{n}$ to itself.

THEOREM 1.1. If the degree of $f$ is even then there exists $x\in S^{n}$ such that
$f(-x)=f(x)$ .

THEOREM 1.2. If the degree of $f$ is odd then there exists $x\in S^{n}$ such that
$f(-x)=-f(x)$ .

Throughout this paper, a prime $p$ is fixed, and $G=\{1, T, \cdots, T^{p-1}\}$ will denote
a cyclic group of order $p$ .

Generalizing the situation in the above theorems, we shall consider the follow-
ing problems.

PROBLEM 1. Let $f:N\rightarrow M$ be a continuous map between G-spaces. Under what
conditions does $f$ have an equivariant point, i.e., a point $x\in N$ such that

(1. 1) $f(T^{i}x)=T^{i}f(x)$

for $i=1,2,$ $\cdots,$ $p-1$ ?

PROBLEM 2. Let $f:L\rightarrow M$ and $g:L\rightarrow N$ be continuous maps of a space $L$ to
$G\cdot spacesM$ and N. Under what conditions do there exist $p$ points $x_{1},$ $\cdots,$

$x_{p}\in L$

such that

(1. 2) $f(x_{i+1})=T^{i}f(x_{1}),$ $g(x_{i+1})=T^{i}g(x_{1})$

for $i=1,2,$ $\cdots,$ $p-1$ ?
We shall denote by $A(f)$ the set of points $x\in N$ satisfying (1. 1), and by $A(f, g)$

the set of points $(x_{1}, \cdots, x_{p})\in L^{p}$ satisfying (1.2).

If $L=N$ in Problem 2, then $A$ ( $f$, id) may be identified with $A(f)$ . Therefore
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Problem 2 is more general than Problem 1; still Problem 2 can be reduced to
Problem 1. In fact, if we define $h:L^{p}\rightarrow M\times N$ by

(1. 3) $h(x_{1}, \cdots, x_{p})=(f(x_{1}), g(x_{1}))$ $(x_{i}\in L)$ ,

and regard $L^{p}$ and $M\times N$ as G-spaces by cyclic permutations and the diagonal action
respectively, then we have $A(h)=A(f, g)$ .

Throughout this paper, a manifold will always mean a compact connected
topological manifold which is assumed to be oriented if $p$ is odd. The dimension
of manifolds $M,$ $N,$ $\cdots$ will be denoted by $m,$ $n,$ $\cdots$ . By a $G\cdot manifold$ is meant a
manifold on which $G$ acts topologically.

In this paper we shall consider Problems 1 and 2 in case $M$ and $N$ are $G$.

manifolds. Some answers have been obtained by Conner-Floyd [3], Munkholm [10],

Fenn [5], Lusk [8] and others with respect to generalizations of Theorem 1.1, and

by Milnor [9] and the author [13] with respect to generalizations of Theorem 1.2.
By pushing the line of [13] we shall prove in this paper more general results.

Throughout this paper the cohomology stands for the $\check{C}ech$ cohomology and it
takes coefficients from $Z_{p}$ , the group of integers $mod p$ .

2. Theorems

In this section we shall state our main theorems answering to Problem 2 and
then corollaries answering to Problem 1. The main theorems will be proved in \S 5

and \S 6.
Let $\omega k\in H^{k}(BG)(k=0,1, \cdots)$ denote the usual generators, where $BG$ is the

classifying space for $G$ . If $X$ is a paracompact space on which $G$ acts freely,
$H^{*}(X/G)$ can be regarded as an $H^{*}(BG)\cdot module$ via the homomorphism induced
by a classifying map of $X$; in particular we have $\omega k=\omega k1\in H^{k}(X/G)$ .

The first main theorem is stated as follows, and it generalizes Theorem 1. 1
(see Remark 1 below).

THEOREM A. Let $f:L\rightarrow M$ and $g:L\rightarrow N$ be continuous maps of a compact
space $L$ to G-manifolds $M$ and A. Suppose that

i) the action on $M$ is trivial;

ii) the action on $N$ is free and $\omega_{n}\in H^{n}(N/G)$ is not zero;

iii) $n\geqq(p-1)m$ ;
iv) $f^{*}$ : $H^{q}(M)\rightarrow H^{q}(L)(q>0)$ is trivial;

v) $g^{*}$ : $H^{n}(N)\rightarrow H^{n}(L)$ is not trivial.
Then we have $ A(f, g)\neq\phi$ ; if $L$ is moreover a manifold, we have

$\dim A(f, g)\geqq pl-(p-1)(m+n)\geqq 0$ ,
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where $\dim$ A denotes the covering dimension of $A$ .
Putting $L=N$ and $g=id$ , we get

COROLLARY. Let $f:N\rightarrow M$ be a continuous map of a G-manifold $N$ to a
manifo $ld$ M. Suppose that

i) the action on $N$ is free and $\omega_{n}\in H^{n}(N/G)$ is not zero;
ii) $f^{*}$ : $H^{q}(M)\rightarrow H^{q}(N)(q>0)$ is trivial.

Then we have

$\dim A(f)\geqq n-(p-1)m$ ,

where $M$ is regarded as a G-manifold by the trivial action.

REMARK 1. Taking

$N=amod p$ homology n-sphere

in the above corollary, we have the results due to Conner-Floyd [3], Munkholm
[10] and the author [12], which are direct generalizations of Theorem 1.1.

REMARK 2. Taking

$L=N=a$ mcd $p$ homology $n\cdot sphere$ ,

$M=S^{m},$ $\deg f=0,$ $\deg g\not\equiv Omod p$

in Theorem $A$ , we have the results due the to Fenn [5] and Lusk [8].

To state the second main theorem and its corollaries, we shall make some
preparations.

For any indexing set $I$, consider the complement $I_{0}^{p}=I^{p}-dI$ of the diagonal in
$I^{p}$, and define $(i_{1}, \cdots, i_{p}),$ $(i_{1}^{\prime}, \cdots, i_{p})\in I_{0}^{p}$ to be equivalent if $(i_{1}^{\prime}, \cdots, i_{p}^{\prime})$ is a cyclic
permutation of $(i_{1}, \cdots, i_{p})$ . We denote by $R(I_{0}^{p})$ a set of representatives of the
equivalent classes.

Let $f$ : $L\rightarrow M$ and $g$ : $L\rightarrow N$ be continuous maps of a manifold $L$ to G-manifolds
$M$ and $N$. Given homogeneous bases $\{\alpha i\}_{i^{\epsilon}l},$ $\{\beta_{j}\}_{j^{\epsilon}J}$ of $H^{*}(M),$ $H^{*}(N)$ and sets
$R(I_{0}^{p}),$ $R(J_{0}^{p})$ , we define $\lambda(f, g),$ $\lambda^{\prime}(f, g)\in Z_{p}$ as follows.

