TSUKUBA J. MATH.
Vol. 40 No. 1 (2016), 55-79

TAILS OF THE FIRST HITTING TIMES
OF LINEAR DIFFUSIONS

By

Yuji KASAHARA

Abstract. The tail probability of the first hitting time is discussed
for linear diffusions. We obtain the decay rates in terms of the
spectral functions and the scale functions. The result is a general-
ization of recent results of Hamana-Matsumoto for Bessel processes.

1. Introduction

The diffusion process X = (X;),., with the local generator

1 /d> p—1d

is called the p-dimensional Bessel process and
p
==—1
"7

is referred to as the order.
Let 7, be the first hitting (or, the first passage) time to a point b(> 0); i.e.,

7 = 1nf{t > 0; X, = b}

with the convention that inf ¢§ = co. By the general theory of diffusions the
Laplace transform E,[e *%] can be expressed in terms of the modified Bessel
functions (see [2, p. 398]). In this sense the law of 7, is completely known.
However, it might still be of interest to derive more concrete properties of the law
of 7, through E,[e™%].
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From this viewpoint Hamana-Matsumoto ([4]) recently gave a representa-
tion formula for the distribution function P,[z, < x] and as its application they
obtained the following result. (See also [5] for a refinement.)

THEOREM A. Let 0 < b < a < oo.
(@) If v> 0, then

2y 2y
Pty >t)=1-— (2) +b2"{1 - <z) }W+O(I") (t — o0).

(ii) If v=0, then

2 log(a/b)

Pa(fb > Z) = lOgt

+o(l/logt) (t— o0).

(iii) If v < 0, then

2|v]
pinz =1 () et o

In fact Yamazato ([13]) has already discussed a similar problem for general
linear diffusions under the natural scale. So Theorem A except the case (ii) may
also be derived from the results of [13] after a little calculus. On this subject
we should also mention the resent result of Uchiyama ([12]). He studied the
probability density of 7, and gave the exact asymptotic forms that are valid
uniformly in the initial point a.

The aim of the present article is to generalize Theorem A for more general
linear diffusions. So the problem and some of the results overlap with those of
Yamazato ([13]). However, our point of view is a little different from [13], [4],
and [12]: (1) We are mainly interested in the question how the infinitesimal orders
(such as 7, log t,¢") and the coefficients can be described in terms of principal
characteristics of the diffusion; (2) Another difference (or improvement) is that
our argument do not need to exclude the case where v —% is an integer, which
case was somewhat exceptional in [13] and [4]; (3) The case v =0 is studied in
a general framework; (4) We shall also study the inverse problem.

Our main results will be given in Sections 5 and 6, where we shall see that
the infinitesimal order of the decay of P,[t < 1, < o] (f — o) comes from the
spectral function, while the coefficient will be specified by Feller’s scale function.
We postpone to state the details until Section 5 and here we give only a typical
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example, which will illustrate the outline of the results. Let X be the diffusion

associated with
1/ d? X d
G =_|— 1) — 0
2(dx2+(p )x2+c2dx>’ =0

where ¢ > 0. Then, for 0 < b < a < oo we have

s(a;p) 270
™ (v>0),
S(m,b)z vl"(l + V) ( )
Palt <7 < 98) ~ Q s(as ) oo (v=0),
v+l
S(a;b)mﬂv (v<0),

where v = (p/2) — 1 as before and

N
s(x;p) = J W+ ) gy,
¥

This article consists as follows: In Section 2 we prepare some Tauberian
theorems for Laplace transform. In Section 3 we quickly review some of the
spectral theory. In Sections 4 and 5 we discuss the case of general linear diffusions
and prove some results on the tail probability of the first hitting time in terms
of Feller’s canonical form of the local generator. In Section 6 we study the case
of the diffusion with local generator of the form

1/ d? ;o d
g_§<W+V(X)E>’ x>0,
where V' is the derivative of an absolutely continuous function V.

2. Preliminaries from Tauberian Theorems

First we introduce the following notation, which will be used repeatedly
throughout the article.

NotaTION. We denote by R,(o0) the totality of functions varying regularly
at infinity with index p. That is, f € R,(c0) means that, for some A4 >0,
f:][A4,0) — (0,00) is a measurable function such that

fim 29— v ves o,

i )




58 Yuji KASAHARA

Similarly, R,(0) is the totality of functions varying regularly at 0 with index p:

. f(x)
;,ILIE() 6 =x”, Vx>0.

