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ON THE NILPOTENCY INDICES OF THE RADICALS OF
GROUP ALGEBRAS OF $P$-GROUPS WHICH HAVE

CYCLIC SUBGROUPS OF INDEX $P$

By

Shigeo KOSHITANI

Let $K$ be a field with characteristic $p>0,$ $G$ a finite group, $KG$ the group algebra
of $G$ over $K$ and $J(KG)$ the radical of $KG$ . We are interested in relations between
ring-theoretical properties of $KG$ and the structure of $G$ . Particularly, in the pre-
sent paper we shall study the nilpotency index $t(G)$ of $J(KG)$ , which is the least
positive integer $t(G)$ such that $J(KG)^{t(G)}=0$ .

For a finite $p$-group $P$ of order $p^{r}$ , S. A. Jennings [3] showed that $ r(p-1)+1\leqq$

$t(P)\leqq p^{r}$ . Recently K. Motose and Y. Ninomiya [71 determined all $p$-groups $P$ of
order $p^{r}$ such that $t(P)$ are the lower bound $r(p-1)+1$ or the upper bound $p^{r}$ . In
fact they proved that for a $p$-group $P$ of order $p^{r}$ with $r\geqq 1,$ $t(P)=r(p-1)+1$ if and
only if $P$ is elementary abelian and that $t(P)=p^{r}$ if and only if $P$ is cyclic. So in
this paper we shall investigate $p$-groups $P$ of order $p^{r}$ such that $t(P)$ are not neces-
sarily equal to the lower bound $r(p-1)+1$ or the upper bound $p^{r}$ . By the results
of K. Motose [6, Theoreml, K. Motose and Y. Ninomiya [7, Theorem 1] it follows
that when $P$ is an abelian $p$-group of order $p^{r}$ with $r\geqq 2$ , the secondarily highest
nilpotency index $t(P)$ of $J(KP)$ is $p^{r-1}+p-1$ and in this case $P$ is not cyclic and
has a cyclic subgroup of index $p$ . Our main result of \S 1 is a generalization of the
above fact. This can be stated as follows: For an arbitrary $p$-group $P$ of order
$p^{r}$ with $r\geqq 2$, the next conditions are equivalent;

(i) $t(P)=p^{r-1}+p-1$ .
(ii) $p^{r-1}<t(P)<p^{r}$ .
(iii) $P$ is not cyclic and has a cyclic subgroup of index $p$ .
There is a problem that when the value of $t(G)$ is given, what type is $G$?

About this there are some solutions ([9], [7]). D.A.R. Wallace [9] determined all
finite groups $G$ with the property $t(G)=2$ . Further, K. Motose and Y. Ninomiya
[7] determined all finite $p$-solvable groups $G$ such that $t(G)=3$ . In connection with
this in \S 2 we shall have all $p$-groups $P$ such that $t(P)=4,5$ or 6 by calculating
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$t(Q)$ for all $p$-groups $Q$ of orders at most $p^{4}$ .

1. p-Groups which have cyclic subgroups of index $p$

To begin with we shall study $t(P)$ for metacyclic $p$-groups $P$.

LEMMA 1. 1. Let $P$ be a metacyclic p-group containing a cyclic normal subgroup
$ Q=\langle b\rangle$ of order $p^{n}$ and with a cyclic factor group $P/Q=\langle aQ\rangle(a\in P)$ of order $p^{m}$ .
Put $x=a-1$ and $y=b-1$ in $KP$. Then

$ y^{t}x^{s}\in$

$\sum_{0\leqq i\leqq si+j\geqq s+t}$

$Kx^{i}y^{j}$ , for all $s,$
$t\geqq 0$ .

PROOF. We may assume $n\geqq 1$ . There is a positive integer $h$ such that

(1) $a^{-1}ba=b^{h}$ .

Since $a^{p^{m}}\in Q,$ $h^{p^{m}}\equiv 1(mod p^{n})$ , and so

$(1^{\prime})$ $h\equiv 1(mod p)$ .

At first we shall prove this lemma for $s=1$ and $t=1$ (cf. the proof of [4, Lemma]).

Put $(_{j}^{i})=0$ if $i<j$ . By (1) and (1’),

$yx=ab^{h}-a-b+1=(x+1)(\sum_{j\geq 2}(jh)y^{j}+y+1)-x-y-1$

$=xy+\sum_{J\geqq 2}(jh)(x+1)y^{j}$ .

This shows

(2) $ yx\in$
$\sum_{0\leqq i\leqq 1i+j\geq 2}Kx^{i}y^{j}$

.

From (2), we can prove

(3)
$y^{t}x\in 0\leqq i\leqq 1\sum_{i+j\gtrless C+1}Kx^{i}y^{j}$

, for all $t\geqq 0$

by induction on $t$ . Using (3) we can verify this lemma by induction on $s$ .
Put $J(KP)^{0}=KP$ for a $p$-group $P$.

THEOREM 1.2. Let $P$ be a metacyclic p-group containing a cyclic normal sub-
group $Q$ of order $p^{n}$ and with a cyclic factor group $P/Q=\langle aQ\rangle(a\in P)$ of order $p^{m}$

and $k$ an integer such that $|a|=p^{m+n- k}$ . Put

$h=\left\{\begin{array}{l}m, ifm\leqq k\\k, ifm>k.\end{array}\right.$

Then we have $t(P)=p^{m+n-h}+p^{h}-1$ .
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PROOF. Put $ Q=\langle b\rangle$ . We can assume $a^{p^{m}}=b^{P^{k}}$ . Set $x$ and $y$ as in Lemma 1.1.

