PARTIALLY ORDERED RINGS II

By
Yoshimi Kitamura and Yoshio Tanaka

Abstract

This paper is a continuation of [6]. We study partially ordered rings in terms of non-negative semi-cones and convex ideals, considering order-preserving homomorphisms, residue class rings, and certain product rings, etc.

1. Introduction

Partially ordered rings have been considered by several authors. Especially, the systematic foundation of lattice-ordered rings has been given by Birkhoff and Pierce [2]. Recently, an interesting result of a lattice-ordered skew field has been obtained in [10].

In this paper, we assume that all rings are non-zero commutative rings with identity. The symbol R means such a ring with the identity element denoted by 1 , and I means an ideal of R (similar, for R^{\prime} and I^{\prime}), unless otherwise stated.

We shall consider commutative, partially ordered rings. As is well-known, for a ring R, there is a bijection between the set of partial orders of R which make it into a partially ordered ring and the set of those S of R having properties: $S \cap-S=\{0\} ; S+S \subset S$ (S is closed under addition); $S S \subset S$ (S is closed under multiplication). In the previous paper [6], we call a subset S of R satisfying these three conditions a non-negative semi-cone as a generalization of "positive cones" of integral domains, as well as, "non-negative cones" of rings. For a partially ordered ring R, in order that the residue class ring R / I be a partially ordered ring with the canonical order induced from R, I is precisely a convex ideal, as is wellknown ([4]). The concepts of "non-negative semi-cones" and the "convex ideals" play important roles in the theory of partially ordered rings (see [1], [2], [3] and

[^0][4], etc.). In view of these concepts, we shall study partially ordered rings, considering order-preserving homomorphisms, idempotents, residue class rings, and certain product rings, etc. Also, we give characterizations for typical subsets of the product rings to be non-negative semi-cones, and a characterization for non-negative cones of a certain product ring of a field.

2. Non-negative Semi-cones and Convex Ideals

Let A, B be subsets of R. Define $-A=\{-x \mid x \in A\}, A+B=\{x+y \mid x \in A$, $y \in B\}, \quad A B=\{x y \mid x \in A, y \in B\}, \quad a B=B a=\{a\} B$ for $a \in R$, and $A \backslash\{0\}=$ $\{x \mid x \in A, x \neq 0\}$. Also, for a subset C of R^{\prime}, define $A \times C=\{(x, y) \mid x \in A$, $y \in C\}$.

First, let us recall some basic definitions used in this paper. For other terminologies, see [4], [6], etc.

Definition 2.1. A subset S of a ring R is a non-negative semi-cone ([6]) (resp. non-negative cone ([5])) of R if S satisfies the following (i), (ii), and (iii) (resp. (i), (ii), (iii), and (iv)):
(i) $S \cap(-S)=\{0\}$.
(ii) $S+S \subset S$.
(iii) $S S \subset S$.
(iv) $R=S \cup(-S)$.

A subset S of R is a positive cone ([5], [9]) of R if S satisfies the above (ii) and (iii), and $S \cup(-S)=R \backslash\{0\}$. For a positive cone $S, S \cup\{0\}$ is a non-negative cone.

We recall that (R, \leq) is a partially ordered ring (resp. ordered ring) if \leq is a partial order (resp. total order) on R such that $a \leq b$ implies $a+x \leq b+x$ for all x, and $a \leq b$ and $0 \leq x$ implies $a x \leq b x$. Also, (R, \leq) is an ordered integral domain if it is an ordered ring which is an integral domain.

We note that for a non-negative semi-cone S of a ring R, we induce a canonical partial order \leq_{S} in R by defining $x \leq_{S} y$ by $y-x \in S$, and $\left(R, \leq_{S}\right)$ is a partially ordered ring. Conversely, for a partially ordered ring (R, \leq), we induce a canonical non-negative semi-cone $S=\{x \mid 0 \leq x\}$ of R with $\leq \leq_{s}$. These are also valid for the relationship between "non-negative cones (resp. positive cones)" and "ordered rings (resp. ordered integral domains)". (A non-negative semi-cone S of a ring R is the set R^{+}of all positive elements* of a po-ring (or partly ordered ring) $\left(R, \leq_{S}\right)$ in [2]).

[^1]Definition 2.2. Let R, R^{\prime} be rings. As is well-known, $R \times R^{\prime}$ is a ring under component-wise addition and multiplication (i.e., for $(x, y),(z, w) \in R \times R^{\prime}$, $(x, y)+(z, w)=(x+z, y+w)$, and $(x, y) \cdot(z, w)=(x z, y w))$. Let us call such a ring $R \times R^{\prime}$ the direct product ring.

Notations. (1) The brief terminology "semi-cone" (resp. "cone") is used as an abbreviation of "non-negative semi-cone" (resp. "non-negative cone").
(2) The symbol (R, \leq) (or simply, R) means a partially ordered ring, and S means the canonical semi-cone of R, and similar to the symbols $\left(R^{\prime}, \leq^{\prime}\right)$ (or simply, R^{\prime}) and S^{\prime}, unless otherwise stated.
(3) The symbol $R \times R^{\prime}$ means the direct product ring, unless otherwise stated.

An element e of a ring R is called an idempotent if $e^{2}=e$. For an idempotent e of $R, f=1-e$ is also an idempotent of R with $e f=0, e+f=1$.

The symbol \mathbf{Z} denotes the ring of integers, and \mathbf{Z}^{*} denotes the set of nonnegative integers.

Remark 2.3. Let S be a semi-cone of a ring R. Let $a, b \in S \cup \mathbf{Z}^{*}$. Then $a S+b S(\subset S)$ is obviously a semi-cone of R (here, $a S+b S=S$ for $a=1$ or $b=1$). However, we have the following (1) and (2).
(1) $S+S^{\prime}$ need not be a semi-cone of R for a semi-cone S^{\prime} of R, and similar to $S e$ for an idempotent e of R (indeed, let $R=\mathbf{Z} \times \mathbf{Z}$. Let $S=$ $\left(\left(\mathbf{Z}^{*} \backslash\{0\}\right) \times \mathbf{Z}\right) \cup\{(0,0)\}, \quad S^{\prime}=\left(\mathbf{Z} \times\left(\mathbf{Z}^{*} \backslash\{0\}\right)\right) \cup\{(0,0)\}$. Then S and S^{\prime} are semi-cones of R. But, $S+S^{\prime}=R$, and for an idempotent $e=(0,1), S e=$ $\{0\} \times \mathbf{Z}$. Then neither $S+S^{\prime}$ nor $S e$ is a semi-cone of R).
(2) $S S$ need not be a semi-cone of R (indeed, let $R=\mathbf{Z}$, and $S=2 \mathbf{Z}^{*}+3 \mathbf{Z}^{*}$. Then S is a semi-cone of R, but $S S$ is not a semi-cone, because $4,9 \in S S$, but $4+9=13 \notin S S$).

Proposition 2.4. Let S be a semi-cone of a ring R, and let e and $f=1-e$ be idempotents of R with $e, f \neq 0$. Then the following hold.
(1) $S e$ is a semi-cone of Re iff $S e \cap(-S e)=\{0\}$. In particular, for $S e \subset S$, $S e$ is a semi-cone of Re.
(2) If S_{1} and S_{2} are semi-cones of Re and Rf respectively, then $S_{1}+S_{2}$ is a semi-cone of R.
(3) $S^{\prime}=S e+S f$ is a semi-cone of R iff so are $S e$ of $R e$ and $S f$ of $R f$.

Proof. (1) is obvious. (2) is routinely shown, noting $(R e)(R f)=R e \cap R f=$ $\{0\}$. For (3), the if part holds by (2). For the only if part, noting $S^{\prime} e=S e \subset S^{\prime}$, $S e$ is a semi-cone of $R e$ by (1). Similarly, $S f$ is a semi-cone of $R f$.

Let $h: R \rightarrow R^{\prime}$ be a map with R and R^{\prime} rings. We recall that h is an epimorphism if it is a ring homomorphism with $h(R)=R^{\prime}$. For semi-cones S of R and S^{\prime} of R^{\prime}, h is called order-preserving if $h(S) \subset S^{\prime}$.

Let R be a ring. An ideal I of R is proper if $I \neq R$. For a proper ideal I of $R, R / I$ denotes the residue class ring consisting of elements $[a]=I+a(a \in R)$.

