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QUOTIENTS AND HOPF IMAGES OF
A SMASH COPRODUCT

By

Julien BicHON

Abstract. We describe the Hopf algebra quotients and Hopf images
of the smash coproduct of a group algebra by the algebra of
functions on a finite group.

1. Introduction

The smash coproduct, associated to an action of a finite group on a discrete
group, is one of the most well-known constructions to produce non-commutative
and non-cocommutative Hopf algebras. The aim of this paper is to provide a
description of the Hopf algebra quotients of such a smash coproduct.

Let us first recall the construction. Let H ~ I" be a finite group H acting by
automorphisms on a discrete group I'. Then the smash coproduct Hopf algebra
k[[] < k* (k denotes an arbitrary field) is k[I'] ® k' as an algebra, where k[T
denotes the (convolution) group algebra of I' and k¥ is the algebra of k-valued
functions of H, and the comultiplication is given by

A(r#dn) = Y r# @ I r#dp iy =Y r#d; 1 @ Lr#dy,
leH leH

for reT, he H (we denote by r#d, the element r ® 6, of k[['] < k). The Hopf
algebra k[['] < k" fits into an exact sequence of Hopf algebras (see [2])

k — kT — k[T > kT — k[T — k

Now if L is Hopf algebra quotient of k[I'] % k', some standard arguments show
that L fits into an exact sequence

k—k®—L—k[]—k
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where G = H is a subgroup and T is a quotient of I". Moreover, this exact
sequence is cleft, so the general theory of cleft extensions (see [2, 1, 13]) ensures
that L is isomorphic to a general bismash product k% #,k[[], involving com-
plicated cohomological data, that are known to be difficult to deal with in general
(see [12] for an illustration of a situation where it is better to forget about the
whole structure of the bismash product).

Instead of a bismash product, we propose to use the notion of quotient
datum to describe the quotients of k[[] > k: a quotient datum is a triple
(G,N,®) where G is a subgroup of H, N<T is a normal and G-stable subgroup
of I', and ® : N — (k%)™ is a group morphism satisfying some simple conditions.
To a quotient datum (G, N, ®) we associate a Hopf algebra k[I'/N] <¢ k¢, which
is a quotient of k[I'] < k*, and show conversely that any Hopf algebra quotient
of k[['] < k" is isomorphic to k['/N] X k¢ for some quotient datum (G, N, ®).

It seems that the notion is simple enough to allow concrete description of the
quotients of k[I'] = k', at least of course when the normal subgroup structure of
I' is not too complicated, and we examine some examples to illustrate this.

The original motivation for this work came from the following problem.

First recall [5] that for a Hopf algebra representation n: 4 — End(¥) on a
vector space V, there exists a unique Hopf algebra L, called the Hopf image of ,
that produces a minimal factorization

A —" - End(V)
e

When 4 = k[I'] is a group algebra, then L = k[I"/Ker(x)], and hence the problem
of computing the Hopf image amounts to computing the kernel of the group
representation, which of course can be quite difficult. Techniques for computing
Hopf images for several classes of Hopf algebras were developed in [5].

Now recall [7, 3] that to a complex Hadamard matrix H e My(C) is
associated a representation ny : A;(N) — My(C) of Wang’s quantum permuta-
tion algebra A(N) [20] (the universal cosemisimple Hopf algebra coacting on the
diagonal algebra k" when k has characteristic zero [8]), whose Hopf image is
thought of as representing the quantum symmetry group of the Hadamard matrix
or of the corresponding subfactor (see [11]). It is in general very difficult to
compute the Hopf image of ny. The case H = Fyy ®, Fy of the tensor product of
Fourier matrices deformed by a matrix of coefficients Q ([9]) was studied in [6],
and a factorization of 7y through a certain smash coproduct C[['] > C%¥ was
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found there, which was shown to be the Hopf image under a genericity as-
sumption on Q. However the general case remained unclear, and after analyzing
the situation, it became clear that it was in fact not more difficult to try to
describe all the possible quotients of the crossed coproduct and only after that,
try to identify the Hopf image. From these considerations we get a method to
compute the Hopf image of a smash coproduct in general, described in Section 4,
that enables us to make more precise some of the results of [6] in special situa-
tions. In particular we show that if M =2 and N is prime, or N =2 and M is
prime, the genericity assumption in [6] can be weakened to the assumption that
one of the coefficients of the parameter matrix Q is not a root of unity.

The paper is organized as follows. In Section 2 we define quotient data and
describe the Hopf algebra quotients of the smash coproduct of a group algebra
by the algebra of functions on a finite group in terms of Hopf algebras associated
to quotient data. In Section 3 we discuss some examples. In Section 4, after
having recalled the basic notions around Hopf images, we provide a general
method, based on the previous considerations, to compute Hopf images for smash
coproducts. The final Section 5 is devoted to examples of computations of Hopf
images, providing in particular cases refinements of some results of [6].

NOTATIONS AND CONVENTIONS. We work over an arbitrary field k. We
assume that the reader is familiar with the basic theory of Hopf algebras, see [15]
for example. If 4 is a Hopf algebra, as usual, A, ¢ and S stand respectively for
the comultiplication, counit and antipode of A. If I is a group, we denote by k[T’
the (convolution) group algebra having its group-like elements identified with the
elements of T, and if H is a finite group, we denote by k¥ the Hopf algebra of
functions on H, i.e. k' = k[H]" as Hopf algebras, see e.g. Chapter 1 in [15].
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2. Quotient Data

Let H ~ I be a finite group H acting by automorphisms on a discrete group
I'. Recall that the smash coproduct Hopf algebra is k[I'] > k1 = k[I'] ® k' as an
algebra, with comultiplication, counit and antipode given by
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A(r#éh) = Z r#0; ® 171.7#5171;1 = Z r#0;.1 @ Lr#dy,

leH leH
8(7#5},) = 51,,1, S(l’#éh) = h_l.r_l#éhfl

for rel’, he H.
The precise definition of a quotient datum for H ~ I is as follows.

