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A CHARACTERIZATION OF THE TEMPERED

DISTRIBUTIONS SUPPORTED BY A REGULAR

CLOSED SET IN THE HEISENBERG GROUP

By

Yasuyuki Oka

Abstract. The aim of this paper is to give a characterization of the

tempered distributions supported by a (Whitney’s) regular closed set

in the Euclidean space and the Heisenberg group by means of

the heat kernel method. The heat kernel method, introduced by T.

Matsuzawa, is the method to characterize the generalized functions

on the Euclidean space by the initial value of the solutions of the

heat equation.

1 Introduction

A regular closed set played an important role in the Whitney extension

theorem ([22]) and in the structure theorem of the distributions with support

([18]). The examples of a regular closed set in the Euclidean space are convex

compact sets, an upper half plane and so on.

In this article, we consider the tempered distributions supported by a regular

closed set in the Euclidean space and in the Heisenberg group, respectively.

The Heisenberg group is the most commutative in the non-commutative Lie

group.

Our goals are two characterizations as follows. At first, we will give the

characterization of the tempered distributions supported by a regular closed set

in the Euclidean space by means of the heat kernel method. The heat kernel

method, introduced by T. Matsuzawa in [14], is the method to characterize the

generalized functions on the Euclidean space by the initial value of the solutions
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of the heat equation. Especially, in [15], T. Matsuzawa showed the heat kernel

method for the tempered distributions on ‘‘the Euclidean space Rd ’’. By using

Matsuzawa’s result, we will get our first assertion.

Secondly, we will give the characterization of the tempered distributions

supported by a regular closed set in the Heisenberg group by means of the heat

kernel method. To do this, we will give the definition of a regular closed set in

the Heisenberg group. A regular closed set in the Heisenberg group include the

geodetically convex sets. In the Heisenberg group, the heat kernel method for

the tempered distributions was given by J. Kim and M. W. Wong in [12]. By

using their result, we will obtain our second assertion. We also have the structure

theorem of the tempered distributions supported by a regular closed set in the

Heisenberg group (Bros-Epstien-Glaser type theorem) on one’s way.

As an application of the characterizations by means of the heat kernel

method, we will give the Schwartz kernel theorem for the tempered distributions

supported by a regular closed set in the Euclidean space and in the Heisenberg

group, respectively. Recently, the Schwartz kernel theorem is adopted by R.

Ashino, T. Mandai and A. Morimoto (in [1]) in consideration on BIBO

(Bounded-Input Bounded-Output) stability of the continuous linear time shift

invariant system on the Euclidean space. As far as the BIBO stability of the

continuous linear time shift invariant system, we also refer to [17].

The plan of this paper is as follows: In section 2, we will give the char-

acterization of the tempered distributions supported by a regular closed set A on

the Euclidean space by the heat kernel. In 2.1, we introduce the properties of

the heat kernel and the heat kernel method for the tempered distributions

(Theorem 1) on the Euclidean space. In 2.2, we recall the definition of a regular

closed set and define the space SðAÞ. It is shown that the space SðRdÞ is dense

in the space SðAÞ. Moreover we introduce the structure theorem for the space

SðAÞ0 (the Bros-Epstein-Glaser type theorem), where the space SðAÞ0 is the

set of the tempered distributions supported by A. In 2.3, we will show the heat

kernel method for the space SðAÞ0 (Our first assertion). In 2.4, as an application

of this characterization, we will give the Schwartz kernel theorem for the space

SðAÞ0.
In section 3, we will give the characterization of the tempered distributions

supported by a regular closed set AHd in the Heisenberg group by the heat kernel

method. In 3.1, we recall the definition of the Heisenberg group, the form of the

left invariant vector fields in the Heisenberg group, the distance function called

Korányi norm and the definition of the convolution in the Heisenberg group. In

3.2, we give the definition of the rapidly decreasing functions and the tempered
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distributions in the Heisenberg group. In 3.3, we introduce the properties of the

heat kernel and the heat kernel method in the Heisenberg group. In 3.4, we define

a regular closed set AH d in the Heisenberg group and the space SðAH d Þ. Then
we will show that the space SðHdÞ is dense in SðAH d Þ. Moreover we will also

give the structure theorem for the space SðAH d Þ0 (The Bros-Epstein-Glaser type

theorem), where the space SðAHd Þ0 is the tempered distributions supported by

AHd in the Heisenberg group. In 3.5, we will show the heat kernel method for

the space SðAHd Þ0 (our second assertion). In 3.6, as an application of this result,

we will give the Schwartz kernel theorem for the space SðAHd Þ0. Finally, as an

appendix, we will show some examples of a regular closed set in the Heisenberg

group H.