Definition 2.5 ([4]). For a proper ideal I of $(R, \leq), I$ is convex in R if whenever $0 \leq x \leq y$ and $y \in I$, then $x \in I$. We induce a canonical ordering relation on R / I as follows: For $a \in R$, define $[a] \geq 0$ if $[a]=[x]$ for some $x \geq 0$ in R (we use the same symbol \leq in R / I without confusion).

We recall that a proper ideal I of (R, \leq) is convex iff $(R / I, \leq)$ is a partially ordered ring; equivalently, $S^{\prime}=\{[x] \mid[x] \geq 0\}$ is a semi-cone of R / I ([4], etc.).

We assume that R / I has the semi-cone S^{\prime}, unless otherwise stated.
Let $\varphi:(R, \leq) \rightarrow(R / I, \leq)$ be the natural map defined by $\varphi(x)=[x]$ for $x \in R$. Then φ is an order-preserving, epimorphism with $\varphi(S)=S^{\prime}$.

The convexity of an ideal I of a partially ordered ring R is usually defined under I being proper in R. But, for convex ideals I and J of $R, I+J$ need not be proper in R (see Example 2.11(1)). Moreover, for some partially ordered ring $R \times R$, ideals $I_{0}=0 \times R$ and $I_{0}^{\prime}=R \times 0$ are convex (see Remark 3.20 later), but $I_{0}+I_{0}^{\prime}$ is not proper in $R \times R$, and also for an idempotent $e=(0,1), I_{0} e$ is not proper in $R e$.

In view of the above, let us introduce the following terminology.
Definition 2.6. Let J be an ideal of a ring R (including $J=R$), and S be a semi-cone of R. Let us say that J is S-convex in R if whenever $x \in S, y-x \in S$ and $y \in J$ imply $x \in J$. When $J \neq R$, we shall call such an S-convex ideal J convex for S. For (R, \leq), obviously J is S-convex in R iff J is convex (for S), or $J=R$.

Proposition 2.7. Let S be a semi-cone of a ring R, and let e and $f=1-e$ be idempotents of R with $e, f \neq 0$. Then the following hold.
(1) Let $S e \subset S$. If I is S-convex in R, then Ie is Se-convex in Re.
(2) Let $S e \subset S$ and $S f \subset S$. I is S-convex iff Ie is Se-convex and If is Sf-convex.

Proof. For (1), $S e$ is a semi-cone of $R e$ by Proposition 2.4(1). To see $I e$ is $S e$-convex in Re, let $x e, y-x e \in S e(x \in S)$, and $y \in I e$. Since $S e \subset S$ and $I e \subset I$, xe, $y-x e \in S$, and $y \in I$. Since I is S-convex in R, xe $\in I$, hence $x e \in I e$. For (2), the only if part holds by (1). For the if part, let $x, y-x \in S$, and $y \in I$. Then $x e, y e-x e \in S e$, and $y e \in I e$. Since $I e$ is $S e$-convex in $R e, x e \in I e$. Similarly, $I f$ is $S f$-convex, so $x f \in I f$. Hence $x=x e+x f \in I e+I f=I$. Thus I is S-convex.

Remark 2.8. In (1) of Proposition 2.7, " $S e \subset S$ " is essential. Also, it is impossible to replace " $S e$-convex" by "convex for $S e$ " even if I is convex for S in R. We have similar mattes in (2) there. For these, see Example 2.20 later.

The following is a classical result, but let us give a proof for the readers.
Theorem 2.9. Let $\sigma:(R, \leq) \rightarrow\left(R^{\prime}, \leq^{\prime}\right)$ be an epimorphism with $\sigma(S)=S^{\prime}$, and let $J=\operatorname{Ker}(\sigma)$. Then there exists a bijection Φ between the class of convex ideals I of R containing J and the class of convex ideals I^{\prime} of R^{\prime}, defining by $\Phi(I)=\sigma(I)$ and $\Phi^{-1}\left(I^{\prime}\right)=\sigma^{-1}\left(I^{\prime}\right)$. Especially, J is a convex ideal of R.

Proof. Let I be a convex ideal of R containing J. Evidently, $I=\sigma^{-1}(\sigma(I))$, hence $\sigma(I) \neq R^{\prime}$. To see $\sigma(I)$ is convex in R^{\prime}, let $0 \leq^{\prime} \sigma(x) \leq^{\prime} \sigma(y)$ and $y \in I$. Since $0 \leq^{\prime} \sigma(y-x)$ and $S^{\prime}=\sigma(S)$, there exists $s \in S$ such that $\sigma(y-x)=\sigma(s)$. Thus $y-x-s=a$ for some $a \in J$. Since $0 \leq^{\prime} \sigma(x)$, there exists similarly $t \in S$ such that $\sigma(x)=\sigma(t)$. Thus $x-t=b$ for some $b \in J$. Hence $s+t=y-(a+b)$. Since $J \subset I$, this implies that $s+t \in I$. Since I is convex in $R, s, t \in I$. Hence $\sigma(x)=\sigma(t) \in \sigma(I)$. Then $\sigma(I)$ is convex in R^{\prime}. Conversely, let I^{\prime} be a convex ideal of R^{\prime}. Evidently, $\sigma\left(\sigma^{-1}\left(I^{\prime}\right)\right)=I^{\prime}$ and $\sigma^{-1}\left(I^{\prime}\right) \supset J$. To see that $I=\sigma^{-1}\left(I^{\prime}\right)(\neq R)$ is convex in R containing J, let $0 \leq x \leq y$ and $y \in I$. Since $\sigma(S) \subset S^{\prime}, 0 \leq^{\prime}$ $\sigma(x) \leq^{\prime} \sigma(y)$. Since $\sigma(y) \in I^{\prime}$ and I^{\prime} is convex in $R^{\prime}, \sigma(x) \in I^{\prime}$, then $x \in I$. Thus I is convex in R.

For convex ideals I and J of $R, I+J$ need not even be S-convex (see Example 2.20(4) later). While, for R being an ordered ring, the following holds.

Lemma 2.10. Let (R, \leq) be an ordered ring. If $I_{i}(i=1,2, \ldots, n)$ are convex ideals of R, then $I=I_{1}+I_{2}+\cdots+I_{n}$ is convex in R.

Proof. It suffices to show that $I^{\prime}=I_{1}+I_{2}$ is convex. To see I^{\prime} is proper, suppose not. Then $1=a+b$ for some $a \in I_{1}$ and $b \in I_{2}$. We can assume $a \leq b$.

Then $0<1 \leq 2 b \in I_{2}$. Thus, $1 \in I_{2}$ by the convexity of I_{2}, so $I_{2}=R$, a contradiction. Thus, I^{\prime} is proper. Similarly, the convexity of I^{\prime} is shown. Hence, I^{\prime} is convex.

Example 2.11. (1) For a partially ordered ring $R=\left(\mathbf{Z}, \leq_{S}\right)$ with $S=n \mathbf{Z}^{*}$ ($n>1$), if I and J are convex ideals of R, then $I+J$ is S-convex (by means of [6, Proposition 3.4]). But, it is impossible to replace " S-convex" by "convex" (indeed, let $I=2 \mathbf{Z}$ and $J=3 \mathbf{Z}$, and let $S=6 \mathbf{Z}^{*}$ in \mathbf{Z}. Then I and J are convex ideals of a partially ordered ring $\left(\mathbf{Z}, \leq_{S}\right)$, but $\left.I+J=\mathbf{Z}\right)$.
(2) For an ordered integral domain D, let $D[x]$ be the polynomial ring over D, and for $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ in $D[x], 0<_{2} f$ means the first nonzero coefficient a_{k} is positive in D. Then $R=\left(D[x], \leq_{2}\right)$ is an ordered integral domain (see [6], etc.). Thus, for any convex ideals I and J of $R, I+J$ is convex in R by Lemma 2.10.

Corollary 2.12. Let $\sigma:(R, \leq) \rightarrow\left(R^{\prime}, \leq^{\prime}\right)$ be an epimorphism with $\sigma(S)=$ S^{\prime}, and I be an ideal of R, and let $J=\operatorname{Ker}(\sigma)$. Then $I+J$ is a convex ideal of R iff so is $\sigma(I)$. For (R, \leq) being an ordered ring, if I is convex, then so is $\sigma(I)$.

Proof. This is shown in view of Theorem 2.9, noting that $\sigma(I+J)=\sigma(I)$ with $I+J \supset J$, and $\sigma^{-1}(\sigma(I))=I+J$. The latter part holds by Lemma 2.10.