DerINITION 2.1. Let H ~ T as above. A quotient datum for H ~T is a
triple (G,N,®) where

(1

) G < H is a subgroup.
(2) N<T is a normal and G-stable subgroup of T.
)

(3) ®: N — (k9 is a group morphism such that
O(r)(Ih) = (I~ Lr)(W)D(r)(]), D(r) = D(srs™ )
for any re N, seTl’, hleG.

We denote by QD(H ~T') the set of quotient data for H ~T.

ExampLE 2.2. If G< H is a subgroup, N<I is a normal and G-stable
subgroup of T and @ : N — G = Hom(G,k*) is a group morphism such that
®(r) = ®(srs~') and ®(h.r) = ®(r) for any re N, seT, he G, then (G,N,®) e
QD(H ~ ).

See the end of the next section for an example of a quotient datum that is
not of the type of the previous example.

The proof of the following easy lemma, that we record for future use, is left
to the reader.

LemmA 2.3. Let H ~T as above and let (G,N,®) e QD(H ~ I).

(1) For r,se T with rse N, we have sr e N and ®(rs) = ®(sr).
(2) For he G and re N, we have ®(r)(1) =1 and ®(h.r)(h) = ®(r~)(h").

We now associate a quotient Hopf algebra of k[I'] < k%7 to a quotient datum
for H ~T.

ProposITION 2.4. Let H~T as above and let (G,N,®)e QD(H ~TI).
Choose a section j:T'/N — T of the canonical projection u:I' — I'/N, with
Jju(l) = 1. The following formulas
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(u(r)0n) (u(s)#0x) = u(rs) 00 (ju(r) ju(s) ju(rs) )
A(u(r)#0p) = Z(u(}’)#él—l) ® u(l.r)#(S;;,(D(Z.ju(r)ju(l.r)71)

leG
Su(r)#oy) = uth~ r NY#®Gu(h ™ =) h ju(r) o

together with the obvious unit and counit define a Hopf algebra structure on
k[C/N]® kC, which, up to isomorphism, does not depend on the choice of j. We
denote by k[T'/N] X¢kC the resulting Hopf algebra. Moreover the map

q: k[[] > k™ — k[C/N] < k€
V#(Sh = u(V)#(D(VjM(V)_l )517\(;
is a surjective Hopf algebra map.
Proor. It is of course possible to check the result directly by lengthy com-

putations. The referee proposed the following more conceptual proof. Choose a
section j as above, and consider the following linear isomorphism

Ek[T/N]® (k[N] ¥ k%) — k[[] < k% =L
u(r) @ s#f v+ ju(r)s#®(s)"'f

The restriction of ¢ to the Hopf subalgebra k[N] < k¢ is a Hopf algebra map by
(3) in Definition 2.1 and Lemma 2.3 (in fact that the restriction of & be a Hopf
algebra map is exactly the condition that dictates the first equation in condition
(3) of Definition 2.1). Thus since k[N] = k[N] > k¢ is a left coideal subalgebra,
it follows that K := &(k[N]) is a left coideal subalgebra in L. Hence LK™ is a
coideal in L, and thus we form the quotient coalgebra A := L/LK™, together
with the canonical surjection 7: L — A. It is easily checked that &(k[T'/N]®
k[N]* ® k%) = LK*, and hence ¢ induces a linear isomorphism

n:k[D/N] <k~ 4, n(u(r)® f) = n(ju(r)#f)
making the following diagram commutative

k[l/N]® (k[N] % k¢) ——

L
Jrid®z:®id J/n
A

k[T/N] ® k€ !
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Moreover, we have LK™ = K*L by (1) in Lemma 2.3, and L™K is stable
under the antipode by (2) in Lemma 2.3, hence LK™ is a Hopf ideal in L and 4
is a Hopf algebra, while 7: L — 4 is a Hopf algebra map. It is then a direct
verification to check that the announced Hopf algebra structure on k[I'/N] ® k¢
is the one transported using the linear isomorphism #. Since L and K are in-
dependent of the choice of j, so is the Hopf algebra A4, hence the isomorphism
class of Hopf algebra structure just constructed on k[[/N]® k¢ is as well
independent of j.

Finally it is clear that ¢ is surjective, and that 5q : k[['] %< k — 4 is a Hopf
algebra map, hence ¢ is as well a Hopf algebra map. O

We are now going to show that all the quotients of k[I'] < k¥ have the
above form. Before this, recall that a sequence of Hopf algebra maps

k—=BLSal Lk
is said to be exact [2] if the following conditions hold:
(1) i is injective, p is surjective and pi = ¢l,
(2) ker p = A4i(B)" = i(B)" 4, where i(B)" = i(B) NKer(e),
3)
i(By=A%={acAd:(id® p)Ala) =a® 1}
=P4={aed: (p®id)Ala) =1® a}.

It is known (see e.g. [2], Proposition 1.2.4) that for a sequence as above with 4
faithfully flat as a (left or right) B-module, then the sequence is exact if (1) and
(2) hold.

As an example, it is ecasily verified that for H ~ I as above and
(G,N,®) e QD(H ~ '), the Hopf algebra k[['/N] <ekC fits into an exact
sequence of Hopf algebras

k — k% L k[C/N] %9 k9 2 k[T/N] — k

where i(f) =1#f and p=id®e.

The following result is the main step towards the determination of the
quotients of a smash coproduct, and certainly the most useful in concrete
situations.

PROPOSITION 2.5. Let n: k[['] Xkl — L be a surjective Hopf algebra map
with myn injective. Then there exists (H,N,®) e QD(H ~T) such that L is
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isomorphic with k[['/N] X¢ k. More precisely, the subgroup N is defined by
N = {reT|3f e (K™Y with n(r#1) = n(1#f)}
and for re N, ®(r) is the unique f e (k)" such that n(r#1) = n(1#f).

