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ON THE NILPOTENCY INDICES OF THE RADICALS OF
GROUP ALGEBRAS OF P-GROUPS WHICH HAVE
CYCLIC SUBGROUPS OF INDEX P

By

Shigeo KosHITANI

Let K be a field with characteristic p>0, G a finite group, KG the group algebra
of G over K and J(KG) the radical of KG. We are interested in relations between
ring-theoretical properties of KG and the structure of G. Particularly, in the pre-
sent paper we shall study the nilpotency index #(G) of J(KG), which is the least
positive integer #(G) such that J(KG)!® =0.

For a finite p-group P of order p”, S. A. Jennings [3] showed that 7(p—1)+1=
HP)=p". Recently K. Motose and Y. Ninomiya [7] determined all p-groups P of
order p" such that #P) are the lower bound #»(p—1)+1 or the upper bound p". In
fact they proved that for a p-group P of order p” with r=1, {P)=r(p—1)+1 if and
only if P is elementary abelian and that #(P)=p" if and only if P is cyclic. So in
this paper we shall investigate p-groups P of order p” such that #(P) are not neces-
sarily equal to the lower bound #(p—1)+1 or the upper bound p". By the results
of K. Motose [6, Theorem], K. Motose and Y. Ninomiya [7, Theorem 1] it follows
that when P is an abelian p-group of order p” with =2, the secondarily highest
nilpotency index #(P) of J(KP) is p"~'+p—1 and in this case P is not cyclic and
has a cyclic subgroup of index p. Our main result of §1 is a generalization of the
above fact. This can be stated as follows: For an arbitrary p-group P of order
p" with r=2, the next conditions are equivalent;

(i) «P)y=p*+p—1.

(i) pri<yP)<yp .

(iii) P is not cyclic and has a cyclic subgroup of index p.

There is a problem that when the value of #G) is given, what type is G?
About this there are some solutions ([9], [7]). D.A.R. Wallace determined all
finite groups G with the property #G)=2. Further, K. Motose and Y. Ninomiya
[7] determined all finite p-solvable groups G such that #(G)=3. In connection with
this in §2 we shall have all p-groups P such that #P)=4,5 or 6 by calculating
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HQ) for all p-groups @ of orders at most p*.

1. p-Groups which have cyclic subgroups of index p
To begin with we shall study #P) for metacyclic p-groups P.
LeMMmA 1.1. Let P be a metacyclic p-group containing a cyclic normal subgroup

Q=<b> of order p" and with a cyclic factor group P|Q=<aQ) (aeP) of order p™.
Put x=a—1 and y=b—1 in KP. Then

yr'e Y, Kaxly, for all s,t=0,
i+jes+t
0=tss

Proor. We may assume n#=1. There is a positive integer % such that
(1) a'ba=>b".
Since a?™e@, #""=1 (mod p"), and so
(1) =1 (mod p).
At first we shall prove this lemma for s=1 and ¢#=1 (cf. the proof of [4, Lemma]).
Put (5)=0 if i<j. By (1) and (1’),
y:c=ab"-—a—b+1=(x+1)(j§2(’;)yf+y+1)—x—y-—1

=zy+ X2 (Hlx+1Dy’.
jz2

This shows
(2) yxe X, Kax'yl.

i+j22

osisl
From (2), we can prove
(3) vize Y, Kxiyl, for all ¢=0

oEIE

by induction on ¢. Using (3) we can verify this lemma by induction on s.
Put J(KP)*=KP for a p-group P.

THEOREM 1.2. Let P be a metacyclic p-group containing a cyclic normal sub-
group Q of order p"™ and with a cyclic factor group P|Q=<aQ) (aeP) of order p™
and k an integer such that |a|=p™+""*. Put

m, if m=k

=14, if m>k.

Then we have tH(P)=pm™ -t 4ph—1.
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Proor. Put Q=<(b>. We can assume a?"=5b?*. Set x and y as in Lemma 1.1.