Remark 2.13. In the first half of Corollary 2.12, for I being convex in R, $\sigma(I)$ need not be S^{\prime}-convex in R^{\prime}; see Example 2.20(6) later. Also, the converse of the latter part need not hold (indeed, let $R=\left(\mathbf{Z}[x], \leq_{2}\right)$. Then every ideal $A=\left(x^{n}\right)$ (generated by $\left.x^{n}(n>0)\right)$ is convex in R (by [6, Remark 3.8]). Let $I=\left(x^{2}+x\right), I^{\prime}=(x), J=\left(x^{2}\right)$. Then I^{\prime} and J are convex, but I is not convex in R (actually, $0 \leq_{2} x^{2} \leq_{2} x^{2}+x \in I$, but $x^{2} \notin I$). Let $\varphi: R \rightarrow R / J$ be the natural map. Then $\varphi(I)\left(=\varphi\left(I^{\prime}\right)\right)$ is convex in R / J, but I is not convex).

Corollary 2.14. Let J be a convex ideal of R. For the natural map $\varphi:(R, \leq) \rightarrow(R / J, \leq)$ and an ideal I of $R, I+J$ is a convex ideal of R iff so is $I^{\prime}=\varphi(I)$ of R / J. For (R, \leq) being an ordered ring, if I is convex, then so is $\varphi(I)$.

Let us show that the (direct product) ring $R \times R^{\prime}$ is never an ordered ring. While, there exists a certain product ring which is an ordered ring; see [5, Example 1] (or Proposition 3.21 later).

Theorem 2.15. (1) Every ordered ring R has the largest convex ideal.
(2) The following (a) and (b) hold. Moreover, (a) and (b) are equivalent.
(a) For any rings R, R^{\prime}, the ring $R \times R^{\prime}$ can not be an ordered ring (i.e., $R \times R^{\prime}$ has no cones).
(b) Any ordered ring R has no idempotents except $e=0$ or $e=1$.

Proof. For (1), let $\left\{I_{\lambda} \mid \lambda \in \Lambda\right\}$ be the collection of all convex ideals in R. Then the sum $L=\sum_{\lambda \in \Lambda} I_{\lambda}$ is the largest convex ideal of R. Indeed, to see L is proper, suppose not. Then, for some $I_{\lambda_{i}}(i=1,2, \ldots, n), 1 \in \sum_{i=1}^{n} I_{\lambda_{i}}$, so $R=$ $\sum_{i=1}^{n} I_{\lambda_{i}}$. But, $\sum_{i=1}^{n} I_{\lambda_{i}}$ is proper by Lemma 2.10, a contradiction. Hence L is proper. The convexity of L is obvious by Lemma 2.10.

For (2), to see (a), suppose ($R \times R^{\prime}, \leq$) is an ordered ring. We will show that $I=R \times 0$ and $J=0 \times R^{\prime}$ are convex in $R \times R^{\prime}$, which implies $I+J \neq R \times R^{\prime}$ by Lemma 2.10, but $I+J=R \times R^{\prime}$, a contradiction. To see I is convex, let $(0,0)$ $\leq(x, y) \leq(r, 0) \in I$. For $f=(0,1) \in R \times R^{\prime},(0,0) \leq f^{2}=f$. Then $(0,0) f \leq$ $(x, y) f \leq(r, 0) f$. Thus $(0,0) \leq(0, y) \leq(0,0)$, so $y=0$. Then $(x, y)=(x, 0) \in I$. Hence I is convex. Similarly, J is convex, using $e=(1,0)$. Next, to see (a) $\Rightarrow(\mathrm{b})$, suppose some ordered ring R has an idempotent e with $e \neq 0$ and $e \neq 1$. Then $\sigma: R \rightarrow R e \times R(1-e)$ defined by $\sigma(r)=(r e, r(1-e))$ is a (ring) isomorphism (actually, if $y=\left(r e, r^{\prime}(1-e)\right)$, then for $x=r e+r^{\prime}(1-e), \sigma(x)=y$. Also, if $\sigma(r)=(0,0)$, then $r e=r(1-e)=0$, thus $r=r e+r(1-e)=0)$. Then, $R e \times R(1-e)$ is an ordered ring by the cone $\sigma(S)$, a contradiction to (a). For (b) $\Rightarrow(\mathrm{a}), e=(1,0)$ is an idempotent in $R \times R^{\prime}$, but $e \neq(0,0)$ and $e \neq(1,1)$. Hence $R \times R^{\prime}$ is not an ordered ring.

Lemma 2.16. For S-convex ideas I, I^{\prime} of a ring $R, S+I=S+I^{\prime}$ iff $I=I^{\prime}$.
Proof. This is shown by the proof of [6, Lemma 4.14], replacing "convex" by " S-convex" (actually, $R=S+I^{\prime}$ implies $I^{\prime}=R$).

In [6], we obtain the following result by means of the above lemma: Let $\sigma: R \rightarrow R^{\prime}$ be an epimorphism, and I (resp. I^{\prime}) be a convex ideal of R (resp. R^{\prime}). Assume that $\left(^{*}\right) \sigma(I)$ is convex in R^{\prime} or R is an ordered ring. If $\sigma(S+I)=$ $S^{\prime}+I^{\prime}$ and $\sigma(S)=S^{\prime}$, then $\sigma(I)=I^{\prime}$. The convexity of I (or I^{\prime}) is essential ([6, Remark 4.16]), but let us consider the question whether the assumption (*) is essential. Namely,

Question 2.17. Let $\sigma: R \rightarrow R^{\prime}$ be an epimorphism, and I (resp. I^{\prime}) be a convex ideal of R (resp. R^{\prime}). If $\sigma(S+I)=S^{\prime}+I^{\prime}$ and $\sigma(S)=S^{\prime}$, then $\sigma(I)=I^{\prime}$?

For this question, we have the following by Corollary 2.12 and Lemma 2.16.

Proposition 2.18. Let $\sigma: R \rightarrow R^{\prime}$ be an epimorphism with $\sigma(S)=S^{\prime}$ Let $J=\operatorname{Ker}(\sigma)$. For convex ideals I of R and I^{\prime} of $R^{\prime}, \sigma(I)=I^{\prime}$ iff $I+J$ is convex in R and $\sigma(S+I)=S^{\prime}+I^{\prime}$.

The following holds by Proposition 2.18.

Corollary 2.19. Let J be a convex ideal of R. Let $\varphi:(R, \leq) \rightarrow(R / J, \leq)$ be the natural map. For convex ideals I of R and I^{\prime} of $R^{\prime}=R / J, \varphi(I)=I^{\prime}$ iff $I+J$ is convex in R and $\varphi(S+I)=S^{\prime}+I^{\prime}$.

The convexity of $I+J$ in Proposition 2.18 and Corollary 2.19 is essential, which shows that Question 2.17 is negative. Indeed, we have the following.

Example 2.20. Let $R=\mathbf{Z} \times \mathbf{Z}$. Then $e=(0,1)$ and $f=(1,0)$ are idempotents of R. Let $1<n \in \mathbf{Z}$, and let $I=\{0\} \times 2 n \mathbf{Z}, I^{\prime}=\{0\} \times n \mathbf{Z}, J=\mathbf{Z} \times\{0\}$. For a semi-cone $A=n \mathbf{Z}^{*}$ of \mathbf{Z}, let $S=\left\{(k, m) \in R \mid 0 \leq_{A} m \leq_{A} k\right\}$. Then S is a semi-cone of R, and the following (1) $\sim(6)$ hold.
(1) $S e, S f$, and $S e+S f=S \times S$ are semi-cones of the ring R, but $S e \not \subset S$, $S f \subsetneq S$, and $S \subsetneq S e+S f$.
(2) I, I^{\prime}, J are convex ideals of $\left(R, \leq_{S}\right)$, and $J f=R f$.
(3) $I(=I e)$ is not Se-convex, and $I^{\prime}\left(=I^{\prime} e\right)$ is convex in $\left(R e, \leq_{S e}\right)$.
(4) $I+J=\mathbf{Z} \times 2 n \mathbf{Z}$ is not S-convex in $\left(R, \leq_{S}\right)$ (indeed, $(0,0) \leq_{S}(n, n) \leq_{S}$ $(2 n, 2 n) \in(I+J)$, but $(n, n) \notin(I+J))$.
(5) $(S+I) e=S e+I^{\prime}$, but $I e \neq I^{\prime}$.
(6) Let $\varphi:\left(R, \leq_{S}\right) \rightarrow\left(R / J, \leq_{S^{\prime}}\right)$ be the natural map with $S^{\prime}=\varphi(S)$.
(a) For the convex ideal $I, \varphi(I)$ is not S^{\prime}-convex in R / J.
(b) There holds that $\varphi(S+I)=S^{\prime}+\varphi\left(I^{\prime}\right)$, but $\varphi(I) \neq \varphi\left(I^{\prime}\right)$.

