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TOPOLOGICALLY COMPLETE SPACES AND

PERFECT MAPS

by

Haruto OHTA

1. Introduction. All spaces considered in this paper are assumed to be com-
pletely regular Hausdorff. A space $X$ is called topologically complete if it is com-
plete with respect to its finest uniformity. Realcompact spaces and paracompact

spaces are topologically complete (cf. [2]). A continuous map $f$ is called perfect if

it is a closed map and each fiber is compact.

It is known that topological completeness as well as realcompactness is not pre-

served under perfect maps; this fact was essentially proved by Mr\’owka [18] and

was noted in [3]. To date, the images of realcompact spaces under perfect maps

were investigated by several topologists (e.g., Frolik [6], [7], Kenderov [14], Isiwata

[11], [13], Blair [1], Dykes [3], [4]), however, with the exception of [3], little seems
to be known about topologically complete spaces.

In this paper, we shall obtain characterizations of the images of topologically

complete spaces under perfect maps and necessary and sufficient conditions for them

to be topologically complete.

In section 2, for convenience, we list certain basic definitions and facts that

will be used in the sequal.

In section 3, we introduce the notion of almost uniform structures. This notion
is useful for dealing with the perfect images of topologically complete spaces. There

are also some “tool” theorems concerning almost uniform structures.

In section 4, almost topologically complete spaces are defined in terms of an

almost uniform structure, and we prove that almost topologically complete spaces

characterize perfect images of topologically complete spaces. Similarly we can prove

the corresponding theorem concerning Frolik’s almost realcompact spaces, and con-
sider the relationship between almost topologically complete spaces and almost re-

alcompact spaces. Furthermore, some properties of almost topologically complete

spaces are studied, in particular, it is proved that almost topological completeness

is invariant under perfect maps.
In the final section 5, we consider a problem under what conditions an almost
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topologically complete space is topologically complete. To do this, we introduce the
notions of $b^{*}$ -spaces and weak $b^{*}$ -spaces; the main theorem here is that an almost
topologically complete space is topologically complete if and only if it is one of these
spaces. It is shown that collectionwise normal countably paracompact spaces, 11t-
spaces due to Morita [15] and topologically complete spaces are $b^{*}$-spaces, and that
extremally disconnected spaces, $M^{\prime}$ -spaces due to Isiwata [12] and $b^{*}$ -spaces are weak
$b^{*}$ -spaces.

Hereafter, $C(X)$ denotes the set of all real-valued continuous functions on a
space $X$, and $N$ is the space of positive integers. For details of topologically com-
plete spaces, the reader is referred to [2], [8] and [16]. The terminologies and no-
tation will be used as in [19].

2. Definitions and preliminalies.

2.1. Let $X$ be a space. If $\mathcal{F}$ is a family of subsets of $X$, we write $\cap \mathcal{F}=\cap$

$\{F|F\in \mathcal{F}\}$ and $\overline{\mathcal{F}}=\{c1_{X}F|F\in \mathcal{F}\}$ . An almost-cover of $X$ is a family of subsets of $X$

whose union is dense in $X[5]$ . Let $cU$ and $\mathcal{V}$ be almost-covers of $X$. We say
that $cU$ is a refinement of $\mathcal{V}$ in case every member of $cU$ is contained some member
of $\mathcal{V}$ . Let $\lambda$ be a collection of almost-covers of $X$ A centered family $\mathcal{F}$ of $X$ (i.e.,

with finite intersection property) is said to be $\lambda$ -Cauchy if for any $ cU\in\lambda$ , there exist
$U\in cU$ and $F\in \mathcal{F}$ with $F\subset U$. We say that $X$ is $\lambda$ -complete if $\cap\overline{cf}\neq\emptyset$ holds for each
\‘A-Cauchy family $\mathcal{F}$ of $X$ Throughout this paper, we use the following symbols:

$\mu_{X}$ : the collection of all locally finite cozero-set covers of a space $X$

$0_{X}$ ; the collection of all countable locally finite cozero-set covers of a space $X$.
It is known that a space $X$ is topologically complete (resp. realcompact) if and

only if $X$ is $\mu_{X^{-}}$ (resp. $0_{X^{-)}}$ complete.

2.2. A space $X$ is said to be extremally disconnected if the closure of every
open set of $X$ is open. A map $f$ from a space $X$ onto a space $Y$ is called irredu-
$cibl_{\vee}^{\rho}$ if the image of each proper closed subset of $X$ is a proper closed subset of $Y$.
Associated with each space $X$, there is an extremally disconnected space $E(X)$ and
a perfect irreducible map $e_{X}$ from $E(X)$ onto $X$ ([22]). The space $E(X)$ is unique
up to homeomorphism and is called the absolute of $X$.

2.3. A continuous map $f:X\rightarrow Y$ is called a quasi-perfect map (resp. an SZ-
map) if $f(F)$ is closed in $Y$ for any closed (resp. zero-) set $F$ of $X$ and $f^{-1}(y)$ is
countably compact (resp. relatively pseudocompact in $X$, i.e., each member of $C(X)$

is bounded on $f^{-1}(y))$ for each $y\in Y$. A space $X$ is called an $M-(resp. M^{\prime}-)$ space
if there is a quasi-perfect (resp. an SZ-) map from $X$ onto a metric space. These
notions were introduced by Morita [151 and Ishiwata [12] respectively. Now we
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shall say that a space $X$ is (weakly) CZ-expandable if for any locally finite family
$\{F_{\xi}|\xi\in\Xi\}$ of (regular) closed subsets of $X$, there exist a locally finite family $\{U_{\xi}|\xi\in-\cdot-\}$

of cozero-sets of $X$ and a family $\{Z_{\xi}|\xi\in\Xi\}$ of zero-sets of $X$ such that $F_{\xi}\subset Z_{\xi}\subset U_{\xi}$

for each $\xi\in\Xi$ . Here a regular closed set is the closure of an open set. The notion
of CZ-expandability is slightly stronger than that of cz-expandability due to Smith
[21]. Clearly collectionwise normal countably paracompact spaces are CZ-expandable
and extremally disconnected spaces are weakly CZ-expandable.