When p = 0, we say ‘slowly varying’ rather than ‘regularly varying’. Note that
f€R,(0) if and only if f(x) =x”L(x) for some slowly varying L. For the
properties of regularly varying functions we refer to [3] and [1].

Let u(dx) be a finite Borel measure on [0,00). Its Laplace transform is
defined by

f(s) = J e Zu(dx), s>0.
[0, 0)

The relationship between the asymptotic behavior of u[x, c0) as x — oo and that

of f(s) as s — 40 is well known when (f(0) — f(s))/s diverges. But in the sequel

we need the case where it may converge. In order to handle such a case we need

the following two theorems. The author do not claim that they are new. But since

we do not know good references we shall prove them.

THEOREM 2.1.  Let p € R_g(0) (B > 0). Then the following two conditions are
equivalent for every n > p.
(2.1) ulx,0) ~p(x) (x — )

22) ()" L 1(6) ~ BT = Bs~p(1/s) (5 +0)

The extreme case of Theorem 2.1 as f — +0 is

THEOREM 2.2. Let L€ Ry(o0). Then the following two conditions are

equivalent.

(2.3) ”[Zc(j)x) —log/ (x— o0),¥Ai>1
(2.4) =f'(s) ~ (1/9)L(1/s5) (s — +0)
Both imply

(2.5) px, ) ~ L*(x) = r LS‘) du (x — ).
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Later, in the proof of the theorem, we shall see that the integrand in (2.5) is
integrable when (2.4) holds.
Note that L# defined in (2.5) varies slowly. Indeed, for every ¢ > 0,

L#(cx) = Jw L) du = J% L(cu) du.

X u X u

So, since L(cu)/L(u) — 1 (u— o), we conclude that

L#(ex) ~ J L) du=L*(x) (x— o),

. u
namely, L* € Ry(0).
A typical example of Theorem 2.2 is the following:

ExampLE 2.1. Let a>1 and C>0. If L(x)= (logx)™* then L#(x)=
(0 — 1) ' (log x)'™*. Therefore, if

2. )~ g 0= 0
then
(2.7) u[x, 00) ~ ¢ (x — o0).

(o — 1)(log x)*~"

For the proofs of Theorems 2.1 and 2.2 we prepare a few lemmas. To begin
with consider the following function:

(2.8) Uy(x) = J wu(dy), x>0
0
so that
(2.9) U,(s) := J e dUy(x) = J e x’u(dx), s>0.
[0,00) 0

LemMA 2.1. Let 0 < f < p and L € Ry(0). Then the following two conditions
are equivalent.

(2.10) ulx, 0) ~xPL(x) (x— o)

B

(2.11) U,(x) ~ x*PL(x) (x — o)
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PrOOF. In fact more general results will be found in Theorem 2 of

Feller [3, p. 283]. However, we shall prove it here for the convenience of the
reader.

Suppose that (2.10) holds. Then by the definition (2.8) we have
U =p|[ ot = | (avoe) b o) b dy
0< y<u<x 0

= pL uly, 0)y"~" dy — plx, o0)x”

~ /ﬁxﬂ*ﬂux) P PL(x) = ; f [))x/”ﬂL(x) (x — o).

So (2.10) implies (2.11).
Similarly, suppose that (2.11) holds. Since u(dy) = y~" dU,(y), we see

lx, ) =j ¥ dU,(y)

X

= pJ U,(u™""" du — x"U,(x)

X

~ #x’/}L(x) —/%ﬂx’ﬁL(x) =xPL(x),

proving (2.10). N

In Lemma 2.1 we studied the case where x — oco. The next lemma deals with
the case where x — +0.

LemmA 2.2. Let >0, f+p >0 and let L € Ry(0). Then the following two
conditions are equivalent.

(2.12) u[0,x) ~ xPL(x) (x — +0)
(2.13) Uy(x) ~ p%ﬁxP”’L(x) (x — +0).

