PARTIALLY ORDERED RINGS II

By

Yoshimi KITAMURA and Yoshio TANAKA

Abstract. This paper is a continuation of [6]. We study partially ordered rings in terms of non-negative semi-cones and convex ideals, considering order-preserving homomorphisms, residue class rings, and certain product rings, etc.

1. Introduction

Partially ordered rings have been considered by several authors. Especially, the systematic foundation of lattice-ordered rings has been given by Birkhoff and Pierce [2]. Recently, an interesting result of a lattice-ordered skew field has been obtained in [10].

In this paper, we assume that all rings are non-zero commutative rings with identity. The symbol R means such a ring with the identity element denoted by 1, and I means an ideal of R (similar, for R' and I'), unless otherwise stated.

We shall consider commutative, partially ordered rings. As is well-known, for a ring R, there is a bijection between the set of partial orders of R which make it into a partially ordered ring and the set of those S of R having properties: $S \cap -S = \{0\}$; $S + S \subset S$ (S is closed under addition); $SS \subset S$ (S is closed under multiplication). In the previous paper [6], we call a subset S of R satisfying these three conditions a non-negative semi-cone as a generalization of "positive cones" of integral domains, as well as, "non-negative cones" of rings. For a partially ordered ring R, in order that the residue class ring R/I be a partially ordered ring with the canonical order induced from R, I is precisely a convex ideal, as is wellknown ([4]). The concepts of "non-negative semi-cones" and the "convex ideals" play important roles in the theory of partially ordered rings (see [1], [2], [3] and

²⁰¹⁰ Mathematics Subject Classification: 06A06, 06F25.

Key words and phrases: partially ordered ring, non-negative semi-cone, convex ideal, order-preserving homomorphism, idempotent, residue class ring, product of rings.

Received July 17, 2014.

Revised March 19, 2015.

[4], etc.). In view of these concepts, we shall study partially ordered rings, considering order-preserving homomorphisms, idempotents, residue class rings, and certain product rings, etc. Also, we give characterizations for typical subsets of the product rings to be non-negative semi-cones, and a characterization for non-negative cones of a certain product ring of a field.

2. Non-negative Semi-cones and Convex Ideals

Let A, B be subsets of R. Define $-A = \{-x \mid x \in A\}, A + B = \{x + y \mid x \in A, y \in B\}, AB = \{xy \mid x \in A, y \in B\}, aB = Ba = \{a\}B$ for $a \in R$, and $A \setminus \{0\} = \{x \mid x \in A, x \neq 0\}$. Also, for a subset C of R', define $A \times C = \{(x, y) \mid x \in A, y \in C\}$.

First, let us recall some basic definitions used in this paper. For other terminologies, see [4], [6], etc.

DEFINITION 2.1. A subset S of a ring R is a non-negative semi-cone ([6]) (resp. non-negative cone ([5])) of R if S satisfies the following (i), (ii), and (iii) (resp. (i), (iii), and (iv)):

- (i) $S \cap (-S) = \{0\}.$
- (ii) $S + S \subset S$.
- (iii) $SS \subset S$.
- (iv) $R = S \cup (-S)$.

A subset S of R is a *positive cone* ([5], [9]) of R if S satisfies the above (ii) and (iii), and $S \cup (-S) = R \setminus \{0\}$. For a positive cone S, $S \cup \{0\}$ is a non-negative cone.

We recall that (R, \leq) is a *partially ordered ring* (resp. *ordered ring*) if \leq is a partial order (resp. total order) on R such that $a \leq b$ implies $a + x \leq b + x$ for all x, and $a \leq b$ and $0 \leq x$ implies $ax \leq bx$. Also, (R, \leq) is an *ordered integral domain* if it is an ordered ring which is an integral domain.

We note that for a non-negative semi-cone S of a ring R, we induce a canonical partial order \leq_S in R by defining $x \leq_S y$ by $y - x \in S$, and (R, \leq_S) is a partially ordered ring. Conversely, for a partially ordered ring (R, \leq) , we induce a canonical non-negative semi-cone $S = \{x \mid 0 \leq x\}$ of R with $\leq = \leq_S$. These are also valid for the relationship between "non-negative cones (resp. positive cones)" and "ordered rings (resp. ordered integral domains)". (A non-negative semi-cone S of a ring R is the set R^+ of all positive elements* of a po-ring (or partly ordered ring) (R, \leq_S) in [2]).

^{*} For a partially ordered ring (R, \leq) , elements x of R satisfying $x \geq 0$ are called *positive* in [2], [10], and other references.

183

DEFINITION 2.2. Let R, R' be rings. As is well-known, $R \times R'$ is a ring under component-wise addition and multiplication (i.e., for $(x, y), (z, w) \in R \times R'$, (x, y) + (z, w) = (x + z, y + w), and $(x, y) \cdot (z, w) = (xz, yw)$). Let us call such a ring $R \times R'$ the *direct product ring*.

NOTATIONS. (1) The brief terminology "semi-cone" (resp. "cone") is used as an abbreviation of "non-negative semi-cone" (resp. "non-negative cone").

(2) The symbol (R, \leq) (or simply, R) means a partially ordered ring, and S means the canonical semi-cone of R, and similar to the symbols (R', \leq') (or simply, R') and S', unless otherwise stated.

(3) The symbol $R \times R'$ means the direct product ring, unless otherwise stated.

An element e of a ring R is called an *idempotent* if $e^2 = e$. For an idempotent e of R, f = 1 - e is also an idempotent of R with ef = 0, e + f = 1.

The symbol Z denotes the ring of integers, and Z^* denotes the set of non-negative integers.

REMARK 2.3. Let S be a semi-cone of a ring R. Let $a, b \in S \cup \mathbb{Z}^*$. Then aS + bS ($\subset S$) is obviously a semi-cone of R (here, aS + bS = S for a = 1 or b = 1). However, we have the following (1) and (2).

(1) S + S' need not be a semi-cone of R for a semi-cone S' of R, and similar to Se for an idempotent e of R (indeed, let $R = \mathbb{Z} \times \mathbb{Z}$. Let $S = ((\mathbb{Z}^* \setminus \{0\}) \times \mathbb{Z}) \cup \{(0,0)\}, S' = (\mathbb{Z} \times (\mathbb{Z}^* \setminus \{0\})) \cup \{(0,0)\}$. Then S and S' are semi-cones of R. But, S + S' = R, and for an idempotent $e = (0,1), Se = \{0\} \times \mathbb{Z}$. Then neither S + S' nor Se is a semi-cone of R).

(2) SS need not be a semi-cone of R (indeed, let $R = \mathbb{Z}$, and $S = 2\mathbb{Z}^* + 3\mathbb{Z}^*$. Then S is a semi-cone of R, but SS is not a semi-cone, because $4, 9 \in SS$, but $4 + 9 = 13 \notin SS$).

PROPOSITION 2.4. Let S be a semi-cone of a ring R, and let e and f = 1 - e be idempotents of R with $e, f \neq 0$. Then the following hold.

(1) Se is a semi-cone of Re iff $Se \cap (-Se) = \{0\}$. In particular, for $Se \subset S$, Se is a semi-cone of Re.