Case 1. $m\leqq k$ : We shall claim that $C_{i}=\{x^{s}y^{t}|0\leqq s\leqq p^{m}-1,0\leqq t\leqq p^{n}-1, s+t\geqq i\}$

is a K-basis of $J(KP)^{i}$ by induction on $i$ . Every $g\in P$ can be written as $g=a^{s}b^{t},$ $ 0\leqq$

$s\leqq p^{m}-1,0\leqq t\leqq p^{n}-1$ and the number of elements of $C_{0}$ is $p^{m+n}$ . Thus $C_{0}$ is a K-
basis of $KP$. By [3, Theorem 1.2], $C_{1}$ is a K-basis of $J(KP)$ . Assume $i\geqq 2$ . Since
$x,$ $y\in J(KP)$ , we have $C_{i}\subseteqq J(KP)^{i}$ . Since $J(KP)^{i}=J(KP)J(KP)^{i-1}$ , it suffices to prove
that if $0\leqq s,$ $s^{\prime}\leqq p^{m}-1,0\leqq t,$ $t^{\prime}\leqq p^{n}-1,$ $s+t\geqq 1$ and $s^{\prime}+t^{\prime}\geqq i-1$ , then $(x^{s}y^{t})(x^{s^{\prime}}y^{t^{\prime}})$ can
be written as a K-linear combination of $C_{i}$ . From Lemma 1.1,

(4) $(x^{s}y^{t})(x^{s}\prime y^{t^{\prime}})=$
$\sum_{i^{\prime}+j^{\prime}\geqq s^{\prime}+t}$

$a_{i^{\prime}j^{J}}x^{S1i^{}}y^{j^{}}t^{}$ $a_{i^{l}j^{l}}\in K$.
$0\leq i\leqq s^{\prime}$

Consider each term of (4). Put $s+i^{\prime}=up^{m}+u^{\prime}$ , where $u,$
$u^{\prime}$ are integers with $ 0\leqq$

$u^{\prime}\leqq p^{m}-1$ . Since $x^{p^{m}}=y^{p^{k}}$ , it is seen that $x^{s+i^{\prime}}y^{j}$

‘
$t^{}=x^{u^{\prime}}(x^{p^{m}})^{u}y^{j_{t}^{}t}‘=x^{u^{}}y^{up^{k}+j^{}+t^{\prime}}$ .

Since $y^{P^{n}}=0$ , we can put $up^{k}+j^{\prime}+t^{\prime}\leqq p^{n}-1$ . We also have $u^{\prime}+(up^{k}+i^{\prime}+t^{\prime})\geqq i$ since
$k\geqq m$ and $i^{\prime}+j^{\prime}\geqq s^{\prime}+t$ . Hence (4) can be written as a K-linear combination of $C_{i}$ .
This shows $J(KP)^{P^{m_{+p}n-2}}$ is of K-dimension one, and so $t(P)=p^{m}+p^{n}-1$ .

Case 2. $m>k$ : As in Case 1 we can show that $ C_{i}=\{x^{s}y^{t}|0\leqq s\leqq p^{m}n-k-1,0\leqq$

$t\leqq p^{k}-1,$ $s+t\geqq i$} is a K-basis of $J(KP)^{i}$ . Thus $t(P)=p^{m}n-k+p^{k}-1$ . This completes

the proof of Theorem 1.2.
Put that

$ D_{r}=\langle a, b|a^{2}=b^{l^{\gamma-}} =1, a^{-1}ba=b1\rangle$ for $r\geqq 3$ ,

$ Q_{r}=\langle a, b|a^{2}=b^{2^{r-}}, a^{4}=1, a^{-1}ba=b^{-1}\rangle$ for rlz 3,

$ S_{r}=\langle a, b|a^{2}=b^{2^{r-1}}=1, a^{-1}ba=b^{zr-2-1}\rangle$ for $r\geqq 4$ ,

$ M_{r}(p)=\langle a, b|a^{p}=b^{p^{r-1}}=1, a^{-1}ba=b^{p^{r-2}\dashv 1}\rangle$

for $r\geqq 4$ if $p=2$ , and for $r\geqq 3$ if $p\geqq 3$ ,

$ M(p)=\langle a, b, c|a^{p}=b^{p}=c^{p}=1, a^{-1}ba=bc, a^{-1}ca=c, b^{-1}cb=c\rangle$ for $p\geqq 3$ .

LEMMA 1.3. Let $P$ be a p-group of order $p^{r}$ . If $P$ is not cyclic and has a cyclic

subgroup of index $p,$ $t(P)=p^{r-1}+p-1$ .

PROOF. This follows from [2, I 14.9 Satz] and Theorem 1.2.
Next, we shall compute $t(M(p))$ whose calculation is very fundamental in cal-

culating $t(P)$ for the other $p$-groups $P$.

LEMMA 1.4. For $p\geq 3,$ $t(M(p))=4p-3$ .

PROOF. Put $P=M(p)$ . As in Lemma 1.1 set that $x=a-1,$ $y=b-1$ and $z=$



140 Shigeo KOSHITANI

$c-1$ in $KP$. Note that $x^{p}=y^{p}=z^{p}=0$ and $x,$ $y,$ $z\in J(KP)$ . We have $zx=xz,$ $zy=yz$

and $yx=xyz+xy+yz+xz+z$ . Hence we know

(5) $z\in J(KP)^{2}$ ,

(6)
$yx\in\sum_{ji+_{0\leqq i\leqq 1}+2k\geqq 2}Kx^{i}y^{J_{Z^{k}}}$

.