Proor. Step 1. Using well-known arguments, we check that there exists a
linear isomorphism k[I'/N] ® k! ~ L for some normal subgroup N < T". We start
with the previous exact sequence

k— k" L kD) < kH D kD) — k

Since 7i is injective and the Hopf subalgebra mi(k*’) is central in L, we can
form the quotient Hopf algebra L = L/(ni(k*))*L, and we get another exact
sequence:

k—kf LS Sk
This sequence is indeed exact, because L is faithfully flat over k¥ since it is a

faithful module over a semisimple algebra. So we get the following commutative
diagram with exact rows, with the Hopf algebra map on the right surjective:

k KL k[T <k 2 k[T k
k [ S § d L k

Since a quotient of a group algebra is still a group algebra, we get a commutative
diagram with exact rows as follows:

k K kO] <k 2 k[T k
k Ko™ KT/N] —— k

for a normal subgroup N < T, and where the vertical Hopf algebra map on the
right is induced by the canonical surjection u: I — I'/N.

Choose a section of u, j:T'/N — T, with j(1)=1. It is easily checked
that the map y : k[['/N] — L, u(r) — n(ju(r)#1), is left k[I"/N]-colinear, with L
being given the left k[I'/N]-comodule algebra structure induced by ¢’. More-
over 7 is convolution invertible, with convolution inverse given by y~!(u(r)) =
n(ju(r) "' #1). Hence the extension k¥ = 4L = L is k[['/N]-cleft. It therefore
follows from the Doi-Takeuchi Theorem ([10], see Chapter 7 in [15] for an
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exposition) that the map
k[T/N]® k" — L
u(r) ® [ — w(ju(n#)a(1#f) = n(ju(r)#f)

is a linear isomorphism.

Step 2. We now construct the quotient datum. For r € N, we have n(r#l) €
4’7, hence the exactness of the previous sequence ensures that there exists
fek™ such that n(r#1) = n(1#f). The function f is unique since Tyn 18
injective and is invertible (otherwise there would exist a non-zero f' ek such
that ff' =0, and n(r#1) = n(1#/f) would be a zero divisor in L). Thus we have
a map ®: N — (k)" such that for any re N, we have n(r#1) = n(1#0(r)).
For reTl such that n(r#l) =n(l1#f) for some f ek, we have f(1)l =
q'n(1#f) = q¢'n(r#1) = u(r), so r € N, and hence N has indeed the description of
the statement of the proposition. It is clear, again from the injectivity of 7.x, that
®: N — (k) is a group morphism and that ®(r) = ®(srs~') for any re N,
s e I'. It remains to check that N is H-stable and that the first equation in (3) of
Definition 2.1 is satisfied. For r € N, we have

Ar(r#l) = > a(r#0) @ n(I™ r#l) = > w(1#)n(r#1) @ n(I”" r#1)

leH leH
= a(1#5®(r) @ n(I” r#1) =Y O(r)(Hn(1#6) @ (I~ r#1)
leH leH

On the other hand we have
An(1#D(r) An(Z(D 1#5,,) =Y O(r)(h)r(1#0) @ n(1#6,1)
he H hleH

Hence, by the injectivity of myu, we have, for any /€ H,

() (Dr(I" r#l) = > O(r)()r(1#61,) = Y ®(r)(Ih)m(1#54)
heH heH
n(l#z(l) 1h5,1>

heH

It follows that /~'.re N and that ®(r)(lh) = ®(/~" - r)(h)®(r)(I) for any he H.
Therefore (H, N,®) € QD(H ~ T'). Notice that the H-stability of N also follows
from the analysis in the structure theory of bicrossed products [13] (essentially we

have reproduced the argument, and this gave simultaneously the desired equation
for ®@).



Quotients and Hopf images of a smash coproduct 293

Step 3. It remains to check that # is a Hopf algebra morphism k[["/N] X
k" — L, with k[['/N] X¢ k™ as in Proposition 2.4, which is done in a straight-
forward manner. Of course, what was done to find the Hopf algebra structure
of Proposition 2.4 was to transport the Hopf structure of L, which is straight-
forward as well, the inverse of # in the Doi-Takeuchi Theorem being completely
explicit. ]

We arrive at the general description of the Hopf algebra quotients of a smash
coproduct.

THEOREM 2.6. Let H ~ T be a finite group H acting by automorphisms on
a discrete group T, and let L be a Hopf algebra quotient of the smash coproduct
k[[] % k", Then there exists a quotient datum (G,N,®) € QD(H ~ ') such that
L is isomorphic to k[T'/N] g kC.

Proor. Let n:k[[] <k — L be a surjective Hopf algebra map. Then
n(k™) is a Hopf algebra quotient of k¥, and hence there exists a (unique)
subgroup G = H such that 7 induces an isomorphism ¢ : 7(k*) ~ k% and such
that grn(1#/f) = fic for any f e k. Endowing I' with the restricted G-action,
there exists a factorization of Hopf algebra maps

k[T] > i i L

id@k‘ /

k[T] > k¢

with 7/ (r#f) = n(r#1)p~'(f) and n"ka is injective, and we conclude by the
previous proposition. Ol

We end the section by a lemma, which is a generalization of Lemma 4.5 in
(6], and will be used in Section 4.

LemMa 2.7. Let H~T as above and let (G,N,®)e QD(H ~T). Let
n:k[l/N] X k% — L be a surjective Hopf algebra map, such that Mo IS
injective, and such that for re T and f € k®, we have:

n(u(r)#1) =n(1£f) = u(r) =1

where u: T — I'/N is the canonical surjection. Then 7 is an isomorphism.
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ProoF. Consider the surjective Hopf algebra map ¢:k[[] < k¢ —
k[[/N] Xg k¢ of Proposition 2.4, of which we retain the notation, and the
composition 7q : k[I'] < k% — L. Let

N' ={rel|3f e (k™) with nq(r#1) = nq(1#f)}

It is clear that N = N’, while for r e N', we have ng(r#1) = n(u(r)#®(rju(r) "))
=nq(1#f) = n(1#f) for some fe(kf)*, and hence m(u(r)#l)=
a(1#®(rju(r)~")7'f), so our assumption gives u(r) = 1 and r e N. Hence N = N’
and for re N we have ng(r#l) = n(1#®(r)) = nq(1#®(r)). Thus Proposition
2.4 and its proof yield a Hopf algebra isomorphism 7 :k[[/N] xg k% — L,
Hu(r)f) = nqUu(r ) = n(uju(r)#0(u(r) juju(r) ") £) = 2(u(r)#f), and = is
an isomorphism. O

3. Examples

In order to illustrate the results of the previous section, we now examine a
series of examples.