Indeed, note that $\psi:\left(R / J, \leq_{S^{\prime}}\right) \rightarrow\left(R e, \leq_{S e}\right)$ by $\psi([r])=r e$ is an isomorphism with $\psi\left(S^{\prime}\right)=S e$. Then (a) follows from (3), and (b) holds by (5), since $(\psi \circ \varphi)(S+I)=(\psi \circ \varphi)(S)+(\psi \circ \varphi)\left(I^{\prime}\right)$, but $(\psi \circ \varphi)(I) \neq(\psi \circ \varphi)\left(I^{\prime}\right)$.

3. Products of Partially Ordered Rings

Let R and R^{\prime} be partially ordered rings, but assume $S \neq\{0\}$ and $S^{\prime} \neq\{0\}$ in this section. Let $S_{0}=S \backslash\{0\}$ and $S_{0}^{\prime}=S^{\prime} \backslash\{0\}$.

In what follows, let us also use the symbol " 0 " instead of the set " $\{0\}$ ". We will consider the following typical subsets of the product set $R \times R^{\prime}$.

$$
\begin{aligned}
& T=S \times S^{\prime} . \\
& T_{0}=S \times 0\left(=\left(S_{0} \times 0\right) \cup\{(0,0)\}\right), \\
& T_{1}=\left(S_{0} \times S_{0}^{\prime}\right) \cup\{(0,0)\}, \\
& T_{2}=\left(S_{0} \times S^{\prime}\right) \cup\{(0,0)\}, \text { and } \\
& T_{3}=\left(S_{0} \times R^{\prime}\right) \cup\{(0,0)\}\left(=\left(S_{0} \times R^{\prime}\right) \cup T_{0}\right) . \\
& T_{0}^{\prime}=0 \times S^{\prime}\left(=\left(0 \times S_{0}^{\prime}\right) \cup\{(0,0)\}\right), \\
& T_{1}^{\prime}=T_{1}, \\
& T_{2}^{\prime}=\left(S \times S_{0}^{\prime}\right) \cup\{(0,0)\}, \text { and } \\
& T_{3}^{\prime}=\left(R \times S_{0}^{\prime}\right) \cup\{(0,0)\}\left(=\left(R \times S_{0}^{\prime}\right) \cup T_{0}^{\prime}\right) .
\end{aligned}
$$

Remark 3.1. Obviously, the following (a), (b), and (c) hold, here we define the lexicographic sets L and L^{\prime} in (c). Also, we have the diagram below.
(a) $T_{0} \subset T_{2}, \quad T_{1} \subset T_{2} \subset T_{3}, \quad T_{2} \subset T ; \quad$ and $\quad T_{0}^{\prime} \subset T_{2}^{\prime}, \quad T_{1}^{\prime}=T_{1} \subset T_{2}^{\prime} \subset T_{3}^{\prime}$, $T_{2}^{\prime} \subset T$.
(b) $T_{2}=T_{0} \cup T_{1}, T_{2}^{\prime}=T_{1} \cup T_{0}^{\prime}$; and $T=T_{0} \cup T_{1} \cup T_{0}^{\prime}=T_{0} \cup T_{2}^{\prime}=T_{2} \cup T_{0}^{\prime}=$ $T_{2} \cup T_{2}^{\prime}$.
(c) $L=T_{3} \cup T=T_{3} \cup T_{2}^{\prime}=T_{3} \cup T_{0}^{\prime}$; and $L^{\prime}=T \cup T_{3}^{\prime}=T_{2} \cup T_{3}^{\prime}=T_{0} \cup T_{3}^{\prime}$.

Remark 3.2. (1) Obviously, the sets $T, T_{i}, T_{i}^{\prime}(i=0,1,2,3), L$, and L^{\prime} satisfy (i) and (ii) in Definition 2.1 (with respect to these sets). But, neither $S \times R^{\prime}$ nor $R \times S^{\prime}$ satisfies (i) (cf. T_{3} or T_{3}^{\prime}).
(2) None of sets $T_{0} \cup T_{0}^{\prime}, T_{3} \cup T_{3}^{\prime}, L$, and L^{\prime} are semi-cones of $R \times R^{\prime}$ (indeed, let $s \in S_{0}$ and $s^{\prime} \in S_{0}^{\prime}$. Then $(s, 0)+\left(0, s^{\prime}\right)=\left(s, s^{\prime}\right) \notin T_{0} \cup T_{0}^{\prime} ;(s,-1)$. $\left(0, s^{\prime}\right)=\left(0,-s^{\prime}\right) \notin T_{3} \cup T_{3}^{\prime} \cup L ;$ and $\left.(s, 0) \cdot\left(-1, s^{\prime}\right)=(-s, 0) \notin L^{\prime}\right)$.
(3) Let $\mathscr{C}=\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{0}^{\prime}, T_{2}^{\prime}, T_{3}^{\prime}, T\right\}$. Let \mathscr{F} be the collection of finite unions of \mathscr{C} (containing the sets in \mathscr{C}), but except unions which are never semicones of $R \times R^{\prime}$. Then $\mathscr{F}=\mathscr{C}$, that is, $\mathscr{F}=\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{0}^{\prime}, T_{2}^{\prime}, T_{3}^{\prime}, T\right\}$. Indeed, let $\mathscr{C}(\leq 2)$ be the collection of unions of at most two sets in \mathscr{C}, and let $\mathscr{C}(>2)$ be the collection of unions of more than two sets in \mathscr{C}. Using Remark 3.1, we show that $\mathscr{C}(\leq 2)=\mathscr{C} \cup \mathscr{C}^{*}$, where $\mathscr{C}^{*}=\left\{T_{0} \cup T_{0}^{\prime}, T_{3} \cup T_{3}^{\prime}, L, L^{\prime}\right\}$, and $\mathscr{C}(>2) \subset$ $\mathscr{C}(\leq 2)$. But, any set in \mathscr{C}^{*} is never a semi-cone of $R \times R^{\prime}$ in view of (2). Thus $\mathscr{F}=\mathscr{C}$. (Actually, when R and R^{\prime} are integral domains, all sets in \mathscr{F} are semicones; see Corollary 3.4(1) below).

We give characterizations for the sets in the collection \mathscr{F} to be semi-cones of the ring $R \times R^{\prime}$.

Theorem 3.3. Let R and R^{\prime} be partially ordered rings. Then the following hold.
(1) T, T_{0}, and T_{0}^{\prime} are semi-cones of $R \times R^{\prime}$.
(2) T_{1} is a semi-cone of $R \times R^{\prime}$ iff (i) $S_{0} S_{0} \subset S_{0}$ and $S_{0}^{\prime} S_{0}^{\prime} \subset S_{0}^{\prime}$, otherwise (ii) $S_{0} S_{0}=0$ and $S_{0}^{\prime} S_{0}^{\prime}=0$.
(3) T_{2} is a semi-cone of $R \times R^{\prime}$ iff $S_{0} S_{0} \subset S_{0}$ or $S_{0}^{\prime} S_{0}^{\prime}=0$.
(4) T_{2}^{\prime} is a semi-cone of $R \times R^{\prime}$ iff $S_{0} S_{0}=0$ or $S_{0}^{\prime} S_{0}^{\prime} \subset S_{0}^{\prime}$.
(5) T_{3} is a semi-cone of $R \times R^{\prime}$ iff $S_{0} S_{0} \subset S_{0}$.
(6) T_{3}^{\prime} is a semi-cone of $R \times R^{\prime}$ iff $S_{0}^{\prime} S_{0}^{\prime} \subset S_{0}^{\prime}$.

