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Introduction

Let (M, g) be a compact connected Riemannian manifold. Fix a point o of M
and denote by T,(M) the tangent space of M at o. Let Exp: To(M)——M be
the exponential map of (M, g) at 0. A tangent vector XeT,(M) is called a tan-
gential conjugate point of (M, g), if Exp is degenerate at X. The set @ of all
tangential conjugate points of (M, g) in T,(M) is called the tangenital conjugate
locus of (M, g) in T,(M). The image Q=Exp@ of @ under Exp is called the
conjugate locus of (M, g) with respect to o.

Let 7: [0, 00)——M be a geodesic of (M, g) (parametrized by arc-length)
emanating from 0. Let X;=7(0)eT,(M) denote the initial tangent vector of 7.
Assume that the set of #€[0, o) such that X;€Q is not empty and let #, be the
infimum of this set. Then the tangent vector #,X; is called the {fangential first
conjugate point along y. The set F of all XeT,(M) which is the tangenital first
conjugate point along some gecdesic 7y emanating from o, is called the tangenital
first conjugate locus of (M, g) in T,(M). The image F=Exp F of F under Exp
is called the first conjugate locus of (M, g) with respect to o.

Let again 7: [0, ©0)——M be a geodesic emanating from o0 and X;=7(0). Let
{o be the supremum of the set of #€[0, o) such that y|[0,#] is 2 minimal geodesic
segment from o to y(#). The number {, is always finite since M is compact. Then
the tangent vector f,X; is called the tangenital cut point along y. The set C af all
X €eT,(M) which is the tangenital cut point along some geodesic y emanating from
o, is called the tangenital cut locus of (M, g) in T,(M). The image C=ExpC of
C under Exp is called the cut locus of (M, g) with respect to o.

In the present article, we shall study the structures of the conjugate Ilccus,
the first conjugate locus and the cut locus of a compact symmetric space.

Helgason showed by a group theoretical method that the conjugate locus of
a compact connected Lie group M, endowed with a bi-invariant Riemannian metric
&, is nicely stratified in the sense that it is the disjoint union of smooth submani-
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folds of M. On the other hand, Wong [12], [13], studied conjugate lcci and
cut lcci of Grassmann manifolds by a geometric methcd and gave stratifications of
them. Recently Sakai studied the cut lccus of a general compact symmetric
space (M, g) and showed that it is determined by the cut lccus of a maximal total-
ly geodesic flat submanifold A in (M, g). He gave in [6], also stratifications
of cut lcci of Un)/O(n), Uln), SOn), Sp(2n)/U(n) and Grassmann manifolds by
his method. Thes= spaces are included in the class of so-called symmetric R-spaces.
Naitoh [5] studied the cut lccus of A and the first conjugate lccus in A for each
irreducible symmetric R-space. Mocreover, Sakai[8] gave a stratification of the
conjugate lccus of a simply connected compact symmetric space, by a refinement of
Helgason’s approach.

In the present note I, we shall give a stratification of the conjugate lccus @,
the first conjugate lccus F and the cut lccus C of a general (not necessarily simply
connected) compact symmetric space (M, g) by a group theoretical methcd. Our
stratification consists of regular submanifolds of M, which are diffeomorphic with
fibre bundles over compact manifolds. Our stratification is a generalization of
those of Helgason[3] and Sakai [8].

In the forthcoming paper II, we shall study topological structures of @, F and
C. Furthermore we shall give another stratification of the cut lccus for a sym-
metric R-space M. This stratification consists of orbits of a certain group acting
on M. Our results include these of Wong and Sakai on cut loci of the previously

mentioned symmetric R-spaces.

§1. Conjugate loci of compact symmetric spaces

In this section, we shall study the structure of conjugate lcci of compact sym-
metric spaces by a group theoretical approach.

Let G be a compact connected Lie group, K a closed subgroup of G and ¢ an
involutive automorphism of G. Assume that the pair (G, K) is a symmetric pair
with respect to 4, i.e., K lies between the subgroup:

Gy={zeG; 9(z)=x}

and the identity component of Gy. We denote by g and f the Lie algebras of G and K
respectively. The involutive automorphism of g induced by @ will be also denoted
by #. Then the pair (g, I) is a symmetrc pair with respect to @, i.e., I satisfies

t={Xeg; 6X=X}.

Choose an inner prcduct ( , ) on g which is invariant under @ and the
adjoint action of G. In what follows, for a subspace ) of g, the group of ortho-
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gonal transformations of § with respect to this inner product ( , ), will be denoted
by O(%). Consider the homogeneous space:

M=G/K,
and denote the origin K of M by o. Then the tangent space T,(M) of M at o is
identified with the subspace:
m={Xeg; 6X=—-X},

through the canonical projection ng: G——M. This subspace m will be called the
canonical complement for the symmetric pair (g, ¥). Let g be the unique G-
invariant Riemannian metric on M such that it coincides on 7,(M) with the inner
product ( , ) on m. Then the Riemannian manifold (M, g) is a compact con-
nected symmetric space. Note that any compact connected symmetric space is
obtained in this way. It is known that the exponential map Exp of (M, g) at the
origin o is given by

Exp X=(exp X)o for Xem.

Take a Cartan subalgebra a, i.e., a maximal abelian subalgebra in m, for the
symmetric pair (g, ¥) and fix it once for all. We denote by A the toral subgroup
of G generated by a. Let ¢ and ¢’ =[g, g] be the center and the derived algebra
of g respectively. Put

t'=tNng’, m'=mng’, a’'=ang/,

a=cNt cp=cnm.

Then the pair (g’, ¥') is also a symmetric pair with respect to ¢'=4@|g’ with the
canonical complement m’. The subspace a’ is a Cartan subalgebra for (¢/, /). We
have

m=c,+m/, a=c,+a'.
Put

r=dima, 7y=dimec,.
The integer 7 is the so-called rank of the symmetric space (M, g). For re€a, we
define a subspace g,¢ of the complexification g€ of g by

g7¢={Xe€¢C; [H, X]=2my/—1(y, H)X for each He a},
and put
Y={rea—{0}; g0+ {0}}Ca’.

An element of X is a root (or angular parameter) for (g, I) relative to a. Take
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next a maximal abelian subalgebra t of g containing a and put
b=tNt t'=tng'.
Then we have direct sum decompositions:
t=b+a=c+t’.
For a« €t, we define a subspace §, of g€ by
Go=1{Xe€egC; [H X]=2ry/=1(a, H)X for each Het},
and put
S={aet—{0}; Ga#{0}}Ct.

An element of ¥ is a root (or angular parameter) for g relative to t. We put
further

So=2%no.
Let H—— H denote the orthogonal projection from t onto a. Then we have
S={a; ac$-5,).
Choose a compatible order >, i.e., a lexicographic order > on t such that
a>0, a¢Sy=> —fa>0,

and fix it one for all. This induces an order on a, which will be also denoted by >.
Let II be the fundamental root system for 5 with respect to the order > and let

ﬁ 0——:17 n S'o.
Then the fundamental root system II for X with respect to the order >> on a is
given by

I={a; acllI—-IT,).

Let 5, denote the set of positive roots in 5. Then the set 3, of positive roots in
2 is given by

Ze=Aa, a€S+_SO}-
Let f, and m, denote the centralizer of a in I and a respectively. Put
ty=EN (g€ +8-7%), my=mN(gyC+g-~C)

for y€¥,. Then we have the following lemma.
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LemMmA 1.1. 1) We have orthogonal divect sums:
t=t+ > ty,
Fez,

m=my+ >, my.
Ve,

2) We can choose Sy€t and T, em for each aeS.—5 in such a way that:
(1) For each rel., the sets {Sy; a=y} and {T4; @a=y} are basis for ¥y and
my respectively;

(2) L[H, S,)=2n(a, H)T,, [H, Tol=—2n(a, H)S, for each Hea;

(3) Ad(exp H)S,=cos 2rx(a, H)Sy+sin 2n(a, H) Ty,
Ad(exp H)T = —sin 2z(a, H)S,+cos 2n(a, H)T,

for each H €a.
3) Let ¥¥: Kxa——M be the C* map defined by

Y (h,H)=kExp H for keK, Hea.
Then the differential d¥% of WK at (ky, H,) is given by
(dq”‘)cko,ﬂn(dfkn(so-i-%aasa), H)

=dTkyexp,dTc(H — Slaqsin 2x(a, Ho)T,)

for Hea=Ty,(a) and Soety, where t= denotes the left translation by .