Case 1. m=Fk: We shall claim that C;={z|0=s=p"—1,0=¢t=p"—1, s+t=1}
is a K-basis of J(KP)* by induction on i. Every geP can be written as g=a%0*, 0=
s=pm—1, 0=¢t=p"—1 and the number of elements of C, is p™"". Thus C, isa K-
basis of KP. By [3, Theorem 1.2}, C, is a K-basis of /(KP). Assume i=2. Since
z,yeJ(KP), we have C;SJ(KP)'. Since J(KP)'=J(KP)J(KP)-', it suffices to prove
that if 0=s,s’=pm—1, 0=¢,¢'=p"—1, s+t=1 and s’ +# =i—1, then (z*y")(x*y") can
be written as a K-linear combination of C;. From Lemma 1.1,
(4) (@Y &y )= T awpxt iy, avpekK.

v+grzs'+t
o=st'=s’

Consider each term of (4). Put s+i’ =wup™+u’, where u,u’ are integers with 0=
w=pm—1. Since x?™=y?*, it is seen that z* ¥yl ! =g (@P™)ryl ¥ =gV yup Il
Since y?" =0, we can put up*+j +¢'<p"—1. We also have «’ +(up*+j’ +¢')=i since
E=m and i’ +j'=s’+¢. Hence (4) can be written as a K-linear combination of Ci.
This shows J(KP)?™#?"-2 is of K-dimension one, and so #(P)=p"+p"—1.

Case 2. m>FE: As in Case 1 we can show that C,={z*/|0=s=pm'"*—-1,0=
t=p*—1, s+t=i} is a K-basis of J(KP)!. Thus #(P)=p™ "~*+p¥—1. This completes
the proof of Theorem 1.2.

Put that

D,={a,bla*=b""=1,a"'ba=b"")  for rz3,
Q,=<a, bla*=b*" a*=1,a"ba=b""> for r=3,
S,=<{a,bla®*=b""=1,a ba=b*""""") for r=4,

M, (p)=<a, bla?=b"""=1,a"ba=b?"""1)
for r=z4 if p=2, and for r=3 if p=3,

M(p)={a,b,claP=b?=c?=1,a‘ba=bc,a ‘ca=c,b"'cb=c) for p=3.

LemMA 1.3. Let P be a p-group of order p". If Pis not cyclic and has a cyclic
subgroup of index p, H{P)=p"'+p~—1.

Proor. This follows from [2, I 14.9 Satz] and Theorem 1.2.
Next, we shall compute #(M(p)) whose calculation is very fundamental in cal-
culating #(P) for the other p-groups P.

LemMma 14. For p=3, t(M(p))=4p—3.

Proor. Put P=M(p). As in Lemma 1.1 set that x=a~—1, y=0b—1 and z=
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¢—1 in KP. Note that z?=y?=27?=0 and x,y,2¢/(KP). We have zz=2z,2y=yz
and yx=xyz+xy+yz+xz+z Hence we know

(5) zeJ(KP)?,
(6) yre 2, Kxiyizk,
PR

Using (6) we can show

(7) y'ze 3 Kaxtyizk, for all t=0

by induction on ¢ as in the proof of (3). From (7) we obtain

(8) y'ate 2, Kuxyz*, for all s,t=0
i+j3~szipsgss+t

by induction on s. Next, we shall show that C;={z*y'2*|0=s,¢,u=p—1, s+1+2u=i}
is a K-basis of J(KP)* by induction on i. For i=0 or 1, it is easy as in the proof
of Theorem 1.2. Assume i=2. By (5), C;S/J(KP). As in the proof of Theorem
1.2 it is sufficient to prove that (z%y’z*)(x¥y'z*') can be written as a K-linear com-
bination of C; when 0=s,s’,t, ¢, u,u’ =<p—1,s+t+2u=1 and s’ +¢#'+2uw' =i—1. By
3),

(*) (xsyl.zn)(xs/y{,lzu.l)z Z ai/j,k’xsyi’,yj’—el’zk/:uv, w’ ,

i’+j(;j—f]2%s'+l
aijw€K. Since xr?P=y?=2zP=0, we can assume that 0=s+7,7/ +¢, k' +u+u' =p—1.
We have (s+#')+(j/ +¢)+2(k +u+u’')=i. Thus C; is a K-basis of J(KP), and so
{P)=(p—D+(p—-1)+2(p—1)+1=4p-3.

LemMmA 1.5. Let P be a p-group of order p with r=1. If t(P)>p"!, then P
has an element of ovder p 1.

