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Introduction

In this paper, we will show that a monadic second orvder logic with an added
quantifier Q is decidable.

We begin with a description of some known facts concerning the decision pro-
blem for the predicate calculus. It was originally shown by L. Lowenheim (1951)
that

(1) The monadic fragment of (first order) predicate calculus with equality is
decidable.

Simpler proofs of (1) have been given Th. Skolem (1919) and H. Behmann (1922).
Likewise there is the following result for the predicate calculus having the Chang
quantifier :

(2) The monadic fragment of predicate calculus without equality containing the
Chang quantifier is decidable. (A. Mostowski; 1957)

A. Slomson has extended this result further by proving, with the semantic method,
that

(3) The monadic fragment of predicate calculus with the Chang quantifier and
equality is decidable. (cf. [1])

On the other hand, it is also well-known that

(4) The monadic second order logic is decidable.

The sequential results mentioned above lead us in a natural way to the follow-
ing “semantic” question: Is the monadic second order logic with the Chang quan-
tifier decidable?

We extend this question to the decision problem formulated “syntactically”
below ; which turns to have an affirmative answer.

Let L be a monadic second order logic with an added quantifier Q, which will
be defined explicitly in §1. In addition to the usual symbols employed, L has (a)
two sorts of unary predicate variables: free and bound, (b) no constants except
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logical constants (including the quantifier Q), (c) equality, (d) propositional constants:
T, L. For axiom sequents and rules of inference, except those for LK, L has rules
of inference for second order quantifiers, a rule of inference for Q (called Yasuhara’s
Q-rule, cf. [2]), and the following essentially new axiom sequent for the second
order quantifier 3 and Q:

(Q)A@)—> (I QXA NE@) N (QUNA@)AIEWD)))

where A(x) is a formula in L.

Now, our question becomes “Is L decidable ?”; and we will show that the answer
to this problem is “Yes”.

In order to solve this problem, we shall prove a kind of a representation theo-
rem (called “ Main theorem ” below), by a purely syntactic method, which is ex-
plained as follows.

Let C.(*) be the formula

A aedom(e)ae(a)(*)

where ¢ is a map from a finite set of free predicate variables to {4+, —} and a*(x)
stands for a(*), a=(*) stands for =ua(x). Let (3%)C.(v) be a formula expressing that
“there are exactly 7 #’s which satisfy C.(x*)”. Then our Main theorem states:

Suppose that A is a sentence in L whose free predicate variables ave all picked
from among «, -, an, and the numbers of whose second order and first order quan-
tifiers arve less than N, K, respectively. Then we can effectively find a Boolean com-
bination C, which is equivalent to A in L, of sentences in

{(Hiv)Ce(v) i=0,1,---,2N(K+1)—1;}
(QU)CE(U) l dom (5) = {aly Tty an}

Now our problem can be solved immediately as an application of this Main
theorem. The reason why we use the syntactic method is because it gives us the
following advantages:

(i) There are two kinds of semantic interpretations for Q (i.e. as the Chang
quantifier and as the infinite quantifier), but syntactically we are able to prove the
decidability of L independently of them.

(ii) Our proof of Lemma 3 in §4 gives a syntactic proof of (1) and (3).

This paper consists of four sections. After formulating a monadic second order
logic L with an added quantifier Q explicitly in § 1, we shall state our Main theo-
rem in § 2, which will be proved in §4. In §3, we shall give five applications of
Main theorem. Our entire proof in §4 will be carried out concretely by a proof-
theoretic method. This syntactic proof is made possible as a consequence of the
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theory underlying the work “Object logic and morphism logic” (initiated by N.
Motohashi). In the proof of Lemma 4, which corresponds to the induction step of
the elimination of second order quantifiers, we are forced to adopt the new axiom
sequent which was described previously. But this new axiom sequent can be inter-
preted as “an infinite set can be divided into two disjoint infinite sets”, and so it
is not contrary to our “mathematical commonsense”. It seems, therefore, quite re-
asonable to adopt it as one of our axiom sequents.

I am deeply indebted to Dr. Nobuyoshi Motohashi for pointing out the signi-
ficance of this “question” and for his valuable suggestions.

§1. Logic L
1. Symbols of L.

The symbols of L are divided into five groups as follows:
1.1) Individual variables:

Free variables: a,b,---,,y, - (with or without subscripts),

Bound wvariables: #,v, --- (with or without subscripts).
1.2) Unary predicate variables :

Free variables: a, 8, - (with or without subscripts),

Bound variables: ¢, --- (with or without subscripts).
1.3) Logical constants: =, A,V,V, 3,Q.

1.4) Predicate constant: x==.
1.5) Propositional constants: T, L.

So, it should be noted that L has no individual constant, function constant or
predicate constant except the symbol =. We shall use the quantifier symbols V, 3
both as first order quantifiers and as second order quantifiers, and the symbol Q as
a first order quantifier. The symbols D and = are used as abbreviations as usual.

2. Formation rules.

The rules of formation for the formulas in L are usual ones with the follow-
ing added clause:

2.1) If A(x) is a formula in L and » is a bound variable which does not occur
in A(z), then (Qv)A(v) is a formula in L.

Formulas in L will be denoted by A, B,C,--- (with or without subscripts). If
A(a) and B(x) are formulas in L and » is a bound variable which does not occur
in B(x), then by A(iwwB(v)) we shall denote the formula obtained from A(a) by sub-
stituting B(x) for a(*) in A(a). Notice that A(AvB(v)) is defined so as to be a for-
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mula by avoiding any collision of the bound variables.

A sequent in L is a configuration of the form I'—>4, where I and 4 are finite
(possible empty) sets of formulas in L. Note that this definition is not essentially
different from the usual one. We shall therefore express {A4;, -, An} — {Bi, -+, By}
by A, -, Apn—B,,--,B, and I'yUIs>—>4,Ud, by Iy, ["s—4,, 4, as usual.

3. Axioms and inference rules for L.

We use the axioms and the rules of inference for L which are divided into the
following four groups.

3.1) The axioms and the rules of inference of the first order calculus LK
which are formulated in Gentzen's style.

3.2) Inference rules for second order quantifiers V, 3 :

_AQB@),T——d . 1, Aa)
V=) woae, i—a1 ° OV TS5 (voas
s _

(3 Al ! A(wB())

(AOAE), I—4 I'—4,(3DAE)

where the free predicate variable a in (—V), (3—) does not occur in the lower sequent.
3.3) Axiom sequent for the quantifier Q and the second order quantifier 3:

(Qv)A(0)—>( 3 E)(QUYA@) AE@N N QU ALY A TIE®D)))
3.4) Inference rule for the quantifier Q (Yasuhara’s Q-rule):

(Aa)), I'=——4, B@), -+, Bal@)
(Q0)A@)), I'—>4,(Q0)Bi(v), -+, (Q0)Ba(®)

()

where in the upper sequent the antecedent contains at most one formula in which
a occurs, the succedent may contain no formulas in which @ occurs, and @ does
not occur in the lower sequent.

LeEmMMA. The following sequents are provable in L:

(i) QA@)—(3)A(v),

(ii) (Y 2)A@®)—(Qv)A(v),

(iii)  (Qu)(A)V B(®))—(Qv)A() V (Quv)B(v),

(iv) (Qv)A®), (Y v)(A(v)D B(v))—(Qu)B(v),

(v) Qo)a=v)— ,

(vi) (QvA@)—(QuXA@)Av+ay),

(vil) (Qv)A@)— QY A@)AVFaiL N - ANVFEAR),

(viii) (Q0)A®)—>(Fw)+(Fun)Iq(ths, -+, ) ANAG@) A -+ A Ate)).
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where Ig(u,, -+, u,) is an abbreviation for A #;==u;.
1Si<jgn
This lemma is easily proved, so we omit it. But it should be noted that we
have to use a cut-rule in the proof of (vi). Therefore, cut rules can not be eliminat-

ed in our system L.

§ 2. Main theorem

DerFINITIONS AND NOTATIONS: A fype is a mapping from a finite set of free
predicate variables to {4, —}. We shall denote types by ¢,r,--- (with or without
subscripts), and the domain of a type ¢ by dom(s). A type ¢ will be called a type
over dom(s). C.Ja) is an abbreviation for the formula

A oxedom(s)a5 (a)(a> ’

where a*(a) is a formula a(a) and a~(a@) is a formula =a(a), and if dom(e) is the
empty set then C.(¢) means the propositional constant T. Let @ be a repetition-
free enumeration of dom(e), then we may identify dom(¢) with & for convenience
sake. When dom (¢) is to be emphasized, C.(a) may be expressed by C.«a, @).

If A(x) is a formula in L and ¢ is a non-negative integer, we shall use (3%)A(v)

as an abbreviation for

(F01)-(F o)V 0)dg(vy, -, ) NA@)= =0,/ - \Sv=01))) .