PROOF. 1) is an easy consequence of definitions.
2) We define a real reductive subalgebra g* of g€ by

g*=t+/=1m
and put
gy=g*NgyC¢ for yeld.

Then we have

gy+g—y=Ety+4/ —1my for each reld,.
Choose an X,€¢* for each ae 3. —3, in such a way that for each ye 3, the set {X,;
a@=y} is a basis for gy. For acS.—3, with a=y, let

Xa: =S,— V:TTW Se€ Iy, Twe My.

Then these S, and T, have the required properties.

3) follows from direct computations. q.e.d.

Let W be the Weyl group for the symmetric pair (G, K), i.e., W=N(A)/Zx(A),
where Nx(A) and Zx(A) are the normalizer and the centralizer of A in K respectively.
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It is identified with a finite subgroup of O(a) through the adjoint action on a. We
define the diagram D for the symmetric pair (g, ¥) by

D={Hea; 2(y, H)e Z for some yeX}.

It is invariant under the Weyl group W. A connected component of a-D is called
a fundamental cell of a. We define a lattice I' in a, a lattice I in o/ and a sub-
group I'* of a by

I'={He€a; expHeK},
I={Ay; r€X}z, where Ay=Q/C, 1)1,
I'*={Hea; 2(y, H)€Z for each re J}.

Here {*}z means the subgroup generated by #%. The following inclusions are
known (cf. Takeuchi [11]).

1.1 rocrcr*.

The Weyl group W leaves these groups invariant. Denoting by #(A) the translation:
H——H+A of a by an element A€a, we define

W=t(IHW,
Wo=t(I'"™ W,
WH=t(I'®)W.

In virtue of a general relation:
st(A)s1=t(sA) for se0(a), Ac€aq,

these are subgroups of the group of Euclidean motions of a, and the above expres-
sions are semi-direct decompositions. The inclusions (1.1) implies the inclusions:

1.2) WoCW W
These groups leave the diagram D invariant, and hence they act on the set of all
fundamental cells of a. The following is classical.

LeMma 1.2, (E. Cartan [1])

1) Let

Sy*={He€a; 2(y, H)=n} 1€, neZ
be a hyperplane of a contained tn the diagram, and denote by sy" the symmetry:
H——H—-QH, DG, r)Ir+ WG, 1))r for Hea

of o with respect to Sy*. Then WP is generated by these symmetries sy with
7€, neZ, and it acts simply transitively on the set of fundamental cells of a.
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2) If G is simply connected, then Gy is connected.

3) If M is simply connected, then I'=10,

Now decompose the symmetric pair (g/, ') into the sum of irreducible sym-
metric pairs (gr, &) (A1<k<s):

o' =00Ps: D Pgs, V=gPDHLD - Dts,

where
go={Xe¥t; [X, m']={0}}.

Then we have also the following decompositions.

o' =a;®---@Pa,, where a,=a'Ng, (1<k<s),
X=5U---UX,, where J,=2Na, (1KkKs),
II=H1U"'UIIS, where ]Ik=IIr12'k (1<k<8)

These imply direct product decompositions:
1.3 I¥=c + ¥4+ T's*,
(1.4) WH=1t(cy) x Wik x -« x Wi,

where I',* and W,* are the corresponding groups for the k-th irreducible factor
(o, fx) (1<k<s). Let 6,€3; denote the highest root in %, (1<k<s) and put

2= {0,; 1<k<s)}.
Consider disjoint unions:

]Ik' =IIkU {5k} (1<k<8>,
m=IU-UI=IUS,

and define
Sc={Heay; 0<2(7,H) <1 for each yell}}} (1<k<S),
S={Hea; 0<2(y, H) <1 for each yell'},
S'=Sna’.

Then we have

(1.5 S=cp XSy XX Ss=cn X5,

1.6) S'=8 x--x8S,.

Their closures are given by

Si={Hea,; 0<2(y, H)<1 for each rell,}} (1<k<5),
S={Hea; 0<2(y, H)<1 for each yell'},
S'=8Snd'.
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Thus we have also
a.n S=cuxS;x-xS;=¢, x5,
(1.8 §'=§;x-x8,.

It is easy to see that S is an open convex cell in a and that it is the unique funda-
mental cell of a such that S is contained in the closed positive Weyl chamber:

a,={Hea; (7, H)>0 for each 7y€J,},
and such that the closure S contains 0. Now we define

Ws={reW; ©S=S},
Wk = {zeW*; tS=S).

From (1.2), (1.4) and (1.5) we have an inclusion:
(1.9) WsCWg*

and a direct product decomposition:
(1.105 Wk =t(cn) X WE x -+ x WE,

where Wg“k is the corresponding group for the k-th irreducible factor (gr, &) (A<

k<s). Note that each W is a finite group.

LEMMA 1.3. 1) The group W° is a normal subgroup of W*, and
Ws*=W*/Wo=TI*/I",
Ws=W/Wo=r/I"°.
2) If M is simply connected, then Ws={1}.
Proor. 1) We show first
(1.1D sA—Ael™ for each seW, Ael%*.
In fact, if we denote by s, the symmetry:
H——H—-Q(H, [y, r)r for Hea
of a with respect to yeJ, then
syA—A=—2(A, NI, Nr=—2(A4, 1)Ayel™.

Since W is generated by symmetries s, with yeX, (1.11) holds for any seW.
Now we define a map p : W*——I*/T° by

PU(A)S)=A+T° for Ael'*, seW.
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Then p is a surjective homomorphism in virtue of (1.11). Since kernel p=W?°, W°
is a normal subgroup of W* and W*/Wo=I"*/I"°, Moreover 1) implies
Ws*=W+*/W°. The same proof shows Ws=W/We=I"/I".

2) follows from 1) and 3). q.ed.

Now we shall decompose S into the union of convex cells. For a subset 4 of
II', let S4 be the set of all He S statisfying the conditions:

2(y, H)>0 if 7yed, rell,
2(y, H)<1 if ryed, ye3?,
2(7, H)=0 if 7éd, yell,
2(y, H)=1 if 7r¢d, ye3.

It is easily seen that S4 is a convex cell in S. If we denote by S% the convex
cell in Sy defined in the same way from the subset dx of IT;' defined by dp=
ANIT (1<k<s) and if we put S’4=S54Nda’, then we have

(1.12) SA=¢p X S41 X oo X Sds=¢, X §'4,

(1.13) S§/4 =841 % .. x S5,

Hence, S4+¢ if and only if 4x+#¢ for each k. A subset 4 of IT' satisfying the
latter conditions is said to be admissible. For an admissible subset 4 of IT*, the
dimension k2, of S4 is given by

(1. 14) k4=ldl+7'o—3,

where |*| means the cardinality of the set .

LeMMA 1.4. 1) S=US4(disjoint union), where 4 ranges over the admissible
4

subsets of II*.
2) The group Ws* acts on the set of all S4 with 4 admissible.
3) For admissible subsets 4, 4, of IT*,

SA‘DSAZ @ A]_:)Az.
In this case, for H, €S4: and H, €S%, we have
tHi+(1—¢t)H, €S54 for each ¢t with 0<#<1.

Proor. In virtue of (1.7), (1.10) and (1.13), we may assume that g is semi-
simple and (g, ) is irreducible.
We define a map y——* from II' into a by
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if rell
(1.15) ri= 4 nr
—7 if yed?,

and denote its image by II'. Let IT={y,--, r-} and {&, -, &} the basis of a dual
to II:

Cei, 1) =¢eij (A<, j<7).