(2) If S_1 and S_2 are semi-cones of Re and Rf respectively, then $S_1 + S_2$ is a semi-cone of R.

(3) S' = Se + Sf is a semi-cone of R iff so are Se of Re and Sf of Rf.

PROOF. (1) is obvious. (2) is routinely shown, noting $(Re)(Rf) = Re \cap Rf = \{0\}$. For (3), the if part holds by (2). For the only if part, noting $S'e = Se \subset S'$, Se is a semi-cone of Re by (1). Similarly, Sf is a semi-cone of Rf. \Box

Let $h: R \to R'$ be a map with R and R' rings. We recall that h is an *epimorphism* if it is a ring homomorphism with h(R) = R'. For semi-cones S of R and S' of R', h is called *order-preserving* if $h(S) \subset S'$.

Let R be a ring. An ideal I of R is proper if $I \neq R$. For a proper ideal I of R, R/I denotes the residue class ring consisting of elements [a] = I + a $(a \in R)$.

DEFINITION 2.5 ([4]). For a proper ideal I of (R, \leq) , I is convex in R if whenever $0 \leq x \leq y$ and $y \in I$, then $x \in I$. We induce a canonical ordering relation on R/I as follows: For $a \in R$, define $[a] \geq 0$ if [a] = [x] for some $x \geq 0$ in R (we use the same symbol \leq in R/I without confusion).

We recall that a proper ideal I of (R, \leq) is convex iff $(R/I, \leq)$ is a partially ordered ring; equivalently, $S' = \{[x] | [x] \geq 0\}$ is a semi-cone of R/I ([4], etc.).

We assume that R/I has the semi-cone S', unless otherwise stated.

Let $\varphi : (R, \leq) \to (R/I, \leq)$ be the natural map defined by $\varphi(x) = [x]$ for $x \in R$. Then φ is an order-preserving, epimorphism with $\varphi(S) = S'$.

The convexity of an ideal *I* of a partially ordered ring *R* is usually defined under *I* being proper in *R*. But, for convex ideals *I* and *J* of *R*, *I* + *J* need not be proper in *R* (see Example 2.11(1)). Moreover, for some partially ordered ring $R \times R$, ideals $I_0 = 0 \times R$ and $I'_0 = R \times 0$ are convex (see Remark 3.20 later), but $I_0 + I'_0$ is not proper in $R \times R$, and also for an idempotent e = (0, 1), I_0e is not proper in *Re*.

In view of the above, let us introduce the following terminology.

DEFINITION 2.6. Let J be an ideal of a ring R (including J = R), and S be a semi-cone of R. Let us say that J is S-convex in R if whenever $x \in S$, $y - x \in S$ and $y \in J$ imply $x \in J$. When $J \neq R$, we shall call such an S-convex ideal J convex for S. For (R, \leq) , obviously J is S-convex in R iff J is convex (for S), or J = R.

PROPOSITION 2.7. Let S be a semi-cone of a ring R, and let e and f = 1 - e be idempotents of R with $e, f \neq 0$. Then the following hold.

(1) Let $Se \subset S$. If I is S-convex in R, then Ie is Se-convex in Re.

(2) Let $Se \subset S$ and $Sf \subset S$. I is S-convex iff Ie is Se-convex and If is Sf-convex.

PROOF. For (1), Se is a semi-cone of Re by Proposition 2.4(1). To see Ie is Se-convex in Re, let $xe, y - xe \in Se$ $(x \in S)$, and $y \in Ie$. Since $Se \subset S$ and $Ie \subset I$, $xe, y - xe \in S$, and $y \in I$. Since I is S-convex in R, $xe \in I$, hence $xe \in Ie$. For (2), the only if part holds by (1). For the if part, let $x, y - x \in S$, and $y \in I$. Then $xe, ye - xe \in Se$, and $ye \in Ie$. Since Ie is Se-convex in Re, $xe \in Ie$. Similarly, If is Sf-convex, so $xf \in If$. Hence $x = xe + xf \in Ie + If = I$. Thus I is S-convex.

REMARK 2.8. In (1) of Proposition 2.7, " $Se \subset S$ " is essential. Also, it is impossible to replace "*Se*-convex" by "convex for *Se*" even if *I* is convex for *S* in *R*. We have similar matters in (2) there. For these, see Example 2.20 later.

The following is a classical result, but let us give a proof for the readers.

THEOREM 2.9. Let $\sigma : (R, \leq) \to (R', \leq')$ be an epimorphism with $\sigma(S) = S'$, and let $J = Ker(\sigma)$. Then there exists a bijection Φ between the class of convex ideals I of R containing J and the class of convex ideals I' of R', defining by $\Phi(I) = \sigma(I)$ and $\Phi^{-1}(I') = \sigma^{-1}(I')$. Especially, J is a convex ideal of R.

PROOF. Let *I* be a convex ideal of *R* containing *J*. Evidently, $I = \sigma^{-1}(\sigma(I))$, hence $\sigma(I) \neq R'$. To see $\sigma(I)$ is convex in *R'*, let $0 \leq \sigma(x) \leq \sigma(y)$ and $y \in I$. Since $0 \leq \sigma(y - x)$ and $S' = \sigma(S)$, there exists $s \in S$ such that $\sigma(y - x) = \sigma(s)$. Thus y - x - s = a for some $a \in J$. Since $0 \leq \sigma(x)$, there exists similarly $t \in S$ such that $\sigma(x) = \sigma(t)$. Thus x - t = b for some $b \in J$. Hence s + t = y - (a + b). Since $J \subset I$, this implies that $s + t \in I$. Since *I* is convex in *R*, $s, t \in I$. Hence $\sigma(x) = \sigma(t) \in \sigma(I)$. Then $\sigma(I)$ is convex in *R'*. Conversely, let *I'* be a convex ideal of *R'*. Evidently, $\sigma(\sigma^{-1}(I')) = I'$ and $\sigma^{-1}(I') \supset J$. To see that $I = \sigma^{-1}(I') (\neq R)$ is convex in *R* containing *J*, let $0 \leq x \leq y$ and $y \in I$. Since $\sigma(S) \subset S'$, $0 \leq \sigma(x) \leq \sigma(y)$. Since $\sigma(y) \in I'$ and I' is convex in *R'*, $\sigma(x) \in I'$, then $x \in I$. Thus *I* is convex in *R*.

For convex ideals I and J of R, I + J need not even be S-convex (see Example 2.20(4) later). While, for R being an ordered ring, the following holds.

LEMMA 2.10. Let (R, \leq) be an ordered ring. If I_i (i = 1, 2, ..., n) are convex ideals of R, then $I = I_1 + I_2 + \cdots + I_n$ is convex in R.

PROOF. It suffices to show that $I' = I_1 + I_2$ is convex. To see I' is proper, suppose not. Then 1 = a + b for some $a \in I_1$ and $b \in I_2$. We can assume $a \le b$.

186

Then $0 < 1 \le 2b \in I_2$. Thus, $1 \in I_2$ by the convexity of I_2 , so $I_2 = R$, a contradiction. Thus, I' is proper. Similarly, the convexity of I' is shown. Hence, I' is convex.