PROPOSITION 2.$3.A$ . If $X$ is an $M-(resp. M^{J_{-}})$ space, then $X$ is $CZ-(resp$ . weakly
CZ-) expandable.

To prove Proposition 2. $3.A$ , we use the following lemma.

LEMMA 2.3. $B$ ([10, Lemma 4.2]). Let $f:X\rightarrow T$ be an SZ-map from a space $X$

onto a space T. If $\{H_{n}\}$ is a locally finite sequence of open sets of $X$ and if $x_{n}\in H_{n}$

for each $n\in N$, then $\{f(x_{n})\}$ is locally finite in $T$.

PROOF OF PROPOSITION 2.$3.A$ . Let $X$ be an $M-(resp. M^{\prime}-)$ space. Then there
is a quasi-perfect (resp. an SZ-) map $f$ from $X$ onto a metric space $T$. Let $\{F_{\xi}|\xi\in\Xi\}$

be a locally finite family of closed (resp. regular closed) subsets of $X$ Since a me-
tric space is CZ-expandable, it suffices to show that $\{f(F_{\xi})|\xi\in\Xi\}$ is locally finite in
$T$. This is obvious in case $f$ is a quasi-perfect map. So we assume that $f$ is an
SZ-map and each $F_{\xi}$ is regular closed, that is, $F_{\text{\’{e}}}=c1_{X}G_{\xi}$ for an open set $G_{\xi}$ of $X$

If $\{f(F_{\xi})|\xi\in\Xi\}$ is not locally finite at $t\in T$, then there is a countable neighborhood
base $\{H_{7l}|n\in N\}$ at $t$ , and $f^{-1}(H_{n})$ meets infinitely many $G_{\xi}$ . We can take a countable
subset $\{\xi(n)|n\in N\}$ of $\Xi$ and a sequence $\{x_{n}|n\in N\}$ of $X$ such that $x_{n}\in f^{-1}(H_{n})\cap G_{\xi_{(n)}}$ .
Then $\{f(x_{n})|n\in N\}$ converges to $t$ . But, since $\{G_{\xi_{(n)}}|n\in N\}$ is locally finite, $\{f(x_{n})|n\in N\}$

is locally finite in $T$ by Lemma 2.3.B. This contradiction completes the proof.

3. Almost uniform structures and g-inverse systems.

DEFINITION 3.1. Let $\lambda$ be a collection of almost-covers of a space $X$ We say
that $\lambda$ is an almost uniform stmcture of $X$ if $\lambda$ satisfies the following conditions:

(1) For every $cU\in\lambda,$ $c^{-}U$ is locally finite in $X$.
(2) For every $cU,$ $\mathcal{V}\in\lambda$ , there is $ W\in\lambda$ such that $cW$ is a refinement of $cU$ and

$\mathcal{V}$

(3) For each $x\in X$ and each neighborhood $H$ at $x$ , there is $ cU\in\lambda$ such that St
$(x, c\overline{U})\subset H$.

In this section, we show that if a space $X$ is $\lambda$-complete for some almost uniform
structure $\lambda$ of $X$, then there exists a perfect map from a closed subspace in the
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product of discrete spaces onto $X$ To do this, it is necessary to select a $\lambda$ -Cauchy

family which converges to $x$ for each $x\in X$ The key to this selection is the fol-

lowing observation.

DEFINITION 3.2. Let $(\Gamma, <)$ be a directed ordered set and $\{A_{\gamma}|\gamma\in\Gamma\}$ a collection
of non-empty discrete spaces indexed by $\Gamma$ . For each pair of indices $\gamma,$

$\delta$ with $\gamma<\delta$ ,

there is assigned a multi-valued map $\pi_{\gamma}^{\delta}$ of $A_{\delta}$ into $A_{\gamma}$ satisfying the following con-
ditions: If $\gamma<\delta<\epsilon$ , then

$\pi_{\gamma}^{\delta}\circ\pi_{\delta^{\prime}}(\alpha)\subset\pi_{\gamma}^{\text{\’{e}}}(\alpha)$ for each $\alpha\in A_{\epsilon}$ .

Then we call the collection $\{A_{\gamma}, \pi_{\gamma}^{\delta}, \Gamma\}$ a g-inverse system.

Let us consider the product space $A=\Pi\{A_{\gamma}|\gamma\in\Gamma\}$ . We define a subspace $Y$ of
$A$ as follows: $Y=\{p|p=(\alpha_{\gamma}|\gamma\in\Gamma),$ $p$ satisfies the condition $p(\Delta)$ below for any finite

subset $\Delta$ of $\Gamma$ }.

$p(\Delta)\{_{\alpha\in(\beta)foreach\gamma\in\Delta}^{T_{\gamma}he_{\pi}r_{\gamma}e_{\delta}a_{0}re\delta\in\Gamma and\beta_{0}\in A_{\delta}}$

such that $\gamma<\delta$ and

Then we call $Y$ the $g$-inverse limit of $\{A_{\gamma}, \pi_{\gamma}^{\delta}, \Gamma\}$ and denote it by $Y=g-\varliminf\{A_{\gamma}, \pi_{\gamma}^{\delta}, I^{7}\}$

(or simply $Y=q-\lim\{A_{\gamma}\}$ ).

We prove a elementary proposition about this notion.

PROPOSITION 3.3. Let $\{A_{\gamma}, \pi_{\gamma}^{\delta}, /\}$ be a g-inverse system an $l\Lambda=lI\{\Lambda_{\gamma}|\gamma\in l’\}$ . $T/len$

we have:
(1) $g-\lim\{A_{\gamma}\}$ is a closed subspace of $A$ .
(2) If there is a cofinal subset $\Gamma_{0}$ of $\Gamma$ such that $A_{\gamma}$ is finite for each $\gamma\in l_{0}^{7}$ ,

then $ g-\lim_{\leftarrow}\{A_{\gamma}\}\neq\emptyset$ .