Proor. We use induction on #. It is clear for »=1 or 2. Assume r=3. When
P is abelian, it follows from [6, Theorem]. When P is nonabelian, by [2, I 14.10
Satz], P is one of the following types;

(i) p=2 and P=D; or Qs

(i1) p=3 and P=M;(p) or M(p).
By Lemma 14 and #P)>p? P£M(p). Thus the assertion is proved for »=3. As-
sume 7=4. ‘There is an element ceZ(P) of order p, where Z(P) is the center of
P. C={c> is normal in P. By [10, Theorem 2.4] and #P)>p""!, it follows that
t(P/C)>p 2 Thus, from the hypothesis of induction, P/C has an element bC (beP)
of order p7-2. Now, suppose that /> has no elements of order p7~!. Hence B=<{b)
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has order p™% By [2, I 14.9 Satz], P/C is one of the following types;
Case 1. PJC is an abelian group of type (p" 2, p),

Case 2. p=2 and P/C=D,_,,

Case 3. p=2 and P/C=Q,_,,

Case 4. p=2, r=5 and P/C=S,_,,

Case 5. r=5 if p=2, and P/C=M,_(p).

Case 1: Put P/C=<aC,bC|(aC)?=(bC)?"*=C,abC=baC) and A=<a). Clearly
la|=p or p*. If |a|=p% we may put a?=c. Since P/C is abelian, A is normal in
P. Thus P is a semi-direct product of A by B, and so #{(P)=p"*+p*—1 from
Theorem 1.2. This is a contradiction, and so |a|=p. If b~'a~ba=1, P is an abelian
group of type (p"%,p,p). Hence, by [6, Theorem], P)=p""*+2p—2, a contradiction.
This shows that b~-'a~'ba+1, and so we may put b~'a ‘ba=c. Thus P=<a,b,cla”
=P =cP=1,a ba=bc,a ‘ca=c,b~'cb=c). Just as in the proof of Lemma 14, it
is seen #P)=(p—1)+(p2—1)+2(p—1)+1=p""2+3p—3, a contradiction.

Case 2: Put p=2, PIC=<aC, bC|(aC)*=(bC)* *=C, a'baC = b~'C) and A=<{a).
We know |a|=2 or 4. Put z,y and z as in the proof of Lemma 1.4.

(i) Put |@|=2 and ba~'ba=1. Then P is a direct product of AB=D,., and
a cyclic group of order 2. It follows from [6, Theorem] and Lemma 1.3 that HP)
=27-24+2, a contradiction.

(ii) Put |e|=4 and ba'ba=1. Since at=c, P={a,bla*=b""=1,a 'ba=0"").
Thus, by Theorem 1.2, #(P)=2"%+3. This is a contradiction.

(iii) Put |@|=2 and ba~'ba#1. Then ba~‘ba=c. So P={a,b,cla*=b""=c*=
1,a ba=b"‘c,a *ca=c,b-'cb=cy. We have zx=xz and zy=yz. Set f=2""*—1. Since
=1 (mod 2), yr=(x+1)(y+1)/(z+1)—z—y—1=(z+ I Z]Dy}(z+1)+ayz+ oy +yz
+2xz+2z Hence we have (5) and (6), and so we have (7) and
(8" yixte > Kxiyiz*®, for all £=0 and s=0,1.

As in the proof of Lemma 1.4, #(P)=1+(2"-2—1)4+2+1=2""2+3, a contradiction.

(iv) Put |a|=4 and ba~'ba+1. Then a*=c and ba~'ba=c. Hence P=<a,b,c|a®
=c, b¥ *=c*=1,a ba=b""c,a ‘ca=c, b 'cb=c). Note z*=2z2+0 and ¥ P=22=0. As
(iii) we obtain (5) and (6), and so (7) and (8) hold. We shall show that C;={x’y’z"|
0<s,u=<1,0=¢t=2-2—1,s+¢t+2u=i} is a K-basis of J(KP)* by induction on i It is
clear for i=0 or 1. Assume i=2. By (5), C;SJ(KP)". As usual it suffices to show
that (z*y'z%)(z*'y"'2*') can be written as a K-linear combination of C; if 0=s,s’,u, %’
=1,0=¢,¢/=2*-1,s+¢t+2u=1 and s’ +¢ +2u’=i—1. From (8), we have (*). Con-
sider each term of (¥). Put s+ =2v+0’, where »,0’ are integers with 0=0v"=1.
Since p2=z, psTyd’ VG Turu = gty drtiguikscuiuw/  We may assume j/+2/=2""*—1 and
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v+k tu+u =1 since y* ’=2z*=0. We also have v’ +(j/ +#)+20+k +u+u')=i.
This implies that C; is a K-basis of J(KP)?, and so #{(P)=1+(22—1)+2+1=2"-243,
a contradiction.