A sentence in L is a formula in L with no free individual variables. So, a sentence
in L may be have free predicate variables. If A is a formula in L, by nsq(A) and
nfq(A), we mean the number of second order quantifiers and first order quantifiers,
respectively, which occur in A. Then our Main theorem is as follows:

MAIN THEOREM : Let A be a sentence in L whose free predicate variables ave
all among &, wherve @ is a finite sequence of distinct free predicate variables. If
nsq(A)=N and nfq(A)=K for some non-negative integers N and K, then A is equi-

valent in L to a Boolean combination C of sentences in

Jl (3%)C.(v)

i=0’ 17 Tty 2N(K+1>_1;
(Qu)C.(v) }

dom(e)=a

Furthermore, C is obtained from A by a primitive recursive procedure.

The sentences of the form (3 %)C.(v),(Qv)C.(v) will be called Basic sentences
over the domain of ¢ below. We shall give a proof of our Main theorem in §4.
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§ 3. Some applications of Main theorem

By —.I—-4, we mean the sequent I'—4 is provable in L and by .A, the
formula A is provable in L.

1. Decidability of L

For any sentence A(ai, -+, a») in L whose free predicate variables are all among
Ay, ooy, let (Y E,)--(V En)A(Ey, -+, En) be the sentence which results from A(ay, -+, a,)
on binding, by the quantifier V, all of the predicate variables that occur free in
Alay, -+, an). Then it is clear that

- A(ay, -, an) if and only if —o(V&)--(VENAE,, -+, En).

Now, by our Main theorem, (V &)--«(V &)A(&,, .-+, &,) is equivalent to a Boolean
combination of Basic sentences over the empty set (ie. T) in L. Hence
(V&) -(VEDA&, -+, &) and so Alay, -+, an) is decidable in L.

2. Completeness of L with respect to some semantics.

DEeFINITIONS : An L-structure is a pair (||, %), where || is an infinite set and
N is a map from the set consisting of all free predicate variables and the predicate
constant “=" of L to the set of finitary relations on || such that (i) Wa)=|N| for
any free predicate variable «; (ii) (=) is the identity relation on |%|. We shall
express L-structures (||, ), --- by A, --- simply.

Let A be an L-structure, A(x;,---,x,) be a formula in L, and a,,---,a, be in
|A!, then we define the relation ay, -+, @n satisfies A(xi, -+, zn) in N, which we write
W= Alay, -+, a,], as one obtained from usual definition by adding the following
induction step:

Suppose that A(xy, -, x,) is of the form (Qv)B(v, xi, -+, zn) :

1) A=Qv)B@)a,,--,a,] if and only if there exist exactly A elements a@’s in ||
such that Ak Bla,ay, -+, @] ; or

(2) AE=(Qv)Bw)a,, -, a,] if and only if there exist at least w elements &’s in |U]|
such that %k Bla, a,, -+, a»].

Q is said to be interpreted as the Chang quantifier (or as the infinite quantifier)
in case (1) (or in case (2)). Whenever we make no reference to the quantifier Q
particularly, one may interpret Q as either the Chang quantifier or the infinite
quantifier.

Let A be an L-structure, (/'—4) (x;, -+, xn) be a sequent in I, where all free
variables which occur in the elements of /’UJ4 are among xi, -+, xn, and a,, ---, dx
be in A, then we define the relation a, -, @, satisfies (I'—>4) (xy, -+, xa) in N, which
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we write as A={"—>4d)|a,, -+, a,], in the following manner :

Ne=("—d)a,, -, a,) if and only if Wk Ala,, -, a,] for some A(xy, -, xn) in [,
or UEBla,, -,a,] for some B(xy,---,xzx) in 4. A formula A(x, -, x,) (Sequent
(=), -+, xn)) is valid, denoted by EA (= I1'—4), if and only if it is satisfied by
@i, -, an in A for any a,, ---,a, in |A| and any A.

Note that since we consider the infinite models only, the sequents which are
provable in L are valid from the above definition.

TuaeoreEM (Completeness): A sentence is provable in L if and only if it is valid.

Proor. Suppose A is a sentence in L. It is obvious that if A is provable in
L, then it is valid by the previous notes, and so we may only prove “if ” part of
the theorem. We assume that A is valid.

Let A be A(@), nsq(A)=N, and nfq(A)=K. Then by our Main theorem A is
equivalent to a Boolean combination C of the Basic sentences over & in L. If @ is
the zero-sequence (i.e., the length of & is equal to zero), then C is the Boolean com-
bination of the Basic sentences over the empty set (i.e. T) and so either ,A=T
or ;A= _1 holds. By the hypothesis A is valid, so —~:A=T must hold. Hence
A is provable in L. Therefore we may assume that & is a non-zero-sequence.

Suppose C is of the form

I>-

&
V Dy
Jj=1

1

and {Da, -+, Dir)} ={"1Au, -+, TV Ain,, Bi1, -+, Bim;}, where Ay, .-+, Ain, are mutually dis-
tinct Basic sentences over &, B, -, Bim; are also mutually distinct Basic sentences
over &, and m;+n;=7r;. Then the following equivalence relations hold:

zA iff -2 V D for any ie{l, -, g}
Jj=1
iff 2BV -V Bim,V"1AuV -V "1 A, for any iefl, -, g}
iff ~rAu, -, Ai;—>Bu, -+, Bim; for any ie{l,--,q}.

Since such equivalence relations also hold for wvalidity by the previous notes, we
need only prove that for any ie{l, .-, g},

I=A'I:1’ B Aini—_)Bily Yy Bi'mq; imphes |_'LA131, Tty Aini_’Bib B} Bim,; .

To show this, it is sufficient to prove that for any distinct Basic sentences Aj, -,
A, over @ and any distinct Basic sentences B, -+, Bn over a,

A, ) Au——> By, -, Bn implies —zAs, -+, Ax—>Bi, -, Bm

in general.
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Let I'y={A,, -+, As}, 40=1{B,, -+, Bn} and assume that /’y—4, is not provable in
L. Let @ be the set

{(Eliv)Ce(v)
(Qu)C.(v)

Then using a cut-rule we can easily construct the sets /”, 4 which satisfy the fol-
lowing properties (1), (2) and (3):

1) I'verl’ and 4,c4; \

(2) I'vd=9,

3) I'—4 is not provable in L.
We put I'—I'y={An.1, -, As}, 4— do={Bm+1, -, B)} (s+t=B®<w) and we consider the
following condition [x].

(4) A;=B; for some i,j such that 1=i=#n,1=j=m;

or (5 A:=(37)C.(v) and A;=(3w)C.(v) for some p+q,s,1i,7;

or (6) A;=(Qu)C.(v) and A;=(3*»)C(v) for some k,¢,i,5;

or (7) {(Qu)Cv)}laomer-z 4.
If (%] holds, then I"'—>4 is provable in L. In fact, we assume that [*] holds and so
at least one of (4)-(7) holds. If (4) or (5) holds then .I"—4 is clear, and if (6) holds
then it is also obvious by using (viii) of lemma. In the case of (7), we can prove that
2 —={(Qu)C.(0)}domer-z from iV domer-:C(x) and (iii) of lemma, hence . /"—4.
Therefore, b+, I"—4 implies that the condition [*] does not hold, and so it is ade-

1=0,1, -, 2Y(K+1)—1 ;}

dom(e)=a

[*]

quate for our purposes to show =I'—4 on the assumption that the condition [*]
does not hold.

Suppose that the condition [*] does not hold (i.e., all of (4)-(7) are not true).
Since (4) is not true, all of elements of /U4 are mutually distinct Basic sentences
over & by the construction of I, 4. So each of them has an uniquely correspond-
ing type over @&. We can assume, therefore, that e¢; corresponds to A; (1=i<5s),
and 7; to B; (1=j=t¢). By the hypothesis, the following are easily checked :

(8) eite; if iy,

(9) e;=r7; holds in the following three cases only :

9.1. Ai=(37w)C.,(v), B;=(3°w)C. [(v), r:#s; and e;=1;;
9.2. Ai=(3")C,(v), B;=(Qu)C. (v) and e;=7;;
9.3. Aiz(Qv)CEi(v), Bj=( 3 ’iv)C,j(v) and &=Tj .

Owing to these (8), (9); for each ¢;,z; we can define its degree d(s;), d(r;), respec-
tively, as follows:
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ro if Ai=(370)C. ),

I lf Al = (QU)C%(D) ’

where « is an arbitrary infinite cardinal number. And
d(r;))=2Y(K+1) if ¢;#¢; for any 1=i<s.