PROOF. (1) Let $p=(\alpha_{\gamma}|\gamma\in\Gamma)\in A-g-\lim\{A_{\gamma}\}$ . Then there is a finite subset $\Delta$ of
$\Gamma$ such that $p$ does not satisfy the condition $p(\Delta)$ . If we put

$U(p)=\Pi\{\{\alpha_{\gamma}\}|\gamma\in\Delta\}\times\Pi\{A_{\gamma}|\gamma\in\Gamma-\Delta\}$ ,

then $U(p)$ is a neighborhood at $p$ in $A$ disjoint from $q\rightarrow\lim_{\leftarrow}\{A_{\gamma}\}$ . Hence $q-\lim_{\leftarrow}\{A_{\gamma}\}$ is

closed in $A$ .
(2) In the first place, we suppose that $A_{\gamma}$ is finite for each $\gamma\in 1’$ . Let us set

$F_{\gamma}=$ { $p\in A|p$ satisfies the condition $p(\Delta)$ for any finite subset $\Delta$ of $t\beta\in\Gamma|\beta<\gamma$ }} for

each $\gamma\in\Gamma$ . Then, by the same argument as in (1), $F_{\gamma}$ is closed in $A$ . We shall

show that each $F_{\gamma}$ is non-empty. Let $\gamma\in\Gamma$ and let $\alpha_{\gamma}$ be an arbitrary fixed point

of $A_{\gamma}$ . We choose $\alpha_{\beta}\in\pi_{\beta^{\gamma}}(\alpha_{\gamma})$ for each $\beta\in\Gamma$ with $\beta<\gamma$ , and choose $\alpha_{\delta}\in A_{\delta}$ for each
$\delta\in\Gamma$ with $\delta\not\leqq\gamma$ . Then the point $p=(\alpha_{\gamma}|\gamma\in I^{7})$ belongs to $F_{\gamma}$ , that is, $F_{\gamma}$ is non-empty.
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Moreover $F_{\delta}\subset F_{\gamma}$ holds whenever $\gamma<\delta$ , which implies that $\{F_{\gamma}|\gamma\in l’\}$ is a centered
family of closed subsets of $A$ . Since $A$ is compact, $\cap\{F_{\gamma}|\gamma\in l^{7}\}\neq\emptyset$ . On the other
hand, it is easy to see that $\cap\{F_{\gamma}|\gamma\in\Gamma\}=g-\lim_{\leftarrow}\{A_{\gamma}\}$ . Hence we have $ g-\lim_{\leftarrow}\{A_{\gamma}\}\neq\emptyset$ .
To complete the proof, let $\Gamma_{0}$ be a cofinal subset of $\Gamma$ such that $A_{\gamma}$ is finite for
each $\gamma\in\Gamma_{0}$ . Since $\{A_{\gamma}, \pi_{\gamma}^{\delta}, \Gamma_{0}\}$ forms a g-inverse system, by the above argument,
there is a point $q=(\beta_{\gamma}|\gamma\in\Gamma_{0})\in g-\lim_{\leftarrow}\{A_{\gamma}, \pi_{\gamma}^{\delta}, \Gamma_{0}\}$ . For each $\gamma\in\Gamma$ , there is $\gamma^{\prime}\in\Gamma_{0}$ with
$\gamma^{\prime}>\gamma$ . Choosing an arbitrary point $\alpha_{\gamma}\in\pi_{\gamma}^{\gamma\prime}(\beta_{\gamma},)$ , we put $p=(\alpha_{\gamma}|\gamma\in\Gamma)$ . It suffices to
show that $p\in g-\lim\{A_{\gamma}, \pi_{\gamma}^{\delta}, \Gamma\}$ . For any finite subset $\Delta=\{\gamma(1), \cdots, \gamma(n)\}$ of $\Gamma$ , there is
$\{\gamma^{\prime}(1), \cdots, \gamma^{\prime}(n)\}\subset\Gamma_{0}$ such that $\alpha_{\gamma(i)}\in\pi_{\gamma(i)}^{\gamma^{\prime}(i)}(\beta_{\gamma^{\prime}(i)})$ for $i=1,$ $\cdots,$ $n$ . Since $q\in g-\lim\{A_{\gamma},$ $\pi_{\gamma}^{\delta}$ ,
$\Gamma_{0}\}$ , there are $\delta\in l_{0}^{\urcorner}$ and $\beta_{0}\in A_{\delta}$ such that $\gamma^{\prime}(i)<\delta$ and $\beta_{\gamma^{\prime}(i)}\in\pi_{\gamma(i)}^{\delta}(\beta_{0})$ for each $i=1,$ $\cdots,$ $n$ .
Then we have

$\alpha_{\gamma(i)}\in\pi_{\gamma(i)}^{\gamma^{\prime}(i)}\circ\pi_{\gamma^{\prime}(i)}^{\delta}(\beta_{0})\subset\pi_{\gamma(i)}^{\delta}(\beta_{0})$ .

Hence $p$ satisfies the condition $p(\Delta)$ . This proves that $ p\in g-\lim_{\leftarrow}\{A_{\gamma}\}\neq\emptyset$ .

DEFINITION 3.4. Let $\lambda=t^{c}U_{\gamma}|\gamma\in\Gamma$ }, where $cU_{\gamma}=\{U(\gamma, \alpha)|\alpha\in A_{\gamma}\}$ , be an almost
uniform structure of a space $X$. We consider $A_{\gamma}$ as a topological space with the
discrete topology. Define an order $<$ on $\Gamma$ as follows: $\gamma<\delta$ if and only if $cU_{\delta}$ is a
refinement of $cU_{\gamma}$ Then $(\Gamma, <)$ is a directed ordered set. For each $\gamma,$

$\delta\in\Gamma$ with
$\gamma<\delta$ , we define a multi-valued map $\pi_{\gamma}^{\delta}$ ; $A_{\delta}\rightarrow A_{\gamma}$ by

$\pi_{\gamma}^{\delta}(\beta)=\{\alpha\in\Lambda_{\gamma}|U(i^{\prime}, \alpha)\supset U(\delta, \beta)\}$ for $\beta\in A_{\delta}$ .
Then $\{A_{\gamma}, \pi_{\gamma}^{\delta}, I’\}$ forms a g-inverse system. We call it the g-inverse system associated
with $\lambda$ .