Using (6) we can show

(7 )
$y^{t}x\in\sum_{0\leqq i\leqq}Kx^{i}y^{j}z^{k}i+J+2k\geqq_{1}i+1$

for all $t\geqq 0$

by induction on $t$ as in the proof of (3). From (7) we obtain

(8)
$y^{t}x^{s}\in i+j+2k\geqq s+l\sum_{0\leqq i\leqq s}Kx^{i}y^{j}z^{k}$

, for all $s,$ $t\geqq 0$

by induction on $s$ . Next, we shall show that $C_{i}=\{x^{s}y^{l}z^{u}|0\leqq s, t, u\leqq p-1, s+t+2u\geqq i\}$

is a K-basis of $J(KP)^{i}$ by induction on $i$ . For $i=0$ or 1, it is easy as in the proof
of Theorem 1.2. Assume $i\geqq 2$ . By (5), $C_{i}\subseteqq J(KP)^{i}$ . As in the proof of Theorem
1.2 it is sufficient to prove that $(x^{s}y^{l}z^{u})(x^{sr}y^{t\prime}z^{u\prime})$ can be written as a K-linear com-
bination of $C_{i}$ when $0\leqq s,$ $s^{\prime},$ $t,$ $t^{\prime},$ $u,$ $u^{\prime}\leqq p-1,$ $s+t+2u\geqq 1$ and $s^{\prime}+t^{\prime}+2u^{\prime}\geqq i-1$ . By
(8),

$(^{*})$

$(x^{s}y^{f}z^{u})(xsy\prime z^{\prime\prime})=\sum_{\prime i^{\prime}+j+2,k\geqq\backslash +t}.a_{i^{\prime}j^{\prime}k^{\prime}}x^{si^{\prime}}y^{j^{\prime}}t^{_{Z}}k\prime uu$

’

$a_{i^{\prime}j^{\prime}k^{l}}\in K$ Since $x^{P}=y^{P}=z^{P}=0$ , we can assume that $0\leqq s+i^{\prime},j^{\prime}+t^{\prime},$ $k^{\prime}+u+u^{\prime}\leqq p-1$ .
We have $(s+i^{\prime})+(j^{\prime}+t^{\prime})+2(k^{\prime}+u+u^{\prime})\geqq i$. Thus $C_{i}$ is a K-basis oi $J(KP)^{i}$ , and so
$t(P)=(p-1)+(p-1)+2(p-1)+1=4p-3$ .

LEMMA 1.5. Let $P$ be a p-group of order $p^{r}$ with $r\geqq 1$ . If $t(P)>p^{r-1}$ , then $P$

has an element of order $p^{r-1}$ .

PROOF. We use induction on $r$. It is clear for $r=1$ or 2. Assume $r=3$ . When
$P$ is abelian, it follows from [6, Theorem]. When $P$ is nonabelian, by [2, I 14.10
Satz], $P$ is one of the following types;

(i) $p=2$ and $P\cong D_{3}$ or $Q_{3}$ ,

(ii) $p\geqq 3$ and $P\cong M_{3}(p)$ or $M(p)$ .
By Lemma 1.4 and $t(P)>p^{2},$ $P\not\cong M(p)$ . Thus the assertion is proved for $r=3$ . As-
sume $r\geqq 4$ . There is an element $c\in Z(P)$ of order $p$ , where $Z(P)$ is the center of
P. $ C=\langle\cdot\rangle$ is normal in $P$. By [10, Theorem 2.4] and $t(P)>p^{r-1}$ , it follows that
$t(P/C)>p^{r-2}$ . Thus, from the hypothesis of induction, $P/C$ has an element $bC(b\in P)$

of order $p^{r-2}$ . Now, suppose that $P$ has no elements of order $p^{r-1}$ . Hence $ B=\langle b\rangle$
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has order $p^{r-2}$ . By [2, I 14.9 Satz], $P/C$ is one of the following types;

Case 1. $P/C$ is an abelian group of type $(p^{r-2},p)$ ,

Case 2. $p=2$ and $P/C\cong D_{r-1}$ ,

Case 3. $p=2$ and $P/C\cong Q_{r-1}$ ,

Case 4. $p=2,$ $r\geqq 5$ and $P/C\cong S_{r-1}$ ,

Case 5. $r\geqq 5$ if $p=2$ , and $P/c\cong M_{r-1}(p)$ .

Case 1: Put $ P/C=\langle aC, bC|(aC)^{p}=(bC)^{p^{r-2}}=C, abC=baC\rangle$ and $ A=\langle a\rangle$ . Clearly

$|a|=p$ or $p^{2}$ . If $|a|=p^{2}$ , we may put $a^{p}=c$ . Since $P/C$ is abelian, $A$ is normal in
$P$. Thus $P$ is a semi-direct product of $A$ by $B$ , and so $t(P)=p^{r-2}+p^{2}-1$ from

Theorem 1.2. This is a contradiction, and so $|a|=p$ . If $b^{-1}a^{-1}ba=1,$ $P$ is an abelian

group of type $(p^{r-2},p,p)$ . Hence, by [6, Theorem], $t(P)=p^{r-2}+2p-2$ , a contradiction.

This shows that $b^{-1}a^{-1}ba\neq 1$ , and so we may put $b^{-1}a^{-1}ba=c$ . Thus $P=\langle a,$ $b,$ $c|a^{p}$

$=b^{pr-2}=c^{p}=1,$ $a^{-1}ba=bc,$ $a^{-1}ca=c,$ $ b^{-1}cb=c\rangle$ . Just as in the proof of Lemma 1.4, it
is seen $t(P)=(p-1)+(p^{r-2}-1)+2(p-1)+1=P^{r-2}+3p-3$ , a contradiction.

Case 2: Put $p=2,$ $ P/C=\langle aC, bC|(aC)^{2}=(bC)^{2^{r-2}}=C, a^{-1}baC=b^{-1}C\rangle$ and $ A=\langle a\rangle$ .
We know $|a|=2$ or 4. Put $x,$ $y$ and $z$ as in the proof of Lemma 1.4.

(i) Put $|a|=2$ and $ba^{-1}ba=1$ . Then $P$ is a direct product of $AB\cong D_{r-1}$ and

a cyclic group of order 2. It follows from [6, Theorem] and Lemma 1.3 that $t(P)$

$=2^{r-2}+2$ , a contradiction.
(ii) Put $|a|=4$ and $ba^{-1}ba=1$ . Since $a^{2}=c,$ $ P=\langle a, b|a^{4}=b^{2^{r-2}}=1, a^{-1}ba=b^{-1}\rangle$ .