Clearly {ei,7;: 1=i=s,1=j=t}={e: dom(s)=a}, so we could define the degree d(e)
for each ¢ such that dom(¢)=da&. Then, for each ¢ with dom(¢)=& we shall define
a set X. of free individual variables by

x {a, : vd(e)} it d(e)>0,
e—{the empty set if d(e)=0;
and let
|U[= U dgomcey-a X ;
U domcey=ar ecar=+ X fOr any ae€da,
m(a):{ ) )
the empty set for any free predicate variable aga .
Then A=« because (Qv)C.(v)el” for some ¢ with dom(e)=«& on the assumption that
(7) does not hold, so N is an L-structure. And I"—>4 is not satisfied in . In order
to show this, it suffices to prove that A= A; for any ¢ and Wk B; for any j. We
first show that the following [+] holds:
[+] {ze|A|: A=Clx)}=X. for any ¢ with dom (e)=4a.
[Proof] (2) Let xeX., and let a be in &. If ¢(a)=+, then xeWA(a) by the definition
of W) and so Ak=a(x). Hence AE=a*(x). If e(a)=—, then 2¢A(a) by the defini-
tion of A(a) and so Ak a(x). Hence AEa‘“(x). We can therefore conclude that
AE=a’(x). This shows that
AE Awcia’@(x) 1e.,, AEClx)
since « is an arbitrary member in @.

(€) Let x¢X, and xe|¥A|. Then xe X, for some ¢ #*¢ with dom(e’)=a&. By ¢ e,
¢ (a)+#¢e(a) for some a in @& Therefore if s(a)=+, then ¢/(a)= — and so r¢W(a) by
the definition of W(a). Hence Ak a(x), that is, Ak a’*“(x). If ea)=—, then &(a)=+
and so xeW(a) by the definition of WA(a). Hence Ak a(x), that is, AEa*“(x). We
can therefore conclude that Ak a*(x). This shows that Ak C.(x), so our proof of
[41 is completed.

Now suppose 1=i=<s. We can divide our proof into two cases according to the
form of A, since A; is a Basic sentence.

Case 1. Ai=(3"w)C.(v). if——n because d(e;)=r;. Hence by [+],
{xe|Al : A=C. ()} =7r; that is, A=A, .
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Case 2. A:=(Qu)C.,(v). )zfei:x because d(e;)=x. Hence by [+],

{xe|U|: A=C. () =x.

If Q is interpreted as the infinite quantifier, then clearly AEA; as r=w. If Q is
interpreted as the Chang quantifier, then also A= A4; by A=« In any case, it fol-
lows therefore that Ak A; for any 1<=i=<s.

Also, suppose 1=j=¢. If r;#¢; for any 1=i=<s, then d(¢;)=2¥(K+1) without
reference to the form of Bj;. So, d(r;) is not an integer less than 2¥(K+1) and fur-
thermore it is not . Hence Ak B;. If r;=¢; for some 1=i=<s, then the possibility
is limited to the previous case (9). But Ak A; holds in any subcase 9.1.-9.3. of
case (9), and so Ak B;. In any case, it follows therefore that k=B, for any 1=j=¢

Thus we have shown AEI'—4 and Ak I'¢—>4d,. Hence I'v—d, is not wvalid.
This completes our proof of Completeness theorem.

3. Compactness of the Chang quantifier

For any infinite set I" of sentences in L of power £=w, the following theorem
holds.

THEOREM (Compactness of the Chang quantifier): If Q is interpreted as the
Chang quantifier, then I’ has a model if and only if any finite subset of I’ has a
model.

Proor. As “only if” part is obviously shown, we need only prove “if” part.

Suppose that any finite subset of /" has a model. Let 2 be the set of all pre-
dicate variables that occur free in I'. Clearly 2=k but if {:2<:c then we can make
Q=x by adding to 2 new free predicate variables which do not occur in I. Let
@ be the set of Basic sentences over each finite subset of 2, so it is clear that @ =
k. Then let {C,: v<{x} be a repetition-free enumeration of all elements of @, and
we shall construct an extension I" of I" as follows:

I'v=rI";

I' u{C,} if any finite subset of I",U{C,} has a model,
i ={FVU{"'IC,} otherwise ;
I''=U..l', if v is a limit ordinal;
and
F=u,.l., .

By the construction of I7, it is easily seen that I’ has the following properties :
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(1) ['cr,

(2) any finite subset of /" has a model,

(3) I is complete about @ ; that is, Ael’ or m1Ael’ for any Aed.

Now, for each type ¢ over a finite subset of £, we define the degree d(¢) by

i if (3w)Cw)el,
die)=1g" if (Qu)C.v)el,
K otherwise .

Note that this definition is well-defined from the properties of I". For any two
types ¢, r, by writing ¢e<r we mean that r is an extension of ¢ as a mapping. Then
e<t implies d(¢)=d(r). Because if ¢<z and d(e)<d(r), then there exists a finite
subset of I" which has no models by trivial classification.

A full-type is an element of {+, —}?. For any full-type f, we have a type ¢<f
with the following property [*]:

[*] e<tr<f implies d(r)=d(¢), for any type .
We take such a type ¢ at will and fix it. We call this ¢ @ fixed type of f, write
¢s, and define the degree of the full-type f by

d(f)=d(es) -
Then the following hold :
(I) For any type ¢ over a finite subset of 2 such that d(e)<w,

d(e)=27>d(f) -

(II) Let ¢ be either a fixed type of some full-type or a type with d(e)=«" or &.
Then there exists a full-type f.>e¢ such that d(e)=d(f.).
[Proof of (I)] We first note that if £ is a full-type and f>¢, then d(f)=d(e). Let
¢ be a type over a finite subset of 2 with d(¢)<w, and let &, be a set {f: f>¢ and
d(f)>0}. Then <. is a finite set. Otherwise, there exists k-elements fy, -, fx (B>
d(e)) of &F. such that

(VY o)C. (v)DC(v))
and
() C. ()NC: (v)) if i#],
where 7;=¢y,Ue; ¢5, is a fixed type of f; (i=1,---,k). Then consider a set

{(22)C.(v): 1=i=k}U{3?v)C.(v)} .

This set is a finite subset of I but has no models. This is contrary to the property
of I'. Hence &, is a finite set.
Moreover if d(e)#3;». d(f) then there is a finite subset of I which has no
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models, contradicting to the property of I
[Proof of (II)] If ¢ is a fixed type of some full-type, we have nothing to prove.
Assume first that d(¢)=x". From the definition of d(e), (Qv)C.(v)el .

Now, let X.={a,: v<s}=02—dom(e), and we shall define a set Y.={B: v<x}
which satisfies the following conditions (1), and (2),:

(1).: for each v<lk, B,(x)=a,(*) or —a,(*).

(2),: for each finite subset v, of &,

F3(Qu)CIN A e 5.0)) .

Suppose {<x and we have defined Y:={5,: v<{} so as to satisfy the conditions
(1); and (2);, but that (2):,, is not satisfied if we put Bi(x)=a;(x). We show that
in this case it is satisfied if we put Bc(*)==1a¢(*).

On the assumption that (2);., is not satisfied, there is some finite subset £, of
¢ such that

I'HQU)C(0)/\ A ec,8.0)Nae(0)) .

Let 7 be any finite subset of { and let go=CoU7o, then as o, is a finite subset of
g, it follows that

I3(QoYC)A A eoB2))
by the hypothesis. So, by the properties of I, either

F3(QuXC)N AveryB(0) Aac())

S

or

I 3(Qu)CON A ver o B(0) A m1e(0)) .
If [2] holds, then since £, Zo,,
F>(@Q)CON At fu@) Aer())
contradicting to [1I]. Therefore holds. But 7,Za,, so

&
)]

T 3(QuXC0)/\ A enyB(0) A 1e(0)) -

Thus we can define Y;,, so as to satisfy the conditions (1)¢,; and (2);. If £
is a limit ordinal, then we define Y:=U,.Y,, and Y.=U¢..Y.. This Y, satisfies
(1), and (2).. The full-type is now defined as follows:

fero'm(e):‘S
+ if f)=au(x)

fe(a,)={ for any a,eX,;
— if B.(x)="a,(%)

Then it is obvious ¢<f. and d(f.)=«*=d(¢) by our construction. Therefore (II)
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holds if d(e)=«".
Suppose next that d(e¢)=«. By the definition of d(c),

['3=1(3@)C.(v) for any i<w and ['3—(Qv)C.(v) .
Now let X,={a,: v<#}=02-dom(e), and we shall define a set Y,.={8,: v<{«#} which

satisfies the following conditions (1), and (2),:
(1).: for each v<lk, B,(x)=a,(*) Or =1a,(*).
(2)c: for each finite subset v, of &,

I'3(3 ) C0)\ AveBu(2) for any i<e
and

I3 =(Qu)(COIN A ey B.(0)) -

Suppose (< x and we have defined Yc={8,: v<{{} so as to satisfy the conditions
(1) and (2);, but that (2):,, is not satisfied if we put B:(*)=ac(x). We show that
in this case it is satisfied if we put B(x)==ac(x). Let z, be any finite subset of
{. It is sufficient to show that