Define $\Delta$ : $M\rightarrow M^{p}$ by

(2. 1) $\Delta(x)=(x, Tx, \cdots, T^{P-1}x)$ $(x\in M)$ ,

and put

(2. 2)
$\Delta_{!}(1)=\sum_{(i_{1},\cdots.i_{p})\in Ip}Ci_{1}\cdots i_{p}\alpha i_{1}\times\cdots\times\alpha i_{p}$

$(ci_{1}\cdots i_{p}\in Z_{p})$

for the Gysin homomorphism $\Delta_{\int}$ : $H^{*}(M)\rightarrow H^{*}(M^{p})$ .
Similarly, put
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$\Delta_{!}(1)=\sum_{(j_{1},\cdots,j_{p})\in\int^{p}}d_{j_{1}\cdots j_{p}}\beta_{j_{1}}\times\cdots\times\beta_{j_{p}}$
$(d_{j_{1}\cdots j_{p}}\in Z_{p})$

for the homomorphism $\Delta_{!}$ : $H^{*}(N)\rightarrow H^{*}(N^{p})$ .
We define

$\lambda(f, g)=\langle(f^{*p},\cdots\sum_{(i_{1\prime}i_{p})\in R(J_{0}^{p})}Ct_{1}\cdots i_{p}\alpha i_{1}\times\cdots\times\alpha i_{p})(g^{*p}\Delta_{!}(1)), [L]^{p}\rangle$
,

$\lambda^{\prime}(f, g)=\langle(f^{*p}\Delta_{!}(1))(g^{*p}\sum_{(j_{1}.\cdots.j_{p})\in R(J_{0}^{p})}d_{j_{1}\cdots j_{p}}\beta_{j_{1}}\times\cdots\times\beta_{j_{p}}), [L]^{p}\rangle$
.

Obviously we have $\lambda(f, g)=\lambda^{\prime}(g, f)$ .
If $L=N$ and $g^{*}=id$ , we write $\lambda(f)=\lambda(f, g)$ . It follows that

$\lambda(f)=\sum_{(i_{1},\cdots,i_{p})\in R(I_{0}^{p})}Ci_{1}\cdots i_{p}\langle(f^{*}\alpha;_{1})(T^{*}f^{*}\alpha i_{2})\cdots(T^{*p-1}f^{*}\alpha i_{p}), [N]\rangle$
.

REMARK 3. By the definition of $\Delta_{!}$ we have

$\langle\Delta^{*}(\alpha k_{1}\times\cdots\times\alpha k_{p}), [M]\rangle=\langle(\alpha k_{1}\times\cdots\times\alpha k_{p})\Delta_{!}(1), [M]^{p}\rangle$ .

From this we get

(2. 3)
$yk_{1}\cdots k_{p}=\sum_{(i_{1},\cdots,i_{p})\in I^{p}}(-1)^{\epsilon(i_{1}\ldots..i_{p},k_{1}\ldots.,k_{p})}ci_{I}\cdots i_{p}Zk_{1}i_{1}$

$Zk_{p}i_{p}$

where

$yk_{1}\cdots k_{p^{=\langle\alpha k_{1}(T^{*}\alpha)\cdots(T^{*p-1}\alpha)}}k_{2}k_{p}$ $[M]\rangle$ ,

$ Zki=\langle\alpha k\alpha i[M]\rangle$ ,

$p-1$

$\epsilon(i_{1}, \cdots, i_{P}, k_{1}, \cdots, k_{p})=\sum|\alpha i_{c}|(|\alpha k_{s+1}s=1|+\cdots+|\alpha k_{p}|)$ ,

being $|\alpha|=\deg\alpha$ . The relations (2.3) for $(k_{1}, \cdots, k_{p})\in I^{p}$ characterize the coefficients
$Ci\ldots.i_{p}$ ([6]). In particular, if $p=2$ we see that the matrix $(c_{ij})$ is the inverse of
the matrix $(yij)$ .

Now the second main theorem is stated as follows, and it generalizes Theorem
1.2 (see Remark 5 below).

THEOREM B. Let $f:L\rightarrow M$ and $g$ : $L\rightarrow N$ be continuous maps of a manifold $L$

to G-manifolds $M$ and N. Suppose that
i) $;*$ : $H^{q}(M)\rightarrow H^{q}(M^{G})$ is trivial for $q\geqq m/p$ , where $M^{G}$ is the fixed point

set of $M$, and $i$ is the inclusion;

ii) the action on $N$ is free;
iii) $pl=(p-1)(m+n)$ .

Then $\lambda(f, g)$ and $\lambda^{\prime}(f, g)$ are independent of the choices of $\{\alpha i\}_{i^{\epsilon}I},$ $\{\beta_{j}\}_{i^{\epsilon J}},$ $R(I_{0}^{p})$ ,
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$R(J_{0}^{p})$ , and we have $\lambda(f, g)=\lambda^{\prime}(f, g)$ ; If $\lambda(f, g)\neq 0$ we have $ A(f, g)\neq\phi$ .

Putting $L=N$ and $g=id$ in Theorem $B$ we have

COROLLARy 1. Let $f:N\rightarrow M$ be a continuous map between G-manifolds, and
suppose that

i) $i^{*}$ : $H^{q}(M)\rightarrow H^{q}(M^{G})$ is trivial for $q\geqq m/p$ ;
ii) the action on $N$ is free;
iii) $n=(p-1)m$ .

Then $\lambda(f)$ is independent of the choices of $\{\alpha\iota\}_{i^{\epsilon}J}$ and $R(I$ ” $)$ , and if $\lambda(f)\neq 0$ we
have $ A(f)\neq\phi$ .

Put $L=M$ and $f=id$ in Theorem $B$ , and replace the notations $M,$ $N,$ $g$ by $N$,
$M,$ $f$ respectively. Then we get

COROLLARy 2. Let $f:N\rightarrow M$ be a continuous map between G-manifolds, and
suppose that

i) $i^{*}$ : $H^{q}(N)\rightarrow H^{q}(N^{G})$ is trivial for $q\geqq n/p$ ;
ii) the action on $M$ is free;
iii) $n=(p-1)m$ .

Then the same conclusions as in Corollary 1 hold.

REMARK 4. The above two corollaries for $p=2$ have been obtained in [13].

The following proposition will be proved in \S 4 (see p. 407 of [2] for $p=2$).

PROPOSIrION 2.1. If $M$ is a G-manifold such that $i^{*}$ : $H^{m/p}(M)\rightarrow H^{m/p}(M^{G})$

is $t$ nvial, then

$\langle\alpha(T^{*}\alpha)\cdots(T^{*p-1}\alpha), [M]\rangle=0$ $(\alpha\in H^{*}(M))$ .
Let $M$ be the one in Proposition 2. 1 for $p=2$ . Then, the proposition and the

Poincar\’e duality show that $H^{*}(M)$ has a homogeneous basis $\{\mu_{1}, \cdots, \mu_{r}, \mu_{1}^{\prime}, \cdots, \mu_{r^{r}}\}$

such that

$\langle\mu i(T^{*}\mu k), [M]\rangle=0,$ $\langle\mu_{i}^{\prime}(T^{*}\mu_{k^{\prime}}), [M]\rangle=0,$ $\langle\mu i(T^{*}\mu_{k^{\prime}}), [M]\rangle=\delta_{ik}$ .