EXAMPLE 2.11. (1) For a partially ordered ring $R = (\mathbb{Z}, \leq_S)$ with $S = n\mathbb{Z}^*$ (n > 1), if *I* and *J* are convex ideals of *R*, then I + J is *S*-convex (by means of [6, Proposition 3.4]). But, it is impossible to replace "*S*-convex" by "convex" (indeed, let $I = 2\mathbb{Z}$ and $J = 3\mathbb{Z}$, and let $S = 6\mathbb{Z}^*$ in \mathbb{Z} . Then *I* and *J* are convex ideals of a partially ordered ring (\mathbb{Z}, \leq_S) , but $I + J = \mathbb{Z}$).

(2) For an ordered integral domain D, let D[x] be the polynomial ring over D, and for $f = a_0 + a_1x + \cdots + a_nx^n$ in D[x], $0 <_2 f$ means the first nonzero coefficient a_k is positive in D. Then $R = (D[x], \leq_2)$ is an ordered integral domain (see [6], etc.). Thus, for any convex ideals I and J of R, I + J is convex in R by Lemma 2.10.

COROLLARY 2.12. Let $\sigma : (R, \leq) \to (R', \leq')$ be an epimorphism with $\sigma(S) = S'$, and I be an ideal of R, and let $J = Ker(\sigma)$. Then I + J is a convex ideal of R iff so is $\sigma(I)$. For (R, \leq) being an ordered ring, if I is convex, then so is $\sigma(I)$.

PROOF. This is shown in view of Theorem 2.9, noting that $\sigma(I+J) = \sigma(I)$ with $I+J \supset J$, and $\sigma^{-1}(\sigma(I)) = I+J$. The latter part holds by Lemma 2.10.

REMARK 2.13. In the first half of Corollary 2.12, for *I* being convex in *R*, $\sigma(I)$ need not be *S'*-convex in *R'*; see Example 2.20(6) later. Also, the converse of the latter part need not hold (indeed, let $R = (\mathbb{Z}[x], \leq_2)$). Then every ideal $A = (x^n)$ (generated by x^n (n > 0)) is convex in *R* (by [6, Remark 3.8]). Let $I = (x^2 + x), I' = (x), J = (x^2)$. Then *I'* and *J* are convex, but *I* is not convex in *R* (actually, $0 \leq_2 x^2 \leq_2 x^2 + x \in I$, but $x^2 \notin I$). Let $\varphi : R \to R/J$ be the natural map. Then $\varphi(I) (= \varphi(I'))$ is convex in *R/J*, but *I* is not convex).

COROLLARY 2.14. Let J be a convex ideal of R. For the natural map $\varphi : (R, \leq) \rightarrow (R/J, \leq)$ and an ideal I of R, I + J is a convex ideal of R iff so is $I' = \varphi(I)$ of R/J. For (R, \leq) being an ordered ring, if I is convex, then so is $\varphi(I)$.

Let us show that the (direct product) ring $R \times R'$ is never an ordered ring. While, there exists a certain product ring which is an ordered ring; see [5, Example 1] (or Proposition 3.21 later).

THEOREM 2.15. (1) Every ordered ring R has the largest convex ideal.

(2) The following (a) and (b) hold. Moreover, (a) and (b) are equivalent.

(a) For any rings R, R', the ring $R \times R'$ can not be an ordered ring (i.e., $R \times R'$ has no cones).

(b) Any ordered ring R has no idempotents except e = 0 or e = 1.

PROOF. For (1), let $\{I_{\lambda} \mid \lambda \in \Lambda\}$ be the collection of all convex ideals in R. Then the sum $L = \sum_{\lambda \in \Lambda} I_{\lambda}$ is the largest convex ideal of R. Indeed, to see L is proper, suppose not. Then, for some I_{λ_i} (i = 1, 2, ..., n), $1 \in \sum_{i=1}^{n} I_{\lambda_i}$, so $R = \sum_{i=1}^{n} I_{\lambda_i}$. But, $\sum_{i=1}^{n} I_{\lambda_i}$ is proper by Lemma 2.10, a contradiction. Hence L is proper. The convexity of L is obvious by Lemma 2.10.

For (2), to see (a), suppose $(R \times R', \leq)$ is an ordered ring. We will show that $I = R \times 0$ and $J = 0 \times R'$ are convex in $R \times R'$, which implies $I + J \neq R \times R'$ by Lemma 2.10, but $I + J = R \times R'$, a contradiction. To see I is convex, let $(0,0) \leq (x, y) \leq (r, 0) \in I$. For $f = (0, 1) \in R \times R'$, $(0,0) \leq f^2 = f$. Then $(0,0)f \leq (x, y)f \leq (r, 0)f$. Thus $(0,0) \leq (0, y) \leq (0,0)$, so y = 0. Then $(x, y) = (x, 0) \in I$. Hence I is convex. Similarly, J is convex, using e = (1,0). Next, to see (a) \Rightarrow (b), suppose some ordered ring R has an idempotent e with $e \neq 0$ and $e \neq 1$. Then $\sigma : R \to Re \times R(1 - e)$ defined by $\sigma(r) = (re, r(1 - e))$ is a (ring) isomorphism (actually, if y = (re, r'(1 - e)), then for $x = re + r'(1 - e), \sigma(x) = y$. Also, if $\sigma(r) = (0,0)$, then re = r(1 - e) = 0, thus r = re + r(1 - e) = 0. Then, $Re \times R(1 - e)$ is an ordered ring by the cone $\sigma(S)$, a contradiction to (a). For (b) \Rightarrow (a), e = (1,0) is an idempotent in $R \times R'$, but $e \neq (0,0)$ and $e \neq (1,1)$. Hence $R \times R'$ is not an ordered ring.

LEMMA 2.16. For S-convex ideas I, I' of a ring R, S + I = S + I' iff I = I'.

PROOF. This is shown by the proof of [6, Lemma 4.14], replacing "convex" by "S-convex" (actually, R = S + I' implies I' = R).

In [6], we obtain the following result by means of the above lemma: Let $\sigma: R \to R'$ be an epimorphism, and I (resp. I') be a convex ideal of R (resp. R'). Assume that (*) $\sigma(I)$ is convex in R' or R is an ordered ring. If $\sigma(S+I) = S' + I'$ and $\sigma(S) = S'$, then $\sigma(I) = I'$. The convexity of I (or I') is essential ([6, Remark 4.16]), but let us consider the question whether the assumption (*) is essential. Namely,

QUESTION 2.17. Let $\sigma : R \to R'$ be an epimorphism, and I (resp. I') be a convex ideal of R (resp. R'). If $\sigma(S + I) = S' + I'$ and $\sigma(S) = S'$, then $\sigma(I) = I'$?

For this question, we have the following by Corollary 2.12 and Lemma 2.16.

PROPOSITION 2.18. Let $\sigma : R \to R'$ be an epimorphism with $\sigma(S) = S'$ Let $J = Ker(\sigma)$. For convex ideals I of R and I' of R', $\sigma(I) = I'$ iff I + J is convex in R and $\sigma(S + I) = S' + I'$.

The following holds by Proposition 2.18.

188

COROLLARY 2.19. Let J be a convex ideal of R. Let $\varphi : (R, \leq) \to (R/J, \leq)$ be the natural map. For convex ideals I of R and I' of R' = R/J, $\varphi(I) = I'$ iff I + J is convex in R and $\varphi(S + I) = S' + I'$.