THEOREM 3.5. Let $\lambda$ be an almost uniform structure of a space $X$ and $\{A_{\gamma}.\pi_{\gamma}^{\delta}, \Gamma\}$

the g-inverse system associated with $\lambda$ . If $X$ is $\lambda$ -complete, then there is a perfect
map from $g-\lim_{\leftarrow}\{A_{\gamma}\}$ onto $X$.

PROOF. Let us put $\lambda=t^{c}U_{\gamma}|\gamma\in\Gamma$ }, where $cU_{\gamma}=\{U(\gamma, \alpha)|\alpha\in A_{\gamma}\}$ , and $A=\Pi\{A_{\gamma}|\gamma\in\Gamma\}$ .
If $p=(\alpha_{\gamma}|\gamma\in l\urcorner)\in g-\lim\{A_{\gamma}\}$ , then $\mathcal{F}_{p}=\{U(\gamma, \alpha_{\gamma})|\gamma\in\Gamma\}$ is a $\lambda$-Cauchy family of $X$ Since
$X$ is $\lambda$-complete, there is a point $x_{p}\in X$ such that $\cap\overline{\mathcal{F}}_{p}=\{x_{p}\}$ . We define a map $f$ ;

$g-\lim\{A_{\gamma}\}\rightarrow X$ by $f(p)=x_{p}$ .
Claim 1. $f$ is onto and $f^{-1}(x)$ is compact for each $x\in X$ : Let $x\in X$ For each

$\gamma\in l^{1}$ , we set $B_{\gamma}=\{\alpha\in A_{\gamma}|x\in c1_{X}U(\gamma, \alpha)\}$ , then $\{B_{\gamma}, \pi_{\gamma}^{\delta}|B_{\delta}, \Gamma\}$ forms a g-inverse system.
Since each $cU_{\gamma}$ is locally finite, $B_{\gamma}$ is finite for each $\gamma\in\Gamma$ . It follows from Proposi-
tion 3.3 (2) that there is $p\in g-\lim\{B_{\gamma}\}$ . Then we have $p\in g-\lim\{A_{\gamma}\}$ and $f(p)=x$ , i.e.,
$f$ is onto. If we put $B=\Pi\{B_{\gamma}|\gamma\in\Gamma\}$ , then it is easily seen that $f^{-1}(x)=g-\lim_{\leftarrow}\{A_{\gamma}\}\cap B$.
By Proposition 3.3 (1), $g-\lim_{\leftarrow}\{A_{\gamma}\}$ is closed in $A$ . Since $B$ is compact, it follows that
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$f^{-1}(x)$ is compact.

Claim 2. $f$ is continuous: Let $p=(\alpha_{\gamma}|\gamma\in\Gamma)\in g-\lim\{A_{\gamma}\}$ , and $H$ a neighborhood
at $f(p)$ . Then there is $\delta\in\Gamma$ such that $St(f(p), \subset\overline{U}_{\delta})\subset H\leftarrow$. If we put

$U(p)=(\{\alpha_{\delta}\}\times\Pi\{A_{\gamma}|\gamma\in\Gamma-\{\delta\}\})\cap g-\lim_{\leftarrow}\{A_{\gamma}\}$ ,

then $U(p)$ is a neighborhood at $p$ such that $f(U(p))\subset H$.
Claim 3. $f$ is a closed map: The proof is a modification of that of [19, VII,

$2D]$ . Let $F$ be a closed set of $g-\lim_{\leftarrow}\{A_{\gamma}\}$ and let $x\in X-f(F)$ . Since $q-\lim_{\leftarrow-}\{A_{\gamma}\}$ is closed
in $A,$ $F$ is a closed subset of $A$ with $ F\cap f^{-1}(x)=\emptyset$ . If we put $B_{\gamma}=\{\alpha\in A_{\gamma}|x\in c1_{X}U(\gamma, \alpha)\}$

for each $\gamma\in\Gamma$ and $B=\Pi\{B_{\gamma}|\gamma\in\Gamma\}$ , then $f^{-1}(x)=g-\lim\{A_{\gamma}\}\cap B$ . Hence we have $F\cap B$

$=\emptyset$ . Now we can assert that there is a finite subset $\Delta_{0}$ of $l^{7}$ such that $\cap\{c1_{X}U(\gamma$ ,

$\beta_{\gamma})|\gamma\in\Delta_{0}\}\S x$ for every $q=(\beta_{\gamma}|\gamma\in\Gamma)\in F$. For, if not, then we denote by $[I^{\urcorner}]$ the family
of all finite subsets of $\Gamma$ . We consider $[\Gamma]$ as a directed ordered set by the usual
set inclusion relation. For each $\Delta\in[\Gamma]$ , there is $\phi(\Delta)=(\beta_{\gamma}|\gamma\in\Gamma)\in F$ such that $\cap\{c1_{X}U(\gamma$ ,

$\beta_{\gamma})|\gamma\in\Delta\}\ni x$ . Choosing an arbitrary point $\alpha_{\gamma}\in B_{\gamma}$ for each $\gamma\in 1’-\Delta$ , we set

$\alpha_{\gamma}=\left\{\begin{array}{l}\beta_{\gamma}if\gamma\in\Delta,\\\alpha_{\gamma}if\gamma\in l\prime-\Delta.\end{array}\right.$

If we put $\psi(\Delta)=(\alpha_{\gamma}|\gamma\in l^{7})$ , then $\psi(\Delta)\in B$. Since $B$ is compact, the net $\{\psi(\Delta)|\Delta\in[l’]\}$

has a cluster point $p\in B$. But it is easily seen that $p$ is also a cluster point of
$\{\phi(\Delta)|\Delta\in[J^{\urcorner}]\}$ . This contradicts the fact that $F$ is closed in $A$ . Now we choose $\Delta_{0}=$

$\{\gamma(1), \cdots, \gamma(n)\}$ satisfying the above condition. Then $\mathcal{G}=\{c1_{X}U(\gamma(1), \alpha_{\gamma(1)})\cap\cdots\cap c1_{X}U(\gamma(n)$ ,
$\alpha_{\gamma(n)})|\alpha_{\gamma(i)}\in A_{\gamma(i)},$ $i=1,$ $\cdots,$ $n$ } is a locally finite closed cover of $X$ satisfying $ f(F)\subset\cup$

$\{G|x\not\in G\in \mathcal{G}\}$ . Hence $H=X-\cup\{G|x\not\in G\in \mathcal{G}I$ is an open neighborhood at $x$ such that
$ H\cap f(F)=\emptyset$ . Thus $f(F)$ is closed in $X$. The proof is completed.