I'3=( 3 ) (C0IA AenyB0) Am1ae(v)) for any i<w
and

I3 =(QUUCLOIN Avery B0 A —1ae(0))
If [2] does not hold, then by the properties of I,

I 3(QuYCN AveroB0)NAT(D)) -
While, since 7, is a finite subset of { and Y: satisfies (2)c,

I3 =(Q0)(C(0)/\ A veny8.(2)) -

Hence we have a finite subset

{Qu)C.DIN A verB(0) A\ 1c(0)), THQVNC(0)/\ A venoB(0))}

of I' which has no models in contradiction to the property of I". Therefore
holds and so we need only to prove [1]
By assumption, there exists a finite subset {, of { such that, either

F3(3 ) C.0) A.et,B.0) Aae(®)) for some i<w

or
Fa@XCON Aetof@) Aae()) .-
It is easily seen that [4] does not hold in the same manner in which we have shown
that [2] holds. Therefore [3] only holds. Now let go={,Uxn. Since o, is a finite
subset of ¢,
>3 ) CL0)\ Avero ) for any i<o [5]
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by the hypothesis of (2).. Hence, the following [6] or [7] holds:
I'>=(3 DNCO) Aveoy5(0) Az (v)) for any i<<w [6]
3733 D) C.OIN Aoy B(0) Am1ae(v)) for any i<w [7]

Because ; suppose that neither [6] nor [7] hold there are some 7,7< w such that,

I3(3 D) (CIN Arergb(0) Aate(2)),
and

30N CIN AvergB0) A=10:(2)) .
Hence,

3370 C0)IN A oo BD)) -

On the other hand, by [5],
33 7Y Cl0IA Aseoy B0))

also holds. So we have a finite subset of I° which has no models, contradicting to
the property of I

Suppose [6] holds. Since {,So, and [3] holds, if we take j<<w which satisfies
[3], we have a finite subset

{(370)CAD)N\ A ez, B0) Aae(0)), T T WNCu(0)/\ A seogBu(0) Ae(v)) : i =5}

which has no models. This also contradicts to the property of 7°. Hence [7] holds.
Therefore [1] holds as »,Sao.

We have now defined Y¢,: so as to satisfy the conditions (1)c;; and (2)¢;;. The
definitions of Y. and f, are similar to the case d(¢)=«"*, and they lead to f,>¢ and
d(f.)=r=d(e); so our proof of (II) is completed. .

Now we return to the proof of the theorem. Let & be a set {¢: ¢ is a fixed
type or a type of d(e)=«*,«}; and let F={f.: ce £}, then clearly?:x. For each
fe&F, we define a set X, of free individual variables by

x _{{auf: vld(f)} if d(f)>0,
a the empty set if d(f)=0;

and let
U= U rea X3
U e remy=+Xy for any aef,
QI(a):{the empty set for any free predicate variable ag®.

Clearly (Qu)C.(v)eI" for some ¢ and so A=«"*, therefore A is an L-structure. More-
over % is a model of I'. We shall show this in the following way. We first prove
that the following (III) and (IV) hold.
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(II) {ze|A|: A=C.l2)}=U.<reeX; for any type e.

(IV) If De®, then Del if and only if Ak D.
[Proof of (III)] Fix an arbitrary . (2) Suppose x€ U.<saXs, then ze X, for some
e<LfeF. Let aedom(e). Then either f(a)=+ or f(a)=—. If f(a)= 4+, then xeW(a)
and so AkEa(x) ie., U=a’“(x). Hence AE=a'“(x). If f(a)=—, then x¢A(a) and so
N a(x) ie., AEa’(x). Hence AEa*(z). In any case it follows that AEa*(x).
Since a is an arbitrary element of dom(e),

a[’: Aaedom(e)ae(u), that iS, 91I=C€(x) .

(S) Suppose x2¢U.<seeXs, then x¢X; for any ¢<feF. So zeX; for some
f’eF and clearly this f’Me Hence f/(a)#¢(a) for some aedom(e). If f'(a)=+ (so,
e(a)=—), then zeW(a) ie. Uk=a(x). Hence AEa(x). If f'(a)=— (s0, e(a)=+),
then x¢W(a) ie., Ak a(x). Hence Ak a*(x). In any case, it follows also that Ak
a’(zx) for some a in dom(s). That is,

26 N wedomer{x€|A| : UEa* ()} ={re|A|: U=Cx)}.

[Proof of (IV)] From now on, for each type ¢ let X, be a set {zxe|¥|: AL C.z)}.
Suppose De®. We can divide our proof into the following two cases according to
the form of D.
Case 1. D=(3)C.v).
Del’ iff d(s)=i by the definition of d(e),

iff Xps.d(f)=i by (D),

iff UysoX,=i,

iff X.=i by (III) and the definition of X,

iff AE=D.
Case 2. D=(Qu)C.(v). d(e)=«x" by Del. From (II), d(e)=d(f.) for some f.>s. So,

Br=de)=d(f)=X;,=U;» X, =S X, Skn' =x"
Hence,
by (III). Therefore A=X,, that is, A= D.

Conversely, suppose D¢I’. Then =iDel’ by the completeness of I" about @. If
(39)C.(v)el", then Ak=( 3 w)C.(v) by case 1. For this reason Ak (Qu)C.(v) i.e., Ak D.
If (3@)C.()¢l’, then =3 w)C,(v)el’ and =D ie. m(Qv)C.(v)el, so d(e)=« by the
definition of d(¢). Hence X.=k. Because

X. ZU;:Y}ZZf‘)ed(f)éx

by d(f)=d(s)=« if f>e. Thus X. is not equal to A as A=«'. This means that
Wk (Qu)C(v), that is, A D. Now (IV) has been proved.
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Finally we must prove that % is a model of I°, but it is easily shown by using
our Main theorem.

4. Compactness of the infinite quantifier

Let I" be an infinite set of sentences in L of power t=w, and I  satisfies the
following conditions (1) and (2):

(1) The predicate variables which occur free in I" are finite.

(2) The number of second order quantifiers and the number of first order quan-
tifiers, which occur in the sentences in I, are both bounded.

Then the following theorem holds.

THeorReM (Compactness of the infinite quantifier): If Q is interpreted as the
infinite quantifier, then I has a model if and only if any finite subset of 1" has a
model.

Proor. It is obvious by our Main theorem.

Counterexamples: (i) The following example of /’ shows that the condition
(1) is necessary to prove the above-mentioned theorem.

e { =(Qv)a(w), (Y v)(an(®) Da(v))
(3 0)an(), =( 3 v)(n(v)N\tm(v))

where {«a, ay}nco are countable free predicate variables.

n,m<w }
,

n+m

(ii) The following example of /" shows that the condition (2) is necessary to
the above-metioned theorem.

I'={(Qv)a(®), (I V)a(v): i<w).

5. Interpolation theorem.

In this system L, we cannot hope that a cut-elimination theorem holds, but we

can prove the following interpolation theorem.

INTERPOLATION THEOREM : Swuppose that Ala, p) and B(B, ) are first ovder sen-
tences in L, and the only predicate variables which occur in A and in B are a,
and 3,7, respectively. If Ala, B)—B(B,7) is provable in L, then there is a first order
sentence C(B) in L such that the only predicate variable which occurs in C is 8, and
moreover Ala, B)—C(B) and C(B)—B(B,y) are both provable in L.

Proor. Let (3&)A(&,B8) be the sentence obtained from A(a, 8) by binding all
a which occur in A(a, ). Suppose nfq(A)=K, then nfq((3&AE B))=K and
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nsq((A8)AE, B)=1. By our Main theorem, (3£)A(E ) is equivalent in L to a
Boolean combination C(8) of elements in the following set:

{(3)C(v), (Qv)C(v): i=0,1,---,2K+1; dom(e)={B}}.

§4. A proof of Main theorem.

Let L', L% be two object logics obtained from L by attaching 1,2 to every sym-
bol, except individual variables or logical constants, in every formula in L, respec-
tively. If A is a formula in L, by A’ we shall denote the formula in L’ obtained
from A by applying the operation stated above (i=1,2). If I" is a set of formulas
in L, then by 7I"* we shall denote the set {A*: Ael"} of formulas in L*.

From these two object logics L!,L?> we construct the morphism logic L=
(L, L?) by the method which has explicitly defined in [4]. That is, we define [
as follows:

1. Formation rules for formulas in _/.

1.1) If A is a formula in L and i=1,2, then A’ is a formula in _[.

1.2) If A and B are formulas in _£, then A, AAB and AV B are formulas
in _[.

1.3) If A(x) is a formula in _£ and v is a bound variable which does not occur
in A(x), then (Vo)A(w) and (3v)A(v) are formulas in _L.

1.4) All the formulas in _£ are obtained from 1.1)-1.3).

2. Axioms and inference rules for _/.

2.1) The axiom sequents in _{ are the sequents of the form /'*——.J? where
I'—>4 is a provable sequent in L and {=1,2.