Let

o =é_‘i niyi  ni€Z, ni>l

be the highest root of 5. We put

70=—0, &=0, ny=1,

Py, =(1/2n:)e;  (0<i<7),
so that IT' is given by

II'={ro,71," 77}-
Then S is the ordinary closed Euclidean simplex spanned by the points {Py: r€ll'}:
§={7§nh’P’; o<h7<1,7§7'h7=1},

and S4 is the open Euclidean simplex spanned by the points {Py; red‘}:

(1.16) S4={ 3 hyPy; 0<hy<1, X hy=1}.
yedh yedt

Thus the family {S4}, gives the ordinary cellular decomposition of the closed
simplex S. This implies the Lemma.  q.e.d.

ReEMARK. Any fundamental cell of a can be decomposed to the union of disjoint
convex cells in the same way. Thus we get a cellular decomposition of a, which
is invariant under the action of W*.

For an element HeS, we define a closed subgroup Z# of K by

ZEi={keK; kExp H=Exp H}.

For an admissible subset 4 of IT', we define a subgroup N4 of K and a normal
subgroup Z4 of N4 by

Ni={keK; kExp S‘=Exp S},
Z4={k eN*; k|Exp S?‘=id},

where k|Exp S/=id means that kp=p for each peExpS4 Then Z¢ is a closed
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subgroup of K and Z/cZH® for each HeS?. Let W4 be the quotient group:
Wa= N4/ Z4.

The class kZ4eW* containing k2 €N will be denoted by [k]. Also we define a sub-
group N* of Ws, a normal subgroup Z4 of N“ and the quotient group W4 by

Ni={r eWs; ©84=5%,
Z4={r eN?; 7|S4=id},
W= N#|Z4,
The class 7Z4eW* containing = e N* will be also denoted by [z]. Let further
S =Z0{I'—4)z 5.4=3NZ,,

g"=fo+a+ Z (f7+ m'y).
vesd

Then we have a decomposition:
g? =t +m4,
where

t=f+ 3 ty=gN},

7524

mi=my+ 3 my=g4Nm.
7e2f

We define moreover a C* map ¥“4: K/Z‘xS‘—M by
v4(kZ4, H)=kExp H for keK, HeS“.

The image of ¥4 will be denoted by M“. Our first task is to study the structure
of the set M.

LeMMA 1.5. Let 4 be an admissible subset of II'. Take an element HeSA.
Then:

1) X A={reX; 2(,H)=0 or 1}.

2) Ji={rex; 2(y, H)eZ).

3) g4={Xeg; Ad(exp2H)X=X}.

4) (g4, ) is a symmetric pair with the canonical complememt m?.

ProoF. 1) We may assume that g is semi-simple and (g, ¥) is irreducidle.
Under the notation in the proof of Lemma 1.4, let 7€, be written as
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Me

Il
fut

r= > miyi mi€Z, m;=0.

k3

We shall show that ye{Il'— 4}z if and only if 2(y, H)=0 or 1.
Case 1: 6¢4. We have

2(ri, H)>0 if red,
2(yj, H)=0 if 744,
205, H)=1,

and hence

0<2(y, H)=2 z‘bmiCTz‘; H)<],
Yi€
206, H)=2 X ni(yi, H)=1.
vi€d
Thus, if 2(y, H)=1, then
r= 2 Miri,
544
and hence re{(IT—d}zc{ll'—4}z. If 2(y, H)=0, then

r= S miri+ 3 niri= 3, (mj—ni)ri+0,
;44 yied 7444

and hence re{(IT'—4}z Conversely, if ye{Il'—4}z i.e., r is written as
r=Xliritld 1l Lh€Z,
744
then m;=1Ium; for each ¢ with y;ed. Thus [,=0 or 1, and hence 2(y, H)=0 or 1.
Case 2: 0ed. We have

2(yi, H)>0 if r1i€d,
2(0, H)<1,
2(yi, H)=0 if 744,

and hence

0<2(y, H)=2 > mi(y:, H),
v:ied
2(0, H)=2 de(r,;, H)<1.
Yi€

These imply 2(y, H)<1. Now
2(y, H)=0Q r= X mjrj
7544

& re{ll =4}y z={II'— 4} z.
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2) follows from 1).
3) The complexification of the right hand side is

{Xeg®, Ad(exp2H)X=X}=tL+a+ > g5,
207, Hyez
which is equal to (g4)¢ by 2). This implies the assertion 3).
4) 1is clear, since both g4 and t4 are subalgebras of g in virtue of the asser-
tion 3). q.e.d.

LeMMA 1.6. 1) Let 4, and 4, be admissible subsets of II', H,eS*, H,eS*
and keK. If kExp Hi=Exp H,, then Adk m?1=m?,

2) Let 4 be an admissible subset of II'. Then N* is a subgroup of the
normalizer Nxy(m?) of w4 in K. The Lie algebras of ZH are the same ¥ for any
HeSY. The Lie algebra of Nx(m?) is also ¥.

Proor. 1) From the assumption, there exists [eK such that kexpH,=expH,l.
Applying the automorphism 6 of G, we get k(exp H)) '=(exp H;)"!l and hence
I=(exp Hh)k(exp H))"!. It follows kexp H,=exp Heexp Hyk(exp H;)~! and hence
k(exp2H)k'=exp2H,. Now [Lemma 1.5, 3) implies Adkg# =g, and thus
Adk m4r=m4:,

2) NAC Nx(m?) follows from 1). Let H e€S? and

X= So+Zawa ef, So € fo.

Then, X € Lie algebra of ZH &= (exp H) ' (exptX) exp Het for each teR &
Ad(exp H)'X et & 2(«, H)€ Z for each a €3, — 5, with a,#0 (by Lemma 1. )&
Xet! (by Lemma 1.5). Thus the Lie algebra of ZH coincides with .

To show that the Lie algebra of Nig(m?) is also !4, take an element He S4.
Then, X € Lie algebra of Ny(m*) = [ H, X]e m? = a,=0 for each a« €3, — 5, with 0<
2(a, H)<1 (by Lemmas .1 and [.5) = Xet(by Lemma 1.5). Conversely,
1.5, 4) implies [t4, m4]cCm4 and hence t/CLie algebra of Nx(m4). q.e.d.

The following is an immediate consequence of the above lemma.

CorOLLARY 1. The group N? is a compact subgroup of K. The groups N4
and Z* have the same Lie algebra Y. Therefore W4 is a finite group.

CoroLLARY 2. 1) dim K/Z4=(1/2) (dim g—dim g4).
2) The map ¥4 is an immersion.

Proor. 1) In virtue of the above lemma, the tangent space of K/Z4 at the
origin Z4 is linearly isomorphic with
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Hfii= S 1,
YeX , ~2,

through the canonical projection nx: K——K/Z4. On the other hand, we have

o/fg’= 3 (G+m).

Ve, -3,
These imply the assertion 1).
2) It follows from that the differential d¥%4 of ¥4 at (kZ“,
Hye K|Z4x S* is given by

dti, ATy S 4 — — dThyexp H,d76 sin 2x(a, Hy) T,
for aef, =%, with 0<2(a, Hp)<1
Hi——driexpu,drcH for HeTy,(SY).

Therefore d¥ is linearly injective at (kyZ4, Hy). q.e.d.

LeMMA 1.7. Let 4, and 4, be admissible subsets of II', H,eS*, H, €S*: and
keK. If kExp H,=Exp H;, then there exists €Wy such that:

i) S84 =S8z,
il) kExpH=ExptH for each HeS‘;
iii) tHy=H,,

and hence kExp S‘+=Exp S”-.