Proof. (1) is obvious. It is routine to see the if parts in (2) $\sim(6)$. So, we will see their "only if" parts. For (2), assume $S_{0} S_{0} \neq 0$. Then $S_{0}^{\prime} S_{0}^{\prime} \subset S_{0}^{\prime}$. Indeed, take some $a, b \in S_{0}$ with $a b \neq 0$. Suppose $S_{0}^{\prime} S_{0}^{\prime} \not \subset S_{0}^{\prime}$. Take $c, d \in S_{0}^{\prime}$ with $c d=0$. Thus $(a, c) \cdot(b, d)=(a b, 0) \notin T_{1}$, a contradiction. Hence $S_{0}^{\prime} S_{0}^{\prime} \subset S_{0}^{\prime}$. Similarly, $S_{0}^{\prime} S_{0}^{\prime} \neq 0$ implies $S_{0} S_{0} \subset S_{0}$. Therefore, the following are equivalent: $S_{0} S_{0} \subset S_{0} ; S_{0} S_{0} \neq 0$; $S_{0}^{\prime} S_{0}^{\prime} \subset S_{0}^{\prime}$; and $S_{0}^{\prime} S_{0}^{\prime} \neq 0$. Hence (i) or (ii) holds. For (3) and (4), assume $S_{0}^{\prime} S_{0}^{\prime} \neq 0$. Take $c, d \in S_{0}^{\prime}$ with $c d \neq 0$. Suppose $S_{0} S_{0} \not \subset S_{0}$. Take $a, b \in S_{0}$ with $a b=0$. Thus $(a, c) \cdot(b, d)=(0, c d) \notin T_{2}$, a contradiction. Thus $S_{0} S_{0} \subset S_{0}$. (4) is similarly shown. For (5) and (6), $(x, 1) \cdot(y, 1)=(x y, 1) \in T_{3}$ implies $S_{0} S_{0} \subset S_{0}$. (6) is similarly shown.

Corollary 3.4. Let R and R^{\prime} be partially ordered rings. Then the following hold.
(1) T, T_{0}, and T_{0}^{\prime} are semi-cones of $R \times R^{\prime}$. For R and R^{\prime} being integral domains, the other sets in \mathscr{F} are also semi-cones of $R \times R^{\prime}$.
(2) Let $1 \in S$ and $1 \in S^{\prime}$. Then the following hold.
(a) T_{1} is a semi-cone of $R \times R^{\prime}$ iff $S_{0} S_{0} \subset S_{0}$ and $S_{0}^{\prime} S_{0}^{\prime} \subset S_{0}^{\prime}$.
(b) T_{2} is a semi-cone of $R \times R^{\prime}$ iff $S_{0} S_{0} \subset S_{0}$.
(c) T_{2}^{\prime} is a semi-cone of $R \times R^{\prime}$ iff $S_{0}^{\prime} S_{0}^{\prime} \subset S_{0}^{\prime}$.

Remark 3.5. For a partially ordered ring R, (a) $S_{0} S_{0} \subset S_{0}$ need not hold, and (b) $S_{0} S_{0} \subset S_{0}$ need not imply that R is an integral domain. Indeed, for (a), take a semi-cone $S^{\prime \prime}=T$ of $R^{\prime \prime}=R \times R^{\prime}$, and for (b), take a semi-cone $S^{\prime \prime}=T_{1}$ of $R^{\prime \prime}$ with R and R^{\prime} integral domains, in view of Corollary 3.4(1). Then the partially ordered ring $\left(R^{\prime \prime}, \leq s^{\prime \prime}\right)$ is a desired one.

For convenience, henceforth let us assume that all sets in \mathscr{F} are semi-cones of the ring $R \times R^{\prime}$ (cf. Corollary 3.4), unless otherwise stated.

Let $P_{R}: R \times R^{\prime} \rightarrow R$ and $P_{R^{\prime}}: R \times R^{\prime} \rightarrow R^{\prime}$ be the projections (i.e., $P_{R}(x, y)$ $\left.=x, P_{R^{\prime}}(x, y)=y\right)$. These projections are obviously epimorphisms.

Remark 3.6. $\quad P_{R}$ or $P_{R^{\prime}}$ need not be order-preserving, and also need not preserve the convexity of an ideal. Indeed, let us see these for P_{R} (similar for $P_{R^{\prime}}$). Evidently, $P_{R}\left(T_{3}^{\prime}\right)=R$, hence P_{R} is not order-preserving. Let $R=R^{\prime}=\mathbf{Z}$, and $1<n \in \mathbf{Z}$. Let $S^{\prime}=n \mathbf{Z}^{*}$, and $S^{\prime \prime}=\left\{(k, m) \in \mathbf{Z} \times \mathbf{Z} \mid 0 \leq_{S^{\prime}} k \leq_{S^{\prime}} m\right\}$. Then, $S^{\prime \prime}$ is a semi-cone, and $I^{\prime \prime}=2 n \mathbf{Z} \times 0$ is a convex ideal, but $P_{R}\left(I^{\prime \prime}\right)=2 n \mathbf{Z}$ is not convex in $\left(\mathbf{Z}, \leq_{S^{\prime}}\right)($ cf. Example 2.20).

The following is well-known or routinely shown.
Lemma 3.7. For a subset A of the ring $R \times R^{\prime}, A$ is an ideal of $R \times R^{\prime}$ iff $A=P_{R}(A) \times P_{R^{\prime}}(A), P_{R}(A)$ is an ideal of R, and so is $P_{R^{\prime}}(A)$ of R^{\prime}.

Proposition 3.8. For $T=S \times S^{\prime}$, and an ideal J of $R \times R^{\prime}, J$ is T-convex iff $P_{R}(J)$ is S-convex in R and $P_{R^{\prime}}(J)$ is S^{\prime}-convex in R^{\prime}.

Proof. For the if part, to see J is T-convex, let $(0,0) \leq_{T}(x, y) \leq_{T}$ $(a, b) \in J$. Then $0 \leq_{S} x \leq_{S} a \in P_{R}(J)$, so $x \in P_{R}(J)$. Similarly, $y \in P_{R^{\prime}}(J)$. Then $(x, y) \in J$ by Lemma 3.7. Hence J is T-convex. For the only if part, to see $P_{R}(J)$ is S-convex in R, let $0 \leq_{S} x \leq_{S} a \in P_{R}(J)$. Then $(0,0) \leq_{T}(x, 0) \leq_{T}(a, 0)$, and $(a, 0) \in J$ by Lemma 3.7. Since J is T-convex, $(x, 0) \in J$, so $x \in P_{R}(J)$. Hence $P_{R}(J)$ is S-convex. Similarly, $P_{R^{\prime}}(J)$ is S^{\prime}-convex in R^{\prime}.

The following holds by Proposition 3.8 and Lemma 2.16, related to Question 2.17 .

Proposition 3.9. Let J be a T-convex ideal of $R \times R^{\prime}$, and let J^{\prime} be an S-convex ideal of R. Then $P_{R}(T+J)=S+J^{\prime}$ iff $P_{R}(J)=J^{\prime}$.

Remark 3.10. Let us give analogues to Propositions 3.8 and 3.9 for the sets in \mathscr{F}. For an ideal I of $R \times R^{\prime}$, let us consider conditions $\left(p_{1}\right)$ $P_{R}(I) \cap S_{0} \neq \varnothing$, and $\left(p_{2}\right) P_{R^{\prime}}(I) \cap S_{0}^{\prime} \neq \varnothing$. We note that (p_{1}) (resp. (p_{2})) holds if R (resp. R^{\prime}) is an ordered ring. Then the following hold for ideals I and J of $R \times R^{\prime}$.
(1) (a) $P_{R}(I)$ is S-convex in R if I is A-convex for $A=T_{i}(i=0,2,3), T_{i}^{\prime}$ $(i=1,2,3)$, but assume $\left(p_{2}\right)$ for $T_{i}^{\prime}(i=1,2,3)$. Also, $P_{R^{\prime}}(I)$ is S^{\prime}-convex in R if I is A-convex for $A=T_{i}(i=1,2,3), T_{i}^{\prime}(i=0,2,3)$, but assume $\left(p_{1}\right)$ for $T_{i}(i=1,2,3)$. Conversely,
(b) J is A-convex in $R \times R^{\prime}$ for $A=T_{1}, T_{2}$, or T_{2}^{\prime} if $P_{R}(J)$ is S-convex and $P_{R^{\prime}}(J)$ is S^{\prime}-convex. Also, J is T_{0}-convex if $P_{R}(J)$ is S-convex. Similarly, J is T_{0}^{\prime}-convex if $\left.P_{R^{\prime}}(J)\right)$ is S^{\prime}-convex.
(2) Proposition 3.8 remains true for T_{1}, T_{2}, and T_{2}^{\prime}, but for $T_{1}\left(\operatorname{resp} . T_{2} ; T_{2}^{\prime}\right)$, assume $\left(p_{1}\right)$ and $\left(p_{2}\right)$ (resp. $\left(p_{1}\right) ;\left(p_{2}\right)$). Also, J is T_{0}-convex iff $P_{R}(J)$ is S-convex. Similarly, J is T_{0}^{\prime}-convex iff $P_{R}^{\prime}(J)$ is S^{\prime}-convex.
(3) Proposition 3.9 remains true for $T_{i}(i=0,2,3), T_{1}^{\prime}, T_{2}^{\prime}$, but assume (p_{2}) for $T_{1}^{\prime}, T_{2}^{\prime}$. Also, for $P_{R^{\prime}}$, the similar result holds for $T, T_{1}, T_{2}, T_{i}^{\prime}(i=0,2,3)$, but assume $\left(p_{1}\right)$ for T_{1}, T_{2}. While, Proposition 3.9 need not hold for $A=T_{0}^{\prime}$ or T_{3}^{\prime}.