Thus, by Theorem 1.2, $t(P)=2^{r-2}+3$ . This is a contradiction.
(iii) Put $|a|=2$ and $ba^{-1}ba\neq 1$ . Then $ba^{-1}ba=c$ . So $P=\langle a,$ $b,$ $c|a^{2}=b^{2^{r-2}}=c^{2}=$

$1,$ $a^{-1}ba=b^{-1}c,$ $a^{-1}ca=c,$ $ b^{-1}cb=c\rangle$ . We have $zx=xz$ and $zy=yz$ . Set $f=2^{r-2}-1$ . Since
$f\equiv 1(mod 2),$ $yx=(x+1)(y+1)^{f}(z+1)-x-y-1=(x+1)\{\Sigma_{j=2}^{J}(jf)y^{J}\}(z+1)+xyz+xy+yz$

$+xz+z$ . Hence we have (5) and (6), and so we have (7) and

(8)
$y^{l}x^{s}\in i+j+2k\geqq_{s}S+t\sum_{0\leqq i\leqq}Kx^{i}y^{j}z^{k}$

, for all $t\geqq 0$ and $s=0,1$ .

As in the proof of Lemma 1.4, $t(P)=1+(2^{r-2}-1)+2+1=2^{r-2}+3$ , a contradiction.
(iv) Put $|a|=4$ and $ba^{-1}ba\neq 1$ . Then $a^{2}=c$ and $ba^{-1}ba=c$ . Hence $P=\langle a,$ $b,$ $c|a^{2}$

$=c,$ $b^{2^{r-2}}=c^{2}=1,$ $a^{-1}ba=b^{-1}c,$ $a^{-1}ca=c,$ $ b^{-1}cb=c\rangle$ . Note $x^{2}=z\neq 0$ and $y^{2^{r-2}}=z^{2}=0$ . As
(iii) we obtain (5) and (6), and so (7) and (8’) hold. We shall show that $C_{i}=\{x^{s}y^{t}z^{u}|$

$0\leqq s,$ $u\leqq 1,0\leqq t\leqq 2^{r-2}-1,$ $s+t+2u\geqq i$} is a K-basis of $J(KP)^{i}$ by induction on $i$ . It is

clear for $i=0$ or 1. Assume $i\geqq 2$ . By (5), $C_{i}\subseteqq J^{(}KP)^{i}$ . As usual it suffices to show

that $(x^{s}y^{t}z^{u})(x^{s^{\prime}}y^{t^{\prime}}z^{u}‘)$ can be written as a K-linear combination of $C_{i}$ if $0\leqq s,$ $s^{\prime},$ $u,$
$u^{\prime}$

$\leqq 1,0\leqq t,$ $t^{\prime}\leqq 2^{r-2}-1,$ $s+t+2u\geqq 1$ and $s^{\prime}+t^{\prime}+2u^{\prime}\geqq i-1$ . From (8’), we have $(^{*})$ . Con-
sider each term of $(^{*})$ . Put $s+i^{\prime}=2v+v^{\prime}$ , where $v,$

$v^{\prime}$ are integers with $0\leqq v^{\prime}\leqq 1$ .
Since $x^{2}=z,$ $x^{s+i\prime}y^{J^{\prime}+t\prime}z^{k\prime+u\perp u\prime}=x^{v\prime}y^{j\prime+t\prime}z^{v\vdash k\prime\dashv u+u\prime}$ . We may assume $j^{\prime}+t^{\prime}\leqq 2^{r-2}-1$ and
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$v+h^{\prime}+u+u^{\prime}\leqq 1$ since $y^{2^{\gamma-2}}=z^{2}=0$ . We also have $v^{\prime}+(j^{\prime}+t^{\prime})+2(v+k^{\prime}+u+u^{\prime})\geqq i$ .
This implies that $C_{i}$ is a K-basis of $J(KP)^{i}$ , and so $t(P)=1+(2^{r-2}-1)+2+1=2^{r-2}+3$ ,
a contradiction.

Case 3: Put $p=2,$ $ P/C=\langle aC, bC|(aC)^{2}=(bC)^{2^{r-3}}, (aC)^{4}=C, a^{-1}baC=b^{-1}C\rangle$ and $A=$

$\langle a\rangle$ . We can put $a^{2}=b^{2^{r-3}}c^{i}$ for some $i$ , and so $a^{4}=1$ . This implies $|a|=4$ . Put
$x,$ $y$ and $z$ as in the proof of Lemma 1.4.

(i) Put $ba^{-1}ba=1$ and $a^{2}=b^{2^{r-3}}$ . Then $P$ is a direct product of $AB\cong Q_{r-1}$ and
a cyclic group of order 2. Thus we have a contradiction as in (i) of Case 2.

(ii) Put $ba^{-1}ba=1$ and $a^{2}\neq b^{2^{r-3}}$ . Then $A\cap B=1$ . Hence $P=AB=\langle a,$ $b|a^{4}=$

$b^{2r-2}=1,$ $ a^{-1}ba=b^{-1}\rangle$ , and so we have a contradiction as in (ii) of Case 2.
(iii) Put $ba^{-1}ba\neq 1$ and $a^{2}=b^{2^{r-3}}$ . Since $ba^{-1}ba=c,$ $P=\langle a,$ $b,$ $c|a^{2}=b^{2^{r-3}},$ $b^{2^{r-2}}=c^{2}$

$=1,$ $a^{-1}ba=b^{-1}c,$ $a^{-1}ca=c,$ $ b^{-1}cb=c\rangle$ . As in (iii) of Case 2 we have (5), (6), (7) and
(8). Note $0\neq x^{2}=y^{2^{r-3}}$ . By $2^{r-3}\geqq 2$ , it is seen that $C_{i}=\{x^{s}y^{l}z^{u}|0\leqq s,$ $u\leqq 1,0\leqq t\leqq 2^{r-2}$

$-1,$ $s+t+2u\geqq i$ } is a K-basis of $J(KP)^{i}$ as in (iv) of Case 2. Thus $t(P)=2^{r-2}+3$ , a
contradiction.