Proor. We know Adkm‘i=m4 by [Lemma 1.6l Since both a and Adka are
Cartan subalgebras for the symmetric pair (g?:, t4:), and since the Lie algebra of
Z4: is t4: by the above [Corollary 1, we can find k€ Z“: such that kk e Nx(A).
Therefore, we may assume ke Ny(A). Put s=AdklaeW. Then (expsH)o=
(exp H,)o and hence there exists Ael” such that sH;+ A=H,. Putting 7,=£(A)s ew,
we have 7, H,=H,. It follows from Remark after Lemma 1.4 that 7;S%:=S4:. Now
1) implies that there exists 7, €eW°CW such that t=t,7;€W; and
7,5|S¥=id, and so tS$¥1=S%, tH;=H,. Then, for each HeS* we have

Exp t H=Exp 7,7, H=Exp v, H=Exp sH=kExp H. q.e.d.
COROLLARY. We have ZHC N* for each HeS*. Thus Z*CZECN*CNg(m?) for

each HeS“.
Put

T0=Fﬂcm

and define a homomorphism ¢/: I'o——W* by
“(A)=[t(A)] for Aerl’,.
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Then I'y is a lattice in ¢, and ¢ is injective. With these definitions we have the
following lemma.

LeMMA 1.8. 1) There exists a unique homomorphism w: WA——W* such
that if m‘[t]=[k] with teN* and keN*, then
Q.17 kExp H=ExptH  for each He §4.

4

‘ — 4
2) The sequence 1 r, W 1 s exact.

Proor. 1) Take an arbitrary teN“ and let t=¢(A)s, where Ael’ and scW.
Choose k €eNx(A) such that Adkla=s. Then the relation (1.17) holds and hence
keN’. Since Zy(A)cZ4 the class [k]eW* is determined by z. Moreover, the
relation (1.17) implies that [k] depends only on the class [v]. Now the cor-
respondence [7] [k] defines the required homomorphism. The uniqueness is clear
from the relation (1.17).

2) The surjectivity of #4 follows from It is clear that 74 o ¢4 is
trivial. Take t €N such that 7/[t]=1. Let t=t(A""+A")s, where A'’ec,, A’ea’
and seW. Put t/=t(A)s so that t=¢(A’)z’. It follows from (1.5), (1.10) and
(1.12) that ¢’ leaves both S’ and S’/ invariant. On the other hand, z4[t]=1 implies

Exp H=ExptH  for each HeS“.
Since S? is connected and I' is discrete in a, we can find Bel” such that

tH=H+B for each HeS“.
Let B=B''"+B/, where B'’ec, and B'ca’. Then

tH=B"+(H +B) for each H'eS'4.
It follows from the decomposition: v=¢#(A’/)7’ that

oH=H+B for each H'eS'4.

Since S’¢ is bounded in a/, we have B'=0 and hence z/=1. Thus we have
t=t(A") with A”ec,NI'=I", and hence [z]=¢/(A’"). This completes the proof.
q.e.d.
Now we define a C* right action of the group W“ on K/Z‘x S* as follows.
Let kZ4——(kZ*)-[k']=Fkk'Z* be the natural right action of [k'JeW* on K/Z‘. We
define a right action of []eW* on K/Z* by kZ—— (RZ*)[t]=(kZ*)-m[7t]. Define
a right action of [c]JeW“ on K/Z‘x S¢ by

(RZ*,H)——((RZ)[z], ©'H) for keK, HeS".
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Then we have the following

LEMMA 1.9. 1) The group W* acts on K|/Z*x S* freely.

2) Let ¥4: K/Z4x S*—M be the previously defined C*map. Then, ¥*(kiZ*,
H)=¥4(k,Z*, Hy) if and only if there exists [t1€eW4 such that (kZ‘, H)[r]=
(koZ?, Hy).

ProoF. 1) Assume that teNY, keK and HyeS! satisfy (koZ,Ho)[z]=(koZ’,
H,). Since the natural action of W+ on K/Z“ is free, we have n/[]=1 and =71 H,
= H,. It follows from that t=¢(A) with Ael',. But Hy=tH,=Hy,+A
implies A=0 and hence [7]=1.

2) Assume ¥4(kZ4, H)=¥4*(k.Z',Hy), i.e., kiExp Hi=k;Exp H.. Put k=
kilk€K so that kExpH,=ExpH;. It follows from that there exists
zeN? such that 7[z]=[k] and tH,=H,. Then k. Z'=kkZ=(kiZ*)-[k]=(k1Z*)[7]
and t'H,=H,. Thus (kZ4, H,)[t]=(k:Z*, Hy). Conversely, assume (k& Z*, H;)[7]
=(koZ¢, H,) with 7eN‘. Let wn‘[r]=[k] where keN’. Then kkZ‘=kZ* and
t1H,= H,, and hence k,Exp H;=kkExp H,=kExptH,=kExp H,, i.e., ¥!(kZ’
H)=V4(kZ", Hy). q.e.d.

For an admissible subset 4 of IT', let

E‘=K|Z* % 5487
be the quotient manifold of K/Z!x S’ relative to the above free right action of W4,
The class in E* of a point (kZ¢, H)eK/Z*x S* will be denoted by [kZ‘, H]. Note
that K/Z? is connected since K is generated by KN A and the identity component
of K (cf. Takeuchi [I1]). Thus E* is also connected. We will show in Part II that E-
is diffeomorphic with a fibre bundle over a compact manifold. With these defini-

tions, we have

THEOREM 1.1. 1) A compact connected symmetric space M is the (not neces-
sarily disjoint) union:

of connected regular submanifolds M?, where 4 ranges over the admissible subsets
of II'. Each M* is diffeomorphic with E' by the diffeomorphism ¢*: E*— M
induced by the C* map ¥*: K[Z*x S*— M.

2) The dimension of M* is given by

dim M¢‘=(1/2)(dim g—dim g¢*)+|4|+7r,—s.

In particular, dim M*<dim M—2 for any proper admissible subset 4 of II'.



On conjugate loci and cut loci of compact symmetric spaces I 51

3) MHNMrtd & Mi=M*": & There exists €Wy such that tSr= S,
4) Mo M & There exists teWs such that ©S4D S,

Proo¥. 1) Let p be an arbitrary point of M. Take X em such that ExpX=
p and then take k€K such that H;=Adk X ea. It follows from 1
that there exists zeW such that H=7H;€ S. By Lemma 1.4, we heve an admis-
sible subset 4 of IT* with HeS4. Let t=¢t(A)s, where Ael’ and se€W, and take
k; eNx(A) such that Adkyja=s. Put k=(kk;)'€K. Then k™ p=kkExpX=
kExpAdk; X=Fk.Exp H,=Exp sH,=Expr H,=Exp H, and hence p=kExpH=%4(kZ*, H)
eM!. Thus M= UM-.

For each admissible subset 4 of II', ¥4 is a C” immersion by of
Lemma 1.6, and it induces a C* imbedding ¢4: E‘——M by Thus
it suffices to show that ¢4: E‘——M* is an open map with respect to the topology
of M* induced by that of M. We prove this in the same way as in Sakai [8].
Suppose that this would not hold. Then, there would exist sequences k, €K, H, €S*
such that k. ExpH, would converge in M to a point kExpH, with k€K, HyeES?,
but [k,Z4, H,] would not converge to [k,Z4, H,] in EY. We shall show that this
assumption leads to a contradiction. From the assumption, there exist a neighbor-
hood ¥ of [kyZ4, Hy] in E? and subsequences ks, Hn, such that [k 7%, Hn]]¢Z .
Since both K and ¢,/I"y are compact, we may assume that subsequences kx; and
H,, converge to k€K and to H'eS? respectively, so that %' Exp H' = kyExp H,.
Putting k=k, k'€ K, we get

kExp H'=ExpH, where H'eS4, H,eS’.

It follows from [Lemma 1.7 that there exists €Wy such that tH'=H, Thus H'eS,
and hence

kExp H'=kyExp H, where H', HyeS“.

Now Lemma 11 9, 2) implies [#'Z4, H']=[k,Z%, Hy]. But the sequence [k, Z% Hx]
converges to [k'Z4, H'] in E4. This contradicts to the assumption: [kn,Z4, Hn,1¢Z .

2) follows from [Corollary 2 of Lemma 1.6/ and (1.14).