2.2) The rules of inference of _ are defined as those for LK which are for-
mulated in Gentzen’s style: only the following should be added to those.

AGwB@)y, I'—d
(VOAE,I'—4

AW, —4
(3OAEI—4 "’

4, Ala)
I'——4,(VOAE! '

(V—) (=V)
I'—> 4, AQwB(@v))’

3= I 1,(3DAG)

(—3)

where i=1,2 and a' does not occur in the lower sequent.
Now, our Main theorem is easily proved by the following Theorem 1 and the
Interpolation theorem in MoToHAasHI [3]

MoToHASHI'S INTERPOLATION THEOREM: Let S be the set of sentences in L
and let U={E'DE?: EcS}. Suppose that AW) be the set of sentences which is con-
structed from SU{T, L} by applving AN, V a finite number of times. For any sen-
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tence A, B in L, if the proof-figure of
U*, A'—>B? (U'* is a finite subset of ¥)

is given concretely, then we can obtain a sentence C in AW) concretely ( primitive
recursively) such that

I—LA—>C and }—LC———>B B

Let & be a non-negative integer and let @ be a finite sequence of distinct free
predicate variables. Then we put
(F)CL)=(F)C )| =0,k ;}

I'(k; &)= { !
(Q)C.0)'=(Q)C.(v)? | dom(e)=a

Notice that & in theorems below is the same sequence which occurs in Main theorem.

THEOREM 1: Suppose that A is a sentence in L whose free predicate variables
arve all among a@. Let nsq(A)=N and nfq(A)=K. Then

I'QY(K+1)—1; a)—_ A= A%,
Note: Theorem 1 means that A!'=A? is provable from I'2¥(K+1)—1; @) in _
primitive recursively according to the form of A. (In the following theorems and
lemmas, the similar notes work.)
In order to prove Theorem 1, it is sufficient to show that the following Theo-

rem 2 holds. Let z=<x1, -, xp), =<1, -, ypy be finite sequences of distinct free
individual variables which have no common variables. Then we put

I'a; z,9)={xi="mi=y:=2y;: 1=i,j=p}
U{CE<xt)&)lEC5(yhd’)2: Z=1, ’p; dom<€)=d’-}
THEOREM 2: Suppose that A(x) is a formula in L whose free predicate varia-

bles and free individual variables are all among &, &, respectively. Let nsq(A(Z)=N
and nfqAzZ)+p=K. Then

I'YK+1)-1; a),I'(@; z, ) AZ)'=AG).
Theorem 2 can be easily proved by induction on the complexity of A(Z), using the

following two lemmas. In lemmas below, we take @&, % and ¥ as in Theorem 2.

LEMmMA 3: Let x,y be two distinct free individual variables which do not occur
n &,7%, respectively. Suppose A(x,x) is a formula in L whose free variables are all
among T, x and @. Moreover let p+1=k. If

I'(k; @), I'(&; 22, 9"y Az, 2)' = AG, y)*,
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then the following (1) and (2) hold:
1) I'tk; @), (@; z, 9+ (Qu)A(Z,v)'=(Qv)A(F,v)?,
@2) I'tk; a), I'@; =, 9 (30)AZF,v)'=(30)A7,v)%

LEMMA 4: Let a be a mew free predicate variable which does not occur in &.
Suppose A(Z,a,«) is a formula in L whose free variables are all among ,& and
a. Moreover let p<k. If

I'k; a o), '@ a; &, 9+~ AE, & a)=Al, a,a),
then
I'Ck+1; @), I'(@; z, )~ (35AE, @, &)'=(3 AW, a, &) .

Proor orF LEmmMA 3. We put I'=/"(k; &)ul(a; z,7) and assume that all of
the hypothesis of Lemma 3.
[Proof of (1)] In order to prove (1), by the symmetry it suffices to show that

I'—_(Qv)A(Z, v)'—(Qv)A(F, v)? [1]
By induction on the length of @ it is easily seen that

V dom(e):'CE(x>

is provable in L, so we have
l— LA(-Z‘; .Z') = V dom (e) =&<A(‘7}, $)/\Ce(x)) .

On the other hand, we know by (iii) of Lemma in §1 that for any formulas B,C
in L
F 2(Qu)(B@)\V C(@)=(Qv)B@)\V/ (Qv)C(v)
holds. Therefore we can get
= L(QV)A(Z, V)=V dome -(QUA(E, ) ANC)) -
Hence, all we need to prove is that
I £V dom - QUIA(Z, 0) NCL(0))' —(Qv)A(7, ) (2]

To show this [2], we must prove that for any arbitrary fixed type ¢ such that
dom(e) =,

I'— (Qu)(A(z, v) \C.(0))' —(Qv)A(7, v)* . (3]
From (Q)-rule and (viii) of in §1, it follows obviously that

QU)X Az, ) NC(0)—>(Fv)v+2/\AZ, 0)/\C())/\QV)C.(v)
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and hence it is enough to prove the following in order to show [3], where v+2z
is an abbreviation for v==x,/\---A\v#x,. (We shall use similar abbreviations below.)
'~ _cx#'z, A%, 2)', C(2)", (Qu)C.(0)' —(Qu)A(7, v)?
It is easily proved that for any B in I'(@; "z, 7'y),
'~ _rx+'%, y#27, C(x)', C(y)*— B
holds, and since the hypothesis states that:
I'k; ), l@&; &, 3" Az, 0)'— AG, v)*,
it follows that
' _rx+1%, y#+%, C(x)!, C(y)?, A(Z, x)'—> AY, y)* [5]

Whence we get the following [6]:
'~ _rx+'z, C(x)!, A(Z, x)!—> (VY o) o+7/\C.(v) D A(¥,v))*? (6]
Moreover, by (iv) and (vii) of Lemmal in §1

QY v+T/N\C()), (Y)Y o+TNC(0)D A, v))— (Qv)A(¥Y, v)
and

(Qu)C(0)—>(Qu)(v+7N\C(v))
are both provable in L, then the following [7] and [8] hold.

F QX+ NC.(0))%, (Y 0)o+7/\C(v)D AT, v))—(Qv)A(F, v)? [7]
= (Qu)C(v)!—(Qu)(v#T/\C.(2))? (8]
Applying a cut-rule between [6] and [7], and next between the obtained sequent and
[8], we get
I't+ rx+'z,Cx)', Az, x)', (Q)C(v)*— (Qv)A(F, v)? (9]
Since,
'~ £(Qv)C(0)' —Quv)C(v)* [10]

obviously holds, we can get by applying a cut-rule between [9] and [10].
[Proof of (2)] To show (2), by the symmetry it is sufficient to prove that

'~ (3 0)A(E, 0)'—(I0)AG,0)?,
and so,
'~ A&, 2)'— (3 0)A(Y,v)?.

Since z=%\/x+Z is obviously provable in L, it suffices to prove the following
and [3] in order to show [1], where =2z is an abbreviation for z=z,\/--\/2=2.

I'+ co="z, A(Z, )'— (I 0) A, v)*
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.E

I't- ez, A(Z, 2)'— (I 0)A(G,v)?

While, it follows from the assumption that for any ie{l, ---, p},

'+~ AE, 2:)' —> AT, yi)?
and so,

ljl—'.fx‘__lxi; A(j; x)l_’_—)A<:‘7’ yi>2 .
Applying (— 3), for each ie{l, ---, p}

' re="x;, A(.f, x>1—"( 3 v)A(g’ v)?
holds, and we get

' rz='%, A%, x)'— (I 0) A7, v)?

by (V—).

Therefore, all we have to do is to prove only. Since V somc-sC(x) is pro-
vable in L, in order to show [3], it suffices to prove that for each type ¢ such that
dom(e)=a,

I'\-_x+'%,Cx)', A(%, x)' —> (I 0)A(7, v)? (4]
holds. Let ¢ be a type such that dom(¢)=a. Above [4] is proved if we show the
following [5]:

' po#'%, C(x) —>(F0)0+ 7 AC(0))* [5]
The reason is as follows: Since it is obviously seen that
' _y#29,C(y)% x+'%, Cx)', A%, ) —> AT, y)*

if we first apply (—3) to this sequent, next do (A—) and last do (3 —), then we
get
I'=(30)w#=gNC(0))?% z+'%,Cx)', A%, x)'— (I 0)A(F, v)*. (6]

Applying a cut-rule between [5] and [6], we can conclude that [4]. holds. In order
to show [5], since

ko 30)C0)\V(A¥=0m(3 0)C(v))
is provable in L, it is adequate to prove that for each i (0=i=k),
I'— (3 )C.(0), x+'%, Clx)'—( F0)0o+T/N\C:(v))* (7%

holds and
'~ Ao (3 )C(0)Y, x-1%, Cley —( A 0)(w=+7/\C.())? (7]

[7] obviously holds because the length of % (=length of %) is equal to p, which we
know to be less than or equal to %, and [7), also holds. The proof is therefore
completed if we prove [7]; for each i such that 1=i=k%.
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Fix an arbitrary i such that 1=i{=<k. To prove [7];, we need only show that
for any new free individual variables z, ---, z;,

rl—.L'IQ(zl’ ) zi)zy CE(ZI)Z, R CE(zi)Z, ( 3 iv)CE(v)l ’
x#'z, C(x)' — 2 #27, -, 2+ .

