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1. Introduction.

As in our previous paper [5], by the covering dimension of a topological space
$X,$ $\dim X$ in notation, we mean the least integer $n$ such that every finite normal
open cover of $X$ is refined by a finite normal open cover of $X$ of $order\leqq n+1$ ; in
case there is no such an integer $n$ , we define $\dim X$ to be infinte. This definition
was introduced for the case of Tychonoff spaces by M. Kat\v{e}tov [1] and by Yu.
Smirnov [9] independently.

In [5] we have proved the following theorem.
“Let $Y$ be a paracompact Hausdorff space which is either locally compact or

$\sigma$ -compact. Then $\dim(X\times Y)\leqq\dim X+\dim Y$ for any topological space $X$ ’

As is well known, those spaces which are treated conveniently in algebraic
topology are CW complexes, and every CW complex is a paracompact Hausdorff
space which is a countable union of locally compact closed subsets but which is
neither locally compact nor $\sigma$-compact in general. Thus, the above theorem is not
applicable to the case where $Y$ is a CW complex.

The purpose of this paper is to extend the theorem mentioned above so that
it may be applied to the case with $Y$ being a CW complex, by establishing the
following theorems.

THEOREM 1. Let $Y$ be a paracompact Hausdorff space which is a countable
union of locally compact closed subspaces. Then for any topological space $X$ we have

$\dim(X\times Y)\leqq\dim X+\dim Y$.

THEOREM 2. Let $X$ be a topological space and $Y$ a $CW$ complex. Then

$\dim(X\times Y)=\dim X+\dim Y$ .

THEOREM 3. Let $X$ be a topological space with $\dim X=1$ and $Y$ a paracompact

Received September 13, 1977



2 Kiiti MORITA

Hausdorff space which is a countable union of locally compact closed subspaces.
Then

$\dim(X\times Y)=\dim X+\dim Y$.
Hitherto these theorems have been proved for the following cases:
(a) $X$ is paracompact Hausdorff (Morita [3], Morita [4]),

(b) $Y$ is locally compact or $\sigma$-compact (Morita [5]).

Our proof is based on the following theorem which may be of some interest
when compared with the results in [6].

THEOREM 4. Let $Y$ be a topological space and $B$ a subspace of $Y$ which is
locally compact, paracompact Hausdorff and is P-embedded in Y. Then $X\times B$ is P-
embedded in $X\times Y$ for any topological space $X$.

Recently M. Wage [11] has proved under the Continuum Hypothesis (CH) that
the inequality

$(^{*})$ $\dim(X\times Y)\leqq\dim X+\dim Y$

does not hold in general even if $x\times Y$ is locally compact and normal, $\dim X=$

$\dim Y=0$ , and $X=Y$.
T. Przymusi\’{n}ski [7] pointed out that (CH) can be avoided by applying the me-

thods in his paper [8] and proved also that the inequality $(^{*})$ above does not hold
in general even if $X,$ $Y$ are Lindel\"of, $x\times Y$ is normal and $\dim X=\dim Y=0$ .

Thus, the assumption on $Y$ in Theorem 1 above cannot be replaced by “para-

compact” or “locally compact and normal”.
Theorems 1 and 2 above were announced in the author’s paper: “Shape theory“

(in Japanese), Sugaku, 28 (1976), 335-347.

2. Some lemmas.

Let us begin with Lemma 5 below.

LEMMA 5. Let $Y$ be a topological space and $B$ a subspace of $Y$ which is com-
pact Hausdorff. If $B$ is P-embedded in $Y$, then $X\times B$ is P-embedded in $X\times Y$ for
any topological space $X$.

PROOF. As was shown in [5, Theorem 2.5], any normal open cover of $X\times B$ is

refined by a locally finite open cover $\mathcal{G}$ of $X\times B$ of the following form:

$\mathcal{G}=\{U_{\lambda}\times V_{\lambda i}|1\leqq i\leqq r_{\lambda} ; \lambda\in\Lambda\}$

where $cU=\{U_{\lambda}|\lambda\in\Lambda\}$ is a $1\propto ally$ finite cozero-set cover of $X$ and $\mathcal{V}_{\lambda}=\{V_{\lambda i}|1\leqq i\leqq r_{\lambda}\}$

is a finite open cover of $B$ for each $\lambda\in\Lambda$ .
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Since $B$ is P-embedded in $Y$, for each $\lambda\in\Lambda$ there is a locally finite cozero-set
cover $\mathcal{H}_{\lambda}$ of $Y$ such that $\mathcal{H}_{\lambda}\cap B=\{H\cap B|H\in \mathcal{H}_{\lambda}\}$ refines $\mathcal{V}_{\lambda}$ . The set $B$ intersects
with only a finite number of the sets in $\mathcal{H}_{\lambda}$ , and a locally finite union of cozero-
sets is also a cozero-set. Hence there is a finite cozero-set cover $\subset W_{\lambda}=\{W_{\lambda i}|0\leqq i\leqq r_{\lambda}\}$