3) Let M 1N M*:#¢. Then there exist k;, ky €K, H;€S% and H; €S*: such that
ki Exp Hy=Fk; Exp H;. Putting k=k, k€K, we get kExp Hi=Exp H,. By
1.7, there exists €Wy such that zS4=S4. Assume conversely that there exists
€Wy such that 78%1=S%. Let t=¢(A)s, where Ael’ and se€W, and take k eNx(A)
such that Adkla=s. Then kExp H=ExptH for each HeS%, and hence M=K
Exp S4=K Exp tS4 =K Exp S¥>=M*:. These prove the assertion 3).

4) Assume M*1DM?:. Then there exist sequences k€K, H,eS% such that
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k,ExpH, converges to a point kExpH,eM*: with k€K, HycS*. In the same way
as in the proof of 1), we may assume that sequences k, and H, converge to k€K
and to H'e S respectively. The same argument as there shows the existence of
of 7eW; such that tH'=H, Thus 541D S,

Conversely, assume the existence of teWs with tS4>8%. Let t=¢(A)s, where
Ael’ and se€W. Take an arbitrary point kyExp HoeM“:, where k€K and H,€S*.
Choose keNx(A) with Ad kjla=s and a sequence H,eS% such that =H, converges
to H,. Then the sequence kok,Exp H,=kiExptH, in M converges to k,ExpH,.
This shows M“4DM?*.. q.ed.

CorOLLARY 1. (Sakai [8])
Let (M, g) be a simply connected compact symmetric space. Then:
1) M is the disjoint union:

of connected regular submanifolds M*, which are diffeomorbhic with K|Z*4x S*;
2) MDD M & 4,0 4y,
3) Z*=7Z* for each H,€S“.

ProoF. 1) and 2) follow from 2): Ws={1}.
3) Let keZ™, so that kExp Hy=Exp H,., We have to show keZ‘. [Lemma
1.7 implies the existence of 7€ N such that

kExp H=ExptH for each H eS“.

Since N“={1} in our case, we have r=1, and hence keZ4.  q.e.d.

Consider the map ¥4 in the case where 4=1II'. Our ¥"' will be abbreviated
to ¥ and M7' will be denoted by R. Note that R is connected. An element of

R is called a regular point of (M, g) with respect to the origin 0. In this case,
we have ZZ'=Z,(A), S™'=8 and WZ'=W;. Thus we have the following

COROLLARY 2. The Cmap ¥: K|Zx(A) x S— R defined by

Y(kZx(A), H)y=kExp H for keK, HeS

is a covering map, and it induces a diffeomorphism ¢: K[Zy(A)Xxw;S—R. In
particular, the Cmap ¥ is a diffeomorphism if M is simply connected.

It is known (cf. Helgason [3]) that the conjugate locus @ of (M, g) with
respect to o is given by
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Q=M-—R.

The tangential first conjugate locus F of (M, g) in T.(M) is given as follows.
Recall first that m=AdKa, and thus F=AdK(FNa,). It is known (cf. Helgason
[3]) that FNa, is given by

Fna,={Hea,; 2(y, H)=1 for some 7€ 3'}.

Thus we get
F=AdK(FnS).
where FNS is given by
FNS= U S4.
4D 31

Recall that the first conjugate locus F of (M, g) with respect to o is defined by
F=Exp F. Now we get stratifications of @ and F.

CoROLLARY 3. We have

Q= U M,
Acm
F= U M,

43t

where 4 ranges in admissible subsets of II'.

§2. Fundamental groups of compact symmetric spaces

In this section, we shall prove that the group W; is isomorphic with the fun-
damental group = (M) of M. Furthermore we shall investigate the relations bet-
ween submanifolds M‘ making use of the group Ws.

LEMMA 2.1. Let R be the set of regular points of (M, g) with respect to o,
and let ¢: R——M be the inclusion map. Then the induced homomorphism tx:
r(R)——m (M) is surjective.

Proor. By [Theorem 1.1, @=M—R is the union of submanifolds M4 with
dim M?<dim M—2. Thus a theorem of the dimension theory (cf. Helgason [3])
yields the Lemma. g.e.d.

LEMMA 2.2. Let Gy be the simply connected compact Lie group with the Lie
algebra ¢' and let 0, be the involutive automorphism of G, whose differential is
0'=0\g’', Put

Ky ={zeGy; 0y(z)=x}.
Let Ay denote the toral subgroup of G, gemerated by o'. Then K[Zy(A) is dif-
feomorphic with Ko'|Zg, (Ao') in the natural way.

ProoF. (i) Let K?° denote the identity component of K. Then the inclusion
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Ky,——K induces a diffeomorphism K°/Zy(A)— K[Zx(A), since K is generated by
K° and KN A.

(ii) Let G’ and A’ be connected Lie subgroups of G generated by g’ and o'
respectively, and put K'=G'N K. We have K°=C;K’°, where C; is the toral sub-
group of G generated by ¢; and K'° is the identity component of K’. Thus the
inclusion K’°——K?° induces a diffeomorphism K'%/Zy «(A")—— K% Zy:(A).

(iii) Let m: Gy'——G’ be the covering homomorphism. Since K,' is connected
by 2), m induces a covering homomorphism 7n: K,/—K’°. This
induces a diffeomorphism Ky'/Zx,'(A¢)——K'°/Zx +(A").

The composition of the above three diffeomorphisms is the required one. q.e.d.

THEOREM 2.1. The group Ws is isomorphic with the fundamental group
“;(M) Of M.

ProoF. This theorem, in a restricted case, was proved by Takeuchi [9]. We
prove the present theorem in the same way as [9].

Let My’=G,//|K,'. Since K,' is connected, M,’ is a compact simply connected
symmetric space. Let R,’ denote the set of regular points of M,’. Then, by Corol-
lary 2 of [Theorem 1.1, the C”map ¥/: K//Zx, (Ay’) x S'— Ry’ defined by

Vo' (kZxy (A, H)=kExp'H for keK,', HeS'

is a diffeomorphism. Here Exp’ denotes the exponential map of M,’ at the origin.
Identifying K/Zx(A) x S with cn x Ko'[Zx, (Ay) X S’ by and (1.5),
we define a C* map ¢:K/Zx(A) X S—cy X My' by

t(H", kZg, (Ay'), H)=(H", ¥/ (kZxs(Ay), H'))
for H'ec,, keK,', H'eS'.

From the above argument we see that 7 is an imbedding with the image ¢, X R, .
We define further a covering map II: ¢, X My’—— M by

II(H", zK,)=(exp H''z(z))o for H'€c,, zc G, .

Then it is verified that the following diagram is commutative.

¢
K/ZK(A) X S—"Cm X Mo’
|7 |
R — M

4

Fix points peR and peK/Zx(A) xS with F(p)=p. For a continuous closed curve
¢:[0,1]—R in R with ¢(0)=c(Q)=p, let ¢:[0, 11— K/Zx(A) x S denote the
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lift of ¢ relative to ¥ with ¢(0)=p. The terminal point ¢(1) of ¢ depends only on
the homotomy class {c}€ #;(R) of ¢. From Corollary 2 of [Theorem 1.1, there exists
uniquely teW such that pt=é(1). Then the correspondence {¢} ——7 defines a
homomorphism ¢: 7,(R)——Wy. It is surjective since K/Zx(A)x S is connected.
For {c} e (R), we have ¢({c})=1 if and only if the lift ¢ of ¢ relative to ¥ is a
closed curve, which is equivalent to that the lift ;:,c=e~ o ¢ of ¢oc relative to IT is
a closed curve. Since ¢, x M, is simply connected, the above is equivalent to that
the closed curve ¢ o ¢ is homotopic to zero in M. Thus we get

n,(R)/ kernel tx=Ws.
On the other, ¢4 is surjective by Lemma 2.1, and hence
7,(R)/ kernel ¢x=n,(M).
Thus We=n,(M). q.ed.
Now implies the following
CorOLLARY. The fundamental group =, (M) of a compact connected symmetric
space (M, g) is isomorphic with I'[I"°. Therefore m(M) is an abelian group.

Now we shall study the detailed structure of Ws.
We define a surjective map #y*: W*——TI* by

nr(t)=7(0) for reW*,
or equivalently, by
a1 (1(A)S)=A for AeTI*, seW.