Indeed, (1) is shown as in the proof of Proposition 3.8. (For example, for (a), to see $P_{R}(I)$ is S-convex in R for $T_{3}^{\prime}=\left(R \times S_{0}^{\prime}\right) \cup\{(0,0)\}$, let $0 \leq_{S} x \leq_{s} a \in$ $P_{R}(I)$, and take $p \in P_{R^{\prime}}(I) \cap S_{0}^{\prime}$ by (p_{2}). Then $(0,0) \leq_{T_{3}^{\prime}}(x, p) \leq_{T_{3}^{\prime}}(a, 2 p) \in$ $P_{R}(I) \times P_{R}^{\prime}(I)=I$. Thus, $(x, p) \in I$, so $\left.x \in P_{R}(I)\right)$. (2) and (3) hold in view of (1). For the last part of (3), let J^{\prime} be a convex ideal and $S \ni 1$ in R. Then $J=J^{\prime} \times 0$ is convex for A, and $P_{R}(J)=J^{\prime}$. But, $P_{R}(A+J) \neq S+J^{\prime}$. To see this, suppose $P_{R}(A+J)=S+J^{\prime}$. Then, for $A=T_{0}^{\prime}, J^{\prime}=S+J^{\prime} \ni 1$, so $J^{\prime}=R$, a contradiction. For $A=T_{3}^{\prime}, R=S+J^{\prime}$, so $R=J^{\prime}$ by Lemma 2.16, a contradiction).

Example 3.11. In Proposition 3.9, the convexity of the ideals J and J^{\prime} is essential for J and J^{\prime} being proper. Indeed, let $R=\left(\mathbf{Z}[x], \leq_{2}\right)$. Let $I=(x)$, and $A=(2 x)$. Then I is convex in R. But, A is not convex in R (indeed, $0 \leq_{2} x \leq_{2}$
$2 x \in A$, but $x \notin A$). Also, $\left({ }^{*}\right) S+I=S+A$ holds. For $R^{\prime}=R, I^{*}=I \times I$ and $A^{*}=A \times A$, the following hold.
(1) I^{*} is convex in $R \times R^{\prime}$ for T, but A is not convex in R. While, $P_{R}\left(T+I^{*}\right)=S+A$ by $\left({ }^{*}\right)$, but $P_{R}\left(I^{*}\right) \neq A$.
(2) A^{*} is not convex in $R \times R^{\prime}$ for T, but I is convex in R. While, $P_{R}\left(T+A^{*}\right)=S+I$ by $(*)$, but $P_{R}\left(A^{*}\right) \neq I$.

Let us recall the following ring on the product set $P=R \times R$ of ring R with itself.

Definition 3.12. Let R be a ring. For $(a, b) \in P$, let $P(a, b)=(P,+, *)$ be the commutative ring defined by the following addition (i) and multiplication (ii):

For $(x, y),(z, w) \in P$, let
(i) $(x, y)+(z, w)=(x+z, y+w)$.
(ii) $(x, y) *(z, w)=(x z+a y w, x w+y z+b y w)$.

Then $e=(1,0)$ is the identity element, and for $u=(0,1), u * u=(a, b)$, and $(x, y)=(x, 0) * e+(y, 0) * u$ in $P(a, b)$.

The ring $P(0,0)$ is an algebra over R which has a basis $\{e, u\}$ with $u * u=$ $(0,0)$, and it is called the trivial extension of R by itself (see [8], etc.). This ring gives useful examples related to ring structures and order structures, or extensions. We investigate order structures of the ring $P(0,0)$ in terms of semi-cones or cones. (We consider $P(a, b)$ in [7] in terms of ring structures).

Notation. For a ring R, the symbol $R \ltimes R$ denotes the ring $P(0,0)$.
Remark 3.13. (1) Let $R[x]$ be the polynomial ring over a ring R, and $I=\left(x^{2}\right)$. Then $R \ltimes R$ is (ring) isomorphic to $R[x] / I$ by a map $(a, b) \mapsto[a+b x]$.
(2) For a subset A of $R \ltimes R$, let $A^{*}=\{(x,-y) \mid(x, y) \in A\}$. Then A is a semi-cone of $R \ltimes R$ iff so is A^{*}, and also for a semi-cone A of $R \ltimes R, I$ is a convex ideal of $R \ltimes R$ for A iff so is I^{*} for A^{*}, by a (ring) isomorphism $(x, y) \mapsto(x,-y)$.

Let us consider the sets $T, T_{i}, T_{j}^{\prime}(i, j=0,1,2,3)$ in $R \ltimes R$, putting $R^{\prime}=R$ and $S^{\prime}=S$.

Remark 3.14. (1) $T_{0} \cup T_{0}^{\prime}$ is not a semi-cone of $R \ltimes R$ by Remark 3.2(2). Also, T_{3}^{\prime} is not a semi-cone of $R \ltimes R$, and any union of $T, T_{i}, T_{j}^{\prime}(i, j=0,1,2,3)$
containing T_{3}^{\prime} is not a semi-cone of $R \ltimes R$ (indeed, for $s \in S_{0},(-1, s) *(0, s)=$ $(0,-s) \notin T_{3}^{\prime}$. The latter part holds by $\left.(0,-s) \notin T \cup T_{i} \cup T_{j}^{\prime}\right)$.
(2) Let $\mathscr{C}=\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{0}^{\prime}, T_{2}^{\prime}, T_{3}^{\prime}, T\right\}$. Let \mathscr{F}_{P} be the collection of finite unions of \mathscr{C} (containing the sets in \mathscr{C}), but except unions which are never semicones of $R \ltimes R$. Then, $\mathscr{F}_{P}=\left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{0}^{\prime}, T_{2}^{\prime}, T, L\right\}$ by (1), reviewing the poof of Remark 3.2(3). (Actually, when R is an integral domain, all sets in \mathscr{F}_{P} are semi-cones of $R \ltimes R$; see Corollary 3.17(1) later).

For a semi-cone S of R, let us consider the following conditions around condition (*) $S_{0} S_{0} \subset S_{0}$ on R.
$\left(c_{1}\right)$ For $x, z \in S_{0}$, if $x z \in S_{0}$ (i.e., $x z \neq 0$), then $x S_{0} \subset S_{0}$ or $z S_{0} \subset S_{0}$.
(c_{2}) For $x, z \in S_{0}$, if $x z \notin S_{0}$ (i.e. $x z=0$), then $x S_{0}=0$ and $z S_{0}=0$.
We can replace " $x S_{0} \subset S_{0}$ or $z S_{0} \subset S_{0}$ " by " $x S_{0}+z S_{0} \neq 0$ " in (c_{1}). Also, we can replace " $x S_{0}=0$ and $z S_{0}=0$ " by " $x S_{0}+z S_{0}=0$ (or $x S+z S=0$)" in $\left(c_{2}\right)$.

Remark 3.15. (1) None of (*) (i.e., $S_{0} S_{0} \subset S_{0}$), (c_{1}), and (c_{2}) hold for some partially ordered ring R.
(2) Obviously, $\left({ }^{*}\right)$ implies $\left(c_{1}\right)$ and $\left(c_{2}\right)$. But, $\left(c_{1}\right)$ and $\left(c_{2}\right)$ need not imply $\left({ }^{*}\right)$ by the following (3) and (4).
(3) (c_{2}) implies $\left(c_{1}\right)$. But, the converse does not hold for some ordered ring R.
(4) For $S_{0} \ni 1$, (c_{2}) implies (*). But, (c_{2}) need not imply (*) without $S_{0} \ni 1$.

