A CORRESPONDENCE BETWEEN OBSERVABLE HOPE IDEALS AND LEFT COIDEAL SUBALGEBRAS

By

Hiroshi Shigano

1. Introduction. Let H be a commutative Hopf algebra over a field k with the antipode S. A Hopf ideal I of H is observable if it satisfies the following condition; for any finite dimensional right (resp. left) H/I—comodule V, there exists a right (resp. left) H-comodule W with the the structure map λ_W (resp. ρ_W) and an injective H/I—comodule map $\theta: V \rightarrow W$, viewing W as a right (resp. left) H/I—comodule via

$$W \xrightarrow{\lambda_{W}} W \otimes H \xrightarrow{1 \otimes \pi} W \otimes H/I$$
(resp. $W \xrightarrow{\rho_{W}} H \otimes W \xrightarrow{\pi \otimes 1} H/I \otimes W$),

where, in the following too, $\pi: H \longrightarrow H/I$ is a canonical Hopf algebra map and \otimes means a tensor product over k. If G is an affine algebraic group defined over k and K is its closed subgroup defined over k, then I = I(K), the ideal of the definition for K, is observable in H=k[G], the coordinate ring of G over k, if and only if K is an observable subgroup of G in sense of [1].

A subalgebra of H which is also a left coideal of H is called a left coideal subalgebra.

In this paper, we give a bijective correspondence between observable Hopf ideals and left coideal subalgebras A which satisfies

(*)
$$A = \operatorname{Ker} (H \xrightarrow{in_1} H \otimes_4 H)$$

and a canonical construction of W from V. In the last section where we assume that a ground field k is algebraically closed and H is a finitely generated domain over k as an algebra (which we call an affine Hopf domain), we show that the condition (*) on A is equivalent to the fact that if $a \in A$ is a unit in H, then a is a unit in A. Moreover, in this case, A is finitely generated over k as an algebra (which we call an affine k-algebra as usual.) [2] shows that A is affine if and only

Received September 8, 1977. Revised November 15, 1977

if the observable subgroup K of G satisfies "the codimention 2 condition on G/K." Thus our result says that every observable subgroup automatically satisfies "the codimention 2 condition on G/K." As a corollary, we get if G is an affine algebraic group over k and K is any closed subgroup of G, then $k[G]^{\kappa}$ is an affine k-algebra.

2. A bijective correspondence. The structure maps, $m, \mu, \Delta, \varepsilon$ and S of H are a multiplication, a unit, a comultiplication, a counit and an antipode respectively as usual.

For any Hopf ideal I of H, we set

$$L(I) = \operatorname{Ker}(H \xrightarrow{\sigma_H} H \otimes H/I)$$

where $\sigma_H: H \longrightarrow H \otimes H \longrightarrow H \otimes H/I$, and, for any left coideal subalgebra A of H,

 $J(A) = A^{+}H =$ the ideal of H generated by $A^{+} = A \cap \operatorname{Ker} \varepsilon$.

Then we get that L(I) is a left coideal subalgebra of H and J(A) is a Hopf ideal of H. In fact, we have only to show that L(I) is a left coideal and J(A) is closed under the antipode. For any $h \in L(I)$, the subcoalgebra of H generated by h is of finite dimension. Let $h_1 = h, h_2, \dots, h_n$ be its k-basis. If we write

$$\Delta(h_i) = \sum_{j=1}^n h_j \otimes h_{ji}, \ h_{ji} \in H,$$

then

$$\sigma_H(h) = \sum_{j=1}^n h_j \otimes \pi(h_{j1}) = h \otimes 1,$$

hence

$$\pi(h_{j1}) = \begin{cases} 1, & \text{if } j = 1, \\ 0, & \text{otherwise.} \end{cases}$$

From the coassociativity of Δ , we get $\Delta(h_{j_1}) = \sum_{t=1}^n h_{j_t} \otimes h_{t_1}$, hence $\sigma_H(h_{j_1}) = \sum_{t=1}^n h_{j_t} \otimes \pi(h_{t_1}) = h_{j_1} \otimes 1$. Therefore $h_{j_1} \in L(I)$ for any j.