Case 3: Put p=2, P|C={aC, bC|(aC)*=(bC)*" ", (aC)*=C, a 'baC=b-'C> and A=
{@>. We can put a*=b*""¢? for some 7, and so a*=1. This implies |¢|=4. Put
z,y and z as in the proof of Lemma 1.4.

(i) Put ba~'ba=1 and a*=b*""". Then P is a direct product of AB=Q,_, and
a cyclic group of order 2. Thus we have a contradiction as in (i) of Case 2.

(ii) Put ba~'ba=1 and @?+b*"°. Then ANB=1. Hence P=AB={a,bla'=
b**=1,a"'ba=>b""), and so we have a contradiction as in (i) of Case 2.

(iii) Put da~'ba+1 and a*=0*""". Since ba~‘ba=c, P={a,b,c|la?=>b*"% b*" *=c?
=l,a %ba=b""c,a 'ca=c,b"*cb=c). As in (iii) of Case 2 we have (5), (6), (7) and
(8). Note 0#x2=y2""° By 27-3=2, it is seen that Ci={zy'z*|0=s,u=1,0=¢t=2"2
—1,s+¢+2u=i} is a K-basis of J(KP)' as in (iv) of Case 2. Thus #P)=2""%+3, a
contradiction.

(iv) Put ba—'ba + 1 and a?+#b*"°. Hence ba—'ba=c¢ and a*=0*""c. Thus P=
(a,b,cla*=b""c,a'=b*""=c*=1,a 'ba=b"'c,a ‘ca=c,b-'cb=c). We have x?=y>"*
(z+1)+2. This implies (5) and

(9) xte Y, Kyiz*.

J+2kz2

As in (iii) of Case 2 we also have (6), (7) and (8’). Note w*+0. By (9), as in (iv)
of Case 2, we know that C;={x*y*2*|0=<s,u=1,0=¢=2"-2—1,s+¢+2u =i} is a K-basis
of J(KP)! and so we have a contradiction.

Case 4: As in Case 2 we have a contradiction.

Case 5: Put »=5 if p=2, and put P/C=<aC,bC|(aC)?=(bC)*»" *=C, a-‘'baC=
br"*+1Cy and A=<{a). Set z,y and z as in the proof of Lemma 1.4. Put f=p3+1,
and so f=1 (mod p).

(i) Assume [a|=p and b~'a 'ba=1. So P is a direct product of AB=M,_,(p)
and a cyclic group of order p, and so we have a contradiction by [6, Theorem] and
Lemma 1.3.

(ii) Assume |e|=p* and b~/a-'ba=1. We may put a?=c. So P=<a,bla?*=
b *=1,a'‘ba=>b">, hence {(P)=p"-24+p*—1, by Theorem 1.2. This is a contradic-
tion.

(iii) Assume |¢|=p and b a'ba+1. We can put b~7a'ba=c. Hence P=
{a,b,cla?P=br""=cP=1,a'ba=b'c,a 'ca = ¢,b~'chb=c)>. Since f=1 (mod p), as (iii)
of Case 2, we have (5), (6), (7) and (8). As in the proof of Lemma 1.4, C;={xz%'z%|
O0=s,u=p—1,0=t=p"2—1,s+t+2u=i} is a K-basis of J(KP)} and so {P)=(p—1)
+(PP-1)+2(p—1)+1=p""2+3p—3, a contradiction.
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(iv) Assume |a|=p% and b~7a"'ba+1. We may put a?=c. Since 1#b-'a 'baeC,
b~7a-‘ba=c" for some & with 1=hA=p—1. Thus P=<a,b,cla?=c,b? *=cP=1,a 'ba