Indeed, (1) is shown by the proof of Remark 3.5(a), but assume $S S \neq 0$ in T. For (3), assume (c_{2}) holds. If $x z \in S_{0}$ for $x, z \in S_{0}$, then $x S_{0} \subset S_{0}$ and $z S_{0} \subset S_{0}$. To see this, suppose $x S_{0} \not \not S_{0}$, then $x y=0$ for some $y \in S_{0}$. Thus $x S_{0}=0$ by $\left(c_{2}\right)$, hence $x z=0$, a contradiction. Thus $x S_{0} \subset S_{0}$ (similarly, $z S_{0} \subset S_{0}$). Then $\left(c_{1}\right)$ holds. For the latter part, let (R, \leq) be the ordered ring in [5, Example 1]. Then we may consider the ordered ring (R, \leq) as the ring $R^{\prime}=K \ltimes K=$ $\{(a, b) \mid a, b \in K\}$ with K an ordered field, where R^{\prime} has a cone $S^{\prime}=L$ (cf. Corollary $3.17(1)$ below). Then $u=(0,1) \in S_{0}^{\prime}$ and $u * u=(0,0)$. But, $e=$ $(1,0) \in S_{0}^{\prime}$, then $u S_{0}^{\prime} \neq\{(0,0)\}$. Hence $\left(c_{2}\right)$ does not hold (also, $\left.S_{0}^{\prime} S_{0}^{\prime} \not \subset S_{0}^{\prime}\right)$. For $x=(a, b), \quad z=(c, d) \in S_{0}^{\prime}$ with $x * z \neq(0,0)$. Then $a \neq 0$ or $c \neq 0$, so $a>0$ or $c>0$ in K. Hence $x S_{0}^{\prime} \subset S_{0}^{\prime}$ or $z S_{0}^{\prime} \subset S_{0}^{\prime}$. Then $\left(c_{1}\right)$ holds. Hence, R^{\prime} is a desired one (for S^{\prime}). For (4), suppose $S_{0} S_{0} \not \subset S_{0}$, then $x z=0$ for some $x, z \in S_{0}$. But, $x=x 1 \in x S_{0}=0$ by $\left(c_{2}\right)$, so $x=0$, a contradiction. Hence, $S_{0} S_{0} \subset S_{0}$. For the latter part in (4), let $R^{\prime}=R \ltimes R, A=T_{0}^{\prime}(=0 \times S)$, and $A_{0}=0 \times S_{0}$. Then $A A=\{(0,0)\}$. Thus, $\left(c_{2}\right)$ holds, but $A_{0} A_{0} \not \subset A_{0}$. Then R^{\prime} is a desired one (for A).

We give characterizations for the sets in the collection \mathscr{F}_{P} to be semi-cones of $R \ltimes R$, in comparison with Theorem 3.3 for $R \times R^{\prime}$.

Theorem 3.16. Let R be a partially ordered ring. Then the following hold.
(1) T, T_{0}, and T_{0}^{\prime} are semi-cones of $R \ltimes R$.
(2) T_{1} is a semi-cone of $R \ltimes R$ iff $\left(c_{2}\right)$ holds.
(3) T_{2} is a semi-cone of $R \ltimes R$ iff $\left(c_{2}\right)$ holds.
(4) T_{2}^{\prime} is a semi-cone of $R \ltimes R$ iff $\left(c_{1}\right)$ holds.
(5) T_{3} is a semi-cone of $R \ltimes R$ iff $S_{0} S_{0} \subset S_{0}$.
(6) $T_{3} \cup T_{0}^{\prime}(=L)$ is a semi-cone of $R \ltimes R$ iff $S_{0} S_{0} \subset S_{0}$.

Proof. For (1), the result is obviously shown.
For (2), to see the if part, let $(x, y),(z, w) \in S_{0} \times S_{0}$. By (c_{2}) with Remark 3.15(3), for $x z=0, x w+y z=0$, and for $x z \neq 0, x w+y z \in S_{0}$. Thus $(x, y) *(z, w)=(x z, x w+y z) \in T_{1}$. For the only if part, suppose $\left(c_{2}\right)$ does not hold. Then we assume that for some $x, z, w \in S_{0}, x z=0$, but $x w \neq 0$. Let $y \in S_{0}$, then $x w+y z \neq 0$. Thus $(x, y),(z, w) \in S_{0} \times S_{0}$, but $(x, y) *(z, w)=$ $(x z, x w+y z)=(0, x w+y z) \notin T_{1}$, a contradiction. Then $\left(c_{2}\right)$ holds.

For (3), the result is shown as in the proof of (2).
For (4), to see the if part, let $(x, y),(z, w) \in S \times S_{0}$. If $x z=0,(x, y) *(z, w)=$ $(0, x w+y z) \in T_{2}^{\prime}$, so assume $x z \neq 0$. Then $x w+y z \in S_{0}$ by $\left(c_{1}\right)$, hence $(x, y) *$ $(z, w)=(x z, x w+y z) \in T_{2}^{\prime}$. For the only if part, suppose that $\left(c_{1}\right)$ doesn't hold. Then for some $x, z, y, w \in S_{0}, x z \neq 0, x w=0$, and $y z=0$. Thus, $(x, y) *(z, w)=$ $(x z, x w+y z)=(x z, 0) \notin T_{1}$, a contradiction. Then $\left(c_{1}\right)$ holds.

For (5) and (6), their if parts are routine. For their only if parts, suppose $S_{0} S_{0} \not \subset S_{0}$, and take $x, y \in S_{0}$ with $x y=0$. Then $(x,-1),(y, 0) \in T_{3}$, but $(x,-1) *$ $(y, 0)=(0,-y) \notin T_{3} \cup T_{0}^{\prime}$, a contradiction. Hence, $S_{0} S_{0} \subset S_{0}$.

The following holds by Theorem 3.16 and Remark 3.15.

Corollary 3.17. Let R be a partially ordered ring. Then the following hold.
(1) T, T_{0}, and T_{0}^{\prime} are semi-cones of $R \ltimes R$. For R being an integral domain, the other sets in \mathscr{F}_{P} are also semi-cones of $R \ltimes R$.
(2) For $S \ni 1, T_{1}\left(\right.$ or $\left.T_{2}\right)$ is a semi-cone of $R \ltimes R$ iff $S_{0} S_{0} \subset S_{0}$.

In view of the previous corollary, for an ordered integral domain R, the lexicographic set L is a cone of $R \ltimes R$, though L is not even a semi-cone of the ring $R \times R$ (by Remark 3.2(2)).

It is well-known (or routinely shown) that for a field K, any non-zero, proper ideal of $K \ltimes K$ (resp. $K \times K$) is $0 \times K$ (resp. $0 \times K$ or $K \times 0$). We note that $I_{0}=0 \times R$ is an ideal in $R \ltimes R$, but $I_{0}^{\prime}=R \times 0$ is not an ideal (I_{0} and I_{0}^{\prime} are ideals in $R \times R$). Let us consider the convexity of I_{0} in $R \ltimes R$ (or I_{0}, I_{0}^{\prime} in $R \times R$).

Let $p r: R \ltimes R($ or $R \times R) \rightarrow R$ be the projection defined by $\operatorname{pr}(x, y)=x$. Then $p r$ is an epimorphism.

Lemma 3.18. Let A be a semi-cone of $R \ltimes R($ or $R \times R)$. Then $I_{0}=0 \times R$ is a convex ideal for A iff $\operatorname{pr}(A) \cap-\operatorname{pr}(A)=0$.

Proof. Let $\leq=\leq_{A}$. For the if part, let $(0,0) \leq(x, y) \leq(0, b) \in I_{0}$. Then $(0,0) \leq(-x, b-y)$, hence $x \in \operatorname{pr}(A) \cap-\operatorname{pr}(A)$, so $x=0$. Thus, $(x, y)=(0, y) \in$ I_{0}. For the only if part, let $x \in \operatorname{pr}(A) \cap-p r(A)$. Then for some $y, y^{\prime} \in R$, $(0,0) \leq(x, y)$ and $(0,0) \leq\left(-x, y^{\prime}\right)$. Then, $(0,0) \leq(x, y) \leq(x, y)+\left(-x, y^{\prime}\right)=$ $\left(0, y+y^{\prime}\right) \in I_{0}$. Since I_{0} is convex in $R \ltimes R$ (or $R \times R$), $(x, y) \in I_{0}$, hence $x=0$.