4. Images of topologically complete spaces and realcompact spaces under per-
fect maps. We firstly make the following definition.

DEFINITION 4.1. A space $X$ is almost topologically complete if $X$ is $\lambda$-complete

for some almost uniform structure $\lambda$ of $X$

Since $\mu x$ is an almost uniform structure of $X$, topologically complete spaces are
almost topologically complete. Throughout the remainder of this paper, we use the
following symbols:

$\zeta_{X}$ (resp. $\zeta_{X^{C}}$ ): the collection of all locally finite (resp. countable locally finite)

open almost-covers of a space $X$.
$\eta x$ (resp. $\eta x^{c}$): the collection of all locally finite (resp. countable locally finite)

covers of a space $X$.
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If $cU$ and $\mathcal{V}$ are locally finite open almost-covers of a space $X$, then $\{U\cap V|$

$U\in q],$ $V\in \mathcal{V}$ } is also a locally finite open almost-cover of $X$. Therefore $\zeta_{X},$ $\zeta_{x^{c}},$
$\eta_{X}$

and $\eta_{X^{C}}$ are almost uniform structures of a space $X$

As characterizations of perfect images of topologically complete spaces, we have
the following theorem; $(c)\rightarrow(d)$ has been stated by Dykes [3]. For a space $X$, we
write $\Delta(X)=\sup$ {card $\mathcal{G}|\mathcal{G}$ is a locally finite family of non-empty open sets of $X$ },

where $card\mathcal{G}$ denotes the cardinality of $\mathcal{G}$ If $\mathfrak{m}$ is a cardinal number, then we
denote by $D(\mathfrak{m})$ a discrete space with cardinality $\mathfrak{m}$ .

THEOREM 4.2. For a space $Y$, the following conditions are equivalent:
(a) $Y$ is an almost topologically complete space.
(b) $Y$ is the image of a closed subspace in the product of copies of $D(\Delta(Y))$

under a perfect map.
(c) $Y$ is the image of a topologically complete space under a perfect map.
(d) $E(Y)$ is topologically complete.
(e) $Y$ is $\zeta_{Y}$ -complete.

PROOF. $(a)\rightarrow(c)$ . By Theorem 3.5, there exists a perfect map from a closed
subspace in the product of discrete spaces onto $Y$. Since discrete spaces are topo-
logically complete and topological completeness is preserved by product spaces and
closed subspaces, we have (c).

$(c)\rightarrow(d)$ . This implication is due to Dykes [3].

$(d)\rightarrow(e)$ . To show that $Y$ is $\zeta_{Y}$ -complete, let $\mathcal{F}$ be a $\zeta_{Y}$ -Cauchy family of $Y$.
For each $CU\in\mu_{E(Y)}$ , let us consider the family $\mathcal{V}(cU)=\{Y-e_{Y}(E(Y)-U)|U\in cU\}$ .
$e_{Y}$ being a perfect irreducible map, we have $\mathcal{V}(CU)\in\zeta_{Y}$ (cf. [20, Proposition 3]).

Then there are $U\in cU$ and $F\in \mathcal{F}$ such that $F\subset Y-e_{Y}(E(Y)-U)$ , and hence $e_{Y^{-1}}(F)$

$\subset U$. It follows that $\mathcal{G}=\{e_{Y^{-1}}(F)|F\in \mathcal{F}\}$ is a $\mu_{E(Y)}$ -Cauchy family of $E(Y)$ . Since
$E(Y)$ is topologically complete, we have $p\in\cap\overline{\mathcal{G}}$ for some $p\in E(Y)$ . Then $e_{Y}(p)\in\cap\overline{\mathcal{F}}$

and hence $Y$ is $\zeta_{Y}$-complete.
$(e)\rightarrow(b)$ . This follows from Theorem 3.5.
$(b)\rightarrow(c)$ and $(e)\rightarrow(a)$ are obvious. Thus the proof is completed.
As a generalization of realcompact spaces, Frolik [6] introduced the notion of

almost realcompact spaces. A space $X$ is called almost realcompact if for every
maximal open filter $\mathcal{G}$ of $X$ with $\cap\overline{\mathcal{G}}=\emptyset$ , there is a countable subfamily $\mathcal{G}^{\prime}$ of $\mathcal{G}$

such that $\cap\overline{\mathcal{G}}^{\prime}=\emptyset$ . Analogously to Theorem 4.2, we have the following result;
$(a)\leftrightarrow(d)$ and $(a)\leftrightarrow(c)$ have been proved by Dykes [3] and Frolik [7] respectively.

THEOREM 4.3. For a space $Y$, the following conditions are equivalent:
(a) $Y$ is an almost realcompact space.
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(b) $Y$ is the image of a closed subspace in the product of copies of $N$ under a
perfect map.

(c) $Y$ is the image of a realcompact space under a perfect map.
(d) $E(Y)$ is realcompact.
(e) $Y$ is $\zeta_{Y}^{c}$-complete.
(f) $Y$ is $\eta_{Y^{c}}$-complete.