In terms of this basis we see that

$\lambda(f)=\sum_{i=1}^{r}\langle(f^{*}\mu i)(T^{*}f^{*}\mu_{i}^{\prime}), [N]\rangle$

if $p=2$ . In particular, if $M=N$ and $f^{*}=id$ then $\lambda(f)$ equals the semi-characteristic

$\chi_{1/2}(M)=\dim H^{*}(M)/2mod 2$ .
Thus, for $p=2$ we have the following
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COROLLARY 3. Let $M$ be a manifold with a free involution $T$, and assume
$\chi_{1/2}(M)\neq 0$ . Let $f,$ $g:M\rightarrow M$ be continuous maps such that $ f^{*}=g^{*}=id:H^{*}(M)\rightarrow$

$H^{*}(M)$ . Then there exist $x,$
$x^{\prime}\in M$ such that $f(x^{\prime})=Tf(x)$ and $g(x^{\prime})=Tg(x)$ . In

particular, there exists a point $x\in M$ such that $fT(x)=Tf(x)$ .

REMARK 5. Taking

$M=amod 2$ homology m-sphere

in Corollary 3, we have the result due to Milnor [9], which is a direct generaliza-
tion of Theorem 1.2.

3. Method.

In this section we shall explain how to prove Theorems A and B.
Let $M$ be a $G\cdot manifold$ . If we regard $M^{p}$ as a G-manifold by cyclic permutations,

the map $\Delta$ : $M\rightarrow M^{p}$ in (2.1) is an equivariant embedding. Regard $S^{2k+1}$ as a $G$.
manifold by the standard free action. Then we have a pair $(\mathscr{S}^{k+1}\times M^{p}, S^{2k+1}\times\Delta M)GG$

of manifolds, and hence the Thom isomorphism

$\theta_{k}$ : $H^{q}(S^{2k+1}\times\Delta M)c\cong H^{qp_{-1)}m}+((S^{2k+1}\times c(M^{p}, M^{p}-\Delta M))$

which is the composite of the duality isomorphisms for $\mathscr{S}^{k+1}\times\Delta Mc$ and for $(S^{2k+1}\times G$

$M^{p},$ $\mathscr{S}^{k+1}\times\Delta M$ )
$c$

(see p. 353 of [14]). We denote the Thom class $\theta_{k}(1)$ by $\hat{U}^{(k)}$ .
The isomorphisms $\theta_{k}$ for sufficiently large $k$ define the Thom isomorphism

$\theta$ : $H_{G}^{q}(\Delta M)\cong H8^{+(p_{-1)}m}(M^{p}, M^{p}-\Delta M)$

of the equivariant cohomology. The element $\theta(1)$ is denoted by $\hat{U}_{M}$ , and is called
the equivariant fundamental cohomology class of $M$.

The image of $\hat{U}_{M}$ in $H_{G^{m_{(}p-1)}}(M^{p})$ is denoted by $\hat{U}_{M}^{\prime}$ , and is called the
equivariant diagonal cohomology class of $M$.

If the action of $G$ on $M$ is free, the diagonal set $dM$ is in $M^{p}-\Delta M$. In this
case the image of $\hat{U}_{M}$ in $H_{G}^{m_{(}p-1)}(M^{p}, dM)$ is denoted by $\hat{U}_{Jv}^{\prime\prime}$ , and is called the

modified equivariant diagonal cohomology class of $M$.

LEMMA 3. 1. Let $M$ and $N$ be G-manifolds, and regard $M\times N$ as a $G\cdot manifold$

by the diagonal action. If the action on $N$ is free, we have

$\hat{U}_{M\times N}^{\prime\prime}=\pm(q_{1}^{P*}\hat{U}_{M}^{\prime})(q_{2}^{P*}\hat{U}_{N}^{\prime})$ ,

where $q_{1}^{P*}:$ $H_{G}^{*}(M^{p})\rightarrow H_{G}^{*}((M\times N)^{p})$ and $q_{2}^{P*}$ : $H_{G}^{*}(N^{p}, dN)\rightarrow H_{G}^{*}((M\times N)^{p},$ $ d(M\times$

$N))$ are induced by the projections $q_{1}$ : $M\times N\rightarrow M,$ $q_{2}$ : $M\times N\rightarrow N$.
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PROOF. There are the following natural inclusions of manifolds:

$(S2k+1_{G}\times\Delta M)\times S^{2k+1}\times\Delta N)c$
$\subset$

$(S^{2k+1}\times M^{p})\times c(S^{2k+1}\times N^{p})c$

$\cup$ $\cup$

$S^{2k+1}\times\Delta(M\times N)c$
$\subset$

$S^{2k+1}\times(M\times N)^{p}G$

From properties of the Thom class (see 325 of [4]), it follows that the Thom class
for the pair in the upper line equals $\pm\hat{U}_{M}^{(k)}\times\hat{U}_{N}^{(k)}$ , and that it is sent to $\pm\hat{U}_{M\times N}^{(k)}$

by the homomorphism $;*$ induced by the natural inclusion of the lower line to the
upper. Therefore we have

$\hat{U}_{M\times N}^{(k)}=\pm i^{*}(\hat{U}_{M}^{(k)}\times\hat{U}_{N}^{(k)})=\pm i^{*}(p_{1}^{*}\hat{U}_{M}^{(k)}\cdot p_{2}^{*}\hat{U}_{N}^{(k)})=\pm(q_{1}^{p*}\hat{U}_{M}^{(k)})(q_{2}^{p*}\hat{U}_{N}^{(k)})$ ,

where $p_{1},$ $p_{2}$ are the proiections of $(S^{2k+1_{G}}\times M^{p})\times(S2k+1_{G}\times N^{p})$ to $S^{2k+1_{GG}}\times M^{p},$
$ S^{2k+1}\times$

$N^{p}$ . This fact proves immediately the desired result.

LEMMA 3. 2. Let $f:N\rightarrow M$ be a continuous map of a G-space $N$ to a G-manifold
$M$, and define an equivariant map $\hat{f}:N\rightarrow M^{p}$ by

$\hat{f}(x)=(f(x), fT(x),$
$\cdots,$ $fT^{p-1}(x))(x\in N)$ .

If the action on $M$ is free, and if $f*(\hat{U}_{M}^{\prime\prime})\neq 0$ for the homomorphism $\hat{f}^{*}$ : $H_{G}^{*}$

$(M^{p}, dM)\rightarrow H_{G}^{*}(N, N^{G})$ , then we have $ A(f)\neq\phi$ . If $N$ is moreover a G-manifo $ld$,
we have

$\dim A(f)\geqq n-(p-1)m\geqq 0$ .