For any $a \in A^+$, we can write

$$\Delta(a) = a \otimes 1 + \Sigma b_i \otimes c_i, \ b_i \in H \text{ and } c_i \in A^+.$$

From the well-known equation $\mu \varepsilon = m(S \otimes 1)\Delta$, we get $S(a) = -\Sigma S(b_i)c_i$, hence $S(a) \in HA^+ = J(A)$.

The following results are easy:

- (1) $JL(I) \subset I$ and $LJ(A) \supset A$.
- (2) If I_1 and I_2 are Hopf ideals such that $I_1 \subset I_2$, then $L(I_1) \subset L(I_2)$. If A_1 and

 A_2 are left coideal subalgebras such that $A_1 \subset A_2$, then $J(A_1) \subset J(A_2)$. (3) JLJ(A) = J(A) and LJL(I) = L(I).

From these results, the mappings L and J give a bijective correspondence between the set \mathcal{J} of Hopf ideals I of H such that JL(I)=I and the set \mathcal{L} of left coideal subalgebras A of H such that LJ(A)=A.

DEFINITION. M is called a left (A, H)-Hopf module if M is a left A-module and a left H-comodule such that its H-comodule structure map

 $\rho_M: M \longrightarrow H \otimes M$

is A-linear, where $H \otimes M$ is viewed as a left A-module via

$$\rho_A = \mathcal{A}|_A \colon A \longrightarrow H \otimes A .$$

In the following we use the usual notation such as

$$\rho_{M}(x) = \sum_{(x)} x_{(1)} \otimes x_{(0)}$$
$$\Delta(h) = \sum_{(h)} h_{(2)} \otimes h_{(1)} \quad \text{etc} \quad .$$

 ρ_M is A-linear iff $\rho_M(ax) = \sum a_{(2)} x_{(1)} \otimes a_{(1)} x_{(0)}$ for any $x \in M$ and $a \in A$.

THEOREM 1. Let M be a left (A, H)-Hopf module. We have an isomorphism of left (H, H)-Hopf module,

$$\psi_{\mathbf{M}}: H \otimes_{\mathbf{A}} M \longrightarrow H \otimes M / A^+ M, \quad h \otimes_{\mathbf{A}} x \longmapsto \Sigma h x_{(1)} \otimes \bar{x}_{(0)} ,$$

where $H \otimes_A M$ and $H \otimes M / A^+ M$ are left H-comodules via

$$H \otimes_{A} M \longrightarrow H \otimes (H \otimes_{A} M), \ h \otimes x \longmapsto \Sigma h_{(2)} x_{(1)} \otimes (h_{(1)} \otimes_{A} x_{(0)})$$

and

respectively. In particular, since H and B = LJ(A) are left (A, H)-Hopf modules, we get

$$\psi_H \colon H \otimes_A H \xrightarrow{\sim} H \otimes H | J(A), \text{ and}$$
$$\psi_B \colon H \otimes_A B \xrightarrow{\sim} H, \ h \otimes b \longmapsto hb,$$

PROOF. We have mutually inverse mappings

$$H \otimes ({}_{\mathbf{A}}M) \xrightarrow{\Psi} {}_{\mathbf{A}}(H \otimes M)$$

where $\Psi(h \otimes x) = \Sigma h x_{(1)} \otimes x_{(0)}$ and $\Phi(h \otimes x) = \Sigma h S(x_{(1)}) \otimes x_{(0)}$. Notice that they are H-

Hiroshi Shigano

linear and A-linear where A-module structures of them are indicated in the above diagram, moreover that the canonical mapping $H \otimes M \xrightarrow{1 \otimes can} H \otimes M / A^+ M$ is not only H-linear but also A-linear viewing as ${}_{A}(H \otimes M)$ and ${}_{A}(H \otimes M / A^+ M) = {}_{A}H \otimes M / A^+ M$. $\Psi \qquad can.$ $H \otimes M \xrightarrow{\psi} H \otimes M \longrightarrow H \otimes M / A^+ M$ induces $\psi_M : H \otimes M \longrightarrow H \otimes M / A^+ M$. $H \otimes M \longrightarrow H \otimes M / A^+ M$ induces $H \otimes M / A^+ M \longrightarrow H \otimes AM$ and it is obvious that they are $H \otimes M \xrightarrow{can} H \otimes_A M$ induces $H \otimes M / A^+ M \longrightarrow H \otimes AM$ and it is obvious that they are H-linear, mutually inverse and also left H-comodule maps.