Proor. The proof is essentially the same as that of Lemma 2.1: Suppose
that (2.12) holds. Since
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Uy(x) =p ” ¥~ dyp(du) = J (J y! dy)u(du)
O<y<u<x 0 u
= pu[0,x]x” — p L [0, y)y*~" dy

~ xPPL(x) — i ﬂx’”ﬁL(x):pf ﬁx’”ﬁL( x),

we have (2.13). To show the converse, interchange the role of U, and . O
We are now ready to prove Theorem 2.1.
Proor oF THEOREM 2.1. Let

U = | wuld), x>0

as in (2.8). By Lemma 2.1, (2.1) is equivalent to

U ~ o) (o),

which is, by the usual Tauberian theorem for Laplace transform (see Theorem C
in Appendix), equivalent to

Un(S)Niﬂr(“rn— B)s~"p(1/s) = T (n = B)s~"p(1/s) (s — +0),

which can be written as (2.2) because

&mw==Jwe”x” (dx) = (=1)"f"(s). O

0

For the proof of Theorem 2.2 we prepare the next lemma, which is the
extreme case of Lemma 2.1 as f — +0.

LemMmA 2.3. Let p >0 and L e Ry(0). Then the following three conditions
are equivalent.

(2.14) U,(x) ~ %x”L(x) (x = )
(2.15) 0,(s) ~ T(p)sL(1/s) (s — +0)
(2.16) fim 454 000 vas

L)
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ProOOF. The equivalence of the first two is immediate from Karamata
Tauberian theorem. In order to see that they are also equivalent to (2.16), notice

that
AX
ulx, Ax) = J u’dU,(u).

X

Combining this with
u AU, () = pu™" Uy(u) du + d(u ™ Up(u)),

we see that

ulx, Ax) = prx U,(wu™""" du+ {(x) " U,(Ax) — x " U,(x)}.

X
So (2.14) implies

Ax du 1

i) ~ | L) S (LG~ L)

X

“ du 1
= Jl L(xu) ” + » {L(Ax) — L(x)}.

Therefore, it holds that

plxax)  (PLOw)du 1 fLGx) | -
L(x) _Jl L(x) u +,D{L(x) 1} logA (x — o).

Thus (2.14) implies (2.16).
Conversely, suppose that (2.16) holds. Since

1

Uy(x) zpj puly,x)y"! dy:pj pxE, x)(xE)" " x dé,
0 0
we have
pUN(x) 5 l,u[xé,x) —1 2 : 1 -1 g2
iy =], e e (e et ae =,
which implies (2.14). ]

ProOOF oF THEOREM 2.2. Since

~/'(s) = Uy(s)
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with p = 1, the equivalence of the first two is immediate from the equivalence of
(2.16) and (2.15) in Lemma 2.3.

Let us next prove the latter half of Theorem 2.2. Suppose that (2.3) holds.
Then we have

U 6", en+1
% =1 (n— ),
which implies

lu[e 700) 1

P S S AN

2ok L(e")

(n — o0).

Now using the slowly varying property of L, we can deduce

ple*, )

W_}I’ (X—> OO),

proving (2.5). The above argument also shows that

r # du (: r L(e") du) < o,

for sufficietly large x. O

3. Preliminaries from Spectral Theory
By a (Krein) string we mean a function
m:[0,4+00) — [0, +0o0]

which is nondecreasing and right-continuous. We exclude the trivial case where
m is a constant.

For a string m let us review a little on the spectral theory of the generalized
Sturm-Liouville operator

L=

d
am(x) dx’ 0<x</,

where

¢ =sup{x;m(x) < oo} (e (0, 0]).
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We define ¢,(x) and ,(x) (0 <x < /), for every 1€ C, as the unique solutions
of the following integral equations:

00 =12 (=)ol dn(y). 0<x<r,

b0 =x =2 [ (= ) dnn), 0= x<r.

Later we shall use the fact that ¢,(x) and ,(x) are entire functions of A for
every fixed x € [0,7).
The characteristic function of m is defined by

i Ve ([
hs) =T lm "= ) <_ Jo cos(xy)’ o

Note that ¢_(x) — 1 and ¢_,(x) — x as s — +0, and hence
(3.1) h(+0) =¢.
As is well known, for every s > 0,

(3.2) u(s;x) = p_y(x) - h(ls)wx)

is the nonnegative, nonincreasing solution of
Lu(x) = —su(x), u0)=1, u(/—-0)=0.

(This fact can easily be seen from the definition of /A(s).) So the Green kernel
(with respect to dm(x)) is given by

Gs(x, ) = Gs(, %) = h(s)p_y(x)u(s; y), 0<x<y</,
and, therefore,
G5(0,0) = h(s), s>0.
It is also well known that /i(s) has the following representation:

“ da())

R >07
_OS—‘y—)~ s

h(s):aJrJ

where

a = inf{x > 0;m(x) > 0}
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and o : (—o0, ) — [0, 00) is a right-continuous nondecreasing function vanishing
on (—o00,0) such that

< 00.