PROOF. In virtue of a commutative diagram

$H^{*}(M,M_{*}^{p}-\Delta M)^{\underline{\underline{i_{i^{*_{*}}}}}}H_{G}(M^{p}H_{G}^{G_{*}}(N^{p}N-A(f))H_{G}^{*^{*}}(N,N)\downarrow\hat{f}\downarrow\hat{f_{G}^{d_{*}M)}}$

$f*(\hat{U}_{M}^{\prime\prime})\neq 0$ implies $H_{G}^{m(p-1)}(N, N-A(f))\neq 0$ . Therefore $ A(f)\neq\phi$ . If $N$ is a G-
manifold, we have isomorphisms

$H^{n-mp}(-1)(A(f)/G)\cong H_{m(p-1)}(N^{\prime}/G, (N^{\prime}-A(f))/G)$

$\cong H^{m}(p-1)(N^{\prime}/G, (N^{\prime}-A(f))/G)\cong H_{G}^{m(p-1)}(N^{\prime}, N‘ -A(f))$

$\cong H_{G}^{m(p-1)}(N, N-A(f))$ ,

where $N^{\prime}=N-N^{G}$ . Therefore $H^{n-m}(P-1)(A(f)/G)\neq 0$ , and so $\dim A(f)\geqq n-$

$m(p-1)\geqq 0$ . This completes the proof.

PROPOSITION 3.3. Let $f:L\rightarrow M$ and $g:L\rightarrow N$ be continuous maps of a space
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$L$ to G-manifolds $M$ and N. Suppose that the action on $N$ is free. Then if
$(f^{p*}\hat{U}_{M}^{\prime})(g^{p*}\hat{U}_{N}^{\prime\prime})\in H_{G}^{(+)(p-1)}mn(L^{p}, dL)$

is not zero, we have $ A(f, g)\neq\phi$ . If $L$ is moreover a manifold, we have

$\dim A(f, g)\geqq pl-(p-1)(m+n)\geqq 0$ .

PROOF. Consider $h:L^{p}\rightarrow M\times N$ defined by (1.3). Then, for the map $\hat{h}$ : $ L^{p}\rightarrow$

$(M\times N)^{p}$ we have $q_{1}^{p}\circ\hat{h}=f^{p},$ $q_{2}^{p}\circ\hat{h}=g^{p}$ . Therefore by Lemma 3. 1 we have

$\hat{h}^{*}(\hat{U}_{M^{\prime}\times N}^{\prime})=\pm\hat{h}^{*}((q_{1}^{P*}\hat{U}_{M}^{\prime})(q_{2^{p*}}\hat{U}_{N}^{\prime\prime}))$

$=\pm(f^{p*}\hat{U}_{M})(g^{p*}\hat{U}_{N^{\prime}}^{\prime})$ .

This proves the desired result by Lemma 3.2.
We shall prove Theorems A and $B$ by making use of Proposition 3.3. For

this purpose we are asked to examine the following:
(i) structure of the equivariant cohomologies $H_{G}^{*}(X^{p})$ and $H_{G}^{*}(X^{p}, dX)$ for

a compact space $X$.
(ii) the equivariant diagonal cohomology class $\hat{U}_{M}^{\prime}$ and the modified equi $\cdot$

variant diagonal cohomology class $\hat{U}_{M}^{\prime\prime}$ for a G-manifold $M$.
As for (i) we have the results due to Steenrod and Thom, which are stated in

\S 4. Thus Theorems A and $B$ will be proved by examining (ii), as seen in \S 5
and \S 6.

4. Preparations

In this section we shall recall some facts needed later.
Let $X$ be a paracompact G-space. Then we have

$H^{*}(X)=\lim H^{*}(K)$ ,

$H_{G}^{*}(X, X^{G})=-\lim H^{*}(K/G, K^{G}/G)$ ,

where $K$ ranges over the nerves of G-coverings of $X$ (see Chap III, \S 6 and Chap
VII, \S 1 of [2]). For each $K$ a cochain map

$\varphi_{K}$ : $C^{*}(K)-C^{*}(K/G, K^{G}/G)$

is defined by

$\langle\varphi_{K}(u), \pi(s)\rangle=\sum_{i=0}^{p-1}u(T^{i}s)$ ,

where $u\in C^{*}(K),$ $s$ is a simplex of $K$, and $\pi$ : $K-K/G$ is the projection. Thus
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we have a homomorphism

(4. 1) $\pi_{1}^{\prime}$ : $H^{*}(X)-H_{G}^{*}(X, X^{G})$

defined by the cochain maps $\varphi K$ .
We define

(4. 2) $\pi|$ : $H^{*}(X)-H_{G}^{*}(X)$

to be the composite $j^{*}\circ\pi_{!^{\prime}}$ , where $j^{*}$ : $H_{G}^{*}(X, X^{G})-H_{G}^{*}(X)$ is induced by the
inclusion. It follows that $\pi!$ is the composite of the usual transfer $H^{*}(X)-$

$H^{*}(X/G)$ and the canonical homomorphism $H^{*}(X/G)-H_{G}^{*}(X)$ .
We call $\pi!$ in (4.2) the transfer, and $\pi^{\prime}|$ in (4.1) the modified transfer.
Put

$\sigma^{*}=\sum_{i=0}^{P-1}T^{i*}$ : $H^{*}(X)-H^{*}(X)$ .
Then it is easily seen that

(4. 3) $\pi^{*}\circ\pi_{1}=\sigma^{*}$

for the canonical homomorphism $\pi^{*}$ : $H_{G}^{*}(X)-H^{*}(X)$ , and that

(4. 4) $\pi|(\alpha_{1})\cdot\pi_{!^{\prime}}(\alpha_{2})=\pi_{!^{\prime}}(\alpha_{1}\cdot\sigma^{*}\alpha_{2})=\pi[(\sigma^{*}\alpha_{1}\cdot\alpha_{2})$

$(\alpha_{1}, \alpha_{2}\in H^{*}(X))$ . We have also

(4. 5) $\pi_{1}(\alpha)\cdot\delta^{*}(\beta)=0$ $(\alpha\in H^{*}(X), \beta\in H_{G}^{*}(X^{G}))$

for the coboundary homomorphism $\delta^{*}$ : $H_{G(X^{G})H_{G}^{*}(X,X^{G})}^{*-}$ .
In fact

$(-1)^{|\alpha|}\pi_{1}(\alpha)\cdot\delta^{*}(\beta)=\delta^{*}(i^{*}\pi_{1}(\alpha)\cdot\beta)$

$=\delta^{*}(i^{*}j^{*}\pi](\alpha)\cdot\beta)=0$ ,

where $;*$ : $H_{G}^{*}(X)-H_{G}^{*}(X^{G})$ .
If $X$ is a paracompact $G\cdot space$ , the Smith special cohomology groups $H_{\rho}^{*}(X)$

are defined for $\rho=\sigma=\sum_{i=0}^{p-1}T^{i}$ and $\rho=\tau=1-T$, and we have the exact sequences

... $\underline{\rho^{*}}\underline{i_{\rho}^{*}}H^{q}(X)H_{p}^{q}(X)\oplus H^{q}(X^{G})$

$\underline{\delta_{\rho}^{*}}\underline{jf}H_{\rho^{+1}}^{q}(X)H^{q+1}(X)-\cdots$

for $(\rho, \overline{\rho})=(\sigma, \tau)$ and $(\tau, \sigma)$ . We have also an isomorphism

$H_{0}^{*}\cdot(X)\cong H_{G}^{*}(X, X^{G})$ .
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(See p. 143 of [2].)