REMARK. If A is a sub-Hopf algebra of H, a (A, H)-Hopf module is introduced by [6]. (H, H)-Hopf module M is a Hopf module in sense of [5]. By this theorem,

$$\psi_{M}: M \xrightarrow{H \otimes H} H \otimes_{H} M \xrightarrow{H \otimes M/H^{+}} M$$

as (H, H)-Hopf modules. Let $M^{H} = \{x \in M | \rho_{M}(x) = 1 \otimes x\}$, then $\psi_{M}(M^{H}) = k \otimes {}_{k}M/H^{+}M$. Hence this theorem is an another form of the structure theorem of Hopf modules [5].

Notice that a similar argument is true for right coideal subalgebras of H. In particular, S(A) is a right coideal subalgebra, hence we get $H \bigotimes_{S(A)} H \xrightarrow{\sim} H/J(A) \otimes H$.

COROLLARY. $A \subset \mathcal{L}$, *i.e.* A = LJ(A) iff $A = \text{Ker}(H \xrightarrow{in_1}{in_2} H \otimes_A H)$. In fact, we get a commutative diagram,

where the first row is a zero sequence and the second one is exact.

In the rest of this section, we show that a Hopf ideal I is observable iff $I \subset \mathcal{J}$, i.e. JL(I)=I, and the canonical construction of a H-comodule W from a H/I-comodule V.

PROPOSITION 2. If a Hopf ideal I is observable, then $I \in \mathcal{J}$.

PROOF. Since $\sigma_H(I) \subset I \otimes H/I$, *I* is a right H/I-subcomodule of *H*. It is enough to show that $I \subset JL(I)$, hence $V \subset JL(I)$ for any finite dimensional right H/I-subcomodule *V* of *I*. Let v_1, \dots, v_n be the *k*-basis of *V*. If we write

$$\sigma_H(v_i) = \sum_{j=1}^n v_j \otimes b_{ji}, \quad b_{ji} \in H/J, \qquad (1)$$

we get $\Delta(b_{ji}) = \sum_{t=1}^{n} b_{jt} \otimes b_{ti}$ and $\varepsilon(b_{ji}) = \delta_{ji}$ from the definition of a comodule. Let V^* be a dual space of V. V^* has the structure of a left H/I-comodule which is called a transposed one. If its dual basis is denoted by v_1^*, \dots, v_n^* , then the structure map μ_{V^*} is given by

$$\mu_{V*}(v_i^*) = \sum_{j=1}^n b_{ij} \otimes v_j^*,$$

where b_{ij} 's are those of (1). Since *I* is observable, there is a (finite dimensional) left *H*-comodule *W* and an injective left *H*/*I*-comodule map $\theta: V^* \longrightarrow W$. If we take the *k*-basis of *W* as $w_1 = \theta(v_1^*), \dots, w_n = \theta(v_n^*), w_{n+1}, \dots, w_N$ and write its structure map as

$$w_i\longmapsto\sum_{j=1}^N h_{ij}\otimes w_j, h_{ij}\in H$$
,

then we get $\Delta(h_{ij}) = \sum_{t=1}^{N} h_{it} \otimes h_{tj}$ and $\varepsilon(h_{ij}) = \delta_{ij}$ as above. From the equation $(1 \otimes \theta) \mu_{V^*} = (\pi \otimes 1) \Delta \theta$, we get

$$\sum_{j=1}^n b_{ij} \otimes \theta(v_j^*) = \sum_{j=1}^N \pi(h_{ij}) \otimes w_j \quad (1 \le i \le n) ,$$

hence

$$\pi(h_{ij}) = \begin{cases} b_{ij} & (1 \le j \le n) \\ 0 & (n < j \le N) \end{cases}.$$
(2)