=blc", aca=c,b"'cb=c>. From xP=2,

(10) zeJ(KP)?.
Since f=1(mod p), yr= X aiupr'y’z¥+hz, aijpeK.
i+jTkz2
0Si<1
Hence
11 yxe Y Kxtylzk.
e

Using this, as in the proof of Lemma 1.1, by induction we have

(12) ylxe > Kzxiylz*, for all ¢=0,
it j+pRZitl
0sis1
(13) vixte > Kriyiz*, for all s,¢=0.
i+jg~§pl!c§23s+z

Note 0#x?=2z2. It follows from [(10) and (13) that C;={z*y'z*|0=s,u=p—1,0=t=p"*
—1,s+t+pu=i} is a K-basis of J(KP), and so #{P)=(p—1)+(p"*—1)+p(p—1)+1
=p"-24+p?>—1, a contradiction. This completes the proof of Lemma 1.5.

THEOREM 1.6. Let P be a p-group of orvder p’. If r=2, then the mext four
conditions (1)-(iv) arve equivalent.

(i) HP)=p—'+p—1.

(i) pri<HP)<p".

(iii) P is not cyclic and has a cyclic subgroup of index p.

(iv) P is one of the following types;

(@) P is an abelian group of type (p" 1, p),

(b) p=2,r=3 and P=D; or Qs

(©) p=2,r=4 and P=D,, Q. S, or M,(2),

(d) p=3,r=3 and P=M,(p).

Proor. (i)=>(ii) is clear. (ii)=>(iii) is obtained from [7, Theorem 1] and Lemma
1.5. (iii)=>(iv) follows from [2, I 14.9 Satz]. (iv)=>(i) is easy from Lemma 1.3.

CorROLLARY 1.7. Let G be a finite group with a p-Sylow subgroup P. If G is
a p-solvable group of p-length 1 and P has orvder p™ with r=2, then the next four
conditions arve equivalent.

(1) UG)=p"'+p-—1.

(ii) pr'<HG)<p".
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(iii) Same as (iii) of Theorem 1.6.
(iv) Same as (iv) of Theorem 1.6.

Proor. It follows from [5, Theorems 2 and 7] (or [1, Theorem 2]) and [8, Lemma
2] that #(G)=¢P). Thus this corollary is clear by Theorem 1.6.

ReEMARK 1. For a p-solvable group G of p-length =2, the same statement as
Corollary 1.7 does not necessarily hold. Let G be the symmetric group of degree
4 and p=2. Then G is a 2-solvable group of 2-length 2 of order 24 with a dihedral
2-Sylow subgroup of order 8. On the other hand, by [7, Proposition], #(G)=4+#2%+
2—-1.

2. p-Groups P with ¢(P)=4, 5 or 6

In this section, firstly, we shall compute #(P) for all p-groups P of orders at
most p¢. Using this we shall have all p-groups P such that #(P)=4, 5 or 6. All p-
groups of order p* are found in [2, I 14.10 Satz] and all p-groups of order p* are
found in [2, IIT 12.6 Satz] and [2, III §12 Aufgaben (29), (30)].

THEOREM 2.1. Let P be a nonabelian p-group of ovder p™. Then we have the
Sollowings.

(1) r=3,p=3. There are two nonisomorphic nonabelian groups of ovder p°.

(i) If P=My(p),t(P)=p*+p—1.

(ii) If P=M(p),H{(P)=4p—3.

(II)y 7r=3,p=2. There are two nonisomorphic nonabelian groups of order 2°.

(i)-(ii) If P=D; or Q,, t(P)=5.

(III) r=4,p=5. There are ten nonisomorphic nonabelian groups of ovder p'.

(i) If P=M(p),HP)=p"+p—1.

(ii) If P is a direct product of Mi(p) end a cyclic group of order p,i{(P)=
PE+2p—2.

(iii) If P is a direct product of M(p) and a cyclic group of order p, t{(P)=
5p—4.

(iv) If P=<a,blaP*=b""=1,a ba=>b"+*y, t{(P)=2p*—1.

(v) If P=<a,b,cla?=bP=cP’=1,a ba=bc?, a ‘ca=c,b'cb=c),t(P)=p*+2p—2.

(vi) If P={a,b,cla?=b"=c"=1,a ba=b,a *ca=bc,b-*cb=c), (P)=p*+3p—3.