(iv) Put $ba^{-1}ba\neq 1$ and $a^{2}\neq b^{2^{\gamma-3}}$ . Hence $ba^{-1}ba=c$ and $a^{2}=b^{2^{r-3}}c$ . Thus $P=$

$\langle c\iota, b, c|a^{2}=b^{\underline{o}\gamma-3}c, a^{4}=b^{2^{\gamma-2}}=c^{2}=1, a^{-1}ba=b^{-J}c, a^{-1}ca=c, b^{-1}cb=c\rangle$ . We have $x^{2}=y^{2^{\gamma-3}}$

$(z+1)+z$ . This implies (5) and

(9)
$\iota^{2}\in\sum_{J+2k\geqq 2}Ky^{!_{Z^{\prime}}}1$

As in (iii) of Case 2 we also have (6), (7) and (8’). Note $x^{A}\neq 0$ . By (9), as in (iv)
of Case 2, we know that $C_{i}=\{x^{s}y^{t}z^{u}|0\leqq s, u\leqq 1,0\leqq t\leqq 2^{r-2}-1, s+l+2u\geqq i\}$ is a K-basis
of $J(KP)^{i}$ , and so we have a contradiction.

Case 4: As in Case 2 we have a contradiction.
Case 5: Put $r\geqq 5$ if $p=2$ , and put $P/C=\langle aC,$ $bC|(aC)^{P}=(bC)^{p^{r-2}}=C,$ $a^{-1}baC=$

$ b^{p^{r-3\perp 1}}C\rangle$ and $ A=\langle a\rangle$ . Set $x,$ $y$ and $z$ as in the proof of Lemma 1.4. Put $f=p^{r-3}+1$ ,

and so $f\equiv 1(mod p)$ .
(i) Assume $|a|=p$ and $b^{-f}a^{-1}ba=1$ . So $P$ is a direct product of $AB\cong M_{r-1}(p)$

and a cyclic group of order $p$ , and so we have a contradiction by [6, Theorem] and
Lemma 1.3.

(ii) Assume $|a|=p^{2}$ and $b^{-f}a^{-1}ba=1$ . We may put $a^{p}=c$ . So $P=\langle a,$ $b|a^{p^{2}}=$

$b^{1)}r-2=1,$ $ a^{-1}ba=b^{f}\rangle$ , hence $t(P)=p^{r-2}+p^{2}-1$ , by Theorem 1.2. This is a contradic-
tion.

(iii) Assume $|a|=p$ and $b^{-f}a^{-1}ba\neq 1$ . We can put $b^{-f}a^{-1}ba=c$ . Hence $P=$

$\langle a, b, c|a^{P}=b^{p^{r-2}}=c^{P}=1, a^{-1}ba=b^{f}c, a^{-1}ca=c, b^{-1}cb=c\rangle$ . Since $f\equiv 1(mod p)$ , as (iii)

of Case 2, we have (5), (6), (7) and (8). As in the proof of Lemma 1.4, $C_{l}=\{x^{s}y^{t}z^{u}|$

$0\leqq s,$ $u\leqq p-1,0\leqq t\leqq p^{r-2}-1,$ $s+t+2u\geqq i$} is a K-basis of $J(KP)^{i}$ , and so $t(P)=(p-1)$

$+(p^{r-2}-1)+2(p-1)+1=p^{r-2}+3p-3$ , a contradiction.
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(iv) Assume $|a|=p^{2}$ and $b^{-f}a^{-1}ba\neq 1$ . We may put $a^{p}=c$ . Since $1\neq b^{-f}a^{-1}ba\in C$,
$b^{-f}a^{-1}ba=c^{h}$ for some $h$ with $1\leqq h\leqq p-1$ . Thus $P=\langle a,$ $b,$ $c|a^{p}=c,$ $b^{p^{r-2}}=c^{p}=1,$ $a^{-1}ba$

$=b^{f}c^{h},$ $a^{-1}ca=c,$ $ b^{-1}cb=c\rangle$ . From $x^{p}=z$ ,

(10) $z\in J(KP)^{p}$ .
Since $f\equiv 1(mod p),$

$yx=\sum_{i+j+k\geqq_{1}2}a_{ijk}x^{i}y^{j}z^{k}+hz$
, $a_{ijk}\in K$ .

Hence

(11) $ yx\in$
$\sum_{i+j+pk\geqq 2}$

$Kx^{i}y^{J_{Z^{k}}}$ .
$0\leqq i\leqq 1$

Using this, as in the proof of Lemma 1.1, by induction we have

(12)
$y^{t}x\in i+j+pk\geqq_{1}t+1\sum_{0\leqq i\leqq}Kx^{i}y^{j}z^{k}$

, for all $t\geqq 0$ ,

(13)
$y^{t}x^{s}\in i+j+pk\geqq s+l\sum_{0\leqq i\leqq s}Kx^{i}y^{j}z^{k}$

, for all $s,$
$t\geqq 0$ .

Note $0\neq x^{p}=z$. It follows from (10) and (13) that $C_{i}=\{x^{s}y^{t}z^{u}|0\leqq s,$ $u\leqq p-1,0\leqq t\leqq p^{r-2}$

$-1,$ $s+t+pu\geqq i$ } is a K-basis of $J(KP)^{i}$ , and so $t(P)=(p-1)+(p^{r-2}-1)+p(p-1)+1$

$=p^{r-2}+p^{2}-1$ , a contradiction. This completes the proof of Lemma 1.5.