Jw do(2)
o1+ 7

The function ¢ is called the spectral function.
NoTATION. When a string m(x) is given, its right-continuous inverse m*(x)

:=m~(x) is called the dual string. We denote by i* the characteristic function
of m*. Similarly, /* and ¢* are defined in the obvious manner:

/" =sup{x > 0;m"(x) < o0} (= sup{m(x);x > 0})
and

“© do* (1)
0 S + A

h*(s):a*+J

, s>0.

Also throughout we define /(s) = 1/A(s) and denote

H6) = ). () = )

The well-known relationship between /#* and / is

(3.3) h*(s) = shl(s) , s>0.

(See e.g. [11]). So it holds that
h(s) = sh™(s),

and therefore differentiating the both sides, we see

0 (A+s)*

W (s) = h*(s) + s(h* (5)) = J

“do*(2) JOO sdao*(4) J” Ada*(2)
0 A+S

0 (A+)?
and hence we have the following representation formula:

(3.4) (=) Th) () = n! r‘ Ada*(2)

For our later use we prepare
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LemMa 3.1. Let 1 <k <n If |h"(s)| — oo (s — +0), then

hO(s) = o(A" (s)]) (s — +0).

Proor. First recall (3.4). Since

JOO do*(2) _
o 1+4 ’

we have

sup
s>0

© 2do*(3)  [*Ade*(d) _ [*do*(2)
Jl (s+ A)FH! _J A SJ

So we need only to evaluate

Jl A da*(2)
o (s+ )k
Apply Hoélder’s inequality to
J ' Adot(h) Jl % do* ()
o (s+ A Jo (s ) TE (s )R

with 1/p=1— (k/n) and 1/q = k/n. Then, we have

) do* ' do  do* (] k/n
[ ([ 12) ([ o)

1=(k/n) / oo o k/n
(o) (a5

= const x |[h" ()] = o(|h") (s)]) (s — +0). O

The next lemma is Proposition 3.1 of [7]. The proof is based on Lemma 3.1
but we omit it and refer to [7].

LeMMA 3.2. Suppose (< oo and let n>1. If |h"(+0)|= o0 or
|h" (+0)| = o, then
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PROPOSITION 3.1. Let n>1 and suppose that ¢ € Rg(0) (0 < f < n). Then
the following two conditions are equivalent.

(3.5) a*(s) ~p(s) (s — +0)
(3.6) (=)' (5) ~ BT (n — BT (1 + B)s "p(s) (s — +0)

Proor. By Lemma 2.2, (3.5) is equivalent to

J(:f do* (&) ~ %w(m (2= +0),

which is also equivalent to

(3.7) p(s)s™ (s — 40)

J* Ado*(A)  pT(n—pT(1+p)
0 (249" n!
by Tauberian theorem for Stieltjes transform (apply Theorem C in Appendix

with o = ff+1). Keeping (3.4) in mind we see that (3.7) may be rewritten as
(3.6). O

4. First Hitting Time of the Diffusion #(x) 4

Let m:[0,00) — [0,00] be a string in the sense of Section 3 and let
X = (X;),5 be a generalized diffusion associated with

G =-Y:=

d
dm(x)a’ 0<x</,
with reflecting boundary condition at 0 and absorbing boundary condition at
¢/ when /4 m(/ —0) < oo. The state space is Supp{dm}. As is well known, X
is recurrent if and only if /= oo and is positive recurrent if and only if
m(+o0) < 0.
Let b € Supp{dm} and let 7, be the first hitting time of b;

7, = inf{t > 0; X, = b}

as before and we are interested in the decay rate of P,(7, > ) as t — 0.
The main tool is the following well-known formula:

(4.1) Efe™] =222 0<b<x</,
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where u(s; x) is defined in (3.2). Note that, if » = 0, then we have u(s;b) = 1 and
therefore,

(42) Eyle ] = u(s;x) = p_y(x) h(ls)wx» 0<x</,
namely,
(43) Efe™] = p_,(a) — h(s)y_y(a), s>0.

An easy consequence of this formula is the following: Since ¢_ (x) — 1 and
V_(x) = x, h(s) = £ as s — 40, letting s — 40 in (4.2), we deduce the well-
known formula

X
(4.4) PX(T°<OO):1_Z’ 0<x</,
or, equivalently,

PX(T():OO):;, O<x</

(with the convention that 1/c0 = 0). Considering the translated string my(x) :=
m(x+b) —m(b) (x =0), we have

(4.5) P.(tp =) = , 0<b<x< /(< ).