It follows that

(4. 6) $i_{r}^{*}=(\pi^{\prime}!, i^{*})$ : $H^{*}(X)$ $H*(X, X^{G})\oplus H^{*}(X^{G})$ .

LEMMA 4. 1. If $M$ is a G-manifold such that the action is not trivial, then it
holds

$\pi^{\prime}!$ : $H^{m}(M)\cong H_{G}^{m}(M, M^{G})$ .

PROOF. In the exact sequence

$H^{m}(M)H_{a}^{m,}(M)\oplus H^{m}(M^{G})H_{r}^{m+1}(M)\underline{i_{r}^{*}}\delta_{f}^{*}$

we have $H_{f}^{m+1}(M)=0$ , $H^{m}(M)\cong Z_{p},$ $H^{m}(M^{G})\cong H_{0}(M, M-M^{G})=0$ , and moreover
$H_{\sigma}^{m}(M)\neq 0$ is proved as follows. Therefore we get the desired result by (4.6).

Suppose $H_{\sigma}^{m}(M)=0$ . Then, by the Smith cohomology exact sequence, we see
that $i_{\sigma}^{*}$ : $H^{m}(M)\cong H_{r}^{m}(M)$ and $T^{*}$ : $H_{r}^{m}(M)-H^{m}(M)$ is onto. This implies

that $T^{*}:$ $H^{m}(M)-H^{m}(M)$ is onto and so $H^{m}(M)=0$ , which is a contradiction.
For a paracompact space $X$, consider the equivariant cohomology $H6(X^{p})$ ,

where $G$ acts on $X^{p}$ by cyclic permutations. Then we have the extemal Steenrod
p-th power operation

$P:H^{q}(X)-H_{G}^{pq}(X^{p})$ ,

which is related to the Steenrod square $Sq^{i}$ if $p=2$ , and to the reduced p-th power
$\mathscr{S}^{i}$ and the Bockstein operation $\beta^{*}$ if $p\neq 2$ as follows ([15]):

(4.7) $d^{*}P(\alpha)$

$=\{_{h_{q}}^{\sum_{i}^{|\alpha|}\omega_{\alpha^{|\alpha|-i\times Sq_{i}^{i}\alpha ifp=2}}}\sum_{i=0}^{=0_{[||/2]}}(-1)(\omega_{(|\alpha|-2i)(p-1)}\times \mathscr{S}^{i}\alpha-\omega_{(|\alpha|-2i)(p-1)-1}\times\beta^{*}\mathscr{S}^{i}\alpha)$

if $p\neq 2$ ,

where $d*:H_{G}^{*}(X^{p})-H_{G}^{*}(X)=H^{*}(BG\times X)$ is induced by the diagonal map, and

(48) $h_{q}=\dagger_{(-1)^{(q-1)/2}((p-1)/2)!if}^{(-1)^{q/2}ifqiseven}$

$q$ is odd.

$P$ is natural, and it satisfies also

(4. 9) $\pi^{*}P(\alpha)=\alpha^{p}$

for the canonical homomorphism $\pi;H\S(X^{p})H^{*}(X^{p})$ .
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LEMMA 4.2. Let $M$ be a G-manifold, and let $\alpha\in H^{*}(M)$ satisfy $i^{*}(\alpha)=0$ for
$i^{*}$ : $H^{*}(M)-H^{*}(M^{G})$ . Then $\Delta^{*}P(\alpha)$ is in the image of $j^{*}:$ $H_{G}^{*}(M, M^{G})-$

$H\mathfrak{F}(M)$ induced by the inclusion.

PROOF. Consider a diagram

$H_{G}^{*}(M^{P})$
$\underline{d^{*}}H^{*}(BG\times M)$

$ H_{G}^{*}(M, M^{G})\underline{j^{*}}H_{G}^{*}(M^{*})\downarrow\Delta$ $\underline{i^{*}}H^{*}(BG\times M)I^{(id\times_{G}i)^{*}}$

in which the rectangle is commutative and the lower sequence is exact. Then it
follows from (4.7) that $i^{*}\Delta^{*}P(\alpha)=(id\times i)^{*}d^{*}P(\alpha)=0$ . Therefore $\Delta^{*}P(\alpha)\in Imj^{*}$ .

PROOF OF PROPOSIIION 2.1. We may assume that the action is non-trivial
and $|\alpha|=m/p$. Consider a commutative diagram

HG $(M, M^{G})\underline{j^{*}}$ HG $(M)$

$\pi_{1^{\prime}}$

$\nearrow^{\pi_{!}}$
$\downarrow\pi^{*}$

$H^{m}(M)\underline{\sigma^{*}}H^{m}(M)$

By Lemmas 4.1 and 4.2, we see
$\pi^{*}\Delta^{*}P(\alpha)\in{\rm Im}\sigma^{*}$ .

Since $\sigma^{*}H^{m}(M)=0$ and

$\pi^{*}\Delta^{*}P(\alpha)=\Delta^{*}(\alpha^{p})=\alpha(T^{*}\alpha)\cdots(T^{p-1*}\alpha)$

by (4.9), the proof completes.
The following theorem is due to Steenroxi [15] (see also [12]).

THEOREM 4.3. Let $X$ be a compact space, and $\{\alpha i\}_{i^{e}l}$ be a homogeneous basis

of $H^{*}(X)$ . Then the totality of elements

$\omega jP(\alpha i)$ $(i\in I, j\geqq 0)$ ,

$\pi_{!}(\alpha i_{1}\times\cdots\times\alpha i_{p})$ $((i_{1}, \cdots, i_{p})\in R(I_{0}^{p}))$

is a homogeneous basis of $H_{G}^{*}(X^{p})$ .
The following is due to Thom [16] (see also [1], [11], [17]).
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THEOREM 4.4. Let $X$ be a $comPact$ space, and $\{\alpha i\}_{i^{\epsilon:}}$ be a homogeneous basis
of $H^{*}(X)$ . Then the totality of elements

$\delta^{*}(\omega;\alpha)$ $(i\in I, 0\leqq;<(P-1)|\alpha i|)$ ,

$\pi^{\prime}!(\alpha;_{1}\times\cdots\times\alpha i_{p})$ $((i_{1}, \cdots, i_{p})\in R(I_{0}^{p}))$

is a homogeneous basis of $H_{G}^{*}(X^{p}, dX)$ , where $\delta^{*}$ : $H^{*}(BG\times X)=H\not\in(dX)-$

$H_{G}^{*}(X^{p}, dX)$ is the coboundary homomorPhism. Furthemore we have

$\pi^{\prime}!(\alpha\times\alpha)=\sum_{=l0}^{1-1}\delta^{*}(\omega_{1\alpha}|-i-1\times Sq^{i}\alpha)|\alpha$

if $p=2$ , and

$\pi_{!}^{\prime}(\alpha\times\cdots\times\alpha)=\sum_{i=0}^{\alpha}\epsilon_{i}\delta^{*}(\omega_{(p-1)(1|-2i)-1}\alpha\times \mathscr{S}^{i}\alpha)\zeta||/2J$

with some $\epsilon_{i}\not\equiv 0mod p$ if $p\neq 2$ .