If we show $\sum_{j=1}^{n} v_j S(h_{ji}) \in L(I)^+ (1 \le t \le N)$, then $v_i \in L(I)^+ H = JL(I)(1 \le i \le n)$, for

$$\sum_{t=1}^{n} \sum_{j=1}^{n} v_{j} S(h_{jt}) h_{ti} = \sum_{j=1}^{n} v_{j} \varepsilon(h_{ji}) = v_{i} \quad (1 \le i \le n) .$$

Now, from (2) and the equation $\mu \varepsilon = m(1 \otimes S) \Delta$,

$$\sigma_H\left(\sum_{j=1}^n v_j S(h_{jt})\right) = \sum_{s=1}^n \sum_{i=1}^n \sum_{j=1}^n v_i S(h_{st}) \otimes b_{ij} \pi(S(h_{js}))$$
$$= \sum_{s=1}^n \sum_{i=1}^n v_i S(h_{st}) \otimes \sum_{j=1}^n b_{ij} S(b_{js})$$
$$= \sum_{i=1}^n v_i S(h_{it}) \otimes 1 ,$$

and $\varepsilon(v_j) = 0$ $(1 \le j \le n)$. Therefore $\sum_{j=1}^n v_j S(h_{jt}) \in L(I)^+$.

Notice that for a right comodule V over a coalgebra C, the structure map ρ_V : $V \longrightarrow V \otimes C$ is an injective right C-comodule map where $V \otimes C$ is a right C-comodule via $1 \otimes \Delta$. If dim $V = n < \infty$, then $V \otimes C \simeq \otimes^n C$ as a right C-comodule (which depends on the choice of the k-basis of V). Therefore to get the canonical construction of H-comodule W from H/I-comodule V, it is enough to show it when V=H/I.

Let A be any left coideal subalgebra of H. $H \otimes_A H$ is a right H-comodule via $1 \otimes \mathcal{I}$ where $H \otimes H$ is viewed as a A-module through $A \longrightarrow H \otimes A$ and $H \otimes H \otimes H$, through $A \longrightarrow H \otimes H \otimes A$.

PROPOSITION 3. Let

$$\theta: H|J(A) \xrightarrow{\psi_{H}^{j-1}} H \otimes H|J(A) \xrightarrow{\psi_{H}^{j-1}} H \otimes_{A} H, and$$
$$\eta: H|J(A) \xrightarrow{\sim} H|J(A) \otimes H \xrightarrow{\sim} H \otimes_{S(A)} H$$

then θ (resp. η) is an injective right (resp. left) H/J(A)-comodule map. Therefore J(A) is observable.

In fact, paying attention to that ψ_H is induced by Ψ as in the proof of theorem 1, we can show that θ is a required one by the routine calculation. The remark after theorem 1 suggests that a similar augument shows that η is a required one.

3. The condition A = LJ(A).

In this section we assume that k is an algebraically closed field and H is an affine Hopf domain. Let A be a left coideal subalgebra of H which is an affine k-algebra. Let G be a connected affine algebraic group defined by H, K be a closed subgroup of G defined by J(A), Y be an irreducible affine variety defined by A and $p: G \longrightarrow Y$ be a dominant morphism of affine varieties defined by the inclucion $A \longrightarrow H$. G acts morphically on Y and p is G-equivariant. It is well-known that $k[G/K] = k[G]^K =$ the algebra of all functions on G constant on the cosets of K in G. It is easy to show $k[G]^K = LJ(A)$.

LEMMA. Let the notations be as above, then p(G) open in Y and $p(G) \xrightarrow{\sim} G/K$.

In fact, p(G) contains an open dense subset U of Y, hence $p(G) = \bigcup_{\substack{x \in G \\ x \in G}} xU$ is open. Notice that p is really an open map. Now, if we show that $p: G \longrightarrow p(G)$ is a separable morphism whose fibres are cosets xK, then $G/K \xrightarrow{\sim} p(G)$ from the universal property of G/K. Let e be the unit element of G, then $p^{-1}(p(e))$ is the variety defined by $H \bigotimes_A A/A^{+} \xrightarrow{\sim} H/A^{+}H$. Hence $p^{-1}(p(e)) = K$.