2 A Characterization of the Tempered Distributions Supported

by a Regular Closed Set in the Euclidean Space by

the Heat Kernel Method

2.1 The Heat Kernel Method for the Space S 0ðRdÞ

First of all, we fix some notations. We use a multi-index a A Zd
þ, namely,

a ¼ ða1; . . . ; adÞ, where ai A Z and ai b 0. So, for x A Rd , xa ¼ xa1
1 � � � xad

d and

qa
x ¼ qa1

x1
� � � qad

xd
, where qaj

xj
¼ ðq=qxjÞaj . Moreover D ¼

Pd
j¼1 q

2=qx2
j .

Definition 1. For any j A CyðRdÞ, we say j A SðRdÞ if the function j

satisfies the following condition: For any N A Zþ, we have

kjkN;Rd ¼ supx ARd ; jbjaNð1þ jxjÞN jqb
xjðxÞj < y:

Moreover we denote by S 0ðRdÞ the dual space of the space SðRdÞ. Thus, we
say T A S 0ðRdÞ if a continuous and linear functional u from SðRdÞ to C satisfies

the following condition: There exist a constant C > 0 and a; b A Zd
þ such that

jhT ; jijaCkjkN;Rd

for any j A SðRdÞ. It is called the space of the tempered distributions.

The function EtðxÞ defined by

EtðxÞ ¼ ð4ptÞ�d=2
e�jxj2=4t ðt > 0Þ

0 ðt < 0Þ

(

is called the heat kernel on Rd . Then the heat kernel EtðxÞ on Rd has the

following Proposition 1:
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Proposition 1 ([4]). The following properties hold:

(i)
Ð
Rd EtðxÞ dx ¼ 1, t > 0,

(ii) There are positive constants C and a 0 such that

jqb
xEtðxÞjaCjbjþ1t�ðnþjajÞ=2b!1=2e�a 0 jxj2=4t; t > 0; 0 < a 0 < 1;

(iii) EtðxÞ A SðRd
xÞ.

Proposition 2 ([13]). Let j A SðRdÞ, Then we have

ðj � EtÞðxÞ ! j

as t ! þ0 in SðRdÞ.

In [15], T. Matsuzawa characterized the tempered distributions on the

Euclidean space by the initial value of the solutions of the heat equation as

follows:

Theorem 1 ([15]). For u A S 0ðRdÞ, we put

UtðxÞ ¼ ðu � EtÞðxÞ

for x A Rd and t > 0. Then the function UtðxÞ satisfies the following four con-

ditions:

(i) UtðxÞ A CyðRd � ð0;yÞÞ,
(ii) ðq=qt� DxÞUtðxÞ ¼ 0, x A Rd and t > 0,

(iii) for any j A SðRdÞ,

hu; ji ¼ limt!þ0

ð
Rd

UtðxÞjðxÞ dx

and

(iv) there exist m; n > 0 and a constant C > 0 such that

jUtðxÞjaCt�mð1þ jxjÞn; 0 < t < 1;

for x A Rd .

Conversely every UtðxÞ A CyðRd � ð0;yÞÞ satisfying the conditions (ii) and

(iv) can be expressed in the form

UtðxÞ ¼ ðu � EtÞðxÞ

with the unique element u A S 0ðRdÞ.
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This characterization is called the heat kernel method.

2.2 The Structure of the Tempered Distributions Supported by

Regular Closed Sets on Rd

At first, we recall the definition of a regular closed set.

Definition 2 ([8], [21], [22]). Let A be a closed subset of Rd . If there exist

d > 0, o > 0 and 0 < qa 1 such that any x1 and x2 A A so that jx1 � x2ja d are

linked by a curve in A whose length l satisfies laojx1 � x2jq, then we call A a

regular.

For example, if A is a convex closed set, o ¼ q ¼ 1 and d ¼ dðAÞ and if A is

a closure of the upper half-plane, o ¼ q ¼ 1 and d ¼ y. Of course, a closure of

the first quadrant (a proper convex cone) and the light cone are also a regular

closed set.

We define the space SðAÞ as follows:

Definition 3. Let A be a regular closed set on Rd . For any j A CyðRdÞ, we
say j A SðAÞ if the function j satisfies the following condition: For any N A Zþ,

we have

kjkN;A ¼ supx AA; jbjaNð1þ jxjÞN jqbjðxÞj < y:

The following relationship between the spaces SðRdÞ and SðAÞ holds:

Proposition 3. The space SðRdÞ is dense in the space SðAÞ.

Proof. It is enough that the space DðRdÞ is dense in the space SðAÞ. We

choose wj A DðRdÞ as follows:

wjðxÞ ¼
1; jxja j

0; jxjb 2j

�

for j ¼ 1; 2; . . . . Let f be in SðAÞ. If we set cj ¼ f wj , the function cj is in

DðRdÞ. On the other hand, we have

qbfð1� wjÞ f g ¼
X

gab

b

g

� �
qgð1� wjÞqb�gf :
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For jxja j, we can see

qbð1� wjÞ ¼ 0: ð2:1Þ

If the set A is compact, then by (2.1), we can see that

limj!yk f � cjkN;A ¼ 0:

On the other hand, for unbounded sets A, we obtain the following estimate:

For a su‰cient large j, we have

k f � cjkN;A ¼ kð1� wjÞ f kN;A

a sup
x AAnðfjxjajgVAÞ; jbjaN

ð1þ jxjÞN jqbfð1� wjÞ f gj

a sup
x AAnðfjxjajgVAÞ; jbjaN

ð1þ jxjÞN
X
dab

b

d

� �
jqdð1� wjÞj jqb�df j

 !
: ð2:2Þ

Since f A SðAÞ, we have for da b,

sup
x AAnðfjxjajgVAÞ; jbjaN

ð1þ jxjÞN jqb�df j ! 0

as j ! þy. By (2.2), for any f A SðAÞ, there exists the sequence fcjgj AN H
DðHdÞ such that

limj!þyk f � cjkN;A ¼ 0:

Therefore we can see that the space DðHdÞ is dense in the space SðAÞ.
r

Definition 4. We denote by SðAÞ0 the dual space of the space SðAÞ. Thus,
u A SðAÞ0 if and only if u is a linear functional from SðAÞ to C and satisfies the

following condition: There exist N A Zþ and a positive constant C such that

jhu; jijaCkjkN;A

for any j A SðAÞ.

Here we denote by S 0
A the space of the tempered distributions u on Rd

satisfying the following condition: For any j A SðRdÞ, there exists a constant

C > 0 such that

jhu; jijaCkjkN;A ð2:3Þ
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for some N A Zþ. Thus the space S 0
A means the space of the tempered dis-

tributions with supported by A in Rd . Then by Proposition 3, (2.3) means that

u has continuous on S 0ðRdÞ with respect to the relative topology from SðAÞ.
Hence u has a unique linear continuous extension uA on SðAÞ. This means

that any tempered distributions supported by A on Rd can be identified with an

element of SðAÞ0. Thus, we identify the space S 0
A with the space SðAÞ0.

Concerning on the tempered distributions supported by a regular closed set,

the following result is known:

Proposition 4 ([8], [21]). Let A be a regular closed set. If f A SðAÞ0, then
there exist the tempered measures supported on A, mb ðjbjaNÞ, such that

supp mb HA and

f ¼
X
jbjaN

qbmb;

where the tempered measure m supported by A means that there exists N A Zþ so

that ð
A

jdmjðxÞ=ð1þ jxjÞN < y:

2.3 The Heat Kernel Method for the Space of the Tempered Distributions

Supported by a Regular Closed Set on Rd

We denote by SðAÞ0 the space of the tempered distributions supported by a

regular closed set A in Rd . Then we obtain the following characterization:

Theorem 2. Let A be a regular closed set on Rd . For any u in SðAÞ0, let
UtðxÞ ¼ hu;Etðx� �Þi. Then UtðxÞ satisfies the following conditions:

(i) UtðxÞ A CyðRd � ð0;yÞÞ,
(ii) ðq=qt� DxÞUtðxÞ ¼ 0, x A Rd and t > 0,

(iii) for any j A DðRdÞ,

hu; ji ¼ limt!þ0

ð
Rd

UtðxÞjðxÞ dx

and

(iv) there exist m;N A Zþ and constants C > 0 and a 0 such that

jUtðxÞjaCt�mð1þ jxjÞNe�a 0dðx;AÞ2=8t; 0 < t < 1; 0 < a 0 < 1

for x A Rd , where dðx;AÞ ¼ infx 0 AAjx� x 0j.
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Conversely every UtðxÞ A CyðRd � ð0;yÞÞ satisfying the conditions (ii) and

(iv) can be expressed in the form

UtðxÞ ¼ ðu � EtÞðxÞ

with the unique element u A SðAÞ0.

Proof. Let u A SðAÞ0 and UtðxÞ ¼ hu;Etðx� �Þi. Then by Proposition 1

and Proposition 4, there are N A Zþ, C;C 0 > 0 and 0 < a 0 < 1 such that

jUtðxÞj ¼ jhu;Etðx� �Þij

¼
X
jbjaN

ð�1Þjbj
ð
A

ð1þ jyjÞNqb
yEtðx� yÞ dy

������
������

aCt�ðdþNÞ=2ð1þ jxjÞN
X
jbjaN

ð
A

ð1þ jx� yjÞNe�a 0jx�yj2=4t dy

aC 0t�ðdþNÞ=2ð1þ jxjÞNe�a 0dðx;AÞ2=8t

for 0 < t < 1. Conversely, if any UtðxÞ A CyðRdÞ satisfies the condition (ii) and

(iv), then by Theorem 1, there exists u A S 0ðRdÞ such that

UtðxÞ ¼ hu;Etðx� �Þi:

Let j A DðRdÞ and K ¼ supp jHRdnA. Then there are a constant CK ; n > 0

and mb 0 such that ð
K

UtðxÞjðxÞ dx
����

����a
ð
K

jUtðxÞj jjðxÞj dx

aCK; nt
�me�a 0dðK ;AÞ2=8t

! 0;

as t ! þ0, where dðK ;AÞ ¼ infx AK dðx;AÞ. Hence we obtain

limt!þ0

ð
K

UtðxÞjðxÞ dx ¼ 0:

On the other hand, by Theorem 1, we have

limt!þ0 UtðxÞ ¼ uðxÞ in S 0ðRdÞ:

Therefore we can see supp uHA. r
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2.4 The Schwartz Kernel Theorem for the Space SðAÞ0

As an application of Theorem 2, we show the Schwartz kernel theorem for

the space SðAÞ0 as follows:

Theorem 3. Let the sets A1 and A2 be regular closed sets in Rd1 and Rd2 ,

respectively and k be a continuous linear operator from SðA2Þ to SðA1Þ0. Then
there exists T in SðA1 � A2Þ0 such that

hkc; ji ¼ hT ; jnci;

where j is in SðA1Þ and c is in SðA2Þ.

Proof. Since k is continuous, the bilinear form B on SðA1Þ �SðA2Þ,

Bðj;cÞ ¼ hkc; ji; j A SðA1Þ; c A SðA2Þ

is separately continuous. Since SðA1Þ and SðA2Þ are the Fréchet space respec-

tively, B is continuous. Hence we can see that there exist a positive constant C

and N1;N2 A Zþ such that

jhkc; jijaCkjkN1;A1
kckN2;A2

: ð]Þ

We define Rtðx1; x2Þ by

Rtðx1; x2Þ ¼ hkEtðx2 � �Þ;Etðx1 � �Þi

for ðx1; x2Þ A Rd1 � Rd2 and t > 0.

Now we will show Rt converges in SðA1 � A2Þ0 as t ! þ0. By ð]Þ and

Proposition 1, there exist a positive constant C and m;N1;N2 A Zþ such that

jRtðx1; x2ÞjaCt�mð1þ jx1jÞN1ð1þ jx2jÞN2e�a 0dðx1;A1Þ2=8te�a 0dðx2;A2Þ2=8t;

for x1 A Rd1 , x2 A Rd2 and 0 < t < 1.

Moreover we obtain

ðq=qt� DÞRtðx1; x2Þ ¼ 0

for x1 A Rd1 , x2 A Rd2 and 0 < t < 1.

Therefore, by Theorem 2, there exists R0 A S 0ðRd1 � Rd2Þ, supp R0 H
A1 � A2, such that

R0 ¼ limt!þ0 Rt

in S 0ðRd1 � Rd2Þ.
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Since the Riemann sum of an integral converges in SðRdj Þ, j ¼ 1; 2, by

Theorem 1, we have

hRt; jnci ¼
ð ð

Rd1�Rd2

Rtðx1; x2Þjðx1Þcðx2Þ dx1dx2

¼ k

ð
Rd2

Etðx2 � �Þcðx2Þ dx2;
ð
Rd1

Etðx1 � �Þjðx1Þ dx1
� �

¼ hk½c � Et�; j � Eti

for j A DðRd1Þ and c A DðRd2Þ.
By Proposition 2 and Proposition 3, we obtain

hR0; jnci ¼ hkc; ji

as t ! þ0 for j A SðA1Þ and c A SðA2Þ. r

3 A Characterization of the Tempered Distributions Supported

by a Regular Closed Set in the Heisenberg Group by

the Heat Kernel Method

3.1 The Heisenberg Group Hd

We recall the definition and the properties of the Heisenberg group. We refer

to [3], [5], [9], [19], [20], [23] and [24].

Let g ¼ ðx; y; tÞ and g 0 ¼ ðx 0; y 0; t 0Þ A Rd � Rd � R ¼ R2dþ1. Then we define

the group law of R2dþ1 by

ðx; y; tÞðx 0; y 0; t 0Þ ¼ ðxþ x 0; yþ y 0; tþ t 0 þ 2ðx 0 � y� x � y 0ÞÞ; ð3:1Þ

where x � y ¼
Pd

j¼1 xj yj. The group R2dþ1 with respect to the group law defined

by (3.1) is called the Heisenberg group and denoted by Hd . Its identity element is

ð0; 0; 0Þ and the inverse of the element ðx; y; tÞ is ðx; y; tÞ�1 ¼ ð�x;�y;�tÞ. The
Heisenberg group Hd is a locally compact Hausdor¤ group and its Haar measure

is the Lebesgue measure dxdydt.

The left-invariant vector fields in the Heisenberg group Hd as R2dþ1 are

represented by

Xj ¼ q=qxj þ 2yjq=qt; Xdþj ¼ q=qyj � 2xjq=qt and X2dþ1 ¼ q=qt

for j ¼ 1; 2; . . . ; d and these make a basis for the Lie algebra of Hd .
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The sub-Laplacian DHd on Hd is defined by DH d ¼
P2d

j¼1 X
2
j : We consider the

heat operator

q=qs� DHd

on Hd � ð0;yÞ.
Let l > 0. Then we define the dilations dl by

dlðx; y; tÞ ¼ ðlx; ly; l2tÞ

for ðx; y; tÞ A Hd .