REMARK. Theorems 4.3 and 4.4 are proved in the literatures for a compact
polyhedron. However we can extend them to compact spaces by the device seen in
[2].

5. Proof of Theorem A.
The equivariant diagonal cohomology class $\hat{U}_{M}^{\prime}$ in case the action on $M$ is

trivial has been studied by Haefliger. By Theorem 3.2 in his paper [6] and

(5. 1) $\pi^{*}(\hat{U}^{\prime})=\Delta_{1}(1)$ ,

we have the following (see the proof of Theorem 9.1 in [13]).

PROPOSITION 5.1. If the action on $M$ is trivial, then

$\hat{U}_{M}^{\prime}=\sum_{k=0}^{[m/2]}\omega_{m-2k}P(V_{k})+\sum_{i<j}(Cii-ciiCjj)\pi_{!}(\alpha i\times\alpha j)$

if $p=2$ , and

$0_{M}^{\prime}=h_{m}\sum_{k=0}^{[m/2P]}(-1)^{k}\omega_{(p-1)}{}_{(m-2kp)}P(V_{k})$

$+\ldots\sum_{(i_{1,\prime}i_{p})\epsilon R(I_{0}^{p})}(ci_{1}\cdots i_{p^{-Ci_{1}\cdots i_{1}}})\pi_{1}(\alpha i_{1}\times\cdots\times\alpha i_{p})$

if $p\neq 2$ , where $\{\alpha i\}_{i^{\epsilon:}}$ is a homogeneous basis of $H^{*}(M),$ $c;_{\iota\ldots.,i_{p}},$
$h_{m}$ are those in

(2.2), (4.8), and $V_{k}\in H^{*}(M)$ are the $Wu$ classes given by

$\langle V_{k}\cdot\alpha, [M]\rangle=\left\{\begin{array}{l}\langle Sq^{k}\alpha,[M]\rangle\\\langle \mathscr{S}^{k}\alpha,[M]\rangle\end{array}\right.$ $ifif$ $p_{\neq 2}p^{=2}’$

.
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We shall next prove

PROPOSITION 5.2. If the action on $M$ is free and $\omega_{m}\in H^{*}(M/G)$ is not zero,

it holds
$\omega_{m}\hat{U}_{M}^{\prime\prime}=\delta^{*}(\omega_{(p-1)m-1}\times\mu)$ ,

where $\mu$ is a generator of $H^{m}(M)$ .

PROOF. Let $V$ be an equivariant open neighbourhood of $dM$ in $M^{p}$, and put

$W=M^{p}-\Delta M-dM$, $C=M^{p}-\Delta M-V$.
Then $C/G$ is a closed connected and $non\cdot compact$ subset of $W/G$, and hence we have
$H^{mp}(W/G, W/G-C/G)=0$ (see p. 260 of [4]). Therefore it follows that

$H_{G}^{mp}(M^{p}-\Delta MV)\cong H_{G}^{mP}(W, W-C)\cong H^{mp}(W/G, W/G-C/G)=0$ .
This shows that $i^{*}$ : $H_{G}^{mp}(M^{p}, M^{p}-\Delta M)-H_{G}^{mp}(M^{p}, dM)$ is onto, and so is

$ i^{*}\circ\theta$ : $H_{G}^{m}(\Delta M)-H_{G}^{mp}(M^{p}, dM)$ .
It follows from Lemma 4.1 and the assumptions that $H_{G}^{m}\cdot(\Delta M)\cong Z_{p}$ is generated
by $\omega_{m}$ . By Theorem 4.4, $H_{G}^{mp}(M^{p}, dM)\cong Z_{p}$ is generated by $\delta^{*}(\omega_{(P-1)m}\times\mu)$ . Since
$ i^{*}\circ\theta$ is a homomorphism of $H^{*}(BG)$ -modules and it sends 1 to $\hat{U}_{M}^{\prime\prime}$ , we have the
desired result.

We shall now give

PROOF OF THEOREM A. By the assumption ii) and Proposition 5.2, it holds
$\omega_{n}\hat{U}_{N}^{\prime\prime}=\delta^{*}(\omega_{(p-1)n-1}\times\nu)$ ,

where $\nu$ is a generator of $H^{n}(N)$ . Therefore we have

$\omega_{n}(g^{p*}\hat{U}_{N}^{\prime\prime})=\delta^{*}(\omega_{(p-1)}n-1\times g^{*}\nu)$ ,

and this is not zero by the assumption v) and Theorem 4.4. Since $n\geqq(p-1)m$ by
the assumption iii), it holds

$\omega_{(p-1)m}(g^{p*}\hat{U}k)\neq 0$ .

On the other hand, it follows from the assumptions i), iv) and Proposition 5. 1
that

$f^{p*}(\hat{U}_{M}^{\prime})=h_{m}\omega_{(p-1)m}$

with $h_{m}\not\equiv 0mod p$ . Consequently we have

$f^{p*}(\hat{U}_{M}^{\prime})\cdot g^{p*}(\hat{U}_{N}^{\prime\prime})=h_{m}\omega_{(p-1)m}g^{p*}(\hat{U}_{N}^{\prime\prime})\neq 0$ ,

which completes the proof by Proposition 3.3.
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6. Proof of Theorem $B$ and an example.

The following proposition has been proved in [13] if $p=2$ . By the similar
method we shall prove it for any $p$.

PROPOSITION 6.1. If $i^{*}$ : $H^{q}(M)-H^{q}(M^{G})$ is trivial for $q\geqq m/p$, then we
have

$\hat{U}_{M}^{\prime}=\sum_{(i_{1}.\cdots.i_{p})\in R(I_{0}^{p})}Ci_{1}\cdots i_{p}\pi_{!}(\alpha;_{1}\times\cdots\times\alpha i_{p})$
,

$Ci\cdots;=0$ $(i\in I)$ ,

where $\{\alpha i\}_{i*I}$ is a homogeneous basis of $H^{*}(M)$ , and $Ci_{1}\cdots i_{p}$ are those in (2.2).

Before we proceed to proof we make some preparations.
The equivariant homology group $Hf(X^{p})=H_{*}(EG\times X^{p})c$ is canonically identified

with $H_{*}(G;H_{*}(X)^{p})$ , the homology group of the group $G$ with coefficients in
$H_{*}(X)^{p}=H_{*}(X)\otimes\cdots\otimes H_{*}(X)$ on which $G$ acts by cyclic permutations. Taking

the standard G-free acyclic complex $W$, we have an element of $H_{*}(G;H_{*}(X)^{p})$

represented by $w_{k}\otimes a\otimes\cdots\otimes a$, where $wk\in W$ is the basis of degree $k$ and $a\in H_{*}(X)$ .
The corresponding element in $H_{*}^{G}(X^{p})$ will be denoted by $P_{k}(a)$ .