3.1. First Example. We assume in this subsection that char(k) # 2.
Let

T=D, =2Zy+Zy={go, 9193 =1 =g}

with the Z, = {h)-action defined by /.g9 = ¢g; and h.g; = go. The Hopf =-algebra
quotients of C[Z, * Z,] X C?* have been determined in [4], where this Hopf
algebra is denoted A;(2). The methods of the previous paragraph enables us to
get without too much effort the description of all the Hopf algebra quotients,
over any field of characteristic # 2.

For m > 1, let N,, = {(gog1)""» ~ Z: this is a normal and H-stable subgroup
of Zy*Z,. We get a family of quotients of k[Z, * Z,] > k?2:

A(Wl) = k[(ZZ * ZZ)/]Vm] byl kZz >~ k[Dm] g ng

of dimension 4m, with A(1) >~ k%>*%2 A(2) ~ kP4 and A(m) non-commutative
and non-cocommutative if m > 3.

Now let @, : N, = {(gog1)"" > ~Z — 2\2 = {y> be the unique group mor-
phism with ®,,((9091)™) = x. We have ®,,(h.(g0g1)") = ®w((9091) ") = 1" =1,
$0 (Zy, Ny, ®,) eQD(Zy ~Zy xZy). We get a family of quotients of
k[Zz * Zz] X kL2

B(m) = k[(Zy % Z5) /N Xo, k%
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of dimension 4m, with B(1) ~k?%, and B(m) non-commutative and non-
cocommutative if m > 2. The Hopf algebras A(m) and B(m) were studied by
Masuoka in [14], Nikshych [16], Suzuki [18], Vainerman [19], and probably
others.

PROPOSITION 3.1.  The non trivial Hopf algebra quotients of k|Z, * Z,] X k*2
are:

(1) k[Dy), m =1, k[D.],
(2) Alm) = K[(Zs * Za)/ Ny % K% ~ K[D] % k%, m> 1,
(3) B(m) = k[(Zz * Zz)/Nm] Ao, kzz’ m> 1.

PrOOF. Let 7:k[Zy+Z,] < k% — L be a surjective Hopf algebra map
with dim(L) > 1. If =,z is not injective, then it is trivial, and L is
quotient of k[Z, x Z,], and hence is isomorphic to k[D,] for some m > 1
or m=o0. Now assume that m;z is injective. It is not difficult to check
that the non-trivial Z,-stable normal subgroups of Z, xZ, are precisely the
N, = {(gog1)"y, m>1. Let ®:N, — (k%))* be a group morphism such
that (Zy, N, ®) e QD(Zy ~ Zy x Z,). Let Lek* be such that ®((gog1)") =
01 + Ad,. We have

D((gog1)™) = ®(go(gog1)"'90) = ®((9190)"") = @((gog1) ™) = P((g0g1)™) "

Hence 4= A""', and either ® si trivial or ® = ®,, as above. We conclude by
Proposition 2.5. |

A rough version of the previous result is as follows.

COROLLARY 3.2. The only non-trivial infinite-dimensional quotient of
k[Zy x Zo) X k% is k[Z, x Zs).

3.2. A first generalization of the previous example is given by

T =2 =4go, g1, gnilgi=1=gi =92

with the S,-action given by permutation of the generators. The Hopf algebra
k[Z5"] > kS* is considered in [17], where the ‘“easy” quotients are described.
Using Theorem 2.6, we get that a Hopf algebra quotient of k[Z"] > kS is
isomorphic to k[Z3"/N] x¢ k¢ where (G, N,®) € QD(S, ~ Z3"). As pointed out
n [17], there are many normal S,-stable subgroups N < Z3".
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3.3. The Main Example. We now come to the examples that motivated
this study. Let M, N > 2 and consider the group

Cov =490 gm-1190 = =ap_1=L19n Gix: gjy - ) = 1>

endowed with the cyclic action of Zj;, = <h) on the generators. If M = N =2,
we are in the situation of the first example.

The Hopf algebra &[Ty y] > kZ¥ arose in [6] from certain representations of
Wang’s quantum permutation algebra. The following description of I'ys y is given
in [6].

Lemma 3.3. We have a group isomorphism
FMAN >~ Z<M71)<N71) > ZN

More precisely, for 0 <i<M—1,0<c¢<N —1, put a; = gg’lgig()"', and let T
be the subgroup of 'y n generated by the elements a;.. Then T is a free abelian
group of rank (M — 1)(N —1), with basis {ai,1 <i<M-1,1<c¢<N -1},
and there is a split exact sequence

1 =T —>Tyny—2Zy—1

where the group morphism on the right Ty vy — Ly = {t) is defined by g;— t.
The Zy = {t)-action on T is given by t-a; = goaicgo_1 = aj cy1, While the Ly =
(hy-action on Ty y is given by h-a; = ai+17(,afi, h - go = goaio.

ProOF. Let T be the kernel of the above group morphism 'y, y — Zy =
{ty. It is clear that T is generated by the elements of type g;, - - - gi,, and hence is
abelian. The elements a;. belong to 7', and let 7, be the subgroup generated by
these elements. Using the relations

giajcgfl = dj c+1, gflajcgi =dj 1

we see that 7y is normal in I'y y. The elements a; = gy lg; belong to T, and
hence we have [y n: To] < N. Butthen N =Ty n:T] < [Ty n: To] <N, and
thus Ty = T. That T is generated by {a;, 1 <i< M — 1,1 <c¢ < M — 1} follows
from the identities

N-1

ap. = 1, for any ¢, and H ai. =1 for any i

=0
and to prove that 7 is indeed free one considers a certain representation of I'y y,
see [6], or the examples in the last section. The last assertion about the actions is
immediate. O
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Our main result on the Hopf algebra quotients of k[ ] > k% is the
following generalization of Corollary 3.2.

