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PARTIALLY ORDERED RINGS II

By

Yoshimi Kitamura and Yoshio Tanaka

Abstract. This paper is a continuation of [6]. We study partially

ordered rings in terms of non-negative semi-cones and convex ideals,

considering order-preserving homomorphisms, residue class rings,

and certain product rings, etc.

1. Introduction

Partially ordered rings have been considered by several authors. Especially,

the systematic foundation of lattice-ordered rings has been given by Birkho¤ and

Pierce [2]. Recently, an interesting result of a lattice-ordered skew field has been

obtained in [10].

In this paper, we assume that all rings are non-zero commutative rings with

identity. The symbol R means such a ring with the identity element denoted by 1,

and I means an ideal of R (similar, for R 0 and I 0), unless otherwise stated.

We shall consider commutative, partially ordered rings. As is well-known, for

a ring R, there is a bijection between the set of partial orders of R which make

it into a partially ordered ring and the set of those S of R having properties:

S V�S ¼ f0g; S þ SHS (S is closed under addition); SSHS (S is closed under

multiplication). In the previous paper [6], we call a subset S of R satisfying these

three conditions a non-negative semi-cone as a generalization of ‘‘positive cones’’

of integral domains, as well as, ‘‘non-negative cones’’ of rings. For a partially

ordered ring R, in order that the residue class ring R=I be a partially ordered ring

with the canonical order induced from R, I is precisely a convex ideal, as is well-

known ([4]). The concepts of ‘‘non-negative semi-cones’’ and the ‘‘convex ideals’’

play important roles in the theory of partially ordered rings (see [1], [2], [3] and
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[4], etc.). In view of these concepts, we shall study partially ordered rings,

considering order-preserving homomorphisms, idempotents, residue class rings,

and certain product rings, etc. Also, we give characterizations for typical subsets

of the product rings to be non-negative semi-cones, and a characterization for

non-negative cones of a certain product ring of a field.

2. Non-negative Semi-cones and Convex Ideals

Let A, B be subsets of R. Define �A ¼ f�x j x A Ag, Aþ B ¼ fxþ y j x A A;

y A Bg, AB ¼ fxy j x A A; y A Bg, aB ¼ Ba ¼ fagB for a A R, and Anf0g ¼
fx j x A A; x0 0g. Also, for a subset C of R 0, define A� C ¼ fðx; yÞ j x A A;

y A Cg.
First, let us recall some basic definitions used in this paper. For other

terminologies, see [4], [6], etc.

Definition 2.1. A subset S of a ring R is a non-negative semi-cone ([6])

(resp. non-negative cone ([5])) of R if S satisfies the following (i), (ii), and (iii)

(resp. (i), (ii), (iii), and (iv)):

(i) S V ð�SÞ ¼ f0g.
(ii) S þ SHS.

(iii) SSHS.

(iv) R ¼ S U ð�SÞ.
A subset S of R is a positive cone ([5], [9]) of R if S satisfies the above (ii) and

(iii), and S U ð�SÞ ¼ Rnf0g. For a positive cone S, S U f0g is a non-negative cone.

We recall that ðR;aÞ is a partially ordered ring (resp. ordered ring) if a is a

partial order (resp. total order) on R such that aa b implies aþ xa bþ x for

all x, and aa b and 0a x implies axa bx. Also, ðR;aÞ is an ordered integral

domain if it is an ordered ring which is an integral domain.

We note that for a non-negative semi-cone S of a ring R, we induce a

canonical partial orderaS in R by defining xaS y by y� x A S, and ðR;aSÞ is a
partially ordered ring. Conversely, for a partially ordered ring ðR;aÞ, we induce

a canonical non-negative semi-cone S ¼ fx j 0a xg of R with a¼aS. These are

also valid for the relationship between ‘‘non-negative cones (resp. positive cones)’’

and ‘‘ordered rings (resp. ordered integral domains)’’. (A non-negative semi-cone

S of a ring R is the set Rþ of all positive elements* of a po-ring (or partly

ordered ring) ðR;aSÞ in [2]).

*For a partially ordered ring ðR;aÞ, elements x of R satisfying xb 0 are called positive in [2], [10],

and other references.
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Definition 2.2. Let R, R 0 be rings. As is well-known, R� R 0 is a ring

under component-wise addition and multiplication (i.e., for ðx; yÞ; ðz;wÞ A R� R 0,

ðx; yÞ þ ðz;wÞ ¼ ðxþ z; yþ wÞ, and ðx; yÞ � ðz;wÞ ¼ ðxz; ywÞÞ. Let us call such a

ring R� R 0 the direct product ring.

Notations. (1) The brief terminology ‘‘semi-cone’’ (resp. ‘‘cone’’) is used

as an abbreviation of ‘‘non-negative semi-cone’’ (resp. ‘‘non-negative cone’’).

(2) The symbol ðR;aÞ (or simply, R) means a partially ordered ring, and

S means the canonical semi-cone of R, and similar to the symbols ðR 0;a0Þ (or

simply, R 0) and S 0, unless otherwise stated.

(3) The symbol R� R 0 means the direct product ring, unless otherwise

stated.

An element e of a ring R is called an idempotent if e2 ¼ e. For an idempotent

e of R, f ¼ 1� e is also an idempotent of R with ef ¼ 0, eþ f ¼ 1.

The symbol Z denotes the ring of integers, and Z� denotes the set of non-

negative integers.

Remark 2.3. Let S be a semi-cone of a ring R. Let a; b A S UZ�. Then

aS þ bS ðHSÞ is obviously a semi-cone of R (here, aS þ bS ¼ S for a ¼ 1 or

b ¼ 1Þ. However, we have the following (1) and (2).

(1) S þ S 0 need not be a semi-cone of R for a semi-cone S 0 of R, and

similar to Se for an idempotent e of R (indeed, let R ¼ Z� Z. Let S ¼
ððZ�nf0gÞ � ZÞU fð0; 0Þg, S 0 ¼ ðZ� ðZ�nf0gÞÞU fð0; 0Þg. Then S and S 0 are

semi-cones of R. But, S þ S 0 ¼ R, and for an idempotent e ¼ ð0; 1Þ, Se ¼
f0g � Z. Then neither S þ S 0 nor Se is a semi-cone of R).

(2) SS need not be a semi-cone of R (indeed, let R ¼ Z, and S ¼ 2Z� þ 3Z�.

Then S is a semi-cone of R, but SS is not a semi-cone, because 4; 9 A SS, but

4þ 9 ¼ 13 B SS).

Proposition 2.4. Let S be a semi-cone of a ring R, and let e and f ¼ 1� e

be idempotents of R with e; f 0 0. Then the following hold.