We next evaluate P,(f < 15, < o0) as t — o0. By Theorem 2.1 the problem is
reduced to the study of 47E,[e~*"]. So we need to study the n-th derivative
of (4.3). Since ¢;(a) and ,(a) are entire functions of 4, we see that, for every
fixed n > 1,

d" d"
W (pfs(a) and @ l//—s(a)

remain bounded as s — +0. So the first term of the right-hand side of (4.3) plays
no role. As for the derivatives of the last term of the right-hand side of (4.3),
we have

n n—1

(h(s)_y(@)) = h" (s)_y(a) + Y uCeh™ (s) x O(1).
k=0

(4.6)

ds”

Therefore, keeping y_(a) — a (s — +0) in mind, we can deduce the next result
from (4.6) and Lemma 3.1.
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PROPOSITION 4.1, Let n > 1. If |h")(+0)| = oo, then

dar -
- A )] - )
e E,[e™™] h"(s)a (s — +0)

In what follows ¢* denotes the spectral function of the dual string m*(x) =
m~!(x) as before.

THEOREM 4.1 (recurrent case). Let 0 <b < a </ and let p € R(0) (f > 0).
Then,

(4.7) Pty >t)~(a—b)T(1+pe(l/t) (t— o)
if and only if

(4.8) " (A) ~ (A1) (A — +0).

Before we proceed to the proof we explain the reason why Theorem 4.1
corresponds to the recurrent case (i.e., /= oo). The condition (4.7) implicitly
claims P,(1, = o0) =0 so that / = oo (see (4.5)). Also (4.8) implies o*(+0) =0
so that sh*(s) — ¢*(4+0) = 0 and therefore /(= h(40)) = co.

ProOF OF THEOREM 4.1. To begin with we remark that the problem is
reduced to the case b =0. To see this fact consider the translated string

my(x) =m(x+b) —m(b), x=0

and let og; be the spectral function of the dual string my; of my. Since the
asymptotic behavior of the spectral function around 0 depends only on that of
m* as x — /* (see [10] and [6]), we know that ¢*(4) ~ g/ (1) as 4 — 40 provided
that ¢* € Rp(0) for some f > 0. Thus it is sufficient to consider the case b =0
only.

By Proposition 3.1, (4.8) is equivalent to

(4.9) (=1)"'h"(s) ~ BT (n = AT (1 + B)s "p(s) (s — +0).
Since

e ) ~ dh(s) (s +0),
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by Proposition 4.1, (4.9) may be written as

d" ‘
(4.10) (fl)"WEa[e’”"] ~afl(n— P14+ p)s"p(1/s) (s — +0).
Now by Theorem 2.1, (4.10) is equivalent to (4.7) (when b = 0). ]

In Theorem 4.1 the assumption is stated in terms of ¢*, but when 0 < a < 1,
it may also be written in terms of ¢, because the relationship between ¢* and o
is the following;

Lemma 4.1. Let 0 < o < 1. Then, o € R,(0) if and only if 6* € R1_,(0). Both
imply
1
') +o)l'(1 —o)I'(2—a) a(A)

o (2) ~ (4 — +0).

This is just an easy consequence of (3.3) and the Tauberian theorem. So we
omit the proof.
By Lemma 4.1, Theorem 4.1 may be written as

THEOREM 4.2 (null recurrent case). Suppose that o€ R,(0) (0 <a<1) so
that £ = 0. Then, for 0 < b < a < o0,

a—>b 1

(4.11) Po(ty > 1) ~ T()C(1 + 2)C(1 — ) t0(1/1)

(t — o0).

We next study the case where g € R,(0) («>1). In this case it holds that
/(= h(4+0)) < oo so that the process is transient.

THEOREM 4.3 (transient case). Suppose that / < oo and W € Ry(0) (o0 > 1).
Then, for 0 <b<a</,

(4.12) Pty = ) = 9=,
Furthermore,
(4.13) o(A) ~y(L) (4 — +0)
if and only if

a—b T(a+1)

(4.14) P,(t<tp < 0)~

(/—b)z po— w(l/t) (t— o).
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Proor. For the proof of (4.12) see (4.5). The proof of the latter half can be
carried out as that of Theorem 4.1: As we explained before, we may assume that
b =0. Now assume (4.13) and choose an n > a. Then by Tauberian theorem
(see Theorem C in Appendix), (4.13) is equivalent to

(4.15) (=D)"h"(s) ~T(n+1—o)T(1 4+ o)s " "(s) (s — 40).