THEOREM 1.6. Let $P$ be a p-group of order $p^{r}$ . If $r\geqq 2$ , then the next four
conditions $(i)-(iv)$ are equivalent.

(i) $t(P)=p^{r-1}+p-1$ .
(ii) $p^{r-1}<t(P)<p^{r}$ .
(iii) $P$ is not cyclic and has a cyclic subgroup of index $p$ .
(iv) $P$ is one of the following types;
(a) $P$ is an abelian group of type $(p^{r-1},p)$ ,

(b) $p=2,$ $r=3$ and $P\cong D_{3}$ or $Q_{3}$ ,

(c) $p=2,$ $r\geqq 4$ and $P\cong D_{r},$ $Q_{r},$ $S_{r}$ or $M_{r}(2)$ ,

(d) $p\geqq 3,$ $r\geqq 3$ and $P\cong M_{r}(p)$ .

PROOF. $(i)r\Rightarrow(ii)$ is clear. $(ii)\Leftrightarrow(iii)$ is obtained from [7, Theorem 1] and Lemma
1.5. $(iii)\Leftrightarrow(iv)$ follows from [2, I 14.9 Satz]. (iv) $r\Rightarrow(i)$ is easy from Lemma 1.3.

COROLLARY 1.7. Let $G$ be a finite group with a p-Sylow subgroup P. If $G$ is
a p-solvable group of p-length 1 and $P$ has order $p^{r}$ with $r\geqq 2$ , then the next four
conditions are equivalent.

(i) $t(G)=p^{r-1}+p-1$ .
(ii) $p^{r-1}<t(G)<p^{r}$ .
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(iii) Same as (iii) of Theorem 1.6.
(iv) Same as (iv) of Theorem 1.6.

PROOF. It follows from [5, Theorems 2 and 7] (or [1, Theorem 2]) and [8, Lemma
2] that $t(G)=t(P)$ . Thus this corollary is clear by Theorem 1.6.

REMARK 1. For a $p$-solvable group $G$ of $p$-length $\geqq 2$ , the same statement as
Corollary 1.7 does not necessarily hold. Let $G$ be the symmetric group of degree
4 and $p=2$ . Then $G$ is a 2-solvable group of 2-1ength 2 of order 24 with a dihedral
2-Sylow subgroup of order 8. On the other hand, by [7, Proposition], $t(G)=4\neq 2^{2}+$

$2-1$ .

2. p-Groups $P$ with $t(P)=4,5$ or 6

In this section, firstly, we shall compute $t(P)$ for all $p$-groups $P$ of orders at
most $p^{4}$ . Using this we shall have all $p$-groups $P$ such that $t(P)=4,5$ or 6. All p-
groups of order $p^{3}$ are found in [2, I 14.10 Satz] and all $p$-groups of order $p^{4}$ are
found in [2, III 12.6 Satz] and [2, III \S 12 Aufgaben (29), (30)].

THEOREM 2.1. Let $P$ be a nonabelian p-group of order $p^{r}$ . Then we have the
followings.

(I) $r=3,p\geqq 3$ . There are two nonisomorphic nonabelian groups of order $p^{3}$ .
(i) If $P=M_{3}(p),$ $t(P)=p^{2}+p-1$ .
(ii) If $P=M(p),$ $t(P)=4p-3$ .
(II) $r=3,p=2$ . There are two nonisomorphic nonabelian groups of order $2^{3}$ .
$(i)-(ii)$ If $P=D_{\theta}$ or $Q_{3},$ $t(P)=5$ .
(III) $r=4,p\geqq 5$ . There are ten nonisomorphic nonabelian groups of order $p^{4}$ .
(i) If $P=M_{4}(p),$ $t(P)=p^{a}+p-1$ .
(ii) If $P$ is a direct product of $M_{3}(p)$ and a cyclic group of order $p,$ $t(P)=$

$p^{2}+2p-2$ .
(iii) If $P$ is a direct product of $M(p)$ and a cyclic group of order $p,$ $t(P)=$

$5p-4$ .
(iv) If $P=\langle a, b|a^{p^{2}}=b^{p^{l}}=1, a^{-1}ba=b^{p+1}\rangle,$ $t(P)=2p^{2}-1$ .
(v) If $P=\langle a, b, c|a^{p}=b^{p}=c^{p^{2}}=1, a^{-1}ba=bc^{p}, a^{-1}ca=c, b^{-1}cb=c\rangle,$ $t(P)=p^{2}+2p-2$ .
(vi) If $P=\langle a, b, c|a^{p}=b^{p}=c^{p2}=1, a^{-1}ba=b, a^{-1}ca=bc, b^{-1}cb=c\rangle,$ $t(P)=p^{2}+3p-3$ .
(vii) If $P=\langle a, b, c|a^{p}=b^{p}=c^{p2}=1, a^{-1}ba=bc^{p}, a^{-1}ca=bc, b^{-1}cb=c\rangle,$ $t(P)=p^{2}+3p$

$-3$ .
(viii) If $ P=\langle a, b, c|a^{p}=b^{p}=c^{p^{2}}=1, a^{-1}ba=bc^{fp}, a^{-1}ca=bc, b^{-1}cb=c\rangle$ , where $f$ is

a quadratic nonresidue modulo $p,$ $t(P)=p^{2}+3p-3$ .
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(ix) If $P=\langle a,$ $b,$ $c,$ $d|a^{p}=b^{P}=c^{p}=d^{p}=1,$ $b^{-1}cb=c,$ $c^{-1}dc=d,$ $b^{-1}db=d,$ $a^{-1}ba=b,$ $a^{-1}$

$ca=bc,$ $ a^{-1}da=cd\rangle$
$,$
$t(P)=7p-6$ .

(x) If $P=\langle a,$ $b,$ $c,$ $d|a^{p}=b,$ $b^{P}=c^{P}=d^{p}=1,$ $b^{-1}cb=c,$ $c^{-1}dc=d,$ $b^{-1}db=d,$ $a^{-1}ca=bc$ ,
$a^{-1}da=cd\rangle,$ $t(P)=p^{2}+3p-3$ .