The convexity of I + J in Proposition 2.18 and Corollary 2.19 is essential, which shows that Question 2.17 is negative. Indeed, we have the following.

EXAMPLE 2.20. Let $R = \mathbb{Z} \times \mathbb{Z}$. Then e = (0, 1) and f = (1, 0) are idempotents of R. Let $1 < n \in \mathbb{Z}$, and let $I = \{0\} \times 2n\mathbb{Z}$, $I' = \{0\} \times n\mathbb{Z}$, $J = \mathbb{Z} \times \{0\}$. For a semi-cone $A = n\mathbb{Z}^*$ of \mathbb{Z} , let $S = \{(k, m) \in R \mid 0 \leq_A m \leq_A k\}$. Then S is a semi-cone of R, and the following $(1)\sim(6)$ hold.

(1) Se, Sf, and $Se + Sf = S \times S$ are semi-cones of the ring R, but $Se \not\subset S$, $Sf \subsetneq S$, and $S \subsetneq Se + Sf$.

(2) I, I', J are convex ideals of (R, \leq_S) , and Jf = Rf.

(3) I (= Ie) is not Se-convex, and I' (= I'e) is convex in (Re, \leq_{Se}) .

(4) $I + J = \mathbb{Z} \times 2n\mathbb{Z}$ is not S-convex in (R, \leq_S) (indeed, $(0,0) \leq_S (n,n) \leq_S (2n, 2n) \in (I+J)$, but $(n,n) \notin (I+J)$).

(5) (S+I)e = Se + I', but $Ie \neq I'$.

(6) Let $\varphi: (R, \leq_S) \to (R/J, \leq_{S'})$ be the natural map with $S' = \varphi(S)$.

(a) For the convex ideal I, $\varphi(I)$ is not S'-convex in R/J.

(b) There holds that $\varphi(S+I) = S' + \varphi(I')$, but $\varphi(I) \neq \varphi(I')$.

Indeed, note that $\psi : (R/J, \leq_{S'}) \to (Re, \leq_{Se})$ by $\psi([r]) = re$ is an isomorphism with $\psi(S') = Se$. Then (a) follows from (3), and (b) holds by (5), since $(\psi \circ \varphi)(S + I) = (\psi \circ \varphi)(S) + (\psi \circ \varphi)(I')$, but $(\psi \circ \varphi)(I) \neq (\psi \circ \varphi)(I')$.

3. Products of Partially Ordered Rings

Let *R* and *R'* be partially ordered rings, but assume $S \neq \{0\}$ and $S' \neq \{0\}$ in this section. Let $S_0 = S \setminus \{0\}$ and $S'_0 = S' \setminus \{0\}$.

In what follows, let us also use the symbol "0" instead of the set " $\{0\}$ ". We will consider the following typical subsets of the product set $R \times R'$.

$$T = S \times S'.$$

$$T_{0} = S \times 0 \ (= (S_{0} \times 0) \cup \{(0,0)\}),$$

$$T_{1} = (S_{0} \times S'_{0}) \cup \{(0,0)\},$$

$$T_{2} = (S_{0} \times S') \cup \{(0,0)\}, \text{ and }$$

$$T_{3} = (S_{0} \times R') \cup \{(0,0)\} \ (= (S_{0} \times R') \cup T_{0})$$

$$T'_{0} = 0 \times S' \ (= (0 \times S'_{0}) \cup \{(0,0)\}),$$

$$T'_{1} = T_{1},$$

$$T'_{2} = (S \times S'_{0}) \cup \{(0,0)\}, \text{ and }$$

$$T'_{3} = (R \times S'_{0}) \cup \{(0,0)\}(= (R \times S'_{0}) \cup T'_{0}).$$

REMARK 3.1. Obviously, the following (a), (b), and (c) hold, here we define the *lexicographic sets* L and L' in (c). Also, we have the diagram below.

- (a) $T_0 \subset T_2$, $T_1 \subset T_2 \subset T_3$, $T_2 \subset T$; and $T'_0 \subset T'_2$, $T'_1 = T_1 \subset T'_2 \subset T'_3$, $T'_2 \subset T$.
- (b) $T_2^2 = T_0 \cup T_1$, $T_2' = T_1 \cup T_0'$; and $T = T_0 \cup T_1 \cup T_0' = T_0 \cup T_2' = T_2 \cup T_0' = T_2 \cup T_2'$.
- (c) $L = T_3 \cup T = T_3 \cup T'_2 = T_3 \cup T'_3$; and $L' = T \cup T'_3 = T_2 \cup T'_3 = T_0 \cup T'_3$.

REMARK 3.2. (1) Obviously, the sets T, T_i , T'_i (i = 0, 1, 2, 3), L, and L' satisfy (i) and (ii) in Definition 2.1 (with respect to these sets). But, neither $S \times R'$ nor $R \times S'$ satisfies (i) (cf. T_3 or T'_3).

(2) None of sets $T_0 \cup T'_0$, $T_3 \cup T'_3$, *L*, and *L'* are semi-cones of $R \times R'$ (indeed, let $s \in S_0$ and $s' \in S'_0$. Then $(s, 0) + (0, s') = (s, s') \notin T_0 \cup T'_0$; $(s, -1) \cdot (0, s') = (0, -s') \notin T_3 \cup T'_3 \cup L$; and $(s, 0) \cdot (-1, s') = (-s, 0) \notin L'$). (3) Let $\mathscr{C} = \{T_0, T_1, T_2, T_3, T'_0, T'_2, T'_3, T\}$. Let \mathscr{F} be the collection of finite unions of \mathscr{C} (containing the sets in \mathscr{C}), but except unions which are never semicones of $R \times R'$. Then $\mathscr{F} = \mathscr{C}$, that is, $\mathscr{F} = \{T_0, T_1, T_2, T_3, T'_0, T'_2, T'_3, T\}$. Indeed, let $\mathscr{C}(\leq 2)$ be the collection of unions of at most two sets in \mathscr{C} , and let $\mathscr{C}(>2)$ be the collection of unions of more than two sets in \mathscr{C} . Using Remark 3.1, we show that $\mathscr{C}(\leq 2) = \mathscr{C} \cup \mathscr{C}^*$, where $\mathscr{C}^* = \{T_0 \cup T'_0, T_3 \cup T'_3, L, L'\}$, and $\mathscr{C}(>2) \subset$ $\mathscr{C}(\leq 2)$. But, any set in \mathscr{C}^* is never a semi-cone of $R \times R'$ in view of (2). Thus $\mathscr{F} = \mathscr{C}$. (Actually, when R and R' are integral domains, all sets in \mathscr{F} are semicones; see Corollary 3.4(1) below).

We give characterizations for the sets in the collection \mathscr{F} to be semi-cones of the ring $R \times R'$.

THEOREM 3.3. Let R and R' be partially ordered rings. Then the following hold.

(1) T, T_0 , and T'_0 are semi-cones of $R \times R'$.

(2) T_1 is a semi-cone of $R \times R'$ iff (i) $S_0S_0 \subset S_0$ and $S'_0S'_0 \subset S'_0$, otherwise (ii) $S_0S_0 = 0$ and $S'_0S'_0 = 0$.