From the generic flatness, there exists $0 \neq f \in A$ such that H_f is A_f -free. Since $H \otimes_A B \xrightarrow{\sim} H, h \otimes b \longrightarrow hb$ by theorem 1, we get $B_f = A_f$. Hence their fields of quotients are equal. By the theorem 3 in [1], $k(G)^{\kappa}$ coincides with the field of quotients of B. Clearly k(G) is seprable over $k(G)^{\kappa}$. Hence p is a separable morphism.

REMARK. K is an observable subgroup of G in sense of [1]. [1] shows that K is observable if and only if G/K is quasi-affine. This lemma and the following theorem show that there is the canonical embedding of G/K into an affine variety, namely, one defined by $k[G]^{K} = LJ(A)$.

THEOREM 4. Let A be a left coideal subalgebra of H and X(H) be the group of all the group-like elements of H (hence, the group of the rational characters of G). If $X(A) = X(H) \cap A$ is the subgroup of X(H), then A = LJ(A) and A is an affine k-algebra. For any left coideal subalgebra A of H, LJ(A) satisfies the hypothesis, hence LJ(A) is always an affine k-algebra.

We need the following lemma due to M.E. Sweedler:

LEMMA ([4], Collary 2.2). Let H be as above, then $U(H) = U(k) \times X(H)$ and X(H) is a finitely generated free abelian group, where U(H) and U(k) are the unit groups of H and k respectively.

PROOF. Let $a_i \in A$ $(1 \le i \le n)$ be a system of generators of an ideal J(A). Since X(H) is a finitely generated free abelian group, so is X(A). Let x_j $(1 \le j \le t)$ be a generators of X(A). The left subcoideal of A generated by $a_i(1 \le i \le n)$ and $x_j^{\pm 1}(1 \le j \le t)$ is of finite dimension, hence the k-algebra generated by the left coideal is finitely generated over k as an algebra and also satisfies the hypothesis. Therefore we may assume A is an affine k-algebra. By the above lemma, $k[G/K] = S^{-1}A$, where

$$S = \{f \in A | f(y) \neq 0 \text{ for all } y \in p(G) \}.$$

In particular, $S \subset U(H)$. But by Sweedler's lemma and by the hypothesis on $A, S \subset U(A)$. Therefore k[G/K] = A.

COROLLARY. Let G be an affine algebraic group over k and K be a closed subgroup of G. Then $k[G]^{\kappa}$ is an affine k-algebra.

In fact, we may assume that G is connected. Let I = I(K) be an ideal of definition for K, then $L(I) = k[G]^{K}$. Since LJL(I) = L(I) and JL(I) is observable and satisfies the hypothesis of theorem, we get the required result.

REMARKS. (1) In [2], the obsevable subgroup K of a connected affine algebraic group G is said to satisfy the codimension 2 condition on G/K iff $k[G]^K$ is affine. Hence our result shows that every obsevable subgroup automatically satisfies the codimension 2 condition on G/K.

(2) Let A be a left coideal subalgebra of H. Assume that H is faithfully flat over A. Then $0 \longrightarrow A \longrightarrow H \longrightarrow H \otimes_A H$ is exact, hence A = LJ(A). By the theorem

Hiroshi Shigano

4, A is an affine k-algebra. It follows from the faithfully flatness that Y=p(G) in the lemma, hence G/K is affine. So we get the bijective correspondence between the set of left coideal subalgebras A of H such that H is faithfully flat over A and the set of closed subgroups K of G such that G/K is affine.

References

- Bialynicki-Birula, A., Hochschild, G. and Mostow, D.G.: "Extensions of representations of representations of algebraic linear groups." Amer. J. Math., vol. 85 (1963) pp. 131– 144.
- [2] Grosshans, F.: "Observable groups and Hilbert's fourteenth problem." Amer. J. Math. vol. 95 (1973) 229-253.
- [3] Borel, A.: Linear Algebraic Groups. New York, W.A. Benjamine Inc., 1969.
- [4] Sweedler, M.E.: "A unit theorem applied to Hopf algebras and Amitsur cohomology." Amer. J. Math., vol. 92 (1970)
- [5] ____, Hopf Algebra, New York, W.A. Benjamine Inc., 1969.
- [6] Takeuchi, M.: "A correspondence between Hopf ideals and sub-Hopf algebras. "Manuscripta Math. 7 (1972) pp. 251-270.