PROOF. The proof of the equivalence of (a), (b), (c), (d) and (e) is entirely similar
to that of Theorem 4.2. $(f)\rightarrow(b)$ follows from Theorem 3.5. We shall show $(a)\rightarrow(f)$ .
To show (f), let $\mathcal{F}$ be a $\eta_{Y^{c}}$-Cauchy family of $Y$. We suppose to the contrary that

$\cap\overline{\mathcal{F}}=\emptyset$ . Set $\mathcal{G}_{0}=$ { $G|G$ is open in $Y$ and there is $F\in \mathcal{F}$ with $F\subset G$ }. Let $\mathcal{G}$ be a
maximal open filter containing $\mathcal{G}_{0}$ . By the regularity of $Y,$ $\cap\overline{\mathcal{G}}=\emptyset$ holds. Since
$Y$ is almost realcompact, there exists a countable subfamily $\{G_{n}|n\in N\}$ of $\mathcal{G}$ such
that $\cap\{c1_{Y}G_{n}|n\in N\}=\emptyset$ . Then we may assume without loss of generality that
$\{G_{n}|n\in N\}$ is decreasing and $G_{1}=Y$. For each $n\in N$, let us put $U_{n}=c1_{Y}G_{n}-c1_{Y}G_{n+1}$ ,

then $\{U_{n}|n\in N\}\in\eta_{Y^{c}}$ $\mathcal{F}$ being a $\eta_{Y^{c}}$-Cauchy family, there are $F\in \mathcal{F}$ and $m\in N$ such
that $F\subset U_{m}$ . It follows that $Y-cI_{Y}G_{m+1}\in \mathcal{G}_{0}\subset \mathcal{G}$ , which contradicts the fact that
$G_{m+1}\in \mathcal{G}$ Thus $Y$ is $\eta_{Y^{c}}$-complete.

PROPOSITION 4.4. An almost realcompact space is almost topologically complete.
Conversely, an almost topologically complete space in which every discrete closed subset
has non-measurable cardinal is almost realcompact.

PROOF. The first assertion is an immediate consequence of Theorem 4.3. The
second follows from Theorems 4.2, 4.3 and Shirota’s theorem (cf. [8, 15.20]) that a
topologically complete space in which every discrete closed subset has nonmeasura-
ble cardinal is realcompact.

REMARKS 4.5. (1) Every $\eta_{Y}$-complete space $Y$ is almost topologically complete.

Since $\eta_{Y^{c}}$-completeness implies $\eta_{Y}$-completeness, by Proposition 4.4, an almost topo-
logically complete space $Y$ in which every discrete closed subset has non-measura-
ble cardinal is $\eta_{Y}$-complete. However, it is open whether an almost topologically
complete space $Y$ is $\eta_{Y}$-complete or not in general.

(2) In [18], Mr\’owka constructed a non-topologically complete space $Y$ such that
$Y$ is the union of two closed topologically complete subspaces. Then $Y$ is also an
example of an almost topologically complete space which is not topologically com-
plete.

(3) Now we have the following relations:
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realcompact $\rightarrow$ topologically complete
$\downarrow$

$\downarrow$

almost realcompact $\rightarrow$ almost topologically complete

Almost topologically complete spaces have nice properties as follows:

PROPOSITION 4.6. (1) A closed subspace of an almost topologically complete space
is almost topologically complete.

(2) The product of an arbitrary family of almost topologically complete spaces
is almost topologically complete.

PROOF. We remark that if $f_{\alpha},$ $\alpha\in A$ , is a perfect map from a space $X_{\alpha}$ onto a
space Y., then the product map $f:\Pi X_{\alpha}\rightarrow\Pi Y_{\alpha}$ (i.e., $f(p)=(f_{\alpha}(p_{a})|\alpha\in A)$ , where $p=$

$(p_{\alpha}|\alpha\in A)\in\Pi X_{\alpha})$ is perfect (cf. [19, VII, $2H]$ ). Hence the proofs follow from Theorem

4.2.

PROPOSITION 4.7. Let $f:X\rightarrow Y$ be an onto perfect map.
(1) If $X$ is almost topologically complete, so is $Y$.
(2) If $Y$ is almost topologically complete, so is $X$

PROOF. (1) is a consequence of Theorem 4.2. To show (2), let $Y$ be almost
topologically complete. By Proposition 4.6, $\beta X\times Y$ is almost topologically complete,

where $\beta X$ is the $Stone-\check{C}ech$ compactification of $X$ If we put $X_{1}=\{(x, f(x))|x\in X\}$ ,

then $X_{1}$ is a closed subset of $\beta X\times Y$ and is homeomorphic to $X$. Hence $X$ is almost
topologically complete by Proposition 4.6.

5. Almost topological completeness versus topological completeness. We shall

isolate what is to be added to almost topological completeness to produce $toI^{X)}logica1$

completeness. For the purpose, we introduce a new class of locally finite families.

NOTATION 5.1. For a space $X$, we use the following symbols:

$\mu_{X}=\{CU_{\gamma \mathfrak{t}}^{!}\gamma\in\Gamma\}$ , where $cU_{\gamma}=\{U(\gamma, \alpha)|\alpha\in A_{\gamma}\}$ .

Let $\{A_{\gamma}, \pi_{\gamma}^{\delta}, \Gamma\}$ be the g-inverse system associated with $\mu x$ . If $\mathcal{F}$ is a given family

of subsets of $X$, then we set

$A_{\gamma}(\mathcal{F})=$ { $\alpha\in A_{\gamma}|U(\gamma,$ $\alpha)$ meets infinitely many members of $\mathcal{F}$ } for each $\gamma\in\Gamma$ .

Then $\{A_{\gamma}(\mathcal{F}), \pi_{\gamma}^{\delta}|A_{\delta}(\mathcal{F}), \Gamma\}$ forms a g-inverse system.

DEFINITION 5.2. A family $\mathcal{F}$ of subsets of a space $X$ is $\mu$-completely locally

finite if $ g-\lim_{\leftarrow}\{A_{\gamma}(\mathcal{F})\}=\emptyset$ .



86 Haruto OHTA

DEFINITION 5.3. A space $X$ is a (weak) $b^{*}$ -space if every locally finite family
of (regular) closed subsets of $X$ is $\mu$-completely locally finite.