(3) T_2 is a semi-cone of $R \times R'$ iff $S_0S_0 \subset S_0$ or $S'_0S'_0 = 0$.

(4) T'_2 is a semi-cone of $R \times R'$ iff $S_0S_0 = 0$ or $S'_0S'_0 \subset S'_0$.

(5) T_3 is a semi-cone of $R \times R'$ iff $S_0S_0 \subset S_0$.

(6) T'_3 is a semi-cone of $R \times R'$ iff $S'_0S'_0 \subset S'_0$.

PROOF. (1) is obvious. It is routine to see the if parts in $(2)\sim(6)$. So, we will see their "only if" parts. For (2), assume $S_0S_0 \neq 0$. Then $S'_0S'_0 \subset S'_0$. Indeed, take some $a, b \in S_0$ with $ab \neq 0$. Suppose $S'_0S'_0 \not\subset S'_0$. Take $c, d \in S'_0$ with cd = 0. Thus $(a, c) \cdot (b, d) = (ab, 0) \notin T_1$, a contradiction. Hence $S'_0S'_0 \subset S'_0$. Similarly, $S'_0S'_0 \neq 0$ implies $S_0S_0 \subset S_0$. Therefore, the following are equivalent: $S_0S_0 \subset S_0$; $S_0S_0 \neq 0$; $S'_0S'_0 \subset S'_0$; and $S'_0S'_0 \neq 0$. Hence (i) or (ii) holds. For (3) and (4), assume $S'_0S'_0 \neq 0$. Take $c, d \in S'_0$ with $cd \neq 0$. Suppose $S_0S_0 \not\subset S_0$. Take $a, b \in S_0$ with ab = 0. Thus $(a, c) \cdot (b, d) = (0, cd) \notin T_2$, a contradiction. Thus $S_0S_0 \subset S_0$. (4) is similarly shown. For (5) and (6), $(x, 1) \cdot (y, 1) = (xy, 1) \in T_3$ implies $S_0S_0 \subset S_0$. (6) is similarly shown.

COROLLARY 3.4. Let R and R' be partially ordered rings. Then the following hold.

(1) T, T_0 , and T'_0 are semi-cones of $R \times R'$. For R and R' being integral domains, the other sets in \mathcal{F} are also semi-cones of $R \times R'$.

- (2) Let $1 \in S$ and $1 \in S'$. Then the following hold.
- (a) T_1 is a semi-cone of $R \times R'$ iff $S_0S_0 \subset S_0$ and $S'_0S'_0 \subset S'_0$.
- (b) T_2 is a semi-cone of $R \times R'$ iff $S_0S_0 \subset S_0$.
- (c) T'_2 is a semi-cone of $R \times R'$ iff $S'_0S'_0 \subset S'_0$.

REMARK 3.5. For a partially ordered ring R, (a) $S_0S_0 \subset S_0$ need not hold, and (b) $S_0S_0 \subset S_0$ need not imply that R is an integral domain. Indeed, for (a), take a semi-cone S'' = T of $R'' = R \times R'$, and for (b), take a semi-cone $S'' = T_1$ of R'' with R and R' integral domains, in view of Corollary 3.4(1). Then the partially ordered ring $(R'', \leq_{S''})$ is a desired one.

For convenience, henceforth let us assume that all sets in \mathscr{F} are semi-cones of the ring $R \times R'$ (cf. Corollary 3.4), unless otherwise stated.

Let $P_R : R \times R' \to R$ and $P_{R'} : R \times R' \to R'$ be the projections (i.e., $P_R(x, y) = x$, $P_{R'}(x, y) = y$). These projections are obviously epimorphisms.

REMARK 3.6. P_R or $P_{R'}$ need not be order-preserving, and also need not preserve the convexity of an ideal. Indeed, let us see these for P_R (similar for $P_{R'}$). Evidently, $P_R(T'_3) = R$, hence P_R is not order-preserving. Let $R = R' = \mathbb{Z}$, and $1 < n \in \mathbb{Z}$. Let $S' = n\mathbb{Z}^*$, and $S'' = \{(k,m) \in \mathbb{Z} \times \mathbb{Z} \mid 0 \le_{S'} k \le_{S'} m\}$. Then, S'' is a semi-cone, and $I'' = 2n\mathbb{Z} \times 0$ is a convex ideal, but $P_R(I'') = 2n\mathbb{Z}$ is not convex in $(\mathbb{Z}, \le_{S'})$ (cf. Example 2.20).

The following is well-known or routinely shown.

LEMMA 3.7. For a subset A of the ring $R \times R'$, A is an ideal of $R \times R'$ iff $A = P_R(A) \times P_{R'}(A)$, $P_R(A)$ is an ideal of R, and so is $P_{R'}(A)$ of R'.

PROPOSITION 3.8. For $T = S \times S'$, and an ideal J of $R \times R'$, J is T-convex iff $P_R(J)$ is S-convex in R and $P_{R'}(J)$ is S'-convex in R'.

PROOF. For the if part, to see J is T-convex, let $(0,0) \leq_T (x, y) \leq_T (a,b) \in J$. Then $0 \leq_S x \leq_S a \in P_R(J)$, so $x \in P_R(J)$. Similarly, $y \in P_{R'}(J)$. Then $(x, y) \in J$ by Lemma 3.7. Hence J is T-convex. For the only if part, to see $P_R(J)$ is S-convex in R, let $0 \leq_S x \leq_S a \in P_R(J)$. Then $(0,0) \leq_T (x,0) \leq_T (a,0)$, and $(a,0) \in J$ by Lemma 3.7. Since J is T-convex, $(x,0) \in J$, so $x \in P_R(J)$. Hence $P_R(J)$ is S-convex. Similarly, $P_{R'}(J)$ is S'-convex in R'.

The following holds by Proposition 3.8 and Lemma 2.16, related to Question 2.17.

PROPOSITION 3.9. Let J be a T-convex ideal of $R \times R'$, and let J' be an S-convex ideal of R. Then $P_R(T+J) = S + J'$ iff $P_R(J) = J'$.

REMARK 3.10. Let us give analogues to Propositions 3.8 and 3.9 for the sets in \mathscr{F} . For an ideal I of $R \times R'$, let us consider conditions (p_1) $P_R(I) \cap S_0 \neq \emptyset$, and $(p_2) P_{R'}(I) \cap S'_0 \neq \emptyset$. We note that (p_1) (resp. (p_2)) holds if R (resp. R') is an ordered ring. Then the following hold for ideals I and J of $R \times R'$.

(1) (a) $P_R(I)$ is S-convex in R if I is A-convex for $A = T_i$ (i = 0, 2, 3), T'_i (i = 1, 2, 3), but assume (p_2) for T'_i (i = 1, 2, 3). Also, $P_{R'}(I)$ is S'-convex in R if I is A-convex for $A = T_i$ (i = 1, 2, 3), T'_i (i = 0, 2, 3), but assume (p_1) for T_i (i = 1, 2, 3). Conversely,

(b) J is A-convex in $R \times R'$ for $A = T_1, T_2$, or T'_2 if $P_R(J)$ is S-convex and $P_{R'}(J)$ is S'-convex. Also, J is T_0 -convex if $P_R(J)$ is S-convex. Similarly, J is T'_0 -convex if $P_{R'}(J)$ is S'-convex.