(1) Se is a semi-cone of Re i¤ SeV ð�SeÞ ¼ f0g. In particular, for SeHS,

Se is a semi-cone of Re.

(2) If S1 and S2 are semi-cones of Re and Rf respectively, then S1 þ S2 is a

semi-cone of R.

(3) S 0 ¼ Seþ Sf is a semi-cone of R i¤ so are Se of Re and Sf of Rf .
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Proof. (1) is obvious. (2) is routinely shown, noting ðReÞðRf Þ ¼ ReVRf ¼
f0g. For (3), the if part holds by (2). For the only if part, noting S 0e ¼ SeHS 0,

Se is a semi-cone of Re by (1). Similarly, Sf is a semi-cone of Rf . r

Let h : R ! R 0 be a map with R and R 0 rings. We recall that h is an

epimorphism if it is a ring homomorphism with hðRÞ ¼ R 0. For semi-cones S of

R and S 0 of R 0, h is called order-preserving if hðSÞHS 0.

Let R be a ring. An ideal I of R is proper if I 0R. For a proper ideal I of

R, R=I denotes the residue class ring consisting of elements ½a� ¼ I þ a ða A RÞ.

Definition 2.5 ([4]). For a proper ideal I of ðR;aÞ, I is convex in R

if whenever 0a xa y and y A I , then x A I . We induce a canonical ordering

relation on R=I as follows: For a A R, define ½a�b 0 if ½a� ¼ ½x� for some xb 0

in R (we use the same symbol a in R=I without confusion).

We recall that a proper ideal I of ðR;aÞ is convex i¤ ðR=I ;aÞ is a partially

ordered ring; equivalently, S 0 ¼ f½x� j ½x�b 0g is a semi-cone of R=I ([4], etc.).

We assume that R=I has the semi-cone S 0, unless otherwise stated.

Let j : ðR;aÞ ! ðR=I ;aÞ be the natural map defined by jðxÞ ¼ ½x� for x A R.

Then j is an order-preserving, epimorphism with jðSÞ ¼ S 0.

The convexity of an ideal I of a partially ordered ring R is usually defined

under I being proper in R. But, for convex ideals I and J of R, I þ J need not

be proper in R (see Example 2.11(1)). Moreover, for some partially ordered ring

R� R, ideals I0 ¼ 0� R and I 00 ¼ R� 0 are convex (see Remark 3.20 later), but

I0 þ I 00 is not proper in R� R, and also for an idempotent e ¼ ð0; 1Þ, I0e is not

proper in Re.

In view of the above, let us introduce the following terminology.

Definition 2.6. Let J be an ideal of a ring R (including J ¼ R), and S be a

semi-cone of R. Let us say that J is S-convex in R if whenever x A S, y� x A S

and y A J imply x A J. When J0R, we shall call such an S-convex ideal J

convex for S. For ðR;aÞ, obviously J is S-convex in R i¤ J is convex (for S),

or J ¼ R.

Proposition 2.7. Let S be a semi-cone of a ring R, and let e and f ¼ 1� e

be idempotents of R with e; f 0 0. Then the following hold.

(1) Let SeHS. If I is S-convex in R, then Ie is Se-convex in Re.

(2) Let SeHS and Sf HS. I is S-convex i¤ Ie is Se-convex and If is

Sf -convex.
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Proof. For (1), Se is a semi-cone of Re by Proposition 2.4(1). To see Ie

is Se-convex in Re, let xe; y� xe A Se ðx A SÞ, and y A Ie. Since SeHS and

IeH I , xe; y� xe A S, and y A I . Since I is S-convex in R, xe A I , hence xe A Ie.

For (2), the only if part holds by (1). For the if part, let x; y� x A S, and y A I .

Then xe; ye� xe A Se, and ye A Ie. Since Ie is Se-convex in Re, xe A Ie. Similarly,

If is Sf -convex, so xf A If . Hence x ¼ xeþ xf A Ieþ If ¼ I . Thus I is S-convex.

r

Remark 2.8. In (1) of Proposition 2.7, ‘‘SeHS’’ is essential. Also, it is

impossible to replace ‘‘Se-convex’’ by ‘‘convex for Se’’ even if I is convex for S

in R. We have similar mattes in (2) there. For these, see Example 2.20 later.

The following is a classical result, but let us give a proof for the readers.

Theorem 2.9. Let s : ðR;aÞ ! ðR 0;a0Þ be an epimorphism with sðSÞ ¼ S 0,

and let J ¼ KerðsÞ. Then there exists a bijection F between the class of convex

ideals I of R containing J and the class of convex ideals I 0 of R 0, defining by

FðIÞ ¼ sðIÞ and F�1ðI 0Þ ¼ s�1ðI 0Þ. Especially, J is a convex ideal of R.

Proof. Let I be a convex ideal of R containing J. Evidently, I ¼ s�1ðsðIÞÞ,
hence sðIÞ0R 0. To see sðIÞ is convex in R 0, let 0a0 sðxÞa0 sðyÞ and y A I .

Since 0a0 sðy� xÞ and S 0 ¼ sðSÞ, there exists s A S such that sðy� xÞ ¼ sðsÞ.
Thus y� x� s ¼ a for some a A J. Since 0a0 sðxÞ, there exists similarly t A S

such that sðxÞ ¼ sðtÞ. Thus x� t ¼ b for some b A J. Hence sþ t ¼ y� ðaþ bÞ.
Since JH I , this implies that sþ t A I . Since I is convex in R, s; t A I . Hence

sðxÞ ¼ sðtÞ A sðIÞ. Then sðIÞ is convex in R 0. Conversely, let I 0 be a convex ideal

of R 0. Evidently, sðs�1ðI 0ÞÞ ¼ I 0 and s�1ðI 0ÞI J. To see that I ¼ s�1ðI 0Þð0RÞ
is convex in R containing J, let 0a xa y and y A I . Since sðSÞHS 0, 0a0

sðxÞa0 sðyÞ. Since sðyÞ A I 0 and I 0 is convex in R 0, sðxÞ A I 0, then x A I . Thus

I is convex in R. r

For convex ideals I and J of R, I þ J need not even be S-convex (see

Example 2.20(4) later). While, for R being an ordered ring, the following holds.

Lemma 2.10. Let ðR;aÞ be an ordered ring. If Ii ði ¼ 1; 2; . . . ; nÞ are convex

ideals of R, then I ¼ I1 þ I2 þ � � � þ In is convex in R.