The homogeneous dimension Q of Hd is given by

Q ¼ 2d þ 2:

Moreover, a function u from Hd to C is called the Heisenberg-homogeneous

of degree k A Z if u � dl ¼ lku for l > 0. Especially the Heisenberg-homogeneous

of degree of the distance function r defined by

rðgÞ ¼ ððx2 þ y2Þ2 þ t2Þ1=4

for g A Hd is one, that is,

rðlx; ly; l2tÞ ¼ lrðx; y; tÞ:

The distance between two points g and g 0 in Hd is given by

dKðg; g 0Þ :¼ rðg 0�1gÞ

and the following estimate holds:

rðg 0�1gÞa rðgÞ þ rðg 0Þ: ð3:2Þ

This distance function r is called Korányi norm.

Let f and h be suitable functions on Hd . Then we define the convolution

f � h of f with h as follows:

ð f � hÞðgÞ ¼
ð
Hd

f ðg 0Þhðg 0�1gÞ dg 0

for g; g 0 A Hd . The convolution on Hd is non-commutative, in general.

3.2 The Space SðHdÞ and Its Dual Space S 0ðHdÞ

Let a A Z2d
þ . Then the functions ðXajÞðgÞ are defined by

ðXajÞðgÞ ¼ ðX a1
1 X a2

2 � � �X a2d
2d jÞðgÞ

for a function j A CyðHdÞ.
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We define the Schwartz class SðHdÞ on the Heisenberg group as follows:

Definition 5. For any j A CyðHdÞ, we say j A SðHdÞ if the function j

satisfies the following condition: For any N A Zþ, we have

kjkN;Hd ¼ supg AH d ð1þ rðgÞÞN
X

jajaN
jXajðgÞj < y:

It is clear from the definition that the space SðHdÞ is topologically iso-

morphic of the space SðR2dþ1Þ. Moreover, it is known that the Schwartz class

SðHdÞ is a Fréchet space in [3].

Definition 6. We denote by S 0ðHdÞ the dual space of the space SðHdÞ
and call it the space of the tempered distributions in the Heisenberg group. Thus,

u A S 0ðHdÞ if and only if u is a linear functional from SðHdÞ to C and satisfies

the following condition: There exist N A Zþ and a positive constant C such that

jhu; jijaCkjkN;Hd

for any j A SðHdÞ.

By the definition, we can see that the space S 0ðHdÞ is topologically iso-

morphic of the space S 0ðR2dþ1Þ.
Let �ff ðgÞ ¼ f ðg�1Þ for g A Hd . Then we define the convolution u � j of

u A S 0ðHdÞ with j A SðHdÞ as follows:

hu � j;ci ¼ hu;c � �jji

for any c A SðHdÞ.

3.3 The Heat Kernel Method for the Space S 0ðHdÞ

In [7] and [10], we can find the explicit form of the heat kernel (the fun-

damental solutions) PsðgÞ of the heat operator

q=qs� DH d

on Hd as follows:

PsðgÞ ¼ Psðx; y; tÞ

¼
ð4psÞ�ðdþ1Þ

ðy
�y

ð2t=sinh 2tÞdeitt=2s�2ðjxj2þjyj2Þt=ð4s tanh 2tÞ dt; s > 0;

0; sa 0:

8><
>:
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The following properties of the heat kernel PsðgÞ hold:

Proposition 5 ([6]). Let Ps be the heat kernel associated to the sub-Laplacian

DH d . Then the following properties hold:

(i) PsðgÞb 0,

(ii)
Ð
H d PsðgÞ dg ¼ 1,

(iii) PsðgÞ ¼ Psðg�1Þ,
(iv) ðq=qs� DH d ÞPsðgÞ ¼ 0,

(v) lims!þ0 Ps ¼ d in S 0ðHdÞ,
(vi) Pr2sðrx; ry; r2tÞ ¼ r�QPsðx; y; tÞ, r > 0, ðx; y; tÞ A Hd .

Moreover the heat kernel PsðgÞ has the following estimate:

Proposition 6 ([11]). Let PsðgÞ be the heat kernel associated to the sub-

Laplacian DH d . Then for any a A Z2d
þ and m A Zþ, there exist positive constants a

and Cm;a such that

jðq=qsÞmXaPsðgÞjaCm;as
�m�jaj=2�Q=2e�arðgÞ2=s:

The following result is known:

Proposition 7 ([12], [17]). The heat kernel PsðgÞ is in the space SðHdÞ for

s > 0. Moreover for any j A SðHdÞ, the following property holds:

j � Ps ! j A SðHdÞ

as s converges to þ0.