of $Y$ such that

$W_{\lambda i}\cap B\subset V_{\lambda i}$ for $1\leqq i\leqq r_{\lambda}$ ,

$ W_{\lambda 0}\cap B=\phi$ .
Now, let us put

$\mathfrak{N}=\{U_{\lambda}\times W_{\lambda i}|0\leqq i\leqq r_{\lambda} ; \lambda\in\Lambda\}$ .
Then $\mathscr{R}$ is a locally finite cozero-set cover of $x\times Y$ and .-SIZ $\cap(X\times B)$ refines $\mathcal{G}$ .
This proves Lemma 5.

LEMMA 6. Let $Y$ be a Tychonoff space. Then a compact subset $B$ of $Y$ is P-
embedded in $Y$.

Proof is obvious.
The following lemma is also easy to see.

LEMMA 7. Let $B$ be a closed subset of a normal space Y. If $B$ is Lindelof,
then $B$ is P-embedded in $Y$.

Therefore, if we combine Lemma 7 with Theorem 4, we have an improvement
of [5, Lemma 5.6] (Lemma 7 is not used in the proof of Theorem 4) as follows.

THEOREM 8. Let $Y$ be a normal Hausdorff space and $B$ a locally compact, $\sigma-$

compact, closed subset of Y. Then $X\times B$ is P-embedded in $X\times Y$ for any topological
space $X$.

3. Proof of Theorem 4.

Let $\{H_{\lambda}|\lambda\in\Lambda\}$ be a locally finite cozero-set cover of $B$ such that $Cl_{B}H_{\lambda}$ (the closure
in the subspace B) is compact for each $\lambda\in\Lambda$ . Since $B$ is P-embedded in $Y$, there is
a locally finite cozero-set cover $\mathcal{L}=\{L, L_{\lambda}|\lambda\in\Lambda\}$ of $Y$ such that

$L\cap B=\phi;L_{\lambda}\cap B\subset H_{\lambda}$ for $\lambda\in\Lambda$ .
Since $Cl_{B}H_{\lambda}$ is P-embedded in $B$ and $B$ is P-embedded in $Y,$ $Cl_{B}H_{\lambda}$ is P-embedded

in $Y$. Therefore, by Lemma 5, $X\times Cl_{B}H_{\lambda}$ is P-embedded in $x\times Y$.
Now, let $\mathcal{G}$ be any normal open cover of $X\times B$. Then for each $\lambda\in\Lambda$ there is

a locally finite cozero-set cover $\mathcal{V}_{\lambda}$ of $X\times Y$ such that $\mathcal{V}_{\lambda}\cap(X\times Cl_{B}H_{\lambda})$ refines $\mathcal{G}\cap$

$(X\times Cl_{B}H_{\lambda})$ . Let us put
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$cW=\{X\times L, V\cap(X\times L_{\lambda})|V\in \mathcal{V}_{\lambda} ; \lambda\in\Lambda\}$ .
Then $cW$ is a locally finite cozero-set cover of $x\times Y$ and $cW\cap(X\times B)$ refines $\mathcal{G}$ .
This completes the proof of Theorem 4.

4. Proof of Theorem 1. Let $\{B_{i}|i=1,2, \cdots\}$ be a countable closed cover of $Y$

such that each $B_{i}$ is locally compact. Then by [5, Theorem 5.5] we have

(1) $\dim(X\times B_{i})\leqq\dim X+\dim B_{i},$ $i=1,2,$ $\cdots$ .

On the other hand, we have by [5, Lemma 5.8]

(2) $\dim B_{i}\leqq\dim Y,$ $i=1,2,$ $\cdots$ .

Since $X\times B_{i}$ is P-embedded in $X\times Y$ by Theorem 4 above, we get from (1), (2) and
[5, Lemma 5.9]

$\dim(X\times Y)\leqq\dim X+\dim Y$.
This proves Theorem 1.

5. Proof of Theorem 2.

Let $B$ be a compact subset of a CW complex $Y$ which is homeomorphic to the
n-cube $I^{n}$ , where $\dim Y=n$ . Then by Theorem 4 and [5, Lemma 5.8] we have

$\dim(X\times Y)\geqq\dim(X\times B)$ .

Since $\dim(X\times B)=\dim X+\dim B$ by [5, Theorem 5.11] we have $\dim(X\times Y)\geqq\dim X$

$+\dim Y$. Now Theorem 2 follows immediately from Theorem 1.

6. Proof of Theorem 3.

Let $\{B_{i}|i=1,2, \cdots\}$ be a countable closed cover of $Y$ such that each $B_{i}$ is locally
compact and paracompact. Then by Theorem 4 and [5, Lemmas 5.8 and 5.9] we
have

$\dim(X\times Y)={\rm Max}\{\dim(X\times B_{i})|i=1,2, \cdots\}$ .