Let z,,---,z; be new free individual variables. To show this, it suffices to prove
that

'~ Ig(zy, -+, 2:)%, C(20)?, -+, C20)%, (3 0)C(v)}, %,
Clo), aa=" VNV a="yp, -, 2=\ -V z="yp—>,
which will follow if we show that: if 7, ---,7; are any elements in {1, ---, p},
I'rlg(zs, -, 207, C(21)?, -+, Cl20)%, (A 0)C(0)!, 2+ T
Cx), 21=2Yr,, 5 Zi="Yr;—> . (81
Let 7y, ---,7; be elements in {1,---,p}. If r,=r, for some s,¢ such that s=#¢, then [8];

is obviously true. Hence we may assume that »,#7r, if s+¢, that is, rn=1, -, =4,
after some exchanging if necessary. Then [8]; is

' _Ig(zy, -+, 2:)%, C(21)?, -+, C22)%, (3 0)C(0)'
x#'%,C(x)', 2:="y1, -+, 2s="yi—> . [8]/
By the way,
2=y, 0, 2=y, 1g(21, -0, 20)7, Co(21)?, -+, Cd(26)°
—(Ig(ys, -+, ya) NC(y1)/\ - NCya))?

clearly holds, and hence, in order to show [8]/, it is enough to prove that

FI—.EIQ(?/I’ ) yi)21 Cs(yl)zy Tt Ce(yi)zr ( 3 iv)cc(v>l ’ :
x#1e, Clx) —> . (9]

Moreover, it is easily seen that
'~ Ig(y,, -+, i) —>xm#"2, for any 1=m<n=i
and :

'+~ Cly,—>Cx,)! for any 1=r=i
hold. Hence we get

Fl—'_L’IQ(?/lr T yi>2) Cs(yl)Z’ T Cé(yi)z
—_)(Iq<x1) Tt x'b)/\cs(xl>/\ /\Cs(xz))l .

Then, to show [9];, it suffices to prove that
Iw*_'.CIQ(xl’ ) xi)l’ Cs(xl)l’ ) Cs(xi>l> ( 3 iv>C6(v)l

x+1z, Clx)— ,
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which will follow immediately if we show that
I'—qu(wly “tty xi), C;(xl), R Cs(xi), ( 3 iv)cs(v)) x7+_j"; Cé(x)——’ ’

but this holds evidently. Therefore Lemma 3 is here proved.
Next we shall first give a sublemma and a definition which we need to prove
Lemma 4.

SUBLEMMA : Let k be a non-negative integer. Suppose that Y={y., -, yp}( p=F)
is a set of distinct free individual variables and let Y=Y .U Y_ (disjoint union). If
A(x) is a formula in L and D(a) is a formula

(Vo) (a@)D A@))/\ A yer . a(¥)/\ Ayer_T1(y),
then the following sequents (1)-(10) are provable in L.

(1) (3)A®), Ig(y1, -+, Yp), {AW}yer —>(F EXD(E)/N(T 0)E©)),
where ¥V, =j=<i-Y_.

(2) (AD)AW®), Ig(ys, -, yp), {AWyer —> (3 E(D(E)/N( I ) AL)N\TE(©)),

where Y_=j=i-Y..

(3) {1 A@IHE, (QAW), Ig(ys, -+, o)y {AW)lver
——(3E)XDE)/N(T )E(0)),

where V. <j=k.

(4) {3 D) AN, "I(QZ))A(U), Iq(ys, -+, Yp)s {A[W)}yer
— (3 EUDE) N I)A()/A\TE®))) ,

where Y. =j=k.

(5) {3V AL, WQA®), Ig(ys, -, yp), {AW)}ver
——>(3EDEN(T *F)é(0)/N\( 3 > v)(A) A\ TE(D))).

(6) QA®W), Ig(ys, -+, yp), {AWer —>( A E(D(E) /(I 0)E(V)),
where Y. =j.

(7) (Q)A®), Ig(ys, -+, yp), {AW}yer —>(FED(E)/N( T D) AW) A7),

where Y_=j.
(8) (QA®), Ig(y1, -+, yp), {AWlyer —> (I END(E) AT **0)(0) N Q)A@) N\ TE®))).
(9) (QA®), Ig(ys, -+, yp), {AW)lyer —>( 3 EXD(E)/NQV)E@)/\( 3 >*0)(A(v) A\TIE(D))).
10) (Q)A®), Ig(ys, -+, ¥p), {AW)}yer —> (3 EXD(E)/NQV)E®) /N Q) A@) N\ TIE()))-
where (3>*»)A(») is an abbreviation for

() (k. ) Tgw1, -+, V1) NA@D) /N NAWE 1)) -
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PROOF OF SUBLEMMA. (1) We may assume p=<i. Let m=i—p and n=j—Y .,
so n=m. We take m distinct free individual variables a,, :--@u, -+, @m Which are
not in Y and do not occur in A(x). Let F(a) be a formula

(V WEY'('aZ?/\/V;;xa:ar)/\ Aer—ai?//\ ANnna+a,.

Then, it is easily shown that

(3 D)AW®), Ig(ys, -+, Yo, @1, -+, @m), {AW}yer, {A(@n)}T
—> D(AvF (v))/\(3 v)F (v) .
Applying (—3), we get
F (3 0)A®), Ig(ys, -+, Yp, @1, -+, @m), {A(W)}yer, {A(@)} e
—>(AEDE)/N\(I v)E(0)) -
We divide Ig(y:, -+, yp, @1, -+, @m) into Iq(ys, -+, yp), Ig(ay, -+, @m)/\ A;gigg,,aﬁﬁy,- in the

5=
antecedent in this sequent. Next, connecting Ig(a,, ---, @m)/\ Ai. jai#v; and all of the

elements in {A(a.)}7, by /\ in the antecedent and applying (3 —) in turn, since
ai, -+, am do not occur in any of (3 @)A(®), Ig(y:, -, yp), any A(y), (yeY), we get

}—L( 3 iv)A(v)’ IQ(yI) Ty yll)) {A(y)}er ’
(o) (o) Iq(1, -+, Vm)/\ Al%@émvﬁﬁ?ﬁ/\ AisisnA(0:))

1=j=p

— (DN )E()) -

On the other hand, we have

(3 2)A@)—> (3 v1)---(Iva)Ig(oy, -, vm)/\méi;mvﬁyj/\ AisisnA@))) .

j=p
by m+p=i. Hence, by using a cut-rule, it follows that
(3 D)A®), Ig(ys, -+, yp)s (AW }yer —>( 3 ENDE)N(T 0)E()) .

We can prove (2)-(7) in the same manner in which we could (1).
(10) We take a free unary predicate variable « which does not occur in A(x)
and consider the following formula F(a):

Al@) N (@)\/ V yerra=y)/\ A ver-aFy .
Then, we get

= L(QU)(A@) N\a(0)) /N Qu)(A@)/\1a(v)), (QV)A(@), Ig(ys, -+, ¥») »
{AWlver —> D F (v))/\(Q)F (v)/\(Quv)(A(0)/\1F (v)) .
Applying (—13),
F2(Qu)(A@) N\ea()) A\ Q) A@) N\ 1a()), (QU)A@®), Iq(y1, -+, Y2) »
{AW)lyer —> (3 E)(D(E) N QV)E@) N Q) A@) N\ TE®D))) .
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Since a(*) does not occur in (Qu)A(v) or any A(y) (y€ Y), using (3 —), we get

(3 E)((QU)A@AE®)/NQA@)N\TEWD)), (Qv)A(®),
Iq(ylx ) yp): {A<y)}'y€Y
—>(3E)(DE)/N\QVED)/NQUA@)/N\TE®))) -
Therefore, by applying a cut-rule between this sequent and our axiom sequent for

Q and the second order quantifier 3:

(Q)A@@)—>( 3 E)(QU)A®)NED))NQU)A@)/N\TIEW)))
we get
L Qu)A®), Ig(y1, -+ Yp)s 1AW }ver
—— (3 &XD(E)N\Q)E@)N\NQUXA@)ATIE®D))) -

(8),(9) are easily shown from (10) by using (viii) of in §1.

DEFINITION. Let X be a finite set of free individual variables. A set 4 of
formulas in L is a complete equality set (we call an X-set for short) if 4 satisfies
the following conditions (1), (2):

(1) xz=yed or x+yed for any z,yeX.