Obviously, $I_{0}=0 \times R$ is convex in $R \ltimes R$ for the semi-cones in $\mathscr{\mathscr { F }}_{P}$. Also, the following holds (hence, for R being a field, I_{0} is the only non-zero, convex ideal).

Proposition 3.19. For an integral domain R, I_{0} is convex for any semi-cone A of $R \ltimes R$.

Proof. To see $\operatorname{pr}(A) \cap-\operatorname{pr}(A)=0$, let $x \in \operatorname{pr}(A) \cap-\operatorname{pr}(A)$. Then $x=$ $\operatorname{pr}(x, y)=-\operatorname{pr}(z, w)$ for some $(x, y),(z, w) \in A$. Then $x=-z$, and hence $(x, y)+$ $(z, w)=(x+z, y+w)=(0, y+w) \in A$. Thus $(x, y) *(0, y+w)=(0, x(y+w)) \in$ A, and similarly, $(0, z(y+w)) \in A$. Hence $(0, x(y+w))=-(0, z(y+w)) \in A \cap$ $-A$. Thus $x(y+w)=0$. Since R is an integral domain, $x=0$ or $y+w=0$. If $y+w=0$, then $y=-w$, so $(x, y)=(-z,-w)=-(z, w) \in A \cap-A$, thus $x=0$. Then $\operatorname{pr}(A) \cap-\operatorname{pr}(A)=0$, which implies that I_{0} is convex in $R \ltimes R$ by Lemma 3.18.

Remark 3.20. For the ring $R \times R, I_{0}=0 \times R$ is obviously a convex ideal of $R \times R$ for the semi-cones in \mathscr{F}, but remove T_{3}^{\prime} even if R is an integral domain. Also, for an integral domain R, I_{0} is convex for a semi-cone A of $R \times R$ if $A \ni(a, 0)$ for some $a \neq 0$ (indeed, let $x \in \operatorname{pr}(A) \cap-\operatorname{pr}(A)$, and $(a, 0) \in A$ with $a \neq 0$. Then $(a x, 0),(-a x, 0) \in A$. Thus $(a x, 0) \in A \cap-A$, hence $x=0$. Thus, I_{0} is convex for A by Lemma 3.18). Also, for $I_{0}^{\prime}=R \times 0$, similarly the analogous results hold.

Proposition 3.21. (1) For an ordered (resp. partially ordered) integral domain R, L and $L^{*}=\{(x,-y) \mid(x, y) \in L\}$ are cones (resp. semi-cones) of $R \ltimes R$.
(2) For an ordered field K and a cone A of $K \ltimes K$, the following are equivalent.
(a) $A \supset T_{0}(=S \times 0)$.
(b) $\operatorname{pr}(A) \supset S$.
(c) $\operatorname{pr}(A)=S$.
(d) $A=L$ or $A=L^{*}$.

Proof. (1) holds in view of Corollary 3.17(1) and Remark 3.13(2).
For (2), obviously, the implication (d) $\Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{b})$ holds. $(\mathrm{a}) \Rightarrow$ (d) holds by putting $a=(a, 0), b=(b, 0)$, and $e=(1,0), u=(0,1)$ in the proof of Example 1 in [5]. Indeed, A is a cone, so $u \in A$ or $u \in-A$. In case of $u \in A$, let $(a, b) \in L$. If $a=0$, then $b \in S$, so $(b, 0) \in A$ by (a), thus $(a, b)=(0, b)=(b, 0) * u \in A$. If $a \neq 0$, then $a \in S$, and $(a, 0) \in A$ by (a), thus $(a, b)=(a, 0) *(1, b / 2 a)^{2} \in A$. Hence, $L \subset A$, so $A=L$. In case of $u \in-A$ (i.e., $-u=(0,-1) \in A$), let $(a,-b) \in L^{*}$. Then, similarly $(a,-b) \in A$. Thus, $A=L^{*}$. For $(\mathrm{b}) \Rightarrow(\mathrm{a})$, let $s \in S$. Then $\left(s, s^{\prime}\right) \in A$ for some $s^{\prime} \in K$ by (b). Thus, for $s \neq 0,(s, 0)=\left(s, s^{\prime}\right) *\left(1,-s^{\prime} / 2 s\right)^{2} \in A$. Hence, $T_{0} \subset A$.

Corollary 3.22. Let K be an ordered field such that $\left({ }^{*}\right)$ for each $a \in S$, there exists $b \in K$ with $a=b^{2}$ (in particular, K is the field of real numbers, or the field of algebraic real numbers over the rational number field). Then for a cone A of $K \ltimes K, A=L$ or $A=L^{*}$.

Proof. To see $A \supset T_{0}$, let $(a, 0) \in T_{0}$. Then for some $b \in K,(a, 0)=$ $\left(b^{2}, 0\right)=(b, 0)^{2} \in A$. Then $A=L$ or L^{*} by Proposition 3.21. The parenthetic part implies $\left(^{*}\right)$, as is well-known.

For a field K, we will give a characterization for cones of $K \ltimes K$. The following lemma is obvious.

Lemma 3.23. For a subring R^{\prime} and cone of A of $R, A \cap R^{\prime}$ is a cone of R^{\prime}.

Theorem 3.24. For a field K, let \mathscr{S} be the collection of all cones of K, and let $\tilde{\mathscr{S}}$ be the collection of all cones of $K \ltimes K$. Then $\tilde{\mathscr{S}}=\left\{L(S), L(S)^{*} \mid S \in \mathscr{S}\right\}$, where $L(S)=\left(S_{0} \times K\right) \cup(0 \times S)$.

Proof. For a cone S of $K, L(S)$ and $L(S)^{*}$ are cones of $K \ltimes K$ in view of Proposition 3.21(1). Conversely, let A be a cone of $K \ltimes K$, and let $K^{\prime}=K \ltimes 0$. Since K^{\prime} is a subring of $K \ltimes K, S=A \cap K^{\prime}$ is a cone of K^{\prime} by Lemma 3.23. But, we can consider S as a cone in K by a (ring) isomorphism $K^{\prime} \rightarrow K$, $(x, 0) \mapsto x$. Since $A \supset S \times 0, A=L(S)$ or $A=L(S)^{*}$ by Proposition 3.21(2). Thus, $\tilde{\mathscr{S}}=\left\{L(S), L(S)^{*} \mid S \in \mathscr{S}\right\}$.

References

[1] Birkhoff, G., Lattice-ordered groups, Ann. of Math. 43 (1942), 298-331.
[2] Birkhoff, G. and Pierce, R. S., Lattice-ordered rings, An. Acad. Brasil. Ci. 28 (1956), 41-69.
[3] Brumfiel, G. W., Partially ordered rings and semi-algebraic geometry, London Mathematical Society Lecture Note Series, 37, Cambridge University Press, 1979.
[4] Gillman, L. and Jerison, M., Rings of continuous functions, Van Nostrand Reinhold company, 1960.
[5] Kitamura, Y. and Tanaka, Y., Ordered rings and order-preservation, Bull. Tokyo Gakugei Univ. Nat. Sci. 64 (2012), 5-13.
[6] Kitamura, Y. and Tanaka, Y., Partially ordered rings, Tsukuba J. Math. 38 (2014), 39-58.
[7] Kitamura, Y. and Tanaka, Y., Product extensions of commutative rings, Bull. Tokyo Gakugei Univ. Nat. Sci. 67 (2015), 1-8.
[8] Lam, T. Y., Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, 1998.
[9] Lam, T. Y., A first course in noncommutative rings, 2nd ed., Graduate Texts in Mathematics, 131, Springer, 2001.
[10] Yang, Y. C., A lattice-ordered skew field is totally ordered if squares are positive, American Math. Monthly 113 (2006), 266-267.

Yoshimi Kitamura
Department of Mathematics
Tokyo Gakugei University
Tokyo 184-8501, Japan
(Professor Emeritus)
E-mail: kitamura@u-gakugei.ac.jp
Yoshio Tanaka
Department of Mathematics
Tokyo Gakugei University
Tokyo 184-8501, Japan
(Professor Emeritus)
E-mail: ytanaka@u-gakugei.ac.jp

[^0]: 2010 Mathematics Subject Classification: 06A06, 06F25.
 Key words and phrases: partially ordered ring, non-negative semi-cone, convex ideal, order-preserving homomorphism, idempotent, residue class ring, product of rings.
 Received July 17, 2014.
 Revised March 19, 2015.

[^1]: *For a partially ordered ring (R, \leq), elements x of R satisfying $x \geq 0$ are called positive in [2], [10], and other references.