Suppose that $\dim(X\times Y)=\dim(X\times B_{i})$ for some $i$ and that $\dim Y=\dim B_{j}$ for some
$j$ . Let us put $B=B_{i}\cup B_{j}$ . Then $B$ is also locally compact and paracompact and
$\dim B=\dim Y,$ $\dim(X\times Y)=\dim(X\times B)$ .
On the other hand, $B$ is expressed as a disjoint union of locally compact, $\sigma$-compact
closed subsets $C_{\lambda},$ $\lambda\in\Lambda$ , of $B$. Hence we have

$\dim B=\dim C_{\lambda}$
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“or some $\lambda\in\Lambda$ . By [5, Theorem 5.12] we have

$\dim(X\times Y)=\dim(X\times B)\geqq\dim(X\times C_{\lambda})=1+\dim C_{\lambda}$

$=1+\dim B=1+\dim Y$ .

Since $\dim(X\times Y)\leqq\dim X+\dim Y$ by Theorem 1, we have the desired equality

$\dim(X\times Y)=\dim X+\dim Y$.

7. Remarks on Theorems 4 and 8.

Finally we shall point out that the assumption of local compactness for $B$ is

essential for the validity of Theorems 4 and 8; that is,

(i) Theorem 4 fails to be valid if the assumption for $B$ is weakened to “ a
P-embedded subspace of $Y$ which is paracompact Hausdorff and a countable union

of closed locally compact subsets;

(ii) Theorem 8 fails to be valid if the assumption for $B$ is weakened to “ a
$\sigma$-compact closed subset of Y.”

To prove these facts, we shall first note that the following lemma holds.

LEMMA 9. Let $C$ be a closed subset of a regular space $S$ such that the subspace

$C$ and each closed subspace of $S$ contained in $S-C$ are paracompact. Then $S$ is

paracompact iff $C$ is P-embedded in $S$ .

PROOF. The “only if“ part is obvious. To prove the “ if” part, suppose that
$C$ is P-embedded in $S$, and let $\mathcal{G}=\{G_{\alpha}|\alpha\in\Omega\}$ be any open cover of $S$. Then there

is a locally finite normal open cover $\{H_{\lambda}|\lambda\in\Lambda\}$ of $S$ such that for each $\lambda\in\Lambda$ we have

$H_{\lambda}\cap C\subset G_{\alpha(\lambda)}\cap C$ for some $\alpha(\lambda)\in\Omega$ .

Let $\Lambda_{0}=\{\lambda\in\Lambda|H_{\lambda}\cap C\neq\phi\}$ and put

$L_{\lambda}=H_{\lambda}\cap G_{\alpha(\lambda)}$ for $\lambda\in\Lambda_{0}$ ,

$L=\cup\{L_{\lambda}|\lambda\in\Lambda_{0}\}$ .

Then $L\supset C$ and, since $S-L$ is paracompact by assumption, there is a locally finite

closed cover $\{F_{\mu}|\mu\in M\}$ of $S-L$ which is a refinement of $\{G.\cap(S-L)|\alpha\in\Omega\}$ . Then

$\{L_{\lambda}, F_{\mu}|\lambda\in\Lambda_{0}, \mu\in M\}$

is a locally finite cover of $S$ and it is a refinement of $\mathcal{G}$ Since $S$ is regular, this

proves by virtue of a theorem of E. Michael that $S$ is paracompact.

Now, let us return to the original subject of this section.
Let $M$ be the Michael line obtained from the Euclidean line by retopologizing

it so that any subset of the set of all irrationals and the open sets in the Euclidean



6 Kiiti MORITA

topology are open. Let $P$ be the space of all irrationals with the Euclidean topology
and let us put $Q=M-P$. Then, as is proved by Michael [2], $M$ is paracompact
Hausdorff and $P\times M$ is not normal. Then $P\times Q$ is not P-embedded (and hence not
C-embedded) in $P\times M$ by Lemma 9 above. Let $K$ be a non-discrete compact subset
of $P$. Then by [6, Theorem 1.5] $K\times P\times Q$ is not $C^{*}$-embedded in $K\times P\times M$, and
by Lemma 5 $K\times P\times Q$ is $C^{*}$-embedded in $P\times P\times Q$ . Hence $P\times P\times Q$ is not $C^{*}-$

embedded in $P\times P\times M$. On the other hand, $P\times P$ is homeomorphic to $P$. Thus,
$P\times Q$ is not $C^{*}$-embedded in $P\times M$, although $Q$ is $\sigma$-compact and P-embedded in $M$

REMARK. This example provides also a negative answer to Problem 6 of M.
Starbird [10].
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