It induces also a surjective map #*: W——I". Let aw: W*——W be a homomor-
phism defined by

aw(t(A)s)=s for AeTI'* seW.
It induces also a homomorphism 7w: W——W. Recall the decomposition:
a=cy+a’.

Let p.: a—c¢, and p,: a——a’ denote orthogonal projections onto ¢, and a’ re-
spectively. We define a map #.: W*——¢, by

T, =pc © pk.
In general, for t;=¢t(A;"'+ A:')s;, where A;'’€c,, A€a’, s;eW (i=1, 2), we have
2.1) T3t =1(A" + A+ (A + 5142")) 518,

where A;'+A''e€cy,, A,/ +s1A’€a’, s15,€W. Therefore n, is a homomorphism. It
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induces also a homomorphism 7#,: W—>¢,. We define subgroups Wy * and (W)«
of Wg* by

W = (zeW¥; 7. (z)=0},
(Wy)x= {reWs; 7 (2)=0}CWE.

The group W% acts on ¢, trivially, and hence it is identified with a subgroup

of the group of Euclidean motions of a’. Actually we have an isomorphism:

(2.2) W =W§ x - x W§,

Thus W§ is a finite group, and hence (Wg)x is also a finite group. Next we define
a subgroup Z of ¢, by
Z= nc(WS)'

Since Z contains the lattice I'y of ¢,, Z is also a lattice of ¢,. Thus Z is isomorphic
with Z 7. From definitions, we have an exact sequence:

(2.3) 0—— (W) s— Ws—5r Z—0.
This exact sequence splits since Z is free, and hence
(2.4) Ws=(W)sxxZ, Z=Z".
We deﬁne a map ': Wy— W% by

o’ (t(A"+ANs)=t(A")s for A'’ecy,, A'ea’, seW.
The map #’' is a homomorphism in virtue of (2.1), and satisfies
(2.5) t(z (z)z'(r)=7 for each teWy,
(2.6) aw(n'(t))=nw(r) for each veWs.
We define subgroups F*, F and Fyx of W by

Fr*=ny(Wky),

F= nW(WS)’
Fr=mw((Ws)x).

Since 7w is injective on W2, we have isomorphisms F*=W¥% and Fy=(W)«. In
virtue of [(2.6), F is a subgroup of F*, and hence

FyC FCF*,
Isomorphisms (2. 4) imply
@.7D Ws=Fxx2Z, Z=2Z".
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Note that from (2.2) we have
(2.8) Fr=F* x - X F*,

where F'i* is the corresponding group for the k-th irreducible factor (gx, fx) (1<E<s).
We define an injective map y——7' from II' into o’ by the correspondence (1.15),
and denote its image by II'. Define

AutUI )= {se OCay); sIl},'=1II,}} (1<k<s),
and then define a subgroup Aut(Z7') of O(a’) by
Aut(T")y=Aut(IT*) x --- x Aut(IT{").
We can prove the following lemma in the same way as in Takeuchi [10].
LeMMA 2.3. Assume that g is semi-simple and (g, ) is irreducible. Then,

under the notation in the proof of Lemma 1.4:
1) SNTI* is a subset of the set {Py; yell'} of vertices of S, given by

SNI*={Py; ni=1}.
2) ForteW¥ let © be the permutatiom of II' defined by
TP'y:P,-\,'y for TGII”.
Then
aw(t)y=1'y for each yell‘.
If tyo=7i (0<i<7?), then mw(t)eW is characterized by
{re2; r>0, aw(z) <0} = {reX; (1, &) >0}.
CoroLLARY. We have Fi*CAut(Il}') for each k. Therefore F*CAut(Il*).

LEMMA 2.4. 1) We have the folllowing commutative diagram.

Z X F Ws — > snr
inj bij .
f inj. lzc-xn' inj. |PeXbgr
bij. — bij. h _
* * ; ’ *
ZXF T zZ X w¥ T Z X (S'NT*
Thus Z is given by
2.9) Z=p.(SnD).

2) As for groups Fy, F and F*, we have the following commutative diagram.
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F n'W (W Tfp* __,
(@)
f* bij })* bij. S [~. r
F bij. %, bij. S/ A
7 |
F bij . pg/(SNI)
Two ok

ProoF. 1) Let t=t(A"+A")seWs, where A'’ec,, A’ca’ and seW. Then
n(t)=A", 2’ (t)=t(A")s and aw(z)=s. If n(z)=0, #'(z)=1, then A"'=0, A'=0,
s=1 and hence 7=1. If z,(z)=0, aw(r)=0, then A’’=0, s=1 and hence t=¢t(A’)
with A’ea’. Since S=S, we get A'=0, and hence r=1. Thus both #n,xzw and
n. x @' are injective on Ws. The commutativity of the left square follows from (2.5).

Note that ny*: Wg——I* is injective, since sS=S implies s=1 for seW.
Each €W leaves also S invariant. Recalling 0e S, we get n*(z)=7(0)eSNI" for
each teWs. Take an arbitrary Ae SNI" and let A=A"'+ A’, where A’’e€c, and A’ea’.
Then pos(A)=A'e S’ NI*. Now t(A)1S=c,xt(A')"1S’, where t(A')"1S is a funda-
mental cell for (g/, ') whose closure contains 0. Hence there exists s €W such
that s 1#(A)"18'=9". Putting t=t(A)seW, we get t71S=c, xS’ =S, and thus
teWs. We have nyx(t)=A, and hence p.(A)=A"=pa*(tr)=n(r)eZ. These
show that z,*: Wy——SNI is surjective and that p.xp, maps SNI" into
Zx(§'Nnr+. Thus the map n+*: Wg——SNTI is bijective. The map p X p. is
clearly injective.

Applying the same argument for the symmetric pair (G*, K*) of G*=AdG and
K*={xeG*; 9x=x0)}, we see that ax: WX——S8'NI* is bijective. This implies
the bijectivity of 1xzm*: Zx W ——Zx (S'NI*).

The commutativity of the right square follows from definitions.

2) The bijection z*: Wy——S'N I induces bijections (Ws)x«——S'NT" and W& —
S'nI*. The lower square follows from the diagram 1). q.e.d.

CoROLLARY. The groups Ws, (Wsdx and W¥ act simply transitively on SNT,
S'NTI and §'NI'* respectively.

REMARK. 1) We can determine the torsion part Fx of W and the group F
by making use of Lemmas 2.3 and 2.4. In fact, each Fi*cCAut (IT,*) is determin-
ed by and hence F*=F*x-.-x F*CAut(Il') is determined. Finding
subsets S'NI" and p,(SNI") of S'NI'*, we get subgroups Fx and F of F* by
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means of Lemma 2. 4.

On the other hand, the free part Z of Wy is obtained by [(2.9).

Thus we get Ws as a subgroup of Zx F by means of the diagram 1).

2) Let a: M——M be the Riemannian universal covering of M. Then SNTI
and Wy are identified with 7~1(0) and the covering transformation group G(z)
respectively, in such a way that the action of Ws on SNI" corresponds to that
of G(n) on =n~1(0).

38) If we identify Wy and SNI" with a subgroup and a subset of ZxF by
means of bijections in the diagram 1), then the action of Wy on SNI is no-
thing but the left translation in the group Zx F.

We define an action y——7+7 of Wy on the set II' by

(zi=n,()y for teWy, yellt.

With these definitions we have

LemMMA 2.5. Let 4 be an admissible subset of II'. Then:

1) ©S‘=S84  for each teWs;
2) N'={ceWs; t-d=4}, and Z*={re(We)s; 7

4=id}.

Proor. 1) We may assume that g is semi-simple and (g, ¥) is irreducible.
In this case, under the notation in Lemmas I.4 and 2.3, S* is given by
(1.16) SI={ 3 hyPy; 0<hy<l, 3 hy=1),
Yedn Yedh

and 7 is given by
(2.10) t( 3 hyPy)= 3 hyPr, (7).
Tedh Yedh

These imply the assertion 1).
2) The assertion for N“ follows from 1). If g is semi-simple and (g, I) is
irreducible, then from (1.16) and (2.10) we have

Z4=(teWy; t+.y=7 for each red)}.