THEOREM 3.4. Let f: k[Upr n] X k% — A be surjective Hopf algebra map
with A infinite-dimensional and non-cocommutative. Assume that one of the fol-
lowing conditions holds.

(1) N=2 and M is prime.
(2) M =2 and N is prime.

Then f is an isomorphism.

In other words, the only non-trivial infinite-dimensional quotients of
k[Car n] > k%v are group algebras.

To prove Theorem 3.4, we will need a couple of lemmas.

LEMMA 3.5. Assume that N is a prime number and that V < ZM~DWN=1 xq
Zy is a normal subgroup. If V ¢ ZM=VWN=D " then the quotient group
(ZM-DWN=1 50 7))V is finite and abelian.

Proor. First note that it is clear from the definition of I'y; » that an abelian
quotient is finite, hence we just have to show that (ZM~VWV=D i 7z,)/V is
abelian. There exists, by the assumption, ae ZM VN1 and 1<k <N -1
such that at* e V. Working in the quotient group, the assumption that N is
prime enables us to assume that k£ =1, and hence at € V. Hence the quotient
group (ZM=VWV=D 54 7Z,\)/V is generated by the image of the abelian group

ZM-DIN=1 " and is abelian. l

LEMMA 3.6. Let p be a prime number and let f : Q*~' — Q7! be a Q-linear
map whose matrix in the canonical basis is

00 -~ 00 -1 -1 -1 - -1 -1 -1
1 0 -~ 00 -1 1 0 0 0 0
o1 -~ 00 -1 0 1 0 0 0
R . R . or . .
00 -~ 10 -1 0 0 1 0 0
00 --- 01 -1 o o0 o0 -~ 1 0
Then for any non-zero ue QP! the elements u, f(u),..., " >(u) e Q""" are

Q-linearly independent.
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PrOOF. As usual we view Q7! as a Q[X]-module by letting X.v = f(v), for
any veQ” ! The first matrix is the companion matrix of the cyclotomic
polynomial

PX)=1+X+-+ X2+ X" e Q[X]

and hence P(X) is the characteristic polynomial of f, as well as its minimal
polynomial since P is irreducible in Q[X]. Then since P is irreducible, it is the
only invariant factor of f and the structure theory of modules of a principal ideal
domain then gives that, as a Q[X]-module, one has Q! ~ Q[X]/(P) and Q”"!
is a simple Q[X]-module. In particular any non zero u € Q7! generates Q7! as
a Q[X]-module. Hence since the Q-subspace generated by u, f(u),..., f77*(u) is
also a Q[X]-submodule, we have that these elements generate Q”~' and hence
also are linearly independent. The proof for the second matrix is the same as
soon as we know that the minimal polynomial of f is P, which is easily seen,
using that /7 =1 and that 1 is not an eigenvalue of f, so that the minimal
polynomial of f divides the irreducible polynomial P. OJ

PrOOF OF THEOREM 3.4. Let 7:k[[y ] X k%% — A be surjective Hopf
algebra map, with A4 infinite-dimensional. Then, by Theorem 2.6, 7 induces an
isomorphism

k[FMN/V] Hop kG ~ A

for (G,V,®)eQD(Zy ~T'y y). Since M is prime, either G is trivial or
G =7y, and hence G = Z,; since A is assumed to be non-cocommutative. We
get

k[Carn/ V] X k%4 ~ 4

Then Lemma 3.5 gives V < ZM~DWV=D gince N is prime and A is infinite-
dimensional. Moreover V' is Zy-stable (since normal) and Z,-stable. The Zy and
7, actions are, in additive notation, implemented by the matrices of Lemma 3.6,
and hence it follows that if 7 # 0, then V' contains a free abelian subgroup of
rank N — 1 and a free abelian subgroup of rank M — 1. The quotient of finite
rank free abelian group by a subgroup of the same rank is finite, hence if M = 2
or N =2, we have that if V' #0, then A is finite-dimensional, a contradiction.
Hence V' =0 and we are done. O

3.4. A Quotient Datum That Is Not of the Type of Example 2.2. We
assume that char(k) # 3, we put M =3 = N and consider the crossed coproduct
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of the previous subsection
k[T33] > k% ~ k[Z* % 23] < k%
We retain the previous notation (see Lemma 3.3):

- Z* is seen as the free multiplicative abelian group on 4 variables a;;, a2,
arl, axn.
+ The first Z3 = {¢)-action is given by

-1 -1 -1 -1
tayg =apn, tap=a;a,, la =axn, an=day, dy
+ The second Zj; = {h)-action is given by
~1 ~1 ~1
h-ayn =aj an, h-an=apan, h-a=a,

-1 -1 -1
h-agzzalz, h-tzta”a]z

For m > 2, let N, = <afl,aly, a5, a5y = Z*. The group N,, is free abelian of
rank 4, hence for o, f € k*, there exists a unique group morphism

®: N, — (k&)
ayl,afy — 01 + ady + afdy:
ay, a0y 4 B0, + ady

It is a tedious but straightforward verification to check that for o«® =1=p°,
then (Zs, N, ®) € QD(Z3 ~ Z* > Z3) (in fact any ® such that (Z3, N,, ®) e
QD(Z; ~ Z* x Z3) has the above form). However ® has values into Zs only
when o = . This therefore furnishes the announced example.

4. Hopf Image of a Smash Coproduct

In this section we show how to describe the Hopf image of a representation
of a smash coproduct as above.

4.1. Hopf Images. We begin by recalling the basic facts on Hopf images
(4].

Let A be Hopf algebra, let R be an algebra and let p: 4 — R be an algebra
map.

A factorization of p is a triple (L,q, ¢) where L is a Hopf algebra, g: 4 — L
is a surjective Hopf algebra map and ¢: L — A is an algebra map, with the
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decomposition p = @g. The category of factorizations of p is defined in the
obvious manner and the Hopf image of p is defined to be the final object in this
category (hence we can also say that this is a minimal factorization), which is
easily shown to exist (see [4]).