(IV) $r=4,p=3$ . There are ten nonisomorphic nonabelian groups of order $3^{4}$ .
(i) If $P=\langle a, b, c|a^{3}=b^{3}, b^{9}=c^{3}=1, a^{-1}ba=bc, a^{-1}ca=b^{3}c, b^{-1}cb=c\rangle,$ $t(P)=15$ .
$(ii)-(x)$ For the other nine groups $P$ of order $3^{4}$ , we can know $t(P)$ by putting

$p=3$ in (III), where (ix) of (III) and (x) of (III) are isomorphic.
(V) $r=4,p=2$ . There are nine nonisomorphic nonabelian groups of order $2^{4}$ .
$(i)-(iv)$ If $P=D_{4},$ $Q_{4},$ $S_{4}$ or $M_{4}(2),$ $t(P)=9$ .
(v) If $P$ is a direct product of $D_{3}$ and a cyclic group of order 2, $t(P)=6$ .
(vi) If $P$ is a direct product of $Q_{3}$ and a cyclic group of order 2, $t(P)=6$ .
(vii) If $P=\langle a, b|a^{4}=b^{4}=1, a^{-1}ba=b^{3}\rangle,$ $t(P)=7$ .
(viii) If $P=\langle a, b, c|a^{2}=b^{2}=c^{4}=1, a^{-1}ba=bc^{2}, a^{-1}ca=c, b^{-1}cb=c\rangle,$ $t(P)=6$ .
(ix) If $P=\langle a, b, c|a^{2}=b^{2}=c^{4}=1, a^{-1}ba=b, a^{-1}ca=bc, b^{-1}cb=c\rangle,$ $t(P)=7$ .

PROOF. Put $x=a-1,$ $y=b-1,$ $z=c-1$ and $w=d-1$ in $KP$ if they exist.
(I) (i) and (ii) are verified by Theorem 1.6 and Lemma 1.4, respectively.
(II) Clear from Theorem 1.6.
(III) (i) Trivial by Theorem 1.6.
(ii)-(iii) These follow from [6, Theorem] and (I).

(iv) Easy from Theorem 1.2.
(v) Since $yx=xyz^{p}+xz^{P}+yz^{p}+z^{P}+xy$ , we have

(14)
$yx\in_{i+j+}\sum_{0\leqq i\leqq^{k_{1}\geqq 2}}Kx^{i}y^{j}z^{k}$

.

Using this, as in the proof of Lemma 1.1, we know

(15) $ y^{t}x\in$
$\sum_{i+j+k\geq t+1}$

$Kx^{i}y^{J}z^{k}$ , for all $t\geqq 0$ ,
$0\leqq i\overline{\leqq}1$

(16)
$y^{t}x^{s}\in\sum_{0\leqq i\leqq^{\geqq}s^{s+t}}Kx^{i}y^{j}z^{k}i+j+k$

for all $s,$ $t\geqq 0$ .

By (16), it is seen that $C_{i}=\{x^{s}y^{t}z^{u}|0\leqq s, t\leqq p-1,0\leqq u\leqq p^{2}-1, s+t+u\geqq i\}$ is a K-basis
of $J(KP)^{i}$ . Hence $t(P)=p^{2}+2p-2$ .

(vi) As in Lemma 1.4, $t(P)=(p-1)+2(p-1)+(p^{2}-1)+1=p^{2}+3p-3$ .
(vii) Since $yx=xyz^{p}+xz^{P}+yz^{p}+z^{p}+xy$ ,

(17) $ yx\in$
$\sum_{i+2j+k\geqq 3}$

$Kx^{i}y^{J_{Z^{k}}}$ .
$0\leqq i\leqq 1$

By induction it follows from (17) that
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(18)
$y^{t}x\in i+2j+A\geqq 2l+1\sum_{0\leqq i\leqq 1}Kx^{i}y^{j}z^{k}$

, for all $t\geqq 0$ .

On the other hand, since $zx=xyz+xz+yz+xy+y$ , we have

(19) $y\in J(KP)^{2}$ ,

(20) $ zx\in$
$\sum_{i+2j+k\cong 2}$

$Kx^{i}y^{J_{Z^{k}}}$ .
$0\leqq i\xi 1$

Using (20), as (18), it is seen that

(21)
$z^{u}x\in i+2j+k\geq u+1\sum_{0\leq i\leq 1}Kx^{i}y^{j}z^{k}$

, for all $u\geqq 0$ .

From (21) and (18), we can show

(22)
$y^{t}x^{s}\in i+2j+k\geqq\$\dagger 2l\sum_{0\leqq i\xi s}Kx^{i}y^{j}z^{k}$

, for all $s,$ $t\geqq 0$

by induction on $s$ . Similarly, from (21) and (18),

(23)
$z^{u}x^{s}\in t+2j+k\geq_{s}s+u\sum_{0\leqq i\leq}Kx^{i}y^{j}z^{k}$

, for all $s,$ $u\geqq 0$ .

Now, we shall prove that $C_{i}=\{x^{s}y^{t}z^{u}|0\leqq s, t\leqq p-1,0\leqq u\leqq p^{2}-1, s+2t+u\geqq i\}$ is a K-
basis of $J(KP)^{i}$ by induction on $i$ . Put $i\geqq 2$ . By (19), $C_{i}\subseteqq J(KP)^{i}$ . As usual it is
sufficient to show that $(x^{s}y^{t}z^{u})(x^{s^{\prime}}y^{t^{\prime}}z^{u^{\prime}})$ can be written as a K-linear combination of
$C_{i}$ if $0\leqq s,$ $s^{\prime},$ $t,$ $t^{\prime}\leqq p-1,0\leqq u,$ $u^{\prime}\leqq p^{2}-1,$ $s+2t+u\geqq 1$ and $s^{\prime}+2t^{\prime}+u^{\prime}\geqq i-1$ . Using
(23) and (22) we can show this. Hence $t(P)=(p-1)+2(p-1)+(p^{2}-1)+1=p^{2}+3p-3$ .