(2) If we define the relation 4 by

xzdy if and only if x=yed, for any x,yeX,

then 4 is an equivalence relation on X.
If 4 is an X-set, then by n(4) we mean the number of equivalence classes of X

by 4.

Proor oF REMMA 4. In the following, we assume that all of the hypothesis
of Lemma 4 and let I'=I"(2k+1; @)ul'(@; z,%) for simplicity. By the symmetry,
it suffices to show that

If we prove the following [2], [1] is shown from [2] by applying an inference rule
(3 —) for the second order quantifier in our morphism logic _[:

'+ A, & ) — (3 A0, &, §)° [2]

So, we shall show [2]. Let I be {r: dom(r)=a&"a}. In order to prove [2], since
z=y\/z+y and V .C.(x) are both provable in L, it is enough to demonstrate that
for any partition {X.}.eg of X={xi, :, zp} and any X-set 4,

F'_-_L’Al) {C-;(.Z', dAa)l}a:eXr, €Ty A(j’ CT-/) a’)l——_—)( 3 s)A(g) &’ 5)2 [ 3 ]
In the antecedent of [3], if zeX., 2’ €X.,r#7’ and x='2"€4’, then [3] clearly holds;
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and if zeX,,x’eX..,c#7’ and x+'x’e€4d?, then x+'2’ need not occur in 4. Hence
we may take 4 as a set of X.-sets (r€ ), that is, all we need to prove is that for
any set {4.}.eq such that 4, is a X.,-set for each re <,

['i—_C{Arl}rGET’ {C,(.Z, d//\a)l}-Z‘EX,' 398 A('i" a, a)l—_’( 3 S)A(??, a, 5)2 1
holds. Then we shall define I'/(3,n) for each map f from a finite set {r: dom(e)=
B} of types to {0,1, -, %, n+1,w} as follows:

LB, m)={(37v)C.(v, B): dom(z)=4, f(r)=n}

U{(Qv)C.(v, B): dom(zr)=p, f(r)=w}

U{=(3°0)C.(v, B), ---, (3 "0)C(v, B), W(Qv)C.(v, B): dom(z)=f, f(z)=n+1} .
Since for any red,

(Vi-o( 3 0)C0)V(Q0)C.(0)V( Ak-o( T 0)C.(0) \UQw)C(v))
is provable in L, in order to prove [4] it is sufficient to show that for any map f
from {r: dom(zr)=a”a} to {0,1,---,k, k+1, 0},
F}—I{Arl}reﬂ'y {C,(.’L‘, aAa)l}xeX,‘ r€J s Ff(&/\av k)ly A(-'Z'; CY, a)l_’( 3 &)A(g) &) 5)2 . |: 5 :If

For each re g, let Y. be the set of y’s which corresponds to z’s in X.. Then
{Y.}:eq is obviously a partition of Y={yi, -, vp}. Let 4.2 be the set of formulas
obtained from 4.' by replacing z’s which occurs in formulas in 4,! by #’s and 1 by
2. (This obtained set 4. is a Y.-set.) We fix a map f from {r: dom(s)=a"a} to
{0,1, -,k k+1,w}. Clearly, for any B in I'(k; a*a)Ul (@ a; &, F)

}_I{Arl}regr {Cr(x’ &Aa)l}zeX,' t€d s ['f(d’/\a” k)l ’
{Arz}regy {Cr(y’ &Aa)z}yel’,, €dy rf<c_(/\a) k>2_>B

hc;lds. Therefore, by using the hypothesis which states that
r'k; ata), '@ a; &, AT, &, a)'—>AF, &, a)?,
we can get
= cldeeq, (Col@, AP a) Yaex,. cea, [ (@, k),
{dheea, (C(y, @ ) yev .. cea, I (@ a, k),
Az, a,a))—>AlG, @, a)?. [6]
Applying (—3) to [6], it follows that

}—_C{Arl}regy {Cr(x; &Aa)l}zel’,.reg) Pf(c_(,\aa k)l ’
{Arz}regy {Cr(y’ &Aa)z}yGY,- €Ty ]wf<d//\ay k)z ’

Az, @, a)' — (3 AT, &, &) . (7]
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In the antecedent of [7], we may replace

{Cr<g) &Aa)z}yel’rv red
by
{Cs(y) d’.)z}yeye,ee 2y {az(?ﬁ}eref y € ) U {ﬂaz(y)}yen—.ee D

where & ={c:dom(e)=a}, " =cU{ a, +>},e =eU{{a, —>}and so Y.=Y. U Y... Then
we write the formula, which is obtained by connecting all of the elements in
{@®(Whyer, +.ee - U{T102 (W)} yer - e - and '@ a, k)* by N\, as

AW yer,+, e > U {1 W)l yer - e - U L (@ e, R))?
Since a? occurs in this formula only in the antecedent of [7], by applying (3 —) to
[7] we get

}'_I{Afl}reg, {Cr(x’ &Aa>l}x6X7vt€ﬂ" 17f<&/\a) k)l ’

{Arz}tegx {Cr(y, &)2}er£.555 ’

( 3 5)/\({5(?/>}er5+. 2 U {_|5(Z/)}er5—. ez U Ff(a'/\f» k),
Az, &, a)' —> (3 AT, a, £)? . (8]

Therefore, if we show that
['l_"_f{drl}reﬂ"’ {Cr(x’ &Aa)l}zex,,reg: ['f((:i/\a', k)l
—(3 S)A({E(y)}erﬁ-.eeg U {—'5<y)}1/eY5~.ee _Ul'(ans, k), (9]
then [5]; is proved in the following manner. It is easily seen that

I'a; &, 9 ,{d. Y eea—>E2 for any E.2ed.?, any te€dJ
and
I@; & 9) {Cdx, @)} aex, cc—>Cy, @)* for any yeY,, any ¢ & .

Whence we get

11(67; j, g)l—[{drl}rGQ—_)(/\{Ar}rEg)z
and

lw(a/ ;I g)}'—.[{CE(x’ &)l}xe.«l’e.eei’“—*(/\{ce<y) a)}UEYe-seé’)z_ ’

where A{4.}eq, NC(y, @)}yer,. > are formulas obtained by connecting all of the
elements U.egd:, U.c2{C.(y, @)}yer,, respectively, by /. Since we can divide

{Cf(xi d—/\a)l}l‘GXr‘ €d
into
{C(x, a)l}xexy €2y {al(l‘>}weXs+, ez U {—lal(x)}xez’s—. €2

in the antecedent in a sequent similarly to the case of

{Cr(y) aAa)Z}yGY,.tGST ’
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it follows that

1'(@; 2, 9 oldM e, (G2, @ ) Vaex . cex

—>(A{d:}ea N\ ACy, a)}ers.eeﬁ')z [10]

By using a cut-rule between [10] and the sequent obtained from [8] by applying
(/\—) a finite number of times, we get

I'(@; &, 9 {d ) eq, 1C(x, @ ) '}aex,.cea, I (@ a, R)'
(IHNUEWyer, e 2 UL W ver - e - U T A6, k),
A(j)d’a)l_—_)( E 5)14(:’7) d’! 5)2 [11]

Applying a cut-rule between [11] and [9], [5]; is shown if we notice that /(&; %, 7)
is a subset of 7.

We shall prove [9]. It is adequate for our purposes to prove that for any map
g from {e: dom(s)=a} to {0,1,---,2k+1,2(k+1), w},

I‘F—I{A.'l}reﬂ'! {Cr(x; a-/\a)l}leXr. €y ['f(&/\a) k)l, ['g(&y 2k +1)1
—(3 S)A({S(y)}yeﬂﬁuee U E(W)hyer, v e 2 U ['/(a"&, k))? (12},

We fix an arbitrary map ¢ from {¢: dom(s)=a} to {0,1, -, 2(k+1), w}.
For each ecc ¢, we take a free unary predicate variable g. and define a formula
F.(B.) in the following way. First let D.(8.) be a formula

( v v)(ﬁe(v) :)Ce(v))/\ A er5+,Be(?/)/\ A ers-—LBe(?/) .

for each ce &£.
Case 1. f(e*)=Ek.

F(B): DB/ P0)B ).
Case 2. f(e7)=k.

F(B): DB)/N(BTCP0)C0)/\ T B(2)) -
Case 3. f(e)=f(e)=k+1.

F(B.): DLBIN(I >*)B.)/\( I >*0)(C(o)/ A1) -
Case 4. f(et)=k+1, f(e)=w.

F.(B:): DB 7 0)B.(0)/NQuNC(0)/\18:(0))-
Case 5. f(e")=w, f(e7)=k+1.

F(8): DBINQ0)B)/\(I ) C() A1) -
Case 6. f(e")=f(e)=o.