This implies also the assertion for Z4 in general case. q.e.d.
Let 4, and 4, be admissible subsets of I'. They are said to be equivalent if
their exists seF such that sd,'=4,". We denote by 4,>4, if there exists s eF

such that s4,'D4,'. With these definitions, by [Theorem 1.1], its [Corollary 3 and
Lemma 2.5, 1), we have the following theorem.

THEOREM 2.2. 1) Let &* be a set of complete representatives of equivalence
classes of admissible subsets in II'. Then
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M= U M? (disjoint union),
de*

where M/\DM*: if and only if 4,>4,.
2) Let f=g*—{II'}, and let F be the subset of & consisting of all e
which is equivalent to some 4' with 4'H2'. Then

Q= U M! (disjoint union),
de

F= U M (disjoint union).
de &

REMARK. Note that the set & as well as the set & is a finite set.
§ 3. Cut loci of compact symmetric spaces

In this section, we shall study the structure of cut loci of compact symmetric
spaces and give stratifications of them by a refinement of methods for conjugate
loci.

For Hea, the norm ~(H, H) of H with respect to the inner product ( , )
will be denoted by |H|. For a subset I’ of I' with I''— {0} #¢, we define functions
mp and My on a by

. = Mi —A|,
my(H)= Min |H-A4|
My (H)= Max 2(H, A)/(A, A).
Aer’ —{0}

An elementary calculation shows

|H|<|H—-A| & 2(H, A)J(A, A1,
3.1 |H|=|H—-A| & 2(H, A)/(A, A)=1,
|H|>|H-A] & 2(H, A)/(A, A)>1.

Thus we have
3.2) mp(H)=|H| & My (H)=1.

Let C and @ be the tangenital cut locus and the tangenital conjugate locus of
(M, g in m=T,(M) respectively. Let C=Exp C be the cut locus of (M, g) with
respect to 0. Now Sakai characterized C as follows.

THEOREM 3.1. (Sakai [7]) We have

C=AdK (Cna),

where CNa is given by
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Cna={H ea; m(H)=|H|},
or equivalently, by

Cna={Hea; Mp(H)=1)}.

ReMaRrk. Let A=Ao. It is a maximal totally geodesic flat submanifold of
(M,g). Then Cna coincides with the tangenital cut locus of A in a=T,(A4).
In the course of the proof of [Theorem 3.1, Sakai proved the following
result.
LemMa 3.1. Let HeCNS and H¢Q. Then any AeI'— {0} with |H|=|H—A|
belongs to S. Thus, we have SNI'— {0} +¢ and
msnr(H)=|H|.

In Theorem 3.1], it is not easy to compute m (H), since I' is an infinite set.
So we will try to replace I' by a finite subset of I'.

Define subsets %" and & of S by
" ={HEeS; 2(H, A)J(A,A)<1 for each AeSNI'—{0}},

{HeS; Msar(H)=1} if SNI'—{0}+¢

<= é if SNIr—{0}=g,
and then define

O={red'; % NSy+¢},

A={AeSNI'—{0}; 2(H, A)/(A, A)=1 for some He &F}.
Put

A@)={Ay; r€0}.

It should be noted that both 4 and A(®) are finite subsets of I.

THEOREM 3.2. 1) We have C=AdK(CNS). Therefore C=KExp(CNS).
2) The set AUA(®)—{0}=AUA(®) is not empty, and CNS is given by

CNS={HeS; M, ae(H)=1},
or equivalently, by
CNS={HEeS; myvar(H)=|H|}.

ProoF. 1) We know m=AdKa,, and hence C=AdK(CnNa,). Therefore it
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suffices to show Cna,cCnNS. Take an arbitrary HeCna.. Then, by
3.1, 2(y, H)=2(H, Ay)/(Ay, Ay)<1 for each 7€X', and hence HeS. This proves
the required inclusion.

2) Let HeCNnS. Then My (H)=1 by [Theorem 3.1. Put
Qu={AeSNT'—{0}; 2(H, A)J(A, A)=1}.

Case 1: Qu+#¢. We have He<”, and hence 2uCA.

Case 2: 2u=¢. We have He % . Moreover, implies HeQ. There-
fore there exists yeX" such that 2(y, H)=1 so that HeSy!. Thus we have

2(H, Ay)](Ay, Ay)=1 with ye®.

These prove that AN A(®)+¢ always and that M,y e (H)=1.

Conversely, assume that HeS satisfies M,uae(H)=1. Suppose H ¢C. If H=
soH eC with s>1, then My(H')>>1, which contradicts to[Theorem 3.1. Thus there
exists s, with 0<s;<1 such that H'=s,HeC. But H'¢Q since HeS. Now Lemma
3.1 implies that SNI'—{0}#¢ and Msnr(H')=1, and hence H'e &¥. Therefore
there exists Ae SNI"— {0} such that 2(H’, A)/(A,A)=1. From the definition, we
have Aed. But H=(1/s)) H implies 2(H, A)/(A, A)>1, which contradicts to
Miyae(H)=1. This shows HeCnS. q.e.d.

REMARK. By we can show a well known fact that M is simply
connected if and only if F=C (cf. Crittenden[2], Sakai[8]).

We have defined in §1 a cellular decomposition of S closely related to the
conjugate locus. Now we shall define another cellular decomposition of S closely
related to the cut locus.

Let @ be a subset of SANI". The complement SNI'—® of ® in SNI" will be
denoted by @¢. Let T° be the subset of S consisting of all HeS satisfying the
conditions:

|H—A|=|H—A’'| for each A, A'ed°,
|H—A|<|H—A'| for each Ae®°, A'e 0.
It is easily seen that T? is a convex subset of S. A subset @ of SNrI' is said to

be admissible if SN and T?+#¢. Note that |@°|<oo for any admissible sub-
set @ of SNT.

LeMMA 3.2. 1) S=UT? (disjoint union), where @ ranges over the admissible
[
subsets of SNT.

2) The group Ws acts on the set of all T® with @ admissible. More precisely,
we have TT°=Tr for teWs and an admissible subset ® of SNI.
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3) For admissible subsets @, and @, of SNT,
T2 T% & 0,00,
In this case, for H.€T?® and H,eT?®:, we have
tHi+(—t)H,€e T? for each ¢t with 0<t<1.

Proor. 1) Let HeS. We define a function px on SNI" by
ou(A)=|H—A| for AeSNT.
Put
0'y={AeSNI; pu(A) = Min pu(A")

and let @y,=0',¢. Then @'y is a finite non-empty subset of SNI', and @x is an
admissible subset of SNI" such that He7?%=. This shows the assertion 1).

2) follows from that Wy preserves the Euclidean distance |H—H'| on a.

3) By a translation, we may assume 0€ #,°. Then, He€ T% if and only if

{ |H|=|H—A| for each Ae®,C,
|H|<|H—A'| for each A’e®,.

Assume that 722> T?:. Then there exists a sequence H, €7?: converging to H, €T:.
The conditions:

|H,|=|H,—A| for each Ae &,C,
{ |H,|<|H,—A'| for each A’e @,
imply
|Ho|=|Hy—A| for each Ac®,C,
{ |Hy|<|Hy—A’| for each A’e®,.

This shows #,¢C®,°, and hence @,080,. Coversely, assume @;DO0,. It follows from
(8.1) that HeT? ({=1,2) if and only if

{ 2(H, AJ(A, A)=1  for each Ae 0,— {0},
2(H, AN](A', A1 for each A'e®;.
Take H€T? and H,€T?: and put

H=tHi+(1—-t)H, 0<i<1.
Then the equality:

2(H, A)J(A, A)=t-2(H;, A)/(A, A)+Q—1)-2(Hy A)/(A, A)
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implies
2(H, A)|(A, A)=1 for each Ae @,¢—{0},
2(H, A)/(A, A)<1 for each Aec®,,

and hence HeT?. This shows also 721D 7?:. g.e.d.
Let (4, @) be a pair of subsets ACIT* and SSNI. We define a subset S%?
of S by

§40=54n T

A pair (4, ®) is said to be admissible if S%°+¢. Note that for an admissible
pair (4, @), S$%° is homeomorphic with a cell, since it is an open convex poly-
hedren in an affine subspace of a.