(vii) If P={a,b,cla?=b?=c"*=1,a ba=bc?,a 'ca = bc,b 'cb = ), t(P)=p*+3p
-3

(viii) If P=<a,b,cla?= bP=cP*’=1,a ba= bc’?, a~‘ca=bc,b‘cb=c), where f is
a quadratic nonvesidue modulo p, t(P)=p*+3p—3.
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(ix) If P=<a,b,c,dlaP=bP=cP=dr=1,b""cb=c,c 'dc=d,b"'db=d,a ba=b, a!
ca=bc,a 'da=cd),{(P)=T7p—6.

(x) If P={a,b,c,d|a?=b,bP=c?P=d?=1,b"'cb=c,c 'dc=d, b-'db=d,a 'ca=bc,
a‘da=cdy, {P)=p*+3p—3.

(IV) r=4,p=3. There are ten nonisomorphic nonabelian groups of order 3.

(1) If P=Xa,b,cla®*=b*b=c*=1,a*ba=bc,a ‘ca=bsc,b-*cb=c),t(P)=15.

(ii)-(x) For the other nine groups P of ovder 3%, we can know t(P) by putting
p=3 in (III), where (ix) of (III) and (x) of (III) are isomorphic.

(V) r=4,p=2. There are nine nonisomorphic nonabelian groups of ovder 2°.

(1)-(iv) If P=D., Q4 S: or M,(2), H{P)=9.

(v) If Pis a direct product of Ds and a cyclic group of order 2, t(P)=6.

(vi) If P is a divect product of Qs and a cyclic group of order 2, t(P)=6.

(vii) If P=<a,bla*=b'=1,a ‘ba=0*),t(P)=".

(viii) If P={a,b,cla*=b*=c*=1,a'ba=bc? a ‘ca=c,b *cb=c), t(P)=6.

(ix) If P=<a,b,cla*=b*=c*=1,a ba=b,a *ca=bc,b~cb=c),t(P)=".

Proor. Put z=a—1,y=b—1,2=c—1 and w=d—1 in KP if they exist.
(I) () and (ii) are verified by Theorem 1.6 and Lemma 1.4, respectively.
(II') Clear from Theorem 1.6.
(III) (i) Trivial by Theorem 1.6.
(ii)-(iii) These follow from [6, Theorem] and (I).
(iv) Easy from Theorem 1.2.
(v) Since yxr=xyz?+x2?+yzP+2°+xy, we have
(14) yxe ), Kxiyizk,

i+j+k22
0=sis1

Using this, as in the proof of Lemma 1.1, we know

(15) yze Y Kxiyizk, for all t=0,
t+j+k2t+1
0=is1

(16) yiz’e Y  Kaxiyizk, for all s,t=0.
IR

By (16), it is seen that C,={x*y'2*|0=s,t=p—1,0=u=p*—1,s+t+u=i} is a K-basis
of J(KP). Hence #{P)=p*+2p—2.

(vi) As in Lemma 14, #{P)=(p—1)+2(p—1)+(p*—1)+1=p*+3p—3.

(vii) Since yr=xyz?+x2?+yzP+2° +xy,
a7 yxe 3 Kxiylzk,

t+2j+k23
0st=s1

By induction it follows from (17) that
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(18) vize Y Kxiyizk, for all £=0.
i+2g£:7§12l+1

On the other hand, since zxr=xyz+xz+yz+axy+y, we have

(19) yeJ (KP)?,
(20) zze Y Kuwlyizk.
i+2j+k=22
0=is1

Using [20), as (18), it is seen that
21 zire > Kxiyizk, for all #=0.

t+2j+kau+1
0sis1
From and (18), we can show

(22) y'xte 3 Kaxiyizk, for all s,t=0
i+2_6‘2:3§§:'0‘2l

by induction on s. Similarly, from and (18),

(23) 2*x%e > Kxiy/z*, for all s,u=0.
i+2j+k2stu
0=tss

Now, we shall prove that C,={x’y'2*|0=s,f=p—1,0=u=<p*—1,s+2t+u=i} is a K-
basis of J(KP): by induction on i. Put i=2. By [19), C;SJ(KP)i. As usual it is
sufficient to show that (x%y‘z2*)(x*y*'2*') can be written as a K-linear combination of
C: if 0=s,5,t,/=p—1, 0=wu, ' =p*—1, s+2t+u=1 and s’ +2t'+u'=i—1. Using
and we can show this. Hence #{(P)=(p—1)+2(p—1)+(p*—1D)+1=p*+3p—3.