In other words, the Hopf image of p is a factorization (4, p,p) having the
following property: if (L, q, ¢) is another factorization of p, there exists a unique
Hopf algebra map f:L — A, such that fg = p and pf = ¢.

The algebra map p: A — R is said to be inner faithful if (4,id4, p) is the Hopf
image of p: this is equivalent to saying that Ker(p) does not contain any non-zero
Hopf ideal, see [4].

Computing a Hopf image is in general a difficult problem. The following
cases are well understood, at least from the theoretical viewpoint.

(1) If A = k[I'] is a group algebra, then the Hopf image of p is k[I'/N| where
N =Ker(pr), and the representation is inner faithful if and only if

N ={1}.
(2) If 4 i liH , with H a finite group, R = k" and the algebra map p is given
by
KT —
S (f(),. o ()
for hy,...,h, € H, then the Hopf image of p is k¢"/»> and p is inner

faithful if and only if H = {hy,...,h,y, see [4]. Note that by the
semisimplicity and commutativity of k% this example enables one to
describe the Hopf image for any representation k7 — M, (k).

4.2. Hopf Images and Smash Coproducts. As before, let H ~ I" be a finite
group H acting by automorphisms on a discrete group I', and let R be an
algebra. Our aim is to describe the Hopf image of an algebra map p : k[I'] < k¥
— R, therefore unifying the descriptions given at the end of the previous sub-
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section. In fact, to simplify the set-up, we will always assume that p» is inner
faithful (otherwise, we can factorize p by an algebra map p’: k[[] < k"' — R
with H’ a subgroup of H and P‘/km inner faithful, thanks to the last item in the
previous subsection). If (H,N,®) e QD(H ~ I'), then we simply denote (N,®D)
the corresponding element of QD(H ~ T).

ProposiTiON 4.1. Let H ~T as above and let p:k[[] <k — R be an
algebra map such that pyn is inner faithful. Let

£(p) = {(H.N,®) = (N,®) e QD(H ~ T) |¥re N, p(r#1) = p(1#0(r))}

For any (N,®) € &(p), there exists a factorization

k[T] > kH ! R

A

k[T /N] > k™

where if j:T/N — I is a section of the canonical projection u:T — T'/N with
Ju(1) = 1, qr#0) = ulr)#0®(u(r) ™) and pulron) = pljulr)#y).

Endow &(p) with the partial order defined by (N,®)<(M,¥)e& NcM
and ¥y = ®. Then &(p) admits a maximal element. For any maximal element
(N,®@) € &(p), the above factorization is universal and k[T /N| X k! is isomorphic
to the Hopf image of p.

Proor. Let (N,®) e &(p). The Hopf algebra map ¢ is defined in Propo-
sition 2.4. We have

pa(r#) = p(u(r)#e®(rju(r) ™)) = p(1#®(rju(r) ™ ))p(julr)#d)

= p(rju(r) ' #1)p(ju(r)#4) = p(r#y)

Hence pg=p and p is an algebra map, and we have our factorization. It
immediate that &(p) is non empty, that < defined above is indeed a partial
order on &(p), and it is an easy verification to check that &(p), endowed with
this partial order, is inductively ordered. By Zorn’s Lemma we can pick a
maximal element (N,®) in &(p). Let us show that the previous factoriza-
tion realizes the Hopf image of p. So let (L, p,p) be the universal factorization
of p: the universal property of the Hopf image yields a Hopf algebra map
n: k[l /N] x¢ k" — L such that the following diagram and all its subdiagrams
commute.
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k[T >k ? R
\) /
L
q 1 p
| 7
\
k[T/N] ¢ kH

By construction 7 is surjective, and mx is injective since p is (by the inner
faithfulness of pj.x). Let

M = {reT|3f ek with n(u(r)#1) = n(1#f)}
and
M' = {reT|3f ek with p(r#1) = p(1#f)}
For re M, we have
plr#l) = mq(r#1) = z(u(r#®(rju(r) ™)) = 2(1#0(rju(r) ") f)
= p(1#®(L#rju(r) ") f)
for some f k", hence re M’'. For re M', we have
n(u(r)#1) = ng(r#@(ju(r)r=')) = p(1#@(u(r)r~) f) = a(1#0(ju(r)r ) f)

for some f ek, and re M. Hence M = M'. We know, by Proposition 2.5, that
M is an H-stable normal subgroup of I' and that there exists ¥ : M — (k)*
such that (M,¥) e QD(H ~ TI') and p(r#!1) = p(1#Y¥(r)) for re M. For re M,
we have

p(r#1) = pp(r#1) = ip(1#() = p(1#(r))
and hence (M,¥) € &(p). It is clear from the first description of M that N < M.
For re N, we have

p(r#1) = nq(r#1) = p(1#®(r)) = p(1#¥(r))

hence (N,®) < (M,V¥), and we have N = M by maximality of (N,®). It then
follows from Lemma 2.7 that n is injective, and hence is an isomorphism.

O

REMARK 4.2. It is possible to avoid the use of Zorn’s Lemma in the
previous proof, using the existence of the Hopf image. We found the use



Quotients and Hopf images of a smash coproduct 303

of Zorn’s Lemma more convenient to formulate the proof. A drawback is that
the description is not very explicit (but this would not be more explicit without
Zorn’s Lemma).

We now present two situations where the Hopf image has a more explicit
description.

COROLLARY 4.3. Let H~T as above and let p:k[[| <k — R be a
representation such that pyu is inner faithful. Consider the H-stable normal
subgroup of T

N ={reT|Vhe H,3f e (K" with p(h-r#1) = p(1£f)}

and assume that there exists ® : N — (k™)™ such that (N,®) e &(p). Then the
Hopf image of p is isomorphic with k[T /N] Xg k™.