Proof. It su‰ces to show that I 0 ¼ I1 þ I2 is convex. To see I 0 is proper,

suppose not. Then 1 ¼ aþ b for some a A I1 and b A I2. We can assume aa b.
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Then 0 < 1a 2b A I2. Thus, 1 A I2 by the convexity of I2, so I2 ¼ R, a con-

tradiction. Thus, I 0 is proper. Similarly, the convexity of I 0 is shown. Hence,

I 0 is convex. r

Example 2.11. (1) For a partially ordered ring R ¼ ðZ;aSÞ with S ¼ nZ�

(n > 1Þ, if I and J are convex ideals of R, then I þ J is S-convex (by means of

[6, Proposition 3.4]). But, it is impossible to replace ‘‘S-convex’’ by ‘‘convex’’

(indeed, let I ¼ 2Z and J ¼ 3Z, and let S ¼ 6Z� in Z. Then I and J are convex

ideals of a partially ordered ring (Z;aS), but I þ J ¼ Z).

(2) For an ordered integral domain D, let D½x� be the polynomial ring over

D, and for f ¼ a0 þ a1xþ � � � þ anx
n in D½x�, 0 <2 f means the first nonzero

coe‰cient ak is positive in D. Then R ¼ ðD½x�;a2Þ is an ordered integral domain

(see [6], etc.). Thus, for any convex ideals I and J of R, I þ J is convex in R by

Lemma 2.10.

Corollary 2.12. Let s : ðR;aÞ ! ðR 0;a0Þ be an epimorphism with sðSÞ ¼
S 0, and I be an ideal of R, and let J ¼ KerðsÞ. Then I þ J is a convex ideal of R

i¤ so is sðIÞ. For ðR;aÞ being an ordered ring, if I is convex, then so is sðIÞ.

Proof. This is shown in view of Theorem 2.9, noting that sðI þ JÞ ¼ sðIÞ
with I þ JI J, and s�1ðsðIÞÞ ¼ I þ J. The latter part holds by Lemma 2.10.

r

Remark 2.13. In the first half of Corollary 2.12, for I being convex in R,

sðIÞ need not be S 0-convex in R 0; see Example 2.20(6) later. Also, the converse

of the latter part need not hold (indeed, let R ¼ ðZ½x�;a2Þ. Then every ideal

A ¼ ðxnÞ (generated by xn ðn > 0Þ) is convex in R (by [6, Remark 3.8]). Let

I ¼ ðx2 þ xÞ, I 0 ¼ ðxÞ, J ¼ ðx2Þ. Then I 0 and J are convex, but I is not convex

in R (actually, 0a2 x
2 a2 x

2 þ x A I , but x2 B I ). Let j : R ! R=J be the natural

map. Then jðIÞ ð¼ jðI 0ÞÞ is convex in R=J, but I is not convex).

Corollary 2.14. Let J be a convex ideal of R. For the natural map

j : ðR;aÞ ! ðR=J;aÞ and an ideal I of R, I þ J is a convex ideal of R i¤ so is

I 0 ¼ jðIÞ of R=J. For ðR;aÞ being an ordered ring, if I is convex, then so is jðIÞ.

Let us show that the (direct product) ring R� R 0 is never an ordered

ring. While, there exists a certain product ring which is an ordered ring; see

[5, Example 1] (or Proposition 3.21 later).
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Theorem 2.15. (1) Every ordered ring R has the largest convex ideal.

(2) The following (a) and (b) hold. Moreover, (a) and (b) are equivalent.

(a) For any rings R, R 0, the ring R� R 0 can not be an ordered ring (i.e.,

R� R 0 has no cones).

(b) Any ordered ring R has no idempotents except e ¼ 0 or e ¼ 1.

Proof. For (1), let fIl j l A Lg be the collection of all convex ideals in R.

Then the sum L ¼
P

l AL Il is the largest convex ideal of R. Indeed, to see L

is proper, suppose not. Then, for some Ili ði ¼ 1; 2; . . . ; nÞ, 1 A
Pn

i¼1 Ili , so R ¼
Pn

i¼1 Ili . But,
Pn

i¼1 Ili is proper by Lemma 2.10, a contradiction. Hence L is

proper. The convexity of L is obvious by Lemma 2.10.

For (2), to see (a), suppose ðR� R 0;aÞ is an ordered ring. We will show that

I ¼ R� 0 and J ¼ 0� R 0 are convex in R� R 0, which implies I þ J0R� R 0 by

Lemma 2.10, but I þ J ¼ R� R 0, a contradiction. To see I is convex, let ð0; 0Þ
a ðx; yÞa ðr; 0Þ A I . For f ¼ ð0; 1Þ A R� R 0, ð0; 0Þa f 2 ¼ f . Then ð0; 0Þ f a
ðx; yÞ f a ðr; 0Þ f . Thus ð0; 0Þa ð0; yÞa ð0; 0Þ, so y ¼ 0. Then ðx; yÞ ¼ ðx; 0Þ A I .

Hence I is convex. Similarly, J is convex, using e ¼ ð1; 0Þ. Next, to see

(a) ) (b), suppose some ordered ring R has an idempotent e with e0 0 and

e0 1. Then s : R ! Re� Rð1� eÞ defined by sðrÞ ¼ ðre; rð1� eÞÞ is a (ring)

isomorphism (actually, if y ¼ ðre; r 0ð1� eÞÞ, then for x ¼ reþ r 0ð1� eÞ, sðxÞ ¼ y.

Also, if sðrÞ ¼ ð0; 0Þ, then re ¼ rð1� eÞ ¼ 0, thus r ¼ reþ rð1� eÞ ¼ 0). Then,

Re� Rð1� eÞ is an ordered ring by the cone sðSÞ, a contradiction to (a). For

(b) ) (a), e ¼ ð1; 0Þ is an idempotent in R� R 0, but e0 ð0; 0Þ and e0 ð1; 1Þ.
Hence R� R 0 is not an ordered ring. r

Lemma 2.16. For S-convex ideas I , I 0 of a ring R, S þ I ¼ S þ I 0 i¤ I ¼ I 0.

Proof. This is shown by the proof of [6, Lemma 4.14], replacing ‘‘convex’’

by ‘‘S-convex’’ (actually, R ¼ S þ I 0 implies I 0 ¼ R). r

In [6], we obtain the following result by means of the above lemma: Let

s : R ! R 0 be an epimorphism, and I (resp. I 0) be a convex ideal of R (resp. R 0).

Assume that (*) sðIÞ is convex in R 0 or R is an ordered ring. If sðS þ IÞ ¼
S 0 þ I 0 and sðSÞ ¼ S 0, then sðIÞ ¼ I 0. The convexity of I (or I 0) is essential

([6, Remark 4.16]), but let us consider the question whether the assumption (*)

is essential. Namely,

Question 2.17. Let s : R ! R 0 be an epimorphism, and I (resp. I 0) be a

convex ideal of R (resp. R 0). If sðS þ IÞ ¼ S 0 þ I 0 and sðSÞ ¼ S 0, then sðIÞ ¼ I 0?
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For this question, we have the following by Corollary 2.12 and Lemma 2.16.

Proposition 2.18. Let s : R ! R 0 be an epimorphism with sðSÞ ¼ S 0 Let

J ¼ KerðsÞ. For convex ideals I of R and I 0 of R 0, sðIÞ ¼ I 0 i¤ I þ J is convex in

R and sðS þ IÞ ¼ S 0 þ I 0.

The following holds by Proposition 2.18.

Corollary 2.19. Let J be a convex ideal of R. Let j : ðR;aÞ ! ðR=J;aÞ
be the natural map. For convex ideals I of R and I 0 of R 0 ¼ R=J, jðIÞ ¼ I 0 i¤

I þ J is convex in R and jðS þ IÞ ¼ S 0 þ I 0.

The convexity of I þ J in Proposition 2.18 and Corollary 2.19 is essential,

which shows that Question 2.17 is negative. Indeed, we have the following.

Example 2.20. Let R ¼ Z� Z. Then e ¼ ð0; 1Þ and f ¼ ð1; 0Þ are idem-

potents of R. Let 1 < n A Z, and let I ¼ f0g � 2nZ, I 0 ¼ f0g � nZ, J ¼ Z� f0g.
For a semi-cone A ¼ nZ� of Z, let S ¼ fðk;mÞ A R j 0aA maA kg. Then S is a

semi-cone of R, and the following (1)@(6) hold.

(1) Se, Sf , and Seþ Sf ¼ S � S are semi-cones of the ring R, but SeQS,

Sf YS, and SYSeþ Sf .

(2) I , I 0, J are convex ideals of ðR;aSÞ, and Jf ¼ Rf .

(3) I ð¼ IeÞ is not Se-convex, and I 0 ð¼ I 0eÞ is convex in ðRe;aSeÞ.
(4) I þ J ¼ Z� 2nZ is not S-convex in ðR;aSÞ (indeed, ð0; 0ÞaS ðn; nÞaS

ð2n; 2nÞ A ðI þ JÞ, but ðn; nÞ B ðI þ JÞÞ.
(5) ðS þ IÞe ¼ Seþ I 0, but Ie0 I 0.

(6) Let j : ðR;aSÞ ! ðR=J;aS 0Þ be the natural map with S 0 ¼ jðSÞ.
(a) For the convex ideal I , jðIÞ is not S 0-convex in R=J.

(b) There holds that jðS þ IÞ ¼ S 0 þ jðI 0Þ, but jðIÞ0 jðI 0Þ.
Indeed, note that c : ðR=J;aS 0Þ ! ðRe;aSeÞ by cð½r�Þ ¼ re is an isomor-

phism with cðS 0Þ ¼ Se. Then (a) follows from (3), and (b) holds by (5), since

ðc � jÞðS þ IÞ ¼ ðc � jÞðSÞ þ ðc � jÞðI 0Þ, but ðc � jÞðIÞ0 ðc � jÞðI 0Þ.

3. Products of Partially Ordered Rings

Let R and R 0 be partially ordered rings, but assume S0 f0g and S 0 0 f0g in

this section. Let S0 ¼ Snf0g and S 0
0 ¼ S 0nf0g.
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In what follows, let us also use the symbol ‘‘0’’ instead of the set ‘‘f0g’’.
We will consider the following typical subsets of the product set R� R 0.

T ¼ S � S 0.

T0 ¼ S � 0 ð¼ ðS0 � 0ÞU fð0; 0ÞgÞ,
T1 ¼ ðS0 � S 0

0ÞU fð0; 0Þg,
T2 ¼ ðS0 � S 0ÞU fð0; 0Þg, and

T3 ¼ ðS0 � R 0ÞU fð0; 0Þg ð¼ ðS0 � R 0ÞUT0).

T 0
0 ¼ 0� S 0 ð¼ ð0� S 0

0ÞU fð0; 0ÞgÞ,
T 0
1 ¼ T1,

T 0
2 ¼ ðS � S 0

0ÞU fð0; 0Þg, and

T 0
3 ¼ ðR� S 0

0ÞU fð0; 0Þgð¼ ðR� S 0
0ÞUT 0

0Þ.

Remark 3.1. Obviously, the following (a), (b), and (c) hold, here we define

the lexicographic sets L and L 0 in (c). Also, we have the diagram below.

(a) T0 HT2, T1 HT2 HT3, T2 HT ; and T 0
0 HT 0

2, T 0
1 ¼ T1 HT 0

2 HT 0
3,

T 0
2 HT .

(b) T2 ¼ T0 UT1, T
0
2 ¼ T1 UT 0

0; and T ¼ T0 UT1 UT 0
0 ¼ T0 UT 0

2 ¼ T2 UT 0
0 ¼

T2 UT 0
2.

(c) L ¼ T3 UT ¼ T3 UT 0
2 ¼ T3 UT 0

0; and L 0 ¼ T UT 0
3 ¼ T2 UT 0

3 ¼ T0 UT 0
3.

Remark 3.2. (1) Obviously, the sets T , Ti, T 0
i ði ¼ 0; 1; 2; 3Þ, L, and L 0

satisfy (i) and (ii) in Definition 2.1 (with respect to these sets). But, neither S � R 0

nor R� S 0 satisfies (i) (cf. T3 or T 0
3).

(2) None of sets T0 UT 0
0, T3 UT 0

3, L, and L 0 are semi-cones of R� R 0

(indeed, let s A S0 and s 0 A S 0
0. Then ðs; 0Þ þ ð0; s 0Þ ¼ ðs; s 0Þ B T0 UT 0

0; ðs;�1Þ �
ð0; s 0Þ ¼ ð0;�s 0Þ B T3 UT 0

3 UL; and ðs; 0Þ � ð�1; s 0Þ ¼ ð�s; 0Þ B L 0).
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(3) Let C ¼ fT0;T1;T2;T3;T
0
0;T

0
2;T

0
3;Tg. Let F be the collection of finite

unions of C (containing the sets in C), but except unions which are never semi-

cones of R� R 0. Then F ¼ C, that is, F ¼ fT0;T1;T2;T3;T
0
0;T

0
2;T

0
3;Tg. Indeed,

let Cða 2Þ be the collection of unions of at most two sets in C, and let Cð> 2Þ
be the collection of unions of more than two sets in C. Using Remark 3.1, we

show that Cða 2Þ ¼ CUC�, where C� ¼ fT0 UT 0
0;T3 UT 0

3;L;L
0g, and Cð> 2ÞH

Cða 2Þ. But, any set in C� is never a semi-cone of R� R 0 in view of (2). Thus

F ¼ C. (Actually, when R and R 0 are integral domains, all sets in F are semi-

cones; see Corollary 3.4(1) below).

We give characterizations for the sets in the collection F to be semi-cones of

the ring R� R 0.

Theorem 3.3. Let R and R 0 be partially ordered rings. Then the following

hold.

(1) T , T0, and T 0
0 are semi-cones of R� R 0.

(2) T1 is a semi-cone of R� R 0 i¤ (i) S0S0 HS0 and S 0
0S

0
0 HS 0

0, otherwise (ii)

S0S0 ¼ 0 and S 0
0S

0
0 ¼ 0.

(3) T2 is a semi-cone of R� R 0 i¤ S0S0 HS0 or S 0
0S

0
0 ¼ 0.

(4) T 0
2 is a semi-cone of R� R 0 i¤ S0S0 ¼ 0 or S 0

0S
0
0 HS 0

0.

(5) T3 is a semi-cone of R� R 0 i¤ S0S0 HS0.

(6) T 0
3 is a semi-cone of R� R 0 i¤ S 0

0S
0
0 HS 0

0.

Proof. (1) is obvious. It is routine to see the if parts in (2)@(6). So, we will

see their ‘‘only if ’’ parts. For (2), assume S0S0 0 0. Then S 0
0S

0
0 HS 0

0. Indeed, take

some a; b A S0 with ab0 0. Suppose S 0
0S

0
0 QS 0

0. Take c; d A S 0
0 with cd ¼ 0. Thus

ða; cÞ � ðb; dÞ ¼ ðab; 0Þ B T1, a contradiction. Hence S 0
0S

0
0 HS 0

0. Similarly, S 0
0S

0
0 0 0

implies S0S0 HS0. Therefore, the following are equivalent: S0S0 HS0; S0S0 0 0;

S 0
0S

0
0 HS 0

0; and S 0
0S

0
0 0 0. Hence (i) or (ii) holds. For (3) and (4), assume

S 0
0S

0
0 0 0. Take c; d A S 0

0 with cd0 0. Suppose S0S0 QS0. Take a; b A S0 with

ab ¼ 0. Thus ða; cÞ � ðb; dÞ ¼ ð0; cdÞ B T2, a contradiction. Thus S0S0 HS0. (4) is

similarly shown. For (5) and (6), ðx; 1Þ � ðy; 1Þ ¼ ðxy; 1Þ A T3 implies S0S0 HS0.

(6) is similarly shown. r

Corollary 3.4. Let R and R 0 be partially ordered rings. Then the following

hold.

(1) T , T0, and T 0
0 are semi-cones of R� R 0. For R and R 0 being integral

domains, the other sets in F are also semi-cones of R� R 0.
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(2) Let 1 A S and 1 A S 0. Then the following hold.

(a) T1 is a semi-cone of R� R 0 i¤ S0S0 HS0 and S 0
0S

0
0 HS 0

0.

(b) T2 is a semi-cone of R� R 0 i¤ S0S0 HS0.

(c) T 0
2 is a semi-cone of R� R 0 i¤ S 0

0S
0
0 HS 0

0.

Remark 3.5. For a partially ordered ring R, (a) S0S0 HS0 need not hold,

and (b) S0S0 HS0 need not imply that R is an integral domain. Indeed, for (a),

take a semi-cone S 00 ¼ T of R 00 ¼ R� R 0, and for (b), take a semi-cone S 00 ¼ T1

of R 00 with R and R 0 integral domains, in view of Corollary 3.4(1). Then the

partially ordered ring ðR 00;aS 00Þ is a desired one.

For convenience, henceforth let us assume that all sets in F are semi-cones

of the ring R� R 0 (cf. Corollary 3.4), unless otherwise stated.

Let PR : R� R 0 ! R and PR 0 : R� R 0 ! R 0 be the projections (i.e., PRðx; yÞ
¼ x, PR 0 ðx; yÞ ¼ y). These projections are obviously epimorphisms.

Remark 3.6. PR or PR 0 need not be order-preserving, and also need not

preserve the convexity of an ideal. Indeed, let us see these for PR (similar for PR 0 ).

Evidently, PRðT 0
3Þ ¼ R, hence PR is not order-preserving. Let R ¼ R 0 ¼ Z, and

1 < n A Z. Let S 0 ¼ nZ�, and S 00 ¼ fðk;mÞ A Z� Z j 0aS 0 kaS 0 mg. Then, S 00 is

a semi-cone, and I 00 ¼ 2nZ� 0 is a convex ideal, but PRðI 00Þ ¼ 2nZ is not convex

in ðZ;aS 0Þ (cf. Example 2.20).

The following is well-known or routinely shown.

Lemma 3.7. For a subset A of the ring R� R 0, A is an ideal of R� R 0 i¤

A ¼ PRðAÞ � PR 0 ðAÞ, PRðAÞ is an ideal of R, and so is PR 0 ðAÞ of R 0.

Proposition 3.8. For T ¼ S � S 0, and an ideal J of R� R 0, J is T-convex i¤

PRðJÞ is S-convex in R and PR 0 ðJÞ is S 0-convex in R 0.

Proof. For the if part, to see J is T-convex, let ð0; 0ÞaT ðx; yÞaT

ða; bÞ A J. Then 0aS xaS a A PRðJÞ, so x A PRðJÞ. Similarly, y A PR 0 ðJÞ. Then

ðx; yÞ A J by Lemma 3.7. Hence J is T-convex. For the only if part, to see PRðJÞ
is S-convex in R, let 0aS xaS a A PRðJÞ. Then ð0; 0ÞaT ðx; 0ÞaT ða; 0Þ, and

ða; 0Þ A J by Lemma 3.7. Since J is T-convex, ðx; 0Þ A J, so x A PRðJÞ. Hence

PRðJÞ is S-convex. Similarly, PR 0 ðJÞ is S 0-convex in R 0. r
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The following holds by Proposition 3.8 and Lemma 2.16, related to Question

2.17.

Proposition 3.9. Let J be a T-convex ideal of R� R 0, and let J 0 be an

S-convex ideal of R. Then PRðT þ JÞ ¼ S þ J 0 i¤ PRðJÞ ¼ J 0.

Remark 3.10. Let us give analogues to Propositions 3.8 and 3.9 for

the sets in F. For an ideal I of R� R 0, let us consider conditions ðp1Þ
PRðIÞVS0 0q, and ðp2Þ PR 0 ðIÞVS 0

0 0q. We note that ðp1Þ (resp. ðp2Þ) holds
if R (resp. R 0) is an ordered ring. Then the following hold for ideals I and J of

R� R 0.

(1) (a) PRðIÞ is S-convex in R if I is A-convex for A ¼ Ti ði ¼ 0; 2; 3Þ, T 0
i

ði ¼ 1; 2; 3Þ, but assume ðp2Þ for T 0
i ði ¼ 1; 2; 3Þ. Also, PR 0 ðIÞ is S 0-convex in R

if I is A-convex for A ¼ Ti ði ¼ 1; 2; 3Þ, T 0
i ði ¼ 0; 2; 3Þ, but assume ðp1Þ for

Ti ði ¼ 1; 2; 3Þ. Conversely,

(b) J is A-convex in R� R 0 for A ¼ T1;T2, or T 0
2 if PRðJÞ is S-convex and

PR 0 ðJÞ is S 0-convex. Also, J is T0-convex if PRðJÞ is S-convex. Similarly, J is

T 0
0-convex if PR 0 ðJÞ) is S 0-convex.

(2) Proposition 3.8 remains true for T1, T2, and T 0
2, but for T1 (resp. T2; T

0
2),

assume ðp1Þ and ðp2Þ (resp. ðp1Þ; ðp2Þ). Also, J is T0-convex i¤ PRðJÞ is

S-convex. Similarly, J is T 0
0-convex i¤ P 0

RðJÞ is S 0-convex.

(3) Proposition 3.9 remains true for Ti ði ¼ 0; 2; 3Þ, T 0
1, T

0
2, but assume ðp2Þ

for T 0
1, T

0
2. Also, for PR 0 , the similar result holds for T , T1, T2, T

0
i ði ¼ 0; 2; 3Þ,

but assume ðp1Þ for T1, T2. While, Proposition 3.9 need not hold for A ¼ T 0
0

or T 0
3.

Indeed, (1) is shown as in the proof of Proposition 3.8. (For example, for (a),

to see PRðIÞ is S-convex in R for T 0
3 ¼ ðR� S 0

0ÞU fð0; 0Þg, let 0aS xaS a A

PRðIÞ, and take p A PR 0 ðIÞVS 0
0 by ðp2Þ. Then ð0; 0ÞaT 0

3
ðx; pÞaT 0

3
ða; 2pÞ A

PRðIÞ � P 0
RðIÞ ¼ I . Thus, ðx; pÞ A I , so x A PRðIÞ). (2) and (3) hold in view of

(1). For the last part of (3), let J 0 be a convex ideal and S C 1 in R. Then

J ¼ J 0 � 0 is convex for A, and PRðJÞ ¼ J 0. But, PRðAþ JÞ0S þ J 0. To

see this, suppose PRðAþ JÞ ¼ S þ J 0. Then, for A ¼ T 0
0, J 0 ¼ S þ J 0 C 1, so

J 0 ¼ R, a contradiction. For A ¼ T 0
3, R ¼ S þ J 0, so R ¼ J 0 by Lemma 2.16, a

contradiction).

Example 3.11. In Proposition 3.9, the convexity of the ideals J and J 0 is

essential for J and J 0 being proper. Indeed, let R ¼ ðZ½x�;a2Þ. Let I ¼ ðxÞ, and
A ¼ ð2xÞ. Then I is convex in R. But, A is not convex in R (indeed, 0a2 xa2
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2x A A, but x B A). Also, (*) S þ I ¼ S þ A holds. For R 0 ¼ R, I � ¼ I � I and

A� ¼ A� A, the following hold.

(1) I � is convex in R� R 0 for T , but A is not convex in R. While,

PRðT þ I �Þ ¼ S þ A by (*), but PRðI �Þ0A.

(2) A� is not convex in R� R 0 for T , but I is convex in R. While,

PRðT þ A�Þ ¼ S þ I by (*), but PRðA�Þ0 I .

Let us recall the following ring on the product set P ¼ R� R of ring R

with itself.

Definition 3.12. Let R be a ring. For ða; bÞ A P, let Pða; bÞ ¼ ðP;þ; �Þ be

the commutative ring defined by the following addition (i) and multiplication (ii):

For ðx; yÞ; ðz;wÞ A P, let

(i) ðx; yÞ þ ðz;wÞ ¼ ðxþ z; yþ wÞ.
(ii) ðx; yÞ � ðz;wÞ ¼ ðxzþ ayw; xwþ yzþ bywÞ.
Then e ¼ ð1; 0Þ is the identity element, and for u ¼ ð0; 1Þ, u � u ¼ ða; bÞ, and

ðx; yÞ ¼ ðx; 0Þ � eþ ðy; 0Þ � u in Pða; bÞ.

The ring Pð0; 0Þ is an algebra over R which has a basis fe; ug with u � u ¼
ð0; 0Þ, and it is called the trivial extension of R by itself (see [8], etc.). This ring

gives useful examples related to ring structures and order structures, or exten-

sions. We investigate order structures of the ring Pð0; 0Þ in terms of semi-cones or

cones. (We consider Pða; bÞ in [7] in terms of ring structures).

Notation. For a ring R, the symbol RyR denotes the ring Pð0; 0Þ.

Remark 3.13. (1) Let R½x� be the polynomial ring over a ring R, and

I ¼ ðx2Þ. Then RyR is (ring) isomorphic to R½x�=I by a map ða; bÞ 7! ½aþ bx�.
(2) For a subset A of RyR, let A� ¼ fðx;�yÞ j ðx; yÞ A Ag. Then A is a

semi-cone of RyR i¤ so is A�, and also for a semi-cone A of RyR, I is a

convex ideal of RyR for A i¤ so is I � for A�, by a (ring) isomorphism

ðx; yÞ 7! ðx;�yÞ.

Let us consider the sets T , Ti, T
0
j ði; j ¼ 0; 1; 2; 3Þ in RyR, putting R 0 ¼ R

and S 0 ¼ S.

Remark 3.14. (1) T0 UT 0
0 is not a semi-cone of RyR by Remark 3.2(2).

Also, T 0
3 is not a semi-cone of RyR, and any union of T , Ti, T

0
j ði; j ¼ 0; 1; 2; 3Þ
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containing T 0
3 is not a semi-cone of RyR (indeed, for s A S0, ð�1; sÞ � ð0; sÞ ¼

ð0;�sÞ B T 0
3. The latter part holds by ð0;�sÞ B T UTi UT 0

j ).

(2) Let C ¼ fT0;T1;T2;T3;T
0
0;T

0
2;T

0
3;Tg. Let FP be the collection of finite

unions of C (containing the sets in C), but except unions which are never semi-

cones of RyR. Then, FP ¼ fT0;T1;T2;T3;T
0
0;T

0
2;T ;Lg by (1), reviewing the

poof of Remark 3.2(3). (Actually, when R is an integral domain, all sets in FP

are semi-cones of RyR; see Corollary 3.17(1) later).

For a semi-cone S of R, let us consider the following conditions around

condition (*) S0S0 HS0 on R.

ðc1Þ For x; z A S0, if xz A S0 (i.e., xz0 0), then xS0 HS0 or zS0 HS0.

ðc2Þ For x; z A S0, if xz B S0 (i.e. xz ¼ 0), then xS0 ¼ 0 and zS0 ¼ 0.

We can replace ‘‘xS0 HS0 or zS0 HS0’’ by ‘‘xS0 þ zS0 0 0’’ in (c1). Also,

we can replace ‘‘xS0 ¼ 0 and zS0 ¼ 0’’ by ‘‘xS0 þ zS0 ¼ 0 (or xS þ zS ¼ 0)’’

in (c2).

Remark 3.15. (1) None of (*) (i.e., S0S0 HS0), (c1), and ðc2Þ hold for

some partially ordered ring R.

(2) Obviously, (*) implies ðc1Þ and ðc2Þ. But, ðc1Þ and ðc2Þ need not imply (*)

by the following (3) and (4).

(3) ðc2Þ implies ðc1Þ. But, the converse does not hold for some ordered ring R.

(4) For S0 C 1, (c2) implies (*). But, (c2) need not imply (*) without S0 C 1.

Indeed, (1) is shown by the proof of Remark 3.5(a), but assume SS0 0 in T .

For (3), assume ðc2Þ holds. If xz A S0 for x; z A S0, then xS0 HS0 and zS0 HS0.

To see this, suppose xS0 QS0, then xy ¼ 0 for some y A S0. Thus xS0 ¼ 0 by

ðc2Þ, hence xz ¼ 0, a contradiction. Thus xS0 HS0 (similarly, zS0 HS0). Then

ðc1Þ holds. For the latter part, let ðR;aÞ be the ordered ring in [5, Example 1].

Then we may consider the ordered ring ðR;aÞ as the ring R 0 ¼ KyK ¼
fða; bÞ j a; b A Kg with K an ordered field, where R 0 has a cone S 0 ¼ L

(cf. Corollary 3.17(1) below). Then u ¼ ð0; 1Þ A S 0
0 and u � u ¼ ð0; 0Þ. But, e ¼

ð1; 0Þ A S 0
0, then uS 0

0 0 fð0; 0Þg. Hence ðc2Þ does not hold (also, S 0
0S

0
0 QS 0

0). For

x ¼ ða; bÞ, z ¼ ðc; dÞ A S 0
0 with x � z0 ð0; 0Þ. Then a0 0 or c0 0, so a > 0

or c > 0 in K . Hence xS 0
0 HS 0

0 or zS 0
0 HS 0

0. Then ðc1Þ holds. Hence, R 0 is a

desired one (for S 0). For (4), suppose S0S0 QS0, then xz ¼ 0 for some x; z A S0.

But, x ¼ x1 A xS0 ¼ 0 by (c2Þ, so x ¼ 0, a contradiction. Hence, S0S0 HS0. For

the latter part in (4), let R 0 ¼ RyR, A ¼ T 0
0 ð¼ 0� SÞ, and A0 ¼ 0� S0.

Then AA ¼ fð0; 0Þg. Thus, ðc2Þ holds, but A0A0 QA0. Then R 0 is a desired one

(for A).
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We give characterizations for the sets in the collection FP to be semi-cones

of RyR, in comparison with Theorem 3.3 for R� R 0.

Theorem 3.16. Let R be a partially ordered ring. Then the following hold.

(1) T , T0, and T 0
0 are semi-cones of RyR.

(2) T1 is a semi-cone of RyR i¤ ðc2Þ holds.

(3) T2 is a semi-cone of RyR i¤ ðc2Þ holds.

(4) T 0
2 is a semi-cone of RyR i¤ ðc1Þ holds.

(5) T3 is a semi-cone of RyR i¤ S0S0 HS0.

(6) T3 UT 0
0 ð¼ LÞ is a semi-cone of RyR i¤ S0S0 HS0.

Proof. For (1), the result is obviously shown.

For (2), to see the if part, let ðx; yÞ; ðz;wÞ A S0 � S0. By (c2) with

Remark 3.15(3), for xz ¼ 0, xwþ yz ¼ 0, and for xz0 0, xwþ yz A S0. Thus

ðx; yÞ � ðz;wÞ ¼ ðxz; xwþ yzÞ A T1. For the only if part, suppose (c2) does

not hold. Then we assume that for some x; z;w A S0, xz ¼ 0, but xw0 0.

Let y A S0, then xwþ yz0 0. Thus ðx; yÞ; ðz;wÞ A S0 � S0, but ðx; yÞ � ðz;wÞ ¼
ðxz; xwþ yzÞ ¼ ð0; xwþ yzÞ B T1, a contradiction. Then (c2) holds.

For (3), the result is shown as in the proof of (2).

For (4), to see the if part, let ðx; yÞ; ðz;wÞ A S � S0. If xz ¼ 0, ðx; yÞ � ðz;wÞ ¼
ð0; xwþ yzÞ A T 0

2, so assume xz0 0. Then xwþ yz A S0 by (c1), hence ðx; yÞ �
ðz;wÞ ¼ ðxz; xwþ yzÞ A T 0

2. For the only if part, suppose that (c1) doesn’t hold.

Then for some x; z; y;w A S0, xz0 0, xw ¼ 0, and yz ¼ 0. Thus, ðx; yÞ � ðz;wÞ ¼
ðxz; xwþ yzÞ ¼ ðxz; 0Þ B T1, a contradiction. Then (c1) holds.

For (5) and (6), their if parts are routine. For their only if parts, suppose

S0S0 QS0, and take x; y A S0 with xy ¼ 0. Then ðx;�1Þ; ðy; 0Þ A T3, but ðx;�1Þ �
ðy; 0Þ ¼ ð0;�yÞ B T3 UT 0

0, a contradiction. Hence, S0S0 HS0. r

The following holds by Theorem 3.16 and Remark 3.15.

Corollary 3.17. Let R be a partially ordered ring. Then the following hold.

(1) T , T0, and T 0
0 are semi-cones of RyR. For R being an integral domain,

the other sets in FP are also semi-cones of RyR.

(2) For S C 1, T1 (or T2) is a semi-cone of RyR i¤ S0S0 HS0.

In view of the previous corollary, for an ordered integral domain R, the

lexicographic set L is a cone of RyR, though L is not even a semi-cone of the

ring R� R (by Remark 3.2(2)).
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It is well-known (or routinely shown) that for a field K , any non-zero, proper

ideal of KyK (resp. K � K) is 0� K (resp. 0� K or K � 0). We note that

I0 ¼ 0� R is an ideal in RyR, but I 00 ¼ R� 0 is not an ideal (I0 and I 00 are

ideals in R� R). Let us consider the convexity of I0 in RyR (or I0, I
0
0 in R� R).

Let pr : RyR (or R� R) ! R be the projection defined by prðx; yÞ ¼ x.

Then pr is an epimorphism.

Lemma 3.18. Let A be a semi-cone of RyR (or R� R). Then I0 ¼ 0� R is

a convex ideal for A i¤ prðAÞV�prðAÞ ¼ 0.

Proof. Let a¼aA. For the if part, let ð0; 0Þa ðx; yÞa ð0; bÞ A I0. Then

ð0; 0Þa ð�x; b� yÞ, hence x A prðAÞV�prðAÞ, so x ¼ 0. Thus, ðx; yÞ ¼ ð0; yÞ A
I0. For the only if part, let x A prðAÞV�prðAÞ. Then for some y; y 0 A R,

ð0; 0Þa ðx; yÞ and ð0; 0Þa ð�x; y0Þ. Then, ð0; 0Þa ðx; yÞa ðx; yÞ þ ð�x; y 0Þ ¼
ð0; yþ y 0Þ A I0. Since I0 is convex in RyR (or R� R), ðx; yÞ A I0, hence x ¼ 0.

r

Obviously, I0 ¼ 0� R is convex in RyR for the semi-cones in FP. Also, the

following holds (hence, for R being a field, I0 is the only non-zero, convex ideal).

Proposition 3.19. For an integral domain R, I0 is convex for any semi-cone

A of RyR.

Proof. To see prðAÞV�prðAÞ ¼ 0, let x A prðAÞV�prðAÞ. Then x ¼
prðx; yÞ ¼ �prðz;wÞ for some ðx; yÞ; ðz;wÞ A A. Then x ¼ �z, and hence ðx; yÞþ
ðz;wÞ ¼ ðxþ z; yþ wÞ ¼ ð0; yþ wÞ A A. Thus ðx; yÞ � ð0; yþ wÞ ¼ ð0; xðyþ wÞÞ A
A, and similarly, ð0; zðyþ wÞÞ A A. Hence ð0; xðyþ wÞÞ ¼ �ð0; zðyþ wÞÞ A AV

�A. Thus xðyþ wÞ ¼ 0. Since R is an integral domain, x ¼ 0 or yþ w ¼ 0. If

yþ w ¼ 0, then y ¼ �w, so ðx; yÞ ¼ ð�z;�wÞ ¼ �ðz;wÞ A AV�A, thus x ¼ 0.

Then prðAÞV�prðAÞ ¼ 0, which implies that I0 is convex in RyR by Lemma

3.18. r

Remark 3.20. For the ring R� R, I0 ¼ 0� R is obviously a convex ideal of

R� R for the semi-cones in F, but remove T 0
3 even if R is an integral domain.

Also, for an integral domain R, I0 is convex for a semi-cone A of R� R if

A C ða; 0Þ for some a0 0 (indeed, let x A prðAÞV�prðAÞ, and ða; 0Þ A A with

a0 0. Then ðax; 0Þ; ð�ax; 0Þ A A. Thus ðax; 0Þ A AV�A, hence x ¼ 0. Thus, I0

is convex for A by Lemma 3.18). Also, for I 00 ¼ R� 0, similarly the analogous

results hold.
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Proposition 3.21. (1) For an ordered (resp. partially ordered ) integral do-

main R, L and L� ¼ fðx;�yÞ j ðx; yÞ A Lg are cones (resp. semi-cones) of RyR.

(2) For an ordered field K and a cone A of KyK , the following are

equivalent.

(a) AIT0 ð¼ S � 0Þ.
(b) prðAÞIS.

(c) prðAÞ ¼ S.

(d) A ¼ L or A ¼ L�.

Proof. (1) holds in view of Corollary 3.17(1) and Remark 3.13(2).

For (2), obviously, the implication (d) ) (c) ) (b) holds. (a) ) (d) holds by

putting a ¼ ða; 0Þ, b ¼ ðb; 0Þ, and e ¼ ð1; 0Þ, u ¼ ð0; 1Þ in the proof of Example 1

in [5]. Indeed, A is a cone, so u A A or u A �A. In case of u A A, let ða; bÞ A L.

If a ¼ 0, then b A S, so ðb; 0Þ A A by (a), thus ða; bÞ ¼ ð0; bÞ ¼ ðb; 0Þ � u A A. If

a0 0, then a A S, and ða; 0Þ A A by (a), thus ða; bÞ ¼ ða; 0Þ � ð1; b=2aÞ2 A A. Hence,

LHA, so A ¼ L. In case of u A �A (i.e., �u ¼ ð0;�1Þ A A), let ða;�bÞ A L�.

Then, similarly ða;�bÞ A A. Thus, A ¼ L�. For (b) ) (a), let s A S. Then ðs; s 0Þ A A

for some s 0 A K by (b). Thus, for s0 0, ðs; 0Þ ¼ ðs; s 0Þ � ð1;�s 0=2sÞ2 A A. Hence,

T0 HA. r

Corollary 3.22. Let K be an ordered field such that (*) for each a A S,

there exists b A K with a ¼ b2 (in particular, K is the field of real numbers, or the

field of algebraic real numbers over the rational number field ). Then for a cone A

of KyK , A ¼ L or A ¼ L�.

Proof. To see AIT0, let ða; 0Þ A T0. Then for some b A K , ða; 0Þ ¼
ðb2; 0Þ ¼ ðb; 0Þ2 A A. Then A ¼ L or L� by Proposition 3.21. The parenthetic part

implies (*), as is well-known. r

For a field K , we will give a characterization for cones of KyK. The

following lemma is obvious.

Lemma 3.23. For a subring R 0 and cone of A of R, AVR 0 is a cone

of R 0.

Theorem 3.24. For a field K , let S be the collection of all cones of K , and

let ~SS be the collection of all cones of K yK. Then ~SS ¼ fLðSÞ;LðSÞ� jS A Sg,
where LðSÞ ¼ ðS0 � KÞU ð0� SÞ.
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Proof. For a cone S of K, LðSÞ and LðSÞ� are cones of KyK in view of

Proposition 3.21(1). Conversely, let A be a cone of KyK , and let K 0 ¼ Ky 0.

Since K 0 is a subring of KyK , S ¼ AVK 0 is a cone of K 0 by Lemma 3.23.

But, we can consider S as a cone in K by a (ring) isomorphism K 0 ! K ,

ðx; 0Þ 7! x. Since AIS � 0, A ¼ LðSÞ or A ¼ LðSÞ� by Proposition 3.21(2).

Thus, ~SS ¼ fLðSÞ;LðSÞ� jS A Sg. r
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