(2) Proposition 3.8 remains true for T_1 , T_2 , and T'_2 , but for T_1 (resp. T_2 ; T'_2), assume (p_1) and (p_2) (resp. (p_1) ; (p_2)). Also, J is T_0 -convex iff $P_R(J)$ is S-convex. Similarly, J is T'_0 -convex iff $P'_R(J)$ is S'-convex.

(3) Proposition 3.9 remains true for T_i (i = 0, 2, 3), T'_1 , T'_2 , but assume (p_2) for T'_1 , T'_2 . Also, for $P_{R'}$, the similar result holds for T, T_1 , T_2 , T'_i (i = 0, 2, 3), but assume (p_1) for T_1 , T_2 . While, Proposition 3.9 need not hold for $A = T'_0$ or T'_3 .

Indeed, (1) is shown as in the proof of Proposition 3.8. (For example, for (a), to see $P_R(I)$ is S-convex in R for $T'_3 = (R \times S'_0) \cup \{(0,0)\}$, let $0 \leq_S x \leq_S a \in P_R(I)$, and take $p \in P_{R'}(I) \cap S'_0$ by (p_2) . Then $(0,0) \leq_{T'_3} (x,p) \leq_{T'_3} (a,2p) \in P_R(I) \times P'_R(I) = I$. Thus, $(x,p) \in I$, so $x \in P_R(I)$). (2) and (3) hold in view of (1). For the last part of (3), let J' be a convex ideal and $S \ni 1$ in R. Then $J = J' \times 0$ is convex for A, and $P_R(J) = J'$. But, $P_R(A+J) \neq S+J'$. To see this, suppose $P_R(A+J) = S+J'$. Then, for $A = T'_0$, $J' = S+J' \ni 1$, so J' = R, a contradiction. For $A = T'_3$, R = S+J', so R = J' by Lemma 2.16, a contradiction).

EXAMPLE 3.11. In Proposition 3.9, the convexity of the ideals J and J' is essential for J and J' being proper. Indeed, let $R = (\mathbb{Z}[x], \leq_2)$. Let I = (x), and A = (2x). Then I is convex in R. But, A is not convex in R (indeed, $0 \leq_2 x \leq_2$)

 $2x \in A$, but $x \notin A$). Also, (*) S + I = S + A holds. For R' = R, $I^* = I \times I$ and $A^* = A \times A$, the following hold.

(1) I^* is convex in $R \times R'$ for T, but A is not convex in R. While, $P_R(T + I^*) = S + A$ by (*), but $P_R(I^*) \neq A$.

(2) A^* is not convex in $R \times R'$ for T, but I is convex in R. While, $P_R(T + A^*) = S + I$ by (*), but $P_R(A^*) \neq I$.

Let us recall the following ring on the product set $P = R \times R$ of ring R with itself.

DEFINITION 3.12. Let R be a ring. For $(a,b) \in P$, let P(a,b) = (P,+,*) be the commutative ring defined by the following addition (i) and multiplication (ii):

For $(x, y), (z, w) \in P$, let

(i) (x, y) + (z, w) = (x + z, y + w).

(ii) (x, y) * (z, w) = (xz + ayw, xw + yz + byw).

Then e = (1,0) is the identity element, and for u = (0,1), u * u = (a,b), and (x, y) = (x, 0) * e + (y, 0) * u in P(a, b).

The ring P(0,0) is an algebra over R which has a basis $\{e,u\}$ with u * u = (0,0), and it is called the *trivial extension* of R by itself (see [8], etc.). This ring gives useful examples related to ring structures and order structures, or extensions. We investigate order structures of the ring P(0,0) in terms of semi-cones or cones. (We consider P(a,b) in [7] in terms of ring structures).

NOTATION. For a ring R, the symbol $R \ltimes R$ denotes the ring P(0,0).

REMARK 3.13. (1) Let R[x] be the polynomial ring over a ring R, and $I = (x^2)$. Then $R \ltimes R$ is (ring) isomorphic to R[x]/I by a map $(a, b) \mapsto [a + bx]$.

(2) For a subset A of $R \ltimes R$, let $A^* = \{(x, -y) | (x, y) \in A\}$. Then A is a semi-cone of $R \ltimes R$ iff so is A^* , and also for a semi-cone A of $R \ltimes R$, I is a convex ideal of $R \ltimes R$ for A iff so is I^* for A^* , by a (ring) isomorphism $(x, y) \mapsto (x, -y)$.

Let us consider the sets T, T_i , T'_j (i, j = 0, 1, 2, 3) in $R \ltimes R$, putting R' = Rand S' = S.

REMARK 3.14. (1) $T_0 \cup T'_0$ is not a semi-cone of $R \ltimes R$ by Remark 3.2(2). Also, T'_3 is not a semi-cone of $R \ltimes R$, and any union of T, T_i , T'_j (i, j = 0, 1, 2, 3) containing T'_3 is not a semi-cone of $R \ltimes R$ (indeed, for $s \in S_0$, $(-1, s) * (0, s) = (0, -s) \notin T'_3$. The latter part holds by $(0, -s) \notin T \cup T_i \cup T'_i$).

(2) Let $\mathscr{C} = \{T_0, T_1, T_2, T_3, T'_0, T'_2, T'_3, T\}$. Let \mathscr{F}_P be the collection of finite unions of \mathscr{C} (containing the sets in \mathscr{C}), but except unions which are never semicones of $R \ltimes R$. Then, $\mathscr{F}_P = \{T_0, T_1, T_2, T_3, T'_0, T'_2, T, L\}$ by (1), reviewing the poof of Remark 3.2(3). (Actually, when R is an integral domain, all sets in \mathscr{F}_P are semi-cones of $R \ltimes R$; see Corollary 3.17(1) later).

For a semi-cone S of R, let us consider the following conditions around condition (*) $S_0S_0 \subset S_0$ on R.

(c₁) For $x, z \in S_0$, if $xz \in S_0$ (i.e., $xz \neq 0$), then $xS_0 \subset S_0$ or $zS_0 \subset S_0$.

(c₂) For $x, z \in S_0$, if $xz \notin S_0$ (i.e. xz = 0), then $xS_0 = 0$ and $zS_0 = 0$.

We can replace " $xS_0 \subset S_0$ or $zS_0 \subset S_0$ " by " $xS_0 + zS_0 \neq 0$ " in (c_1) . Also, we can replace " $xS_0 = 0$ and $zS_0 = 0$ " by " $xS_0 + zS_0 = 0$ (or xS + zS = 0)" in (c_2) .

REMARK 3.15. (1) None of (*) (i.e., $S_0S_0 \subset S_0$), (c_1) , and (c_2) hold for some partially ordered ring R.

(2) Obviously, (*) implies (c_1) and (c_2) . But, (c_1) and (c_2) need not imply (*) by the following (3) and (4).

(3) (c_2) implies (c_1) . But, the converse does not hold for some ordered ring R.

(4) For $S_0 \ni 1$, (c_2) implies (*). But, (c_2) need not imply (*) without $S_0 \ni 1$.