Now we shall show which spaces belong to the class of (weak) $b^{*}$-spaces. We
denote by $\mu X$ the completion of $X$ with respect to its finest uniformity. For the
details of $\mu X$, see [16]. It is known that $X$ is P-embedded in $\mu X$ (i.e., every locally
finite cozero-set cover of $X$ has a refinement which can be extended to a locally
finite cozero-set cover of $\mu X$ ).

LEMMA 5.4. Let $\mathcal{F}$ be a family of subsets of a space X The following con-
ditions are equivalent:

(a) $\mathcal{F}$ is $\mu$-completely locally finite.
(b) $\mathcal{F}$ is locally finite in $\mu X$.

PROOF. We use the same symbols as in 5.1. $(a)\rightarrow(b)$ . Suppose that $\mathcal{F}$ is not
locally finite at $x\in\mu X$ For each $\gamma\in l^{7}$ and each $\alpha\in A_{\gamma}$ , let us set

$V(\gamma, \alpha)=\mu X-c1_{\mu X}(X-U(\gamma, \alpha))$ ,

$A_{r}(x)=\{\alpha\in A_{\gamma}|x\in V(\gamma, \alpha)\}$ .

Then $\{A_{\gamma}(x), \pi_{\gamma}^{\delta}|A_{\delta}(x), \Gamma\}$ forms a g-inverse system and $A_{\gamma}(x)\subset A_{\gamma}(\mathcal{F})$ holds for each
$\gamma\in\Gamma$ . Since $X$ is P-embedded in $\mu X$, there exists a cofinal subset $\Gamma_{0}$ of $\Gamma$ such
that $A_{\gamma}(x)$ is finite for each $\gamma\in\Gamma_{0}$ . Hence, by Proposition 3.3 (2), there is a point
$p\in g’\lim_{\leftarrow}\{A_{\gamma}(x)\}$ . Then we have $ p\in g-\lim_{\leftarrow}\{A_{r}(\mathcal{F})\}\neq\emptyset$ , i.e., $\mathcal{F}$ is not $\mu$-completely locally
finite in $X$

$(b)\rightarrow(a)$ . Suppose that $\mathcal{F}$ is not $\mu$-completely locally finite in $X$. Then there
is $p=(\alpha_{\gamma}|\gamma\in\Gamma)\in g-\lim_{\leftarrow}\{A_{\gamma}(\mathcal{F})\}$ . Let $\mathcal{G}=\{U(\gamma, \alpha_{\gamma})|\gamma\in\Gamma\}$ . Since $\mathcal{G}$ is a $\mu_{X}$-Cauchy family
of $X$, there is $x\in\mu X$ with $x\in\cap\{c1_{\mu X}U(\gamma, \alpha_{\gamma})|\gamma\in\Gamma\}$ . We show that $\mathcal{F}$ is not locally
finite at $x$ . To see this, let $H$ be a given neighborhood at $x$ in $\mu X$ There is
$f\in C(\mu X)$ such that $f(x)=0$ and $f(y)=1$ for each $y\in\mu X-H$ If we put

$U_{1}=\{y\in X||f(y)|<2/3\}$ ,
$U_{2}=\{y\in X||f(y)|>1/3\}$ ,

then $\{U_{1}, U_{2}\}\in\mu x$ , i.e., $cU_{\gamma}=\{U_{1}, U_{2}\}$ for some $\gamma\in\Gamma$ . Since $x\not\in c1_{\mu X}U_{2}$ , we have $U_{1}\in \mathcal{G}$

This implies that $U_{1}$ meets infinitely many members of $\mathcal{F}$ , and hence so does $H$

It follows that $\mathcal{F}$ is not locally finite in $\mu X$ The proof is completed.
Consequently we have the following proposition.

PROPOSITION 5.5. A topologically complete space is a $b^{*}$ -space.
Following [9], we say that a family $\mathcal{F}$ of subsets of a space $X$ is $\mu$-uniformly

locally finite in $X$ if $ A_{\gamma}(\mathcal{F})=\emptyset$ for some $\gamma\in\Gamma$ . Clearly every $\mu$-uniformly locally
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finite family is $/\ell$ -completely locally finite.

LEMMA 5.6. Let $\mathcal{F}=\{F_{\xi}|\xi\in\Xi\}$ be a family of subsets of a space X The follow-
ing conditions are equivalent:

(a) $\mathcal{F}$ is $\mu$-uniformly locally finite in $X$

(b) There are a locally finite family $\{H_{\xi}|\xi\in\Xi\}$ of cozero-sets of $X$ and a family
$\{Z_{\xi}|\xi\in-\cdot-\}$ of zero-sets of $X$ such that $F_{\xi}\subset Z_{\xi}\subset H_{\xi}$ for each $\xi\in\Xi$ .

(c) As (b), with $\mu X$
’ instead of “X”.

$PR0O1^{}\urcorner$ We use the same symbols as in 5.1. $(a)\rightarrow(c)$ . Let $\mathcal{F}$ be $\mu$-uniformly
locally finite in $X$, i.e., $ A_{\gamma}(\mathcal{F})=\emptyset$ for some $\gamma\in I^{1}$ . Since $X$ is P-embedded in $\mu X$, there
exists a locally finite cozero-set cover $\{U_{a}|\alpha\in A\}$ of $\mu X$ such that $\{U.\cap X|\alpha\in A\}$ is a
refinement of $cU_{\gamma}$ . Then each $U_{\alpha}$ meets at most finitely many members of $\mathcal{F}$ For
each $\xi\in\Xi$ , let $A_{\xi}=\{\alpha\in A|U_{\alpha}\cap F_{\xi}\neq\emptyset\}$ , and let

$Z_{\xi f}=\ell X-\cup\{U_{\alpha}|\alpha\in A-A_{\xi}\}$ and $H_{\xi}=\cup\{U_{a}|\alpha\in A_{\xi}\}$ .
Then $\{H_{\xi}|\xi\in\Xi\}$ and $\{Z_{\xi}|\xi\in\Xi\}$ have the desired properties.