Proor. For (M,¥)e &(p), we have M = N. Hence if (N,D) < (M,V),
then N = M and ® =Y. This shows that (N, ®) is maximal, and the previous
result finishes the proof. O

COROLLARY 4.4. Let H~T as above and let p:k[[| <k — R be a
representation such that pyu is faithful. Let

No={rel|3f ek™ with p(r#1) = p(1#f)}

This is a normal subgroup of I, and the faithfulness assumption on pyn yields a
group morphism ® : Nog — (k™)™ such that p(r#1) = p(1#®(r)) for any r e Ny.
Now put

N = {re No|Vhk,l e H hreNy and ®(k.r)(Ih) = (I~ h).r)(h)D(k.r)(1)}

Then N a normal and H-stable subgroup of ', (N,®) € &(p) and the Hopf image
of p is isomorphic with k[T /N] Xq k*.

Proor. It is a direct verification to check that N is a normal and H-stable
subgroup of T, that (N,®) e QD(H ~T') and hence that (N,®)e &(p). For
(M,¥) e é&(p), we have M = N. Hence if (N,®) < (M,¥), then N =M and
® =Y. This shows that (N,®) is maximal, and Proposition 4.1 finishes the
proof. |
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5. Examples

We illustrate the results of the previous section using the examples of Section
3. We assume that k& has characteristic zero here.

5.1. Construction of the Representations. Let M, N > 2. As in [6], we fix a
matrix Q = (Q;.) =€ Myn (k™) with Qp. =1 = Qj for any i, ¢ (the indices are
taken modulo M, N, respectively). To Q we associate the matrix 0 = (0;) €
My (k) defined by 0;. = 1@t e have

Qi( Qi*l,(‘*l
N—1 M—1
O =1= Ou, 0<i<M-10<d<N-1
=0 Jj=0
We denote by «,...,ex_1 the canonical basis of k. We consider the Hopf

algebra [Ty y] > k%% of Subsection 3.3 and we will be interested in the
representation

po : k[Tar,n] > k™ — End(k")
defined as follows: for 0 <i< M — 1, we have
Polgi#l)(ec) = Oicec—i
and for f e k%, we have
po(1#f) = f(h)id, where Zy = <h)

The representation p,, is a constituent of the representation g in [6], to which
we will restrict here (note however that inner faithfulness of p, implies inner
faithfulness of ).

It is clear that PO, 1, is inner faithful, so we can use the statements of the
previous section.

Recall [6] that we say that p;,..., p, € k* are root independent if for any
Fly...,Im € 2

r m — p— J— J—
pll-pr=l=rn=--=r,=0

It is shown in [6] that if the elements Q;, ] <i< M —1, 1 <¢ < N —1 are root
independent, then the representation p,, is inner faithful. Our main aim is to show
that, at least in some situations, the root independence assumption can be
weakened, as follows.
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THEOREM 5.1.  Assume that M =2 and N is prime, or that M is prime and

N = 2. If one the elements Q. is not a root of unity, then the representation p, is
inner faithful.

5.2. Preliminaries and Notation. We now develop some preliminary ma-
terial. We retain the previous notation. For R=(R;), | <i<M -1, 1 <c¢<
N — 1: R € Z: put Sj(? = Nje + Z;Zl_l Ric;

M—-1 N-1
%(R,0) = < I1 0f;~f>

j=1 =1
and for 1 <d <N -1,
M-1 s M—-1 N-1 s E
a(R,d) = (H 0/72”) ( H 9]‘12[,{1_ ,.{1>
J=1 J=1 e=1c#—d

The following result is a direct verification.

LemMMA 5.2. For any 0 <d < N — 1, the map

o(—,d) : ZM-DIN=D) ) gex
R— a(R,d)
is a group morphism.

There is moreover an action of Zy = <h> on ZM~DN=1 given on the
standard basis €., 1<i<M—-1, 1<c<N-1, by h-€.=¢€ 1 —€1, (the
indices are taken modulo M, N). This is in fact the same action as the one
in Lemma 3.3, but written additively. For 0 </<M —1 and R= (Ri)€

ZM-DN=1) " we note /- R=h'-R.
DEFINITION 5.3. For 0</<M —1, the groups Ej < ZM-DN=1 g
Ié c (kX)N 1 are the respective kernel and image of the group morphism
Z(M*l)(Nfl) N (kX)Nfl

R (a(l- R,0)a(/ - Rad)il)lsdgjvq

and we put Eg = f‘;[(;lE[Q.
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LemMa 5.4. (1) If the elements Qie, 1 <i< M —1,1<c<N—1 are root
independent, then Eg = (0) = Ep.

(2) If one of the elements Q. is not a root of unity, then the group 18 is
infinite.

ProOF. (1) One checks first that if the elements Q,, 1<i< M —1,
I < ¢ < N —1 are root independent, then so are the elements 0;,, | <i< M — 1,
l <c< N -1, and then the verification that Eg = (0) is immediate using the
root independence of those elements.

(2) Using the standard basis of the free abelian group ZM-DIN=1 e see
that Ig is the subgroup of (k*)*~! generated by the elements

(0:05, 0 g0, c+a) 1 cgen—1s 1<I<SM—11<c<N-1

Denote by u., the group of roots of unity in k* and assume that Ig is finite.
Then for any 1 <i<M —1 and 1 <¢,d <N —1 we have

0i 00(‘ 61 c+d00-,c+d € U
and in particular for any 1 <c¢,d < N — 1, we have

N-1
“1p-1 “NpN -1

H 0ic0. 0i,¢*+d00,6’+d = Oo,c 00, cva € Hoo = 0070+d00,c € Uy

i=1

Then we have for any 1 <c <N -1

T thats! = 057 <10, = e,

From this we deduce easily that 0;. € u, for any i, ¢, and then that Q,. € u,, for
any i, ¢ as well. O

5.3. We come back to the study of the representation p,. According to
Proposition 4.1 and Corollary 4.3, we need to study the group

No={reTy n|VyeZy,3f € (k*)* with po(y-r#1) = f(h)1}
={relyn|VyeZy,Iiek” with py(y-r#l) =il}
Lemma 5.5. The subgroup Ng is the subgroup of T ={aj,1 <i< M —1,
1 <c¢<N-—1) formed by elements
1 N—1

M—
I(‘
= 1T [T«

i=1 =1

2
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or which we have R = (R;.) € Ep. Moreover the Hopf image of p, is isomorphic to
J 0 pf image of pg P
K[T)U x Zy] Xg kZm

Sfor some quotient datum (U, ®), where U < Ny.