J. Kim and M. W. Wong obtained the following characterization of the space

S 0ðHdÞ. We call this characterization ‘‘the heat kernel method for S 0ðHdÞ’’:

Theorem 4 ([12]). For u A S 0ðHdÞ, we put

UsðgÞ ¼ ðu � PsÞðgÞ

for g A Hd and s > 0. Then the function UsðgÞ satisfies the following four con-

ditions:

(i) UsðgÞ A CyðHd � ð0;yÞÞ,
(ii) ðq=qs� DH d ÞUsðgÞ ¼ 0, g A Hd and s > 0,

109A characterization of the tempered distributions



(iii) for any j A SðHdÞ,

hu; ji ¼ lim
s!þ0

ð
Hd

UsðgÞjðgÞ dg

and

(iv) there exist m; n > 0 and a constant C > 0 such that

jUsðgÞjaCs�mð1þ rðgÞÞn; 0 < s < 1;

for g A Hd .

Conversely every UsðgÞ A CyðHd � ð0;yÞÞ satisfying the conditions (ii) and

(iv) can be expressed in the form

UsðgÞ ¼ ðu � PsÞðgÞ

with the unique element u A S 0ðHdÞ.

3.4 The Structure of the Tempered Distributions Supported by

Regular Closed Sets in the Heisenberg Group

At first, we give the definition of a regular closed set on Hd .

Definition 7. Let AH d be a closed subset of the set Hd ¼ R2dþ1. If

there exist k > 0, o > 0 and 0 < qa 1 such that any g1 and g2 A AHd so that

rðg�1
2 g1Þa k are linked by a curve in AH d whose length l satisfies la

orðg�1
2 g1Þq, then we call AH d a regular in the Heisenberg group Hd .

We define the space SðAHd Þ as follows:

Definition 8. Let AH d be a regular closed set on Hd . For any j A CyðHdÞ,
we say j A SðAH d Þ if the function j satisfies the following condition: For any

N A Zþ, we have

kjkN;A
Hd

¼ supg AA
H d
ð1þ rðgÞÞN

X
jajaN

jXajðgÞj < y:

The following relationship between the spaces SðHdÞ and SðAHd Þ holds:

Proposition 8. The space SðHdÞ is dense in the space SðAH d Þ.
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Proof. It is enough that the space DðHdÞ is dense in the space SðAH d Þ. We

choose Yj A DðHdÞ as follows:

YjðgÞ ¼
1; rðgÞa j

0; rðgÞb 2j

�

for j ¼ 1; 2; . . . . Let f be in SðAHd Þ. If we set cj ¼ fYj, the function cj is in

DðHdÞ. On the other hand, we have

Xafð1�YjÞ f g ¼
X

baa

a

b

� �
Xbð1�YjÞXa�b f :

For rðgÞa j, we can see

Xbð1�YjÞ ¼ 0: ð3:3Þ

If the set AHd is compact, then by (3.3), we can see that

limj!yk f � cjkN;A
Hd

¼ 0:

On the other hand, for unbounded sets AHd , we obtain the following

estimate: For a su‰cient large j, we have

k f � cjkN;A
Hd

¼ kð1�YjÞ f kN;A
Hd

a sup
g AA

H d nðfrðgÞajgVA
H d Þ

ð1þ rðgÞÞN
X
jajaN

jXafð1�YjÞ f gj

a sup
g AA

H d nðfrðgÞajgVA
H d Þ

ð1þ rðgÞÞN
X
jajaN

X
baa

a

b

� �
jXbð1�YjÞj jXa�b f j

 !
: ð3:4Þ

Since f A SðAHd Þ, we have for ba a ðjajaNÞ,

ð1þ rðgÞÞN jXa�b f j ! 0

as j ! þy. By (3.4), for any f A SðAH d Þ, there exists the sequence fcjgj AN H
DðHdÞ such that

limj!þyk f � cjkN;A
H d

¼ 0:

Therefore we can see that the space DðHdÞ is dense in the space SðAHd Þ.
r
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Definition 9. We denote by SðAHd Þ0 the dual space of the space SðAH d Þ.
Thus, u A SðAH d Þ0 if and only if u is a linear functional from SðAHd Þ to C and

satisfies the following condition: There exist N A Zþ and a positive constant C

such that

jhu; jijaCkjkN;A
H d

for any j A SðAH d Þ.

Here we denote by S 0
A

H d
the space of the tempered distributions u on Hd

satisfying the following condition: For any j A SðHdÞ, there exists a constant

C > 0 such that

jhu; jijaCkjkN;A
H d

ð3:5Þ

for some N A Zþ. We call the space S 0
A

H d
as the space of the tempered dis-

tributions supported by AHd in Hd . Then by Proposition 8, (3.5) means that u

has continuous on S 0ðHdÞ with respect to the relative topology from SðAH d Þ.
Hence u has a unique linear continuous extension uA

H d
on SðAH d Þ. This means

that any tempered distributions with supported by AH d in Hd can be identified

with an element of SðAHd Þ0. Thus, we identify the space S 0
A

H d
with the space

SðAHd Þ0.
Concerning on the element of SðAH d Þ0, we obtain the following structure

theorem (Bros-Epstein-Glaser type theorem).

Proposition 9. Let AHd be a regular closed set on Hd . If f A SðAHd Þ0, then
there exist the tempered measures supported on AH d , mg ðjgjaN; g A Zd

þÞ, such

that supp mg HAH d and

f ¼
X

jgjaN
Xgmg;

where the tempered measure mg means that there exists N A Zþ so thatð
A

H d

jdmgjðgÞ=ð1þ rðgÞÞN < y:

Proof. Let f A SðAHd Þ0. Thus, f is in S 0ðHdÞ with supp f HAHd , where

AHd is a regular closed set in Hd . Then we can see that for any j A SðHdÞ, there
exists a constant C > 0 such that

jh f ; jijaCkjkN;A
H d
:
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On the other hand, let FN;A
Hd

be the set spanned by all finite linear

combinations of the bounded continuous functions on AHd , fjg; jgjaNg, and we

define the norm as follows:

kfjggkH d ¼ supg AA
H d ; jgjaN jjgðgÞj:

Let the space C be spanned by all finite linear combinations of

jgðgÞ ¼ ð1þ rðgÞÞN
X

jgjaN
XgjðgÞ; j A SðHdÞ

n o

as a subspace of FN;A
H d
. If we define the bounded linear functional ~ff on C

by

h ~ff ; jgi ¼ h f ; ji; ð3:6Þ

then by Hahn-Banach theorem, we can extend ~ff on FN;A
H d

and there exists a

constant C > 0 such that

jh ~ff ; jgijaCkfjggkH d :

Therefore there exists the measure ng on AH d such that

ng :

ð
A

H d

jdngðgÞj < y

and we can express h ~ff ; jgi by

h ~ff ; jgi ¼
ð
A

H d

jgðgÞ dngðgÞ:

Hence by (3.6), we have

h f ; ji ¼
X

jgjaN

ð
A

H d

ð1þ rðgÞÞNXgjðgÞ dngðgÞ; j A SðHdÞ:

If we put ~nngðHdÞ ¼ ngðAH d VHdÞ and mg ¼ ð1þ rðgÞÞN~nng, then the measure mg
extended on Hd is the tempered measure supported by AH d . Finally, we obtain

f ¼
X

jgjaN
Xgmg: r

3.5 The Heat Kernel Method for the Space of the Tempered Distributions

Supported by a Regular Closed Set on Hd

Our main result is as follows:
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Theorem 5. Let A be a regular closed set on Hd . For any u in SðAH d Þ0, let
UsðgÞ ¼ hu;Psð��1gÞi. Then UsðgÞ satisfies the following conditions:

(i) UsðgÞ A CyðHd � ð0;yÞÞ,
(ii) ðq=qs� DH d ÞUsðgÞ ¼ 0, g A Hd and s > 0,

(iii) for any j A DðHdÞ,

hu; ji ¼ lims!þ0

ð
H d

UsðgÞjðgÞ dg

and

(iv) there exist m; n > 0 and constants C > 0 and a such that

jUsðgÞjaCs�mð1þ rðgÞÞne�arðg;A
H d Þ2=2s; 0 < s < 1;

for g A Hd , where rðg;AHd Þ ¼ infg 0 AA
H d

rðg 0�1gÞ.

Conversely every UsðgÞ A CyðHd � ð0;yÞÞ satisfying the conditions (ii) and

(iv) can be expressed in the form

UsðgÞ ¼ ðu � PsÞðgÞ

with the unique element u A SðAH d Þ0.

Proof. Let u A SðAH d Þ0. If we set

UsðgÞ ¼ hu;Psð��1gÞi;

then by Proposition 6, Proposition 9 and (3.2), there exist positive constants a

and C such that

jUsðgÞj ¼ jhu;Psð��1gÞij

¼
X
jgjaN

ð
A

Hd

ð1þ rðgÞÞNXgPsðg�1
1 gÞ dmgðg1Þ

������
������

a
X
jgjaN

ð
A

H d

ð1þ rðg1ÞÞN jXgPsðg�1
1 gÞj jdmgjðg1Þ

aCgs
�jgj=2�Q=2

ð
A

H d

ð1þ rðg1ÞÞNe�arðg�1
1

gÞ2=sjdmgjðg1Þ

aCgs
�jgj=2�Q=2ð1þ rðgÞÞN

ð
A

H d

ð1þ rðg�1
1 gÞÞNe�arðg�1

1
gÞ2=sjdmgjðg1Þ

aCg;Ns
�jgj=2�Q=2ð1þ rðgÞÞNe�arðg;A

H d Þ2=2s:
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Conversely, for any UsðgÞ A CyðHd � ð0;yÞÞ satisfying the assumption (ii)

and (iv) in Theorem 5, by Theorem 4, there exists u A S 0ðHdÞ such that

UsðgÞ ¼ hu;Psð��1gÞi:

Let j A DðHdÞ and K ¼ supp jHHdnAHd . Then there are a constant

CK; n > 0 and mb 0 such thatð
K

UsðgÞjðgÞ dg
����

����a
ð
K

jUsðgÞj jjðgÞj dg

aCK; ns
�me�arðK;A

H d Þ2=2s

! 0;

as s ! þ0, where rðK ;AH d Þ ¼ infg AK rðg;AH d Þ. Hence we obtain

lims!þ0

ð
H d

UsðgÞjðgÞ dg ¼ 0:

On the other hand, by Theorem 4, we have

lims!þ0 UsðgÞ ¼ uðgÞ in S 0ðHdÞ:

Therefore we can see that supp uHAH d . r

3.6 Schwartz Kernel Theorem for the Space SðAHd Þ0

As an application of the characterization of the space SðAHd Þ0, we show the

Schwartz kernel theorem for the space SðAH d Þ0 as follows:

Theorem 6. Let the sets AHd1 and AHd2 be regular closed sets on Hd1 and

Hd2 respectively and k be a continuous linear operator from SðAH d2 Þ to SðAH d1 Þ0.
Then there exists T in SðAHd1 � AH d2 Þ0 such that

hkc; ji ¼ hT ; jnci;

where j is in SðAH d1 Þ and c is in SðAHd2 Þ.

Proof. Since k is continuous, the bilinear form B on SðAH d1 Þ �SðAH d2 Þ,

Bðj;cÞ ¼ hkc; ji; j A SðAHd1 Þ; c A SðAH d2 Þ

is separately continuous. Since SðAH d1 Þ and SðAH d2 Þ are the Fréchet space

respectively, B is continuous. Hence we can see that there exist a positive constant
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C and N1;N2 A Zþ such that

jhkc; jijaCkjkN1;AHd1
kckN2;AH d2

: ð]]Þ

We define Rsðg1; g2Þ by

Rsðg1; g2Þ ¼ hkPsðg�1
2 �Þ;Psðg�1

1 �Þi

for ðg1; g2Þ A Hd1 �Hd2 and s > 0.

Now we will show Rs converges in SðAH d1 � AH d2 Þ0 as s ! þ0. By ð]]Þ
and Proposition 6, there exist positive constants a, C and M;N1;N2 A Zþ such

that

jRsðg1; g2ÞjaCs�Mð1þ rðg1ÞÞN1ð1þ rðg2ÞÞN2e�arðg1;AH d1
Þ2=2se�arðg2;AH d2

Þ2=2s;

for g1 A Hd1 , g2 A Hd2 and 0 < s < 1.

Moreover we obtain

ðq=qs� DH d1þd2 ÞRsðg1; g2Þ ¼ 0

for g1 A Hd1 , g2 A Hd2 and 0 < s < 1.

Therefore, by Theorem 5, there exists R0 A SðHd1 �Hd2Þ0, supp R0 H
AHd1 � AH d2 , such that

R0 ¼ lims!þ0 Rs

in S 0ðHd1 �Hd2Þ.
Since the Riemann sum of an integral converges in SðHdj Þ, j ¼ 1; 2, by

Proposition 5, we have

hRs; jnci ¼
ð ð

Hd1�H d2

Rsðg1; g2Þjðg1Þcðg2Þ dg1dg2

¼ k

ð
H d2

Psðg�1
2 �Þcðg2Þ dg2;

ð
H d1

Psðg�1
1 �Þjðg1Þ dg1

� �

¼ hk½c � Ps�; j � Psi

for j A DðHd1Þ and c A DðHd2Þ.
Therefore by the argument of the density and Proposition 8, we obtain

hR0; jnci ¼ hkc; ji;

as s ! þ0 for j A SðAH d1 Þ and c A SðAH d2 Þ. r
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4 Appendix: Some Example of a Regular Closed Set in

the Heisenberg Group H

We recall the definition and the properties of geodesics and Geodetically

convex sets in the Heisenberg group H. We refer to [2] and [16]. A curve c ¼
ðx; y; tÞ A HGR3 is said to be horizontal if

_cc A spanfX ;Yg; _cc ¼ _xxX þ _yyY :

Any two points P and Q in H can be joined by horizontal (smooth) curve,

that is, there exists a horizontal curve c such that cð0Þ ¼ P, cð1Þ ¼ Q. The length

of a horizontal curve c is

lðcÞ ¼
ð 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð _ccðsÞ; _ccðsÞÞ

p
ds;

where g is the subRiemannian metric. Moreover the Carnot-Carathéodory dis-

tance dC is defined by

dCðP;QÞ ¼ infflðcÞ; c are horizontal curves such that cð0Þ ¼ P; cð1Þ ¼ Qg:

The Carnot-Carathéodory distance dC is a metric on H is bi-Lipschitz

equivalent to Korányi distance dK , that is, there a constant C > 1 such that

C�1dK a dC aCdK :

Definition 10 ([16]). A geodesic connecting two points P;Q A H is a length

minimizing horizontal curve c, that is, a curve c such that cð0Þ ¼ P, cðTÞ ¼ Q and

lðcÞ ¼ dCðP;QÞ.

Concerning on a geodesic, it is