By Lemma 3.2, (4.15) is equivalent to
. 1
(4.16)  (=1)" Th"(s) ~ Fr(n +1—o)T(14+a)s™" Y(s) (s— +0),

and by Proposition 4.1 this can be written as

(71)”%&,[(”0] ~ %F(n +1—a)T(o+ s~y (s).
Applying Theorem 2.1 with f=a—1 and ¢(1/s) = % %s’lw(s), we
obtain the assertion. 0

We next turn to the case o € R,(0) with o = 1. Note that

_ _ [T dad) _ [ e(h)
/= h(+0) = J,o = J,o e da.

So both /=00 and / < oo are possible under the assumption o € R;(0). For
an example of the case / = oo, see Example 2.1.

THEOREM 4.4 (critical case). Let 0 <b < a < /. Suppose that ¢ € R;(0) and
define L(x) and L*(x) by

My gy (¢ < ),
(4.17) L(1/s) = } ,

%S) (J o ()2 du) (/ = o),
and
(4.18) L*(x) = J% LS‘) du.

Then L(x) and L*(x) are slowly varying at oo and it holds that

(4.19) Pyt < 14 < 0) ~ (a—B)L*(1) (1 — o).
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PrROOF OF THEOREM 4.4. It is almost trivial that L(x) is slowly varying and
we omit the details. For the proof that L#(x) varies slowly see the comment after
Theorem 2.2. So we shall prove (4.19) only.

Since this case is only the extreme case of Theorem 4.1 as f§ — +0, the proof
can be carried out in a similar way. The only difference is that we use Theorem
2.2 in place of Theorem 2.1: When / < oo, then /i(+0) = ¢ provided that b = 0.
(When b > 0 we need to consider the translated string and hence 4(+0) =/ —b
if / corresponds to the original m.)

By the Tauberian theorem the condition ¢ € R;(0) implies

(4.20) —h'(s) ~a(s)s™2 (s — +0)
and hence, as s — +0,

@21) ) ~ { [} ol du (7= o),
{—b (¢ < o0).
(Precisely speaking, in the case / = oo we used the fact that /i(co) =0, which
can be verified as follows: In general s(o0) = inf{x > 0;m(b + x) — m(b — 0) > 0}
but in the present case the right-hand side vanishes because b should be chosen
from the support of dm.)
Now (4.20) and (4.21) imply

(4.22) B(s) = _h}(l;g;) ~ a(s)s_2/<J:O o(u)u™? du>2 (s — +0)

when / = oo. The case where / < oo can be shown in a similar way.
Next recalling the definition (4.17) of L, (4.22) may be written as

i (s) ~ %LG) (s — +0).

On the other hand we have

d . oulsia)
dsE“[e ] o5 h'(s)a (s — +0)

as before (see Proposition 4.1). So combining the above two we have

d

1
——E e ~as 'L~ — +0).
7 [e™""] ~ as (S) (s — 40)

So by Theorem 2.2 we have the assertion. O
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5. First Hitting Time of the Diffusion D, D/

We next study the case of diffusions on an interval I = (¢,r) C R with local
generator with Feller’s canonical form

d d
5.1 4 =D,D} =——— xel
(1) TS dm(x) ds(x)’ ’
where s(x), the scale function, is a strictly increasing continuous function and
dm, the speed measure, is a positive Radon measure on /. (Here, D] denotes the
right-derivative with respect to the scale function s(x).)
This case can easily be reduced to the case we studied in the previous section

by changing the scale. Indeed, the local generator of X(¢):= s(X(¢)) is

d d

(52) dia(x) dx’

S(c+0) <x<s(r—0)
where m(x) = m(s~!(x)), and the first hitting time of X(¢) to b corresponds to
that of X(¢) (=s(X(¢))) to s(b). We need not to care about the left boundary,
because the destination b(< a) should be chosen from the regular point and the
law of the first hitting time does not depend on the values of m(x) and s(x) for
x < b. So in what follows, the spectral function o means that of (5.2) restricted
on [s(b"),s(c0)) for some regular point b'(< b) with reflecting boundary condition
there. The asymptotic behavior of the spectral function ¢ does not depend on the
choice of b’ (as long as o is regularly varying). So, for example, in the case of
Bessel process, we consider only on [e,00) (e > 0). We stress that this under-
standing is crucial when p < 0. (Otherwise the ‘spectral function’ does not make
sense in general.) Since s(x) allows linear transform, we may and do assume that
s(b") =0 without generality.