PrOOF. One sees easily that an element in Ny belongs to 7', and we have
polaic#1)(eq) = Oi.caly, f, ,q€a- From this we see that for ¢ as above, we have
pola#l)(eq) = o(R,d)es, and hence Ny is indeed the announced subgroup. By
Proposition 4.1, the Hopf image of p, is isomorphic to k[I's n/U] Xo k% for
some subgroup U c Ny, with T’y y/U = T/U X Zy by the first assertion. []

From this, choosing Q such that Ep = (0), we see that T is indeed free
abelian on the elements a;, 1<i<M -1, 1<c<N-1 (Lemma 3.3). In
general we also see that the groups Ep and Ny are isomorphic, and that
Z2M-DN=D /g, ~ T/Ny.

From this, we first recover Theorem 4.6 from [6] in the case of cyclic groups.

COROLLARY 5.6. If Eg = (0), then the representation p is inner faithful

Proor. If Eg is trivial, so is Ny, and the result follows from Lemma 5.5.
O

COROLLARY 5.7. If Ig is infinite, then the Hopf image of the representation
po is infinite-dimensional.

Proor. Again the Hopf image of p, is isomorphic to k[T /U X Zy] X kZm
for some subgroup U < Ny. We have 13 ~ Z(M_l)(N_l)/Eg, so [ZM-DWN=D B
= [T : No] is infinite, as well as [T : U], and we are done. O

We can also prove Theorem 5.1 now.

ProOF OF THEOREM 5.1. The group 13 is infinite by Lemma 5.4, hence by
the previous corollary the Hopf image of p,, isomorphic to k[['y, /U] Xo kZm
is infinite-dimensional. By Theorem 3.4, either U is trivial, and we are done,
either &[Ty n/U] Xo kZm is cocommutative. In this case the Z,s-action on
Iy n/U is trivial, and since it permutes cyclically the generators, the quotient
group 'y n/U is finite cyclic, and k[['y n/U] Xo kZv is finite-dimensional, a
contradiction. |
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5.4. Example at Small Indices. We end the paper with some precise results
at small indices M and N. We begin by the case M =2 = N. We have then

o=} 1) o[ 1)
1 ¢q q9 4q

for some ¢ € k*, and we simply denote p, by p,. We retain the notation of the
beginning of Section 3.

PrOPOSITION 5.8.  Let A, denote the Hopf image of p,: k[I2] < k% —

End(k?) ~ M,(k), and let m = o(q).

(k

(1) If m= oo, then Ay ~ k[[2 5] > k%2

(2) If m ¢ 2N, then A, ~ A(m).

(3) If me 2N and m ¢ 4N, then A, ~ A(%).
(4) If me 4N, then A, ~ B(%).

In particular, we have dim(4,) = 4o0(q*).

Proor. (1) follows from Corollary 5.6. We assume now that ¢ is a root of
unity. We have, in matrix form

-2
g 0
#1) =
Palan#l) (0 612)

Thus the subgroup Ny in Lemma 55 is formed by the -elements
{ak, k e Z,m|4k}.

(2) Assume that m ¢ 2N. Then Ny = <a};>. For ® the trivial map, we easily
see that (Ng,®) € &(p,), and hence we have 4, ~ A(m) by Corollary 4.3.

(3) Assume that m e 2N and m ¢ 4N. Then Ny = <am/ 2%, For @ the trivial
map, we see that (No,®) € &(p,), and hence we have A, ~ A(%) by Corollary
4.3.

(4) Assume that m € 4N. Then Ny = <aﬁ/ >. Consider, as in the beginning
of Section 3, @, : La)™y ~ 2 — Z> = {z>, the unique group morphism
with ®@,, (aﬁ“) =y (recall that gog; =ay;). It is immediate to check that
(Ng,®,4) € 6(p,), and hence we have 4, ~ B(%) by Corollary 4.3.

The last assertion is immediate. [

As a last example, we consider the case M =3, N =2. We then have

1 1 q q
O0=11 p| and 0= p p!
1 ¢ ™' pq!
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If p or g is not a root of unity, we know from Theorem 5.1 that p, is inner
faithful. In the root of unity case, we have the following particular result.

PROPOSITION 5.9.  Assume that p and q are roots of unity, and let m = o(p?)
and n = o0(q*). Denote by Ao the Hopf image of Po

(1) 1f GCD(m,n) = 1 = GCD(m, 3) = GCD(n,3), then Ag is isomorphic to a
smash coproduct

k[<Zmn X Zmn) bl ZZ] X kZ3

(2) If p>=¢q* and GCD(m,3) =1, then Ay is isomorphic to a smash
coproduct

K[(Zy X Zi) > Zo] X k%
(3) If p?> =q* and 3|m, then Ag is isomorphic to a smash coproduct
k[(Zm X Zm/3) b Z2] A kZ}

Proor. In matrix form, we have

-2 2
4 0 p- 0
1) = #1) =
pylan#1) < 0 q2>’ pylan#1) (0 q4)

Hence the group Ny consists of elements af‘laf] for which we have

P =@ ()P = ()7

(1) Our assumptions imply that Np consists of elements af‘lafl with
o, f € mnZ. Taking @ : Ng — k% the trivial map, we see that (Np, @) € &(p),
and we conclude by Corollary 4.3.

(2) Our assumptions imply that No consists of elements al“lafl with
o, e mZ, and we conclude as in the previous case.

(3) Here our assumption imply that Ny consists of elements alalaf1 with

m m

a,ﬂe{<—2kr;+ml,kr;>,k,lel}:Z(m,O) +Z(—23,3> = Eyc 77

We then have T/Ng ~Z?/Ep ~ Z,, x Z,,3 (by the standard theory of finitely
generated abelian groups), and we conclude as in the previous cases. O
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