(viii) We can put $2\leqq f\leqq p-1$ . Hence we have (17). Thus, just as in (vii), we
obtain $\iota(P)=p^{2}+3p-3$ .

(ix) It is clear that

(24) $zy=yz,$ $wz=zw,$ $wy=yw$ and $yx=xy$ .
Since

(25) $zx=xyz+xz+yz+xy+y$ ,

$y\in J(KP)^{2}$ . Similarly, since

(26) $wx=xzw+xw+zw+xz+z$ ,

(27) $z\in J(KP)^{2}$ .
From (25), (27) and $y\in J(KP)^{2}$ , we have

(28) $y\in J(KP)^{3}$ .

It follows from (25) and (26) that
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(29) $ zx\in$
$\sum_{i+3j+2k\geqq 3}$

$Kx^{i}y^{j}z^{k}$ ,
$0\leq i\leqq 1$

and

(30) $wx\in\sum_{i+2k+h\geq 2}Kx^{i}z^{k}w^{h}$

respectively. From (24) and (29),

(31)
$z^{u}x\in\sum_{0\leqq i\leqq}Kx^{t}y^{j}z^{k}i+3j+2k\geqq_{1}2u+1$

for all $u\geqq 0$ .

Similarly, from (24) and (30), we have

(32) $ w^{v}x\in$ $\sum$ $Kx^{i}z^{k}w^{h}$ , for all $v\geqq 0$ .
$i+2k+h\geq v+1$

$0\leqq i\leqq^{-}1$

By (31) and (24),

(33)
$z^{u}x^{s}\in\sum_{0\leqq i\leqq s}Kx^{i}y^{j}z^{k}i+3j+2k\geq s+2u$

for all $s,$ $u\geqq 0$ .

By (32), (31) and (24), we also have

(34)
$w^{v}x^{s}\in i+3j+2k+h_{S}\geq s+v\sum_{0\leqq i\leqq}Kx^{i}y^{j}z^{k}w^{h}$

, for all $s,$ $v\geqq 0$ .

As usual, by (24), (27), (28), (33) and (34), we can show that $C_{i}=\{x^{s}y^{l}z^{u}w^{v}|0\leqq s,$ $t,$ $u$ ,

$v\leqq p-1,$ $s+3t+2u+v\geqq i$} is a K-basis of $J(KP)^{i}$ . So $t(P)=(p-1)+3(p-1)+2(p-1)$

$+(p-1)+1=7p-6$ .
(x) Since $x^{p}=y$ , it follows

(28) $y\in J(KP)^{p}$ .

Using (28) instead of (28), as in (ix), we can show that $C_{i}=\{x^{s}y^{l}z^{u}w^{v}|0\leqq s,$ $t,$ $u,$ $ v\leqq$

$p-1,$ $s+pt+2u+v\geqq i$} is a K-basis of $J(KP)^{i}$ . Thus $t(P)=(p-1)+p(p-1)+2(p-1)$

$+(p-1)+1=p^{2}+3p-3$ .
(IV) (i) $C_{i}=\{x^{s}y^{t}z^{u}|0\leqq s, u\leqq 2,0\leqq t\leqq 8, s+t+2u\geqq i\}$ is a K-basis of $J(KP)^{i}$ . Hence

$t(P)=15$ .
(V) $(i)-(iv)$ are easy by Theorem 1.6. (v) and (vi) are obtained from [6, Theo-

rem] and (II). (vii), (viii) and (ix) follow from (iv) of (III), (v) of (III) and (vi) of
(III), respectively.

COROLLARY 2.2. For a p-group $P$, we have the followings.
(I) $t(P)=4$ if and only if $P$ is one of the following types;

(i) $p=2$ and $P$ is a cyclic group of order $2^{2}$ ,

(ii) $p=2$ and $P$ is an elementary abelian group of order $2^{3}$ .
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(II) $t(P)=5$ if and only if $P$ is one of the following types;
(i) $p=2$ and $P$ is an abelian group of type $(2^{2},2)$ ,
(ii) $p=2$ and $P\cong D_{3}$ ,

(iii) $p=2$ and $P\cong Q_{3}$ ,
(iv) $p=2$ and $P$ is an elementary abelian group of order $2^{4}$ ,
(v) $p=3$ and $P$ is an elementary abelian group of order $3^{2}$ ,
(vi) $p=5$ and $P$ is a cyclic group of order 5.

(III) $t(P)=6$ if and only if $P$ is one of the following types;
(i) $p=2$ and $P$ is an abelian group of type $(2^{2},2,2)$ ,
(ii) $p=2$ and $P$ is a direct product of $D_{3}$ and a cyclic group of order 2,
(iii) $p=2$ and $P$ is a direct product of $Q_{\epsilon}$ and a cyclic group of order 2,
(iv) $p=2$ and $ P\cong\langle a, b, c|a^{2}=b^{2}=c^{4}=1, a^{-1}ba=bc^{2}, a^{-1}ca=c, b^{-1}cb=c\rangle$ ,
(v) $p=2$ and $P$ is an elementary abelian group of order $2^{5}$ .

PROOF. The assertions are proved by [3, Theorem 3.7] (cf. [10, Lemma 2.3]),
[7, Theorem 1], [6, Theorem] and Theorem 2.1.

REMARK 2. As noting in the proof of Corollary 1.7 it is seen that $t(G)=t(P)$

for a p-solvable group $G$ of p-length 1 with a p-Sylow subgroup $P$. Thus, by Corol-
lary 2.2, we can have all p-solvable groups $G$ of p-length 1 with $t(G)=4,5$ or 6.
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