With the understanding above, let (1) and ¢*(4) be the spectral functions of
the string 7 (x) = m(s~!(x)) and its dual m*(x) :=m ' (x) = s(m~'(x)), respec-
tively. Notice that, if o corresponds to (5.1), then ¢* corresponds to

. d d
(53) b= ds(x) dm(x)’

Let a,b (b < a) be regular points in the state space I = (c,r), then from
Theorem 4.2 we immediately have

THEOREM 5.1 (null recurrent case). If o€ R,(0) (0 <o < 1), then

s(a) — s(b) 1

Pyt > 1) ~ C()T(1 +o)T(1 — ) 1a(1/1)

(t — o0).
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Similarly, we have

THEOREM 5.2 (transient case). If o € R,(0) (x> 1), then
(5.4) Py(tp = o0) =

and

s(a) —s(h) T(a+1)
(s(r=0) = s(b))* 21

P,(t<tp < 0)~ ta(l/t) (t — o0).

THEOREM 5.3 (critical case). Suppose that o€ R,(0) (o= 1).
(i) If s(r—0) < oo, then (5.4) holds and

sta) = s() Jl/’ ow)

L M N 5, e

(l‘% oo)

(ii) If s(r —0) = oo, then,
Pyt > 1) ~ (s(a) = s(b))L*(1) (1 — o0),

where

L#(x) = r LW g here 101 /) = @ / (Jw a(v)v>2 dv)z.

x U

REMARK 5.1. In (5.1), s(x) and m(x) are not uniquely determined by ¥; i.e.,
if we replace s(x) and dm(x) by As(x) + B and (1/4) dm(x), respectively, then
we have the same ¥. However, under such a transformation, ¢ (or ¢*) will be
changed to Ao (or (1/4)c*) simultaneously and hence the right-hand sides of the
results in Theorems 5.1-5.4 do not depend on the choice of s(x).

A typical example of Theorem 5.3 is the following: If o(1) ~ Ci(log 1/2)”,
then, it is easy to see that, as x — oo,

(B+1)°
C

% tog(1/5))" (B+1<0)

(log(1/s)) "2, (B+1>0),
L(1/s) ~

and therefore,
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p+1

)" (B 1> 0),

(log x
o~ . |
m(logx)/er , (+1<0)

(cf. Example 2.1). Thus we have

COROLLARY 5.1. Let f# —1 and C > 0. If o(s) ~ Cs{log(1/s)}* (s — 40),
then, for c <b<a<r,

0, (ﬁ>_1)>
Pa(ty = ) = s(a) = s(b) (B <-1)

and

(sta) o) P tog 0, (> ),

<s(rs(_a )o)_ - (27))2 /f_f] (log """, (< —1).

Pt <1p < 0)~

As a special case =0 we have the following: If o(s) ~ Cs (s — +0), then,

Py(tp > 1) ~ (s(a) — s(b)) (t — o0).

Clogt

The above three theorems do not include the case of positive recurrent
diffusions. But next theorem, which follows immediately from Theorem 4.1, is
also applicable to positive recurrent diffusions.

THEOREM 5.4 (recurrent case). If ¢ € Rg(0) (f>0), then,

Py(tp > 1) ~ (s(a) = s(b))T(1 + B)a™(1/1) (1 — 0).

6. Diffusions with Bessel-like Drifts

In the previous section we studied the case of general linear diffusions. Now
let us apply the results to the following special case.

Let X = (X;),>, be a diffusion on I =[0,00) with local generator of the
form

/2, d
(61) g——g—i(ﬁ"‘r V(X)E>7 x>0,
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V(x) being an absolutely continuous function on (0,00). The Bessel process
corresponds to V(x) = (p—1) log x.

Put W(x) = Cexp V(x) so that W'(x)/W(x)=V'(x) (C >0 is arbitrary).
Then (6.1) may be written as

gz%%(W(x)%), x> 0.

Thus Feller’s canonical form of % is the following:

d d
v= dm(x) ds(x)’
where
x * du
m(x) :== ZJO W(u) du, s(x)=s(xp;x):= LO W) x>0.

Here, xp € (0, 00) is arbitrary. xo =0 and xo = oo are also allowed as long as
the integral makes sense. Recall that, as we pointed out in Remark 5.1, this
choice of xy does not affect our results.