F(B:): D) /N\Q0)B0)/\Qu)C.(0)/\T15:(v)) -
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Let F(a)=\/.ccp(@). Then we get
I p{d M eeq  {C(x, @) S aex ,cea, (@, R)
I, 2k+1)" {F(B:)}ec -
—> AUF Whyer, -2 U{TIF (hyer ,—. e - U 1 (@ A0F (), E))? . [13]
By applying (—3), it follows that
[Yl"—.C{Arl}rGET: {Cr(x) &Aa)l}weXT‘ €Ty 11/((/_(/\0') k>l y
l‘q(&) Zk +1)17 {FE(‘B5>2}EE
—>(AENAUEWyer, r.ee - U{EWyer,—. e - UL /(@"6, R))* . (14]

Since all of the elements of {3.%}.- are mutually distinct in the antecedent in [14],
by applying (3 —) to every 5.2 one by one, we can get

[‘}—I{Afl}reg: {Cr(x, &Aay}weX,.reg; 1Vf<d/\a’) k)l ’
Iy(@, 2k+1), {(3EF )} ee
——>(FEONUEWNver,+.ce2 UL yer - e 2 UL (@6, R)) [15]

In order to show [12],, therefore, it is sufficient to prove that for each ¢€ &,

F}—_CAEI-% ’ Asl~) {CE'F(J'" aAa>l}w€X5+y {CE-—(-Z') dAa)l}x‘eXe— ’
'@ a, k), (@, 2k+1)'—> (A HF ()" . [16].

Now we fix an arbitrary c€ & and we shall prove [16].. We first note the fol-
lowing fact. It is enough to check that [16], holds for each case of Case 1—Case
6 in accordance with the definition of F.(x), and further we can divide the proofs
of Case 1 and Case 2 into three subcases, respectively, according to the value of
g(s). Then, in subcase 1.1 of Case 1 (i.e. f(e*)=<k and g¢(¢)=2k+1), [16]. clearly holds
if 5(4..)>f(e*) or n(d..)>g(e)— f(¢*), and hence we may assume that #z(d4..)=f(e")
and n(4..)=g(e)— f(c*); similarly in subcase 2.1 of Case 2 (i.e. f(¢7)=k and g(e)=
2k +1), we may assume that n(4.-)=f(e") and n(4..)=g(e)— f(c7).

Now, in the antecedent in [16]., we may rewrite

{Cei(, aAa)l}zeXs»h {Ce—(x, &Aa)l}xexe“
by

{Cz, @) zex,, {aH (B wex,+, {T10 (@ ez, - 5
then we can get the following sequent in the same way in which we get [10]:
r@a; & 9k cdds, 4., {C(@, @)} zex,
(A4 U4\ Ayer Cy, @)

where in the succedent 4..,d4._ are Y..-set, Y. _-set, respectively, and A4..Ud4d.-
means the conjunction of all the elements in 4., U 4._. Moreover, if we express the
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formula obtained by connecting all of the elements of /",(a,2k+1) with A by
/N o(@,2k+1), then

I'@kr+1; a) '@, 2k+1)—(NI'y(@, 2k +1))?
holds. Hence we get
P'=pdt 40, {Cl, @)Y zex,, I'y(@, 2R +1)!
—> (A4 Udo N\ Aver Cly, @)\ AL (@, 2k +1))2.
In order to show [16].,, therefore, it suffices to prove that
= (4o U4 {C(y, @)Pyer,, (&, 2R+ 1), '@, B,
{a(@)}zex,+, {10 (@)} vex - —> (A EFL(E), [17]
and so
b o(des Ude ), {C Y, @Phyer,, I'f(@, 2R +1)*—> (T HF(E)*,
Hence all we have to do is to prove that

b rdes Udeo, {CY, @byer,, I'o(@, 2k +1)—— (T EF(E) . [18]
Let

A~
e

st‘—:{yls !-; Tty y;zt4€+)}: Ye—-:{yl y " yil_(di——)}

be the sets consisting of all representative elements of equivalence classes of Y.,
Y._, respectively and let ¥.=¥., UY... Then we may substitute Y, by V. in the
antecedent in [18]. The reason is in the following. Since, for any yeY,, there is
27617} such that y=ged., U4._, it follows that

}—LAH- U As—; {Cs(gv &)}ie?e—’cs(?/, &>
for any ye Y., and so, we get
l—LAs+ U A:—; {Cs(g) &>}17€?5_>/\U€Y5C¢(y) d,) .

Hence, applying a cut-rule between this sequent and the sequent obtained from [18]
by connecting all of the elements of

{Cy, @yer,

by /\ we get the sejuent obtained from [18] by substituting Y. for Y.. Further,

—~—— I~ .
we may replace 4., U4d,.- by 4., Ud.-., where 4.,.U4.- is the set obtained from 4., U
4. by eliminating all of the formulas of form x=y. In other words, to show [18],

it is sufficient to prove that

~~—
rde U {C(y, @hyer,, I'(@, 2k +1)—> (T EF(E) . (19]

Clearly, for any i,7 such that 1=i=n(4.,),1=7=n(4..),
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— _ et e—
I_'LAH U As—! {Ca(yr a’)}yef/e“_"yi ¢y1
holds, hence in order to prove [19] it is adequate to show that

o+ — —— _
L Aisizew, DY FY; 4., Ud., {Cly, @)}yere
1275nC4.-)

Iy(&, 2k+1)——(3EF(E).

The formula which is obtained by connecting /\: ;v #v;~ and all of the elements
S ——

of 4..Ud.- by /\ is equivalent to

IQ<y15+7 Ty y;l—‘ide'{—)y yls_’ ) 2/?7(4;))

in L, and hence all we need to prove is that the following [20] holds:

}“LIQ(.%EJF, Tty Iyiltde-*-)’ yIEﬁ) Tt Z-/En—u;)): {Ci(yi &)}?/E?e ’
I'y(@,2k+1)—>(3FEF(E) . [20]
Case 1. f(e")=k. In this case, (I&)F.(&) is

(FE)DLENDTEDV0)E®)) -
[Subcase 1.1] g¢g(e)=2k+1. Then [20] is
l"'14[Q('y15+y B ?/;IA(AE—)% {c5<y: ‘-17>}Z/€175’ ( 3 y(i)v)ce(v’ (_Y)

—— (3 EDEN(TTDV)EW)).
Erom the previous notes, we know that #(4..)=f(¢*) and n(d.-)=g(e)— f(¢*) and so,
V.. =nd.)<f(") and V.. =n(d..)=g(c)—f(¢*). Hence [20] holds clearly by (1) of
Sublemma.
[Subcase 1.2] g(e)=2(k+1). Then [20] is

l—LIQ('ylH‘a T yi;(d,'))r {CE(Z/, &>}y€?5’ {_1( 3 iU)Cs(U)}%’gﬁl ’

—(Qu)C.(v, &)—> (T EXDLE)/N(T T Pv)E(D))
This is clear by (3) of Sublemma.
[Subcase 1.3] g(e)=w. Then [20] is

}—LIQ(ZI1E+, Tty y;l_zds—)% {CE(y’ &)}yefey (QD)CE(Z), d?)
— (3 DN D)) .

This is also trivial by (6) of Sublemma.
Case 2. f(e)=k. In this case, (FE)F.(§) is

(3D TPo)Clw, a)/N\TIEWD))) -

It suffices to check three subcases according to the value of g(¢) in the same manner
to Case 1.
Case 3. f(e)=f(e")=k+1. In this case, (I&)F.(&) is
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(AEDEN(T > )e(0) /NI 0)(Co(v, A)N\TIEQ)))
and ¢g(e)=2(k+1). Hence [20] is

]—LIQ(ylmL’ HE ysnA(AE—))’ {Cs(y) &>}II€?5) {_l( 3 iv)ce<v, a’)}?ﬁ:&l ’
“(Q)C(v, O)—>(I ENDLEN@* 0)E(0) A (3 >40)(Ci(w, @) AE®D))) -

This is also clear by (5) of Sublemma.
Case 4. f(e")=k+1, f(c)=w. In this case, (FEF,(&) is

(FEUDL/N(TME@NQXC (v, NAIED))) -

and g(¢)=w. Hence [20] is

I'_L[q(yls :"! Ty ?fn?a;)% {Cs(y, &)}yef’;, (Qv)cs(v» &)
—(3 (DN ")) N\NQUXC(w, @)/N\IEWD))) .

This is obvious by (8) of Sublemma.

Case 5. f(¢")=w, f(¢")=Fk+1. This case is a dual case of Case 4 and so it is easily
shown by (9) of Sublemma.

Case 6. f(¢ )=f(c")=w. In this case, (FE)F.(&) is

(3 DAENQE®)/NQUYC (v, @) N\=ED))) ,

and ¢g(s)=w. Hence [20] is

~ l:‘[q(ylé F" ERE) ?/:z_(ds‘))) {C;(’]/, 5’)}1/517“ (QU)CE(U, a/)
—>(AEDLOHNQ)E@)NQU)C(v, A)N\E®))) .

This is also clear by (10) of Sublemma.
Our proof of Lemma 4 is here completed and so is our proof of Main theorem.
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