(viii) We can put 2=f=p—1. Hence we have Thus, just as in (vii), we
obtain {(P)=p*+3p—3.

(ix) It is clear that

(24) y=yz,wz=2z2w,wy=yw and yr=zxy.
Since
(25) x=xyz+xz+yzt+xy+y,

yeJ(KP)* Similarly, since

(26) wr=x2Ww+Iw-+zw+r2+2,
(27) zeJ(KP).

From [25), and yeJ(KP)?, we have

(28) yeJ (KP).

It follows from and that
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(29) zre ), Kaxtyizk,
t+3j+2k=3
0Si=1

and

(30) wxe€ > KxtzFu®
i+2k+h22
0=is1

respectively. From and [29),
(31) z*xe > Kxiyizk, for all =0 .

1+3j+2k22u+1
0si=1

Similarly, from and [(30), we have

(32) wze Y, KzxtZ*w", for all v=0.
i+2k+h2v+1
0st=1

By and [24),

(33) 2%xse > Kaxiyiz*, for all s,u=0.
i+3j+2k2s+2u
0Siss
By [32), and [24), we also have
(34) w'z'e > Kriy/zkw*, for all s,v=0.

i+3j+2k-+hzs+v
0Siss

As usual, by [(24), [27), [28), [33) and [34), we can show that C;={z%y‘'z*w’|0=s,t,«,
v=p—1,s+3t+2u+v=i} is a K-basis of J(KP). So {(P)=(p—1)+3(p—1)+2(p—1)
+(p—1)+1=Tp—6.

(x) Since zP=y, it follows

(28") veJ(KP)P.

Using (28’) instead of [28), as in (ix), we can show that C;={z*y’z*w®|0=s,t,u,v=
p—1,s+pt+2u+v=i} is a K-basis of J(KP). Thus {(P)=(p—1)+p(p—1)+2(p—1)
+(p—1)+1=p>+3p—3.

IV) () Ci={zytz*|0=s,u=2,0=t=8, s+t+2u=i} is a K-basis of /(KP):. Hence
H{P)=15.

(V) (i)-(iv) are easy by Theorem 1.6. (v) and (vi) are obtained from [6, Theo-
rem] and (II). (vii), (viii) and (ix) follow from (iv) of (III), (v) of (III) and (vi) of
(III), respectively.

COROLLARY 2.2. For a p-group P, we have the followings.
(1) H#P)=4 if and only if P is one of the following types;
(1) p=2 and P is a cyclic group of order 2%,
(ii) p=2 and P is an elementary abelian group of ovder 2°.
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(I1) «P)=5 if and only if P is one of the following types:;
(i) p=2 and P is an abelian group of type (22,2),
(ii) p=2 and P=D;,
(iii) p=2 and P=Q;,
(iv) p=2 and P is an elementary abelian group of order 2°,
(v) p=3 and P is an elementary abelian group of order 32,
(vi) p=5 and P is a cyclic group of order 5.
(III) #(P)=6 if and only if P is one of the following types;
(i) p=2 and P is an abelian group of type (22,2,2),
(ii) p=2 and P is a direct product of Ds and a cyclic group of order 2,
(iii) p=2 and P is a direct product of Qs and a cyclic group of order 2,
(iv) p=2 and P={a,b,cla®=b*=c*=1,a 'ba=bc?, a‘ca=c,b ‘chb=c),

(v) p=2 and P is an elementary abelian group of order 2°.

Proor. The assertions are proved by [3, Theorem 3.7] (cf. [10, Lemma 2.3)),
[7, Theorem 1], [6, Theorem] and Theorem 2.1.

REMARK 2. As noting in the proof of Corollary 1.7 it is seen that #G)=#P) |
for a p-solvable group G of p-length 1 with a p-Sylow subgroup P. Thus, by Corol-
lary 2.2, we can have all p-solvable groups G of p-length 1 with #G)=4,5 or 6.
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