The relationship between the asymptotic behavior of W(x) and ¢ (or ¢*)
will be found in the following Theorem B: (i) is an easy consequence of
[7, Theorem 4.2] and (ii) is proved in [8, Proposition 5.1].

THEOREM B. Let W(-) e R,_i(o0).
(i) If p> 0, then

1 Vi
20/2-1pT(p/2)* W(1/V7)

a(l) ~ €R,(0).

(i) If p <2, then
2(p/2)+1
2= p)T(1 = (p/2))*

a*(2) ~ VAW (1/V2) € Ra_p2(0).

So, if W(-) € R,_1(0), then c € R,/5(0) (p > 0) and 6% € Ry_(,/2)(0) (p < 2).
(Both are applicable when 0 < p < 2.) Therefore, we can apply Theorems 5.2
with o = p/2 or Theorem 5.4 with f=1— (p/2) according as p >2 or p < 2;

THEOREM 6.1.  Suppose that W(-) € R,_1(c0) and let 0 < b < a < co. We put
v={(p/2) =1 as before.
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(i) If p>2 (v>0), then

s(a) — s(b) 21 Vit

(6.2) P,(t<7tp<o0)~ (5(00) — s(b)) T 19) W(V7) (t — o).
(i) If p<2 (v<0), then
v+1
Pulen > 1) ~ (o0) = sO) s W) (1= ).

REMARK 6.1. A necessary and sufficient condition for W(-) € R,_i(c0) is
that V'(-) is of the form

p—1+0(1)

V'(x) = <

+1(x), (x— o)
for some #(x) such that

4
3 lim J n(x) dx e R.

A—o0 Jq

This is an easy consequence of the canonical representation of a slowly varying
function (see [3, p. 282]).

The case p =2 is rather complicated. So we give here only a typical case:
THEOREM 6.2. Suppose that W(x) ~ Cx(log x) " (B > —1). Then,
Pa(ty > 1) ~ (s(a) = s(b) (B + 127" Cllog )™V (1 — o0).

PrOOF. By Theorem B W(x) ~ Cx(log x) * implies

LR ZEe
2w(i/y7)  2C

So we have the assertion by Corollary 5.1. O

(log 1/vV/2)* log 1/2)F (4 — +0).

o) = g

Finally, let us see that Theorems 6.1 and 6.2 include Hamana-Matsumoto’s
result we mentioned in Introduction (Theorem A).

In the case of Bessel process, we may put W(x) = x”~!(= x2*1). So, as is
well known (see e.g. page 133 of [2]), the scale function is
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1o, 1y,
. . _ v 9.
5,(0; x) —2_px =5 (p<2;v<0),
s(x) = ¢ s,(1;x) :=log x (p=2;v=0),
1 2—p 1 —2v
X)) = ——— =—— 2:1 > 0).
5p(00; X) p—2x 7y (p>2;v>0)

Since the condition that W e R, (o0) is trivial, we can apply Theorems 6.1 and
6.2 to deduce the assertion of Theorem A.

7. Appendix

In this section we briefly sum up some results on Tauberian theorems for
Laplace transform and Stieltjes transform.

For a nondecreasing, right-continuous function o : (—o00,00) — [0, c0) such
that o(—0) =0, we define the Laplace-Stieltjes transform and the generalized
Stieltjes transform by

Flo)(t) = J e " da(l), t>0

[0,00)
and
Hy(o:9) ;:J Aol S0 (nz0)
[0,00) (s + 4)
provided that the integral converges.
If
A o
a(A) T +a))~ , A>0,
then
Flo|(t) = At™*, >0,

and

r 1 -

H,(0;5) = A4 (n +n, %) el

provided that 0 < o <n+ 1.
The well-known Karamata’s extension of Hardy-Littlewood Tauberian the-
orem is that the constant 4 may be replaced by slowly varying functions:
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THEOREM C. Let 0 <o <n+1, A>0, and L(x) € Ro(o0). Then, the fol-
lowing three conditions are equivalent.

a(A) ~ A*L(1/2) (). — +0)
Fo)(t) ~ T(1 + o)t *L(t) (t — o)

I'n+1—-o)T'(1+a)
n!

H,(o;s) ~ S“*”*IL(I/S) (s — +0)

For the proof of the equivalence of the first two see Feller [3, p. 446] and for

other part we refer to [9, Appendix] and [1, p. 40].
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