$(c)\rightarrow(b)$ is clear.
$(b)\rightarrow(a)$ . Let $\{H_{\xi}|\xi\in\Xi\}$ and $\{Z_{\xi}|\xi\in\Xi\}$ be families satisfying the stated condition.

We denote by $[\Xi]$ the family of all finite subsets of $\Xi$ . For each $\Delta\in[-\cdot-]$ , let

$U(\Delta)=\cap\{H_{\xi}|\xi\in\Delta\}-\cup\{Z_{\xi}|\xi\epsilon_{-}^{-}-\Delta\}$ .
Then, by [17, Lemma 2.3], $U(\Delta)$ is a cozero-set of $X$, and it is easily seen that $cU$

$=\{U(\Delta)|\Delta\in[\Xi]\}\in\mu_{X}$ and $ U(\Delta)\cap F_{\xi}=\emptyset$ for each $\xi\in\overline{\underline{\cdot}}-\Delta$ . It follows that $cU=q]_{\gamma}$ for
some $\gamma\in\Gamma$ , and then $ A_{\gamma}(\mathcal{F})=\emptyset$ . Thus $\mathcal{F}$ is $\mu$-uniformly locally finite in $X$ The
proof is completed.

We have at once from Lemma 5.6 the following result.

PROPOSITION 5.7. $A$ (weakly) CZ-expandable space is a (weak) $b^{*}$-space.

COROLLARY 5.8. (1) An $M-(M^{\prime}-)$ space is a (weak) $b^{*}$-space.
(2) A collectionwise normal countably paracompact space is a $b^{*}$ -space.
(3) An extremally disconnected space is a weak $b^{*}$ -space.

PROOF. The proofs follow from Proposition 5.7 and the results in 2.3.

REMARKS 5.9. (1) A $\mu$-completely locally finite family is not always $\mu$-uniformly
locally finite. For example, let $X$ be the space $S\times S$, where $S$ is the Sorgenfrey
line. Since $X$ is topologically complete, by Proposition 5.5, the locally finite family
$\mathcal{F}=\{\{(-s, s)\}|s\in S\}$ is $\mu$-completely locally finite in $X$ But $\mathcal{F}$ is not $\mu$-uniformly
locally finite by Lemma 5.6.
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(2) There is a weak $b^{*}$-space which is not a $b^{*}$-space. Let $0J_{0}$ (resp. $\omega_{1}$ ) be the
first infinite (resp. first uncountable) ordinal. Let us set

$X=(W(\omega_{1}+1)\times W(\omega_{0}+1))-\{(\omega_{1}, \omega_{0})\}$ ,

where $W(\alpha)$ is the set of all ordinals less than $\alpha$ , topologized with order topology.
Then $X$ is pseudocompact and $\mu X=W((/J_{1}+1)\times W(\omega_{0}+1)$ . Since a pseudocompact
space is an M-space, by Corollary 5.8, $X$ is a weak $b^{*}$ -space. But the locally finite
(in $X$ ) family $\{\{(\omega_{1}, \beta)\}|\beta<\omega_{0}\}$ is not locally finite in $\mu X$. Hence, by Lemma 5.4, $X$

is not a $b^{*}$ -space.
Now we establish the main theorem in this section.

THEOREM 5.10. Let $X$ be an almost topologically complete space. The following
conditions are equivalent:

(a) $X$ is topologically complete.
(b) $X$ is a $b^{*}$ -space.
(c) $X$ is a weak $b^{*}$ -space.

$PROOI^{\grave{}}$ . $(a)\rightarrow(b)$ follows from Proposition 5.5, and $(b)\rightarrow(c)$ is obvious. $(c)\rightarrow(a)$ .
It suffices to show that $X=fiX$. Let $x\in\mu X$ Let us put $\zeta_{X}=t^{C}W_{\sigma}|\sigma\in\Sigma$ }, where $cW_{\sigma}$

$=\{W(\sigma, \tau)|\tau\in T_{\sigma}\}$ , and let $\{T_{\sigma}, \pi_{\sigma}^{\rho}, \Sigma\}$ be the g-inverse system associated $\zeta_{X}$ . Since $X$

is a weak $b^{*}$-space, by Lemma 5.4, $\{c1_{\mu X}W(\sigma, \tau)|\tau\in T_{\sigma}\}$ is locally finite in $\mu X$ for each
$\sigma\in\Sigma$ , and hence it covers $\mu X$. For each $\sigma\in\underline{\backslash }$ , let $T_{\sigma}(x)=\{\tau\in T_{\sigma}|x\in c1_{\mu X}W(\sigma, \tau)\}$ . Then
each $T_{\sigma}(x)$ is finite and $\{T_{\sigma}(x), \pi_{\sigma}^{\rho}|T_{\rho}(x), \Sigma\}$ forms g-inverse system. By Proposition
3.3 (2), there is $p=(\tau_{\sigma}|\sigma\in\Sigma)\in g-\lim_{\leftarrow}\{T_{\sigma}(x)\}$ . If we put $\mathcal{G}=\{W(\sigma, \tau_{\sigma})|\sigma\in\Sigma\}$ , then $\mathcal{G}$ is a
$\zeta_{X}$-Cauchy family such that $\{x\}=\cap\{c1_{\mu X}W(\sigma, \tau_{\sigma})|\sigma\in\Sigma\}$ . Since $X$ is $\zeta_{X}$-complete by

Theorem 4.2, we have $x\in X$, i.e., $X=\mu X$. The proof is completed.
The following corollaries are consequences of Theorems 4.2 and 5.10.

COROLLARY 5.11. Let $f$ be a perfect map from a topologically complete space
onto a space Y. Then $Y$ is topologically complete if and only if $Y$ satisfies one of
the conditions in Theorem 5.10.

COROLLARY 5.12. Let $Y$ be the union of a locally finite family of closed topo-
logically complete subspaces. Then $Y$ is topologically complete if and only if $Y$

satisfies one of the conditions in Theorem 5.10.
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