LEMMA 6.2. Suppose that $i^{*}$ : $H^{q}(M)-H^{q}(M^{G})$ is trivial for $q\geqq m/P$ Then,

for any $k\geqq 0$ and for any $\alpha\in H^{*}(M)$ , we have

$\langle\omega_{1}\hat{U}_{M}^{\prime}, P_{k+1}(\alpha-[M])\rangle=0$

if $p=2$ , and
$\langle\hat{U}_{M}^{\prime}, P_{2k+1}(\alpha\wedge[M])\rangle=0$,

$\langle\omega_{1}\hat{U}_{M}^{\prime}, P_{2k+1}(\alpha-[M])\rangle=0$

if $p\neq 2$ .

PROOF. Similarly to Lemma 4.4 in [13], the result for $p\neq 2$ is proved as
follows.

It follows that $P_{2k+1}([M])$ is in the image of

$i_{k*}$ : $H_{2k+1+pm}(S^{2k+1}\times M^{p})-H_{2k+1+pm}^{G}(M^{p})G$

induced by the inclusion, and that $;\mathfrak{x}(\hat{U}_{M}^{\prime})$ is the image of 1 under the homomor-
phism

$(idc\times\Delta)_{!}$ : $H^{*}(S^{2k+1}\times M)-H^{*}(S^{2k+1}\times M^{p})cc$

From these facts we see that $\hat{U}_{M}^{\prime}\leftrightarrow P_{2k+1}([M])$ is in the image of
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$H_{2k+1+m}(S^{2k+1}\times M)H_{2k+1+m}^{G}c\underline{i_{k*}}(M)H_{2k+1+m}^{G}\Delta_{*}(M^{p})$ .

Therefore it follows that

$\langle\hat{U}_{M}^{\prime}, P_{2k+1}(\alpha\leftrightarrow[M])\rangle=\langle\hat{U}‘, P(\alpha)\leftrightarrow P_{2k+1}([M])\rangle$

$=\langle P(\alpha),\hat{U}_{M}^{\prime}\wedge P_{2k+1}([M])\rangle=\epsilon_{k}\langle P(\alpha), \Delta_{*}i_{k*}[S^{2k+1}\times_{G}M]\rangle$

$=\epsilon_{k}\langle\Delta^{*}P(\alpha), i_{k*}[S^{2k+1}\times M]\rangle G$
$(\epsilon_{k}\in Z_{P})$ ,

and similarly

$\langle\omega_{1}\hat{U}_{M}^{\prime}, P_{2k+1}(\alpha-[M])\rangle=\epsilon_{k}\langle\omega_{1}\Delta^{*}P(\alpha), i_{k*}[S^{2k+1}\times M]\rangle c$

To prove the desired two equalities, we may suppose $p|\alpha|\geqq m+1$ in the first,

and $p|\alpha|\geqq m$ in the second. Consequently it suffices to prove that

$\Delta^{*}P(\alpha)=0$ if $p|\alpha|\geqq m+1$ ,

$\omega_{1}\Delta^{*}P(\alpha)=0$ if $p|\alpha|\geqq m$ .

By Lemma 4.2 $\Delta^{*}P(\alpha)$ and $\omega_{1}\Delta^{*}P(\alpha)$ are in the image of $j^{*}$ : $ H_{G}^{*}(M, M^{G})-\rightarrow$

$H_{G}^{*}(M)$ , and the Smith cohomology exact sequence implies $H_{G}^{q}(M, M^{G})=0(q>m)$ .
Therefore we have the desired results, and the proof completes.

PROOF OF PROPOSITION 6.1. In virtue of Theorem 4.3 it can be written
uniquely that

$\hat{U}_{M}^{\prime}=\sum_{i,j}\xi_{ij\omega j}P(\alpha i)+\sum_{(i_{1},\cdots,i_{p})\in R(I_{0}^{p})^{\eta i_{1}\cdots i_{p}}}\pi!(\alpha;1\times\cdots\times\alpha i_{p})$

with some $\xi_{ij,\eta i_{1}\cdots i_{p}}\in z_{p}$ . Since it is easily seen that

${\rm Im}\pi_{!}-P_{k}(a)=0$ ,

$\langle\omega jP(\alpha), P_{k}(a)\rangle=\delta_{jk}\langle\alpha, a\rangle$

$(\alpha\in H^{*}(M), a\in H_{*}(M))$ , it follows from Lemma 6. 2 that $\xi_{ij}=0$ . We see from (5. 1)

that $\eta i\cdots i_{p}=ci_{1}\cdots i_{p}$ if $(i_{1}, \cdots, i_{p})\in R(I_{0}^{p})$ and $Ci\cdots i=0$ for any $i\in I$. This completes the
proof.

REMARK 1. Working in the smooth category, Hattori [7] has given formulae
for $\hat{U}_{M}^{\prime}$ with no assumption on $M^{G}$ .

The following is immediate from Proposition 6.1 and Theorem 4.5.

PROPOSITION 6.3. If the action on $M$ is free, then it can be written uniquely
that
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$\hat{U}_{M}^{\prime\prime}=\sum_{)^{Ci_{1}\cdots i_{p}}(i_{1\prime}\cdots,i_{p})\in R(I_{0}^{p}}\pi_{!}(\alpha;_{1}\times\cdots\times\alpha i_{p})$

$+\sum_{|\alpha_{i}|\geqq m-m/p}\epsilon_{i}\delta^{*}(\omega\alpha)$

with some $\epsilon_{i}\in Z_{p}$ .

REMARK 2. The author does not know how to determine $\epsilon_{i}$ in the above. If
$M$ is a $mod p$ homology sphere, it follows from Propositions 5. 2 and 6. 3 that

$\hat{U}_{M}^{\prime/}=\dagger_{\pi^{!_{!}}(1\times\mu\times\times\mu)}^{\pi^{\prime},(1\times\mu)..i.fp=_{+}2_{\epsilon\delta^{*}(\omega_{(p-2)}\times\mu)}}m-1$

if $p\neq 2$ ,

where $\epsilon\not\equiv 0mod p$ , and $\mu\in H^{m}(M)$ is a generator such that $\langle\mu, [M]\rangle=1$ .
We shall now give

PROOF OF THEOREM B. By the assumption i) and Proposition 6.1 we have

$f^{p*}\hat{U}_{M}^{\prime}=\pi_{!}f^{*p}(\sum_{i_{p}(i_{1},\cdots.)\in R(I_{0}^{p})}Ci_{1}\cdots i_{p}\alpha i_{1}\times\cdots\times\alpha i_{p})$
,

and by the assumption ii) and Proposition 6.3 we have

$g^{p*}\hat{U}_{N}^{\prime\prime}=\pi_{1g^{*p}(\sum_{j_{p}(j_{1},\cdots,)\in R(f^{p_{0}})}d_{j_{1}\cdots j_{p}}\beta_{j_{1}}\times\cdots\times\beta_{j_{p}})}^{\prime}$

$+\sum_{|\beta_{j}|\geqq n-n,/p}\epsilon i\delta^{*}(\omega_{(p-)n-|\beta_{j}|-1}\times g^{*}\beta;)$ .