LEMMA 3.3. 1) §=(A'L£) S4° (disjoint union), where (4, @) ranges over the
admissible pairs.

2) The group W acts on the set of all S° with (4, ®) admissible. More
precisely, we have tS*°=S747® for v €Wy and an admissible pair (4, D).

3) For admissible pairs (d4;, @) and (43 @),

S"nalDSA?’o’ @ AIDAZ and @1:)@2.

Proor. 1) and 2) follow from Lemmas 0.4, and B.2.

3) Assume 549D 54,9, Then, Lemma 1. 4, 3) and Lemma 3.2, 3) imply
4,04, and 0,D0,. Assume conversely 4,04, and @,00,. Then it follows from
the same lemmas that for H€S%»?%: and H,e€S%:?: we have

tHi+(Q—t)H, €S2 for each ¢ with 0<t<1.

This implies S4159:>84»92..  q.e.d.

We can also extend the above decomposition of S to a W-invariant cellular
decomposition of a as in §1.

A pair (4, @) of subsets dDIT' and OSSNT is called a c-pair if it satisfies
the following conditions.

(i) 4, 0 is admissible.
(ii) 0eoc,

(iii) @°— {0} c A.

Gv) 4p0 if @°c={0).

LemMma 3.4. CnNS= U’ 842 (disjoint union), where U’ means the union over
: )

?
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the all c-pairs (4, 0).

ProoF. Let HeCNS. Let 4 be the unique admissible subset of II' with
He S, Put

Qu={AeSNI'—{0}; |H|=|H-A|}.

In the proof of we have showed the following:
Case 1: Qu+#¢. QucA.
Case 2: Qnv=¢. He % and there exists ye ® with 2(y, H)=1.
In Case 1, put 0=SNI'— (24U {0}). Then HeT? 0°=825U{0}+ {0} and & — {0}
=8u. Hence, HeS%? and (4, @) is a c-pair. In Case 2, put ®=SNTI"—{0}. Then
HeT?=9, 0°={0}, 0°— {0} =¢ and @¢4. Hence, HeS%? and (4, @) is a c-pair.
Conversely, let HeS*? with (4, @) a c-pair. In virtue of 0€®°, we have |H|<
|H—A| for each AeSNTI"'—{0}. In particular, we have

|H|<|H—A| for each Ae 4.

On the other hand, H €S implies that 2(y, H)<1 for each 7e€3', or equivalently,
2(H, Ay)/(Ay, Ay)<1 for each 7€3'. In particular, we have

|H|<|H—A| for each AcA(®).
Therefore we get
| H|<m 40 a000(H).
Case 1: @¢+#{0}. In this case, we have

|H|=|H—A| for each Ae®°—{0)(#¢)CA.

Thus we get |H|=muiya(H), which implies He CNS by [Theorem 3.2.
Case 2: 9¢={0}). In this case, we have 2(y, H)=1 for each y €4°N®, where
4¢ denotes the complement II'—4 of 4 in IT'. In particular, we have

|H|=|H—Ay| for each y€d°N®(+¢)CO.

Thus we get HeCNS in the same way as Case 1.  q.e.d.
Note that the dimension k,,, of S%? for a c¢-pair (4, @) is given by

ks0=7—dim{(@°—{0}) U 4} p,

where {*}z means the subspace of a spanned over R by *.
Now we shall proceed as in §1 to study the structure of the set KExp S%°.
For an admissible pair (4, @), we define
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N%°2={keK; RExpS*°=ExpS%?},
Z49= {keN*?, k|ExpS%?=id},
W40 =N*9|749,
and
N0 = (ceWyg; tSH0= 549,
740 = {re N4?; t|S42=id},
TWtso = K49/ 2410,

Elements of W4° and W4%° will be denoted by [k] with k2 eN%? and [7] with
teN4® respectively.
We define a C® map ¥4°: K|Z*°x S%°—M by

v4o(kZ4° H)=kExpH for keK, HeS*4?,

and denote by M%? the image of ¥49°.
implies N4?C N4, and hence

24742 N4 2 C NAC Nyg(m4).

These groups are compact and have the same Lie algebra f4. In particular, the
group W49 is a finite group. Moreover, [Corollary 2 of Lemma 1.6 implies that
¥4% js a C™ immersion and that

dim K/Z4°=(1/2) (dim g—dim g4).
In the same way as the proof of Lemmas 1.7 and we can show the fol-

lowing

LEMMA 3.5. 1) Let (44, @) and (4o, @;) be admissible pairs, Hi€S*%, H,e€
S4:9: qnd keK. If kExp Hy=Exp H;, then there exists €Wy such that:

i) z'S"nal:Sdzyaz;
ii) k Exp H=ExptH for each HeS4%;
iii) tHy=H,,

and hence k Exp S4:%1=Exp S42?:,
2) For each admissible pair (4, @), there exists a unique homomorphism n4?®:
W40 —— W40 sych that if n4°[v]=[k] with T eN%® and k eN»°, then

k Exp H=ExptH for each HeS4°.
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LEMMA 3.6. The homomordhism n40: W4o——W49 is an isomorphism. There-
fore W40 is also a finite group.

ProoF. The surjectivity of z4:2 follows from Lemma 3.5, 1). Assume n4°[t]=1
where 7 €W49°, Then, in the same way as in the proof of Lemma 1.8 we find
Ael’ such that

tH=H+A for each HeS4?,

Since S$4? is bounded, we have A=0, and hence [t]=1. q.e.d.
From we have the following

LEMMA 3.7. For an admissible pair (4, @), N4° is given by
No=(reWs; ted=4d, t0=0}.

We define a free C* action of W4? on K/Z%%x S4? in the same way as for
K/Z4x S4. Let
E*°=K|Z4% X ;0,45

be the quotient manifold relative to this action. Put
B42=K|N4°,

It is a compact connected C* manifold. By Lemma 3.6, K/Z4? is a C® principal
bundle over B#? with the group W49, and E%° is a fibre bundle over B%? associated
to K/Z4° with the fibre S47.

Let (4y, @) and (4,3, @) be c-pairs. They are said to be equivalent if there
exists ¢ €Wy such that z-4,=4, and @, =0,. We denote by (4y, &)>(4,, @) if
there exists €Wy such that r-4,D4, and @, D0,. Let & be a set of complete
representatives of equivalance classes of c¢-pairs. Note that & is a finite set. Then
in the same way as the proof of Theorems [.1 and we get the following
theorem.

TaEOREM 3.3. 1) For each c-pair (4, @), M4?® is a connected regular sub-
manifold of M with

dim M%°=(1/2) (dim g—dim g¢4)+k,0.
Each M4%° is diffeomorphic with E4° by the diffeomorphism ¢4°:. E4®——M4% in-
duced by the C* map ¥4°: K/Z4%x §4°—— M.
2) The cut locus C of a compact comnected symmetric space (M, g) with

respect to the origin o has a stratification:

C= U M4° (disjoint union),
4,0)e®
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where M?>%: 0 M0 if and only if (dy, @))>(ds, ).

ReMARK. Let dim M=#x. Then M is homeomorphic with the space obtained
from the cut Iccus C by attaching an n-cell M°. In fact (cf. Kobayashi [4]), let

E'={X; 0<t<1, Xe (),
S=E°NnS.

Then E°=AdKS° (cf. proof of [Theorem 3.2 1)), and the closure E° of E° is given
by E°=E°UC. The subset

M°=Exp E°

of M is called the interior of (M, g with respect to the point 0. Subsets E°,
E%and C of m are homeomorphic with the closed n-disk D*, n-cell D* and (n—1)-
sphere S"~! respectively. Thus the cut lccus C is a closed subset of M. Moreover, Exp:
E'>—M is surjective and the continuous map Exp: (E° &) —(M, C) of pairs
induces a relative diffeomorphism Exp: E°——MP,
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