Indeed, (1) is shown by the proof of Remark 3.5(a), but assume $SS \neq 0$ in T. For (3), assume (c_2) holds. If $xz \in S_0$ for $x, z \in S_0$, then $xS_0 \subset S_0$ and $zS_0 \subset S_0$. To see this, suppose $xS_0 \not\subset S_0$, then xy = 0 for some $y \in S_0$. Thus $xS_0 = 0$ by (c₂), hence xz = 0, a contradiction. Thus $xS_0 \subset S_0$ (similarly, $zS_0 \subset S_0$). Then (c_1) holds. For the latter part, let (R, \leq) be the ordered ring in [5, Example 1]. Then we may consider the ordered ring (R, \leq) as the ring $R' = K \ltimes K =$ $\{(a,b) | a, b \in K\}$ with K an ordered field, where R' has a cone S' = L(cf. Corollary 3.17(1) below). Then $u = (0, 1) \in S'_0$ and u * u = (0, 0). But, e = (0, 0). $(1,0) \in S'_0$, then $uS'_0 \neq \{(0,0)\}$. Hence (c_2) does not hold (also, $S'_0S'_0 \not\subset S'_0$). For $x = (a, b), z = (c, d) \in S'_0$ with $x * z \neq (0, 0)$. Then $a \neq 0$ or $c \neq 0$, so a > 0or c > 0 in K. Hence $xS'_0 \subset S'_0$ or $zS'_0 \subset S'_0$. Then (c_1) holds. Hence, R' is a desired one (for S'). For (4), suppose $S_0S_0 \not\subset S_0$, then xz = 0 for some $x, z \in S_0$. But, $x = x1 \in xS_0 = 0$ by (c_2) , so x = 0, a contradiction. Hence, $S_0S_0 \subset S_0$. For the latter part in (4), let $R' = R \ltimes R$, $A = T'_0$ (= 0 × S), and $A_0 = 0 \times S_0$. Then $AA = \{(0,0)\}$. Thus, (c_2) holds, but $A_0A_0 \not\subset A_0$. Then R' is a desired one (for A).

We give characterizations for the sets in the collection \mathscr{F}_P to be semi-cones of $R \ltimes R$, in comparison with Theorem 3.3 for $R \times R'$.

THEOREM 3.16. Let R be a partially ordered ring. Then the following hold.

- (1) T, T_0 , and T'_0 are semi-cones of $R \ltimes R$.
- (2) T_1 is a semi-cone of $R \ltimes R$ iff (c₂) holds.
- (3) T_2 is a semi-cone of $R \ltimes R$ iff (c_2) holds.
- (4) T'_2 is a semi-cone of $R \ltimes R$ iff (c_1) holds.
- (5) T_3 is a semi-cone of $R \ltimes R$ iff $S_0S_0 \subset S_0$.
- (6) $T_3 \cup T'_0$ (= L) is a semi-cone of $R \ltimes R$ iff $S_0S_0 \subset S_0$.

PROOF. For (1), the result is obviously shown.

For (2), to see the if part, let $(x, y), (z, w) \in S_0 \times S_0$. By (c_2) with Remark 3.15(3), for xz = 0, xw + yz = 0, and for $xz \neq 0$, $xw + yz \in S_0$. Thus $(x, y) * (z, w) = (xz, xw + yz) \in T_1$. For the only if part, suppose (c_2) does not hold. Then we assume that for some $x, z, w \in S_0$, xz = 0, but $xw \neq 0$. Let $y \in S_0$, then $xw + yz \neq 0$. Thus $(x, y), (z, w) \in S_0 \times S_0$, but (x, y) * (z, w) = $(xz, xw + yz) = (0, xw + yz) \notin T_1$, a contradiction. Then (c_2) holds.

For (3), the result is shown as in the proof of (2).

For (4), to see the if part, let $(x, y), (z, w) \in S \times S_0$. If $xz = 0, (x, y) * (z, w) = (0, xw + yz) \in T'_2$, so assume $xz \neq 0$. Then $xw + yz \in S_0$ by (c_1) , hence $(x, y) * (z, w) = (xz, xw + yz) \in T'_2$. For the only if part, suppose that (c_1) doesn't hold. Then for some $x, z, y, w \in S_0$, $xz \neq 0$, xw = 0, and yz = 0. Thus, $(x, y) * (z, w) = (xz, xw + yz) = (xz, 0) \notin T_1$, a contradiction. Then (c_1) holds.

For (5) and (6), their if parts are routine. For their only if parts, suppose $S_0S_0 \neq S_0$, and take $x, y \in S_0$ with xy = 0. Then $(x, -1), (y, 0) \in T_3$, but $(x, -1) * (y, 0) = (0, -y) \notin T_3 \cup T'_0$, a contradiction. Hence, $S_0S_0 \subset S_0$.

The following holds by Theorem 3.16 and Remark 3.15.

COROLLARY 3.17. Let R be a partially ordered ring. Then the following hold. (1) T, T₀, and T'₀ are semi-cones of $R \ltimes R$. For R being an integral domain, the other sets in \mathscr{F}_P are also semi-cones of $R \ltimes R$.

(2) For $S \ni 1$, T_1 (or T_2) is a semi-cone of $R \ltimes R$ iff $S_0S_0 \subset S_0$.

In view of the previous corollary, for an ordered integral domain R, the lexicographic set L is a cone of $R \ltimes R$, though L is not even a semi-cone of the ring $R \times R$ (by Remark 3.2(2)).

It is well-known (or routinely shown) that for a field K, any non-zero, proper ideal of $K \ltimes K$ (resp. $K \times K$) is $0 \times K$ (resp. $0 \times K$ or $K \times 0$). We note that $I_0 = 0 \times R$ is an ideal in $R \ltimes R$, but $I'_0 = R \times 0$ is not an ideal (I_0 and I'_0 are ideals in $R \times R$). Let us consider the convexity of I_0 in $R \ltimes R$ (or I_0, I'_0 in $R \times R$).

Let $pr: R \ltimes R$ (or $R \times R$) $\to R$ be the projection defined by pr(x, y) = x. Then *pr* is an epimorphism.

LEMMA 3.18. Let A be a semi-cone of $R \ltimes R$ (or $R \times R$). Then $I_0 = 0 \times R$ is a convex ideal for A iff $pr(A) \cap -pr(A) = 0$.

PROOF. Let $\leq = \leq_A$. For the if part, let $(0,0) \leq (x, y) \leq (0,b) \in I_0$. Then $(0,0) \leq (-x, b-y)$, hence $x \in pr(A) \cap -pr(A)$, so x = 0. Thus, $(x, y) = (0, y) \in I_0$. For the only if part, let $x \in pr(A) \cap -pr(A)$. Then for some $y, y' \in R$, $(0,0) \leq (x, y)$ and $(0,0) \leq (-x, y')$. Then, $(0,0) \leq (x, y) \leq (x, y) + (-x, y') = (0, y + y') \in I_0$. Since I_0 is convex in $R \ltimes R$ (or $R \times R$), $(x, y) \in I_0$, hence x = 0.

Obviously, $I_0 = 0 \times R$ is convex in $R \ltimes R$ for the semi-cones in \mathscr{F}_P . Also, the following holds (hence, for R being a field, I_0 is the only non-zero, convex ideal).