It follows from (5.1) and Proposition 6.1 that

$\sigma^{*}\sum_{i_{p}(i_{1},\cdots\prime)\in R(I_{0}^{p})}Ci_{1}\cdots i_{p}\alpha i_{1}\times\cdots\times\alpha i_{p}=\Delta_{!}(1)$
,

$\sigma^{*_{(j_{1}}},\cdots.\sum_{j_{p})\in R(J_{0}^{p})}d_{j_{1},\cdots,j_{p}}\beta_{j_{1}}\times\cdots\times\beta_{j_{p}}=\Delta_{!}(1)$
.

Thus, by (4.4), (4.5) and the assumption ii), we have

$(f^{p}\hat{U}_{M}^{\prime})\cdot(g^{p*}\hat{U}_{N}^{\prime\prime})$

$=\pi](f^{*p},\cdots\sum_{(i_{1\prime}i_{p})\epsilon R(I^{p_{0}})}Ci_{1}\cdots i_{p}\alpha;_{1}\times\cdots\times\alpha_{\iota_{p}})(g^{*p}\Delta_{!}(1))$

$=\pi_{!}^{\prime}(f^{*p}\Delta_{!}(1))(g^{*p_{(j_{1},\cdots,j_{p})\in R(\prime_{4}}}\sum_{p_{)}}d_{j_{1},\cdots,j_{p}}\beta_{j_{1}}\times\cdots\times\beta_{j_{p}})$

in $lP_{G}^{l}(L^{p}, dL)$ .
It follows from Theorem 4.4 that $H_{G}^{pl}(L^{p}, dL)\cong Z_{p}$ is generated by $\delta^{*}(\omega_{(p-1)l-1}\times$

$\rho)$ or $\pi_{!}^{\prime}(\rho\times\cdots\times\rho)$ , where $\rho\in H(L)$ is a generator such that $\langle\rho, [L]\rangle=1$ .
Consequently we have

$(f^{p*}\hat{U}_{M}^{\prime})(g^{p*}\hat{U}_{N^{\prime}}^{\prime})=\lambda(f, g)\pi_{!}^{\prime}(\rho\times\cdots\times\rho)$

$=\lambda^{\prime}(f, g)\pi](\rho\times\cdots\times\rho)$ ,
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which completes the proof by Proposition 3.3.
Theorem $B$ for $p=2$ , particularly corollary 3 in \S 2, has interesting applications as

is seen in [13]. The author does not know so interesting applications of Theorems
$B$ for $p\neq 2$ . However there is the following example for which Theorem $B$ for $p=$

$3$ is applicable.
Let $n=1,3$ or 7, and take in Theorem $B$

$L=S^{n}\times S^{n},$ $M=S^{n}\times S^{n},$ $N=S^{n}$,

where the action on $N$ is any free $G\cdot action$ , and action on $M$ is given as follows:

$T(x, y)=(y, y^{-1}x^{-1})$ ,

$x,$ $y$ being complex numbers, quatemions or Cayley numbers according as $n=1,3$ or
7. It follows that the fixed point set of $M$ is homeomorphic to $S^{n-1}+point$ . Thus
the assumptions i), ii), iii) in Theorem $B$ are satisfied.

Let $\nu\in H^{n}(S^{n})$ denote a generator, and put $\nu_{1}=\nu\times 1,$ $\nu_{2}=1\times\nu\in H^{n}(S^{n}\times S^{n})$ . Then,
by Remark 3 in \S 2, it can be seen that

$\Delta_{!}(1)=\sigma^{*}(1\times\nu_{1}\nu_{2}\times\nu_{1}\nu_{2}-\nu_{1}\times\nu_{1}\times\nu_{1}\nu_{2}-\nu_{2}\times\nu_{2}\times\nu_{1}\nu_{2}-\nu_{2}\times\nu_{1}\times\nu_{1}\nu_{2})$

for the homomorphism $\Delta_{!}$ : $H^{*}(M)-H^{*}(M^{3})$ , and

$\Delta_{!}(1)=\sigma^{*}(1\times\nu\times\nu)$

for the homomorphism $\Delta_{!}$ : $H^{*}(N)-H^{*}(N^{3})$ . Therefore, if continuous maps
$f:L-Mg:L-N$ satisfy

$f^{*}(\nu i)=a_{i_{1}}\nu_{1}+a_{i2}\nu_{2},$ $g^{*}(\nu)=b_{1}\nu_{1}+b_{2}\nu_{2}$

$(a_{ij}, b_{i}\in Z_{3})$ , simple calculation shows

$\lambda(f, g)=$ $a_{21}^{11}aa_{22}^{12}a(\left|\begin{array}{ll}a_{11} & a_{12}\\b_{1} & b_{2}\end{array}\right|-\left|\begin{array}{ll}a_{21} & a_{22}\\b_{1} & b_{2}\end{array}\right|)$

.

This yields by Theorem $B$ the following

THEOREM 6.4. Let $n=1,3$ or 7, and let $f_{1},$ $f_{2},$ $g:S^{n}\times S^{n}-S^{n}$ be continuous
maps of type $(a_{11}, a_{12})$ , $(a_{21}, a_{22})$ , $(b_{1}, b_{2})$ respectively. Let $T:S^{n}-S^{n}$ be a
homomorphism of period 3 without fixed points. Then, if

$a_{21}^{11}aa_{22}^{12}a(\left|\begin{array}{ll}a_{11} & a_{12}\\b_{1} & b_{2}\end{array}\right|-\left|\begin{array}{ll}a_{21} & a_{22}\\b_{1} & b_{2}\end{array}\right|)\not\equiv 0mod 3$ ,

there exist $x,$ $y,$ $z\in S^{n}\times S^{n}$ such that

$(f_{2}(x), f_{2}(y),$ $f_{2}(z))=(f_{1}(y), f_{1}(z),$ $f_{1}(x))$ ,
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$(Tg(x), Tg(y),$ $Tg(z))=(g(y), g(z),$ $g(x))$ ,

$f_{1}(x)f_{1}(y)f_{1}(z)=1$ .

In particular, taking $f_{i}=projection$ to the i-th factor, we have

COROLLARY. If $b_{1}+b_{2}\not\equiv 0$ then there exist $x,$ $y,$
$z\in S^{n}$ such that

$Tg(x, y)=g(y, z),$ $Tg(y, z)=g(z, x),$ $xyz=1$ ,

where $n,$ $g$ and $T$ are those in Theorem 6.4.
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