PROPOSITION 3.19. For an integral domain R, I_0 is convex for any semi-cone A of $R \ltimes R$.

PROOF. To see $pr(A) \cap -pr(A) = 0$, let $x \in pr(A) \cap -pr(A)$. Then x = pr(x, y) = -pr(z, w) for some $(x, y), (z, w) \in A$. Then x = -z, and hence $(x, y) + (z, w) = (x + z, y + w) = (0, y + w) \in A$. Thus $(x, y) * (0, y + w) = (0, x(y + w)) \in A$, and similarly, $(0, z(y + w)) \in A$. Hence $(0, x(y + w)) = -(0, z(y + w)) \in A \cap -A$. Thus x(y + w) = 0. Since R is an integral domain, x = 0 or y + w = 0. If y + w = 0, then y = -w, so $(x, y) = (-z, -w) = -(z, w) \in A \cap -A$, thus x = 0. Then $pr(A) \cap -pr(A) = 0$, which implies that I_0 is convex in $R \ltimes R$ by Lemma 3.18.

REMARK 3.20. For the ring $R \times R$, $I_0 = 0 \times R$ is obviously a convex ideal of $R \times R$ for the semi-cones in \mathscr{F} , but remove T'_3 even if R is an integral domain. Also, for an integral domain R, I_0 is convex for a semi-cone A of $R \times R$ if $A \ni (a, 0)$ for some $a \neq 0$ (indeed, let $x \in pr(A) \cap -pr(A)$, and $(a, 0) \in A$ with $a \neq 0$. Then $(ax, 0), (-ax, 0) \in A$. Thus $(ax, 0) \in A \cap -A$, hence x = 0. Thus, I_0 is convex for A by Lemma 3.18). Also, for $I'_0 = R \times 0$, similarly the analogous results hold.

PROPOSITION 3.21. (1) For an ordered (resp. partially ordered) integral domain R, L and $L^* = \{(x, -y) | (x, y) \in L\}$ are cones (resp. semi-cones) of $R \ltimes R$.

(2) For an ordered field K and a cone A of $K \ltimes K$, the following are equivalent.

- (a) $A \supset T_0 \ (= S \times 0).$
- (b) $pr(A) \supset S$.
- (c) pr(A) = S.
- (d) A = L or $A = L^*$.

PROOF. (1) holds in view of Corollary 3.17(1) and Remark 3.13(2).

For (2), obviously, the implication (d) \Rightarrow (c) \Rightarrow (b) holds. (a) \Rightarrow (d) holds by putting a = (a, 0), b = (b, 0), and e = (1, 0), u = (0, 1) in the proof of Example 1 in [5]. Indeed, A is a cone, so $u \in A$ or $u \in -A$. In case of $u \in A$, let $(a, b) \in L$. If a = 0, then $b \in S$, so $(b, 0) \in A$ by (a), thus $(a, b) = (0, b) = (b, 0) * u \in A$. If $a \neq 0$, then $a \in S$, and $(a, 0) \in A$ by (a), thus $(a, b) = (a, 0) * (1, b/2a)^2 \in A$. Hence, $L \subset A$, so A = L. In case of $u \in -A$ (i.e., $-u = (0, -1) \in A$), let $(a, -b) \in L^*$. Then, similarly $(a, -b) \in A$. Thus, $A = L^*$. For (b) \Rightarrow (a), let $s \in S$. Then $(s, s') \in A$ for some $s' \in K$ by (b). Thus, for $s \neq 0$, $(s, 0) = (s, s') * (1, -s'/2s)^2 \in A$. Hence, $T_0 \subset A$.

COROLLARY 3.22. Let K be an ordered field such that (*) for each $a \in S$, there exists $b \in K$ with $a = b^2$ (in particular, K is the field of real numbers, or the field of algebraic real numbers over the rational number field). Then for a cone A of $K \ltimes K$, A = L or $A = L^*$.

PROOF. To see $A \supset T_0$, let $(a, 0) \in T_0$. Then for some $b \in K$, $(a, 0) = (b^2, 0) = (b, 0)^2 \in A$. Then A = L or L^* by Proposition 3.21. The parenthetic part implies (*), as is well-known.

For a field K, we will give a characterization for cones of $K \ltimes K$. The following lemma is obvious.

LEMMA 3.23. For a subring R' and cone of A of R, $A \cap R'$ is a cone of R'.

THEOREM 3.24. For a field K, let \mathscr{S} be the collection of all cones of K, and let $\tilde{\mathscr{S}}$ be the collection of all cones of $K \ltimes K$. Then $\tilde{\mathscr{S}} = \{L(S), L(S)^* | S \in \mathscr{S}\},$ where $L(S) = (S_0 \times K) \cup (0 \times S).$ PROOF. For a cone S of K, L(S) and $L(S)^*$ are cones of $K \ltimes K$ in view of Proposition 3.21(1). Conversely, let A be a cone of $K \ltimes K$, and let $K' = K \ltimes 0$. Since K' is a subring of $K \ltimes K$, $S = A \cap K'$ is a cone of K' by Lemma 3.23. But, we can consider S as a cone in K by a (ring) isomorphism $K' \to K$, $(x,0) \mapsto x$. Since $A \supset S \times 0$, A = L(S) or $A = L(S)^*$ by Proposition 3.21(2). Thus, $\tilde{\mathscr{S}} = \{L(S), L(S)^* | S \in \mathscr{S}\}$.

References

- [1] Birkhoff, G., Lattice-ordered groups, Ann. of Math. 43 (1942), 298-331.
- [2] Birkhoff, G. and Pierce, R. S., Lattice-ordered rings, An. Acad. Brasil. Ci. 28 (1956), 41-69.
- [3] Brumfiel, G. W., Partially ordered rings and semi-algebraic geometry, London Mathematical Society Lecture Note Series, 37, Cambridge University Press, 1979.
- [4] Gillman, L. and Jerison, M., Rings of continuous functions, Van Nostrand Reinhold company, 1960.
- [5] Kitamura, Y. and Tanaka, Y., Ordered rings and order-preservation, Bull. Tokyo Gakugei Univ. Nat. Sci. 64 (2012), 5–13.
- [6] Kitamura, Y. and Tanaka, Y., Partially ordered rings, Tsukuba J. Math. 38 (2014), 39-58.
- [7] Kitamura, Y. and Tanaka, Y., Product extensions of commutative rings, Bull. Tokyo Gakugei Univ. Nat. Sci. 67 (2015), 1–8.
- [8] Lam, T. Y., Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer, 1998.
- [9] Lam, T. Y., A first course in noncommutative rings, 2nd ed., Graduate Texts in Mathematics, 131, Springer, 2001.
- [10] Yang, Y. C., A lattice-ordered skew field is totally ordered if squares are positive, American Math. Monthly 113 (2006), 266–267.

Yoshimi Kitamura Department of Mathematics Tokyo Gakugei University Tokyo 184-8501, Japan (Professor Emeritus) E-mail: kitamura@u-gakugei.ac.jp

Yoshio Tanaka Department of Mathematics Tokyo Gakugei University Tokyo 184-8501, Japan (Professor Emeritus) E-mail: ytanaka@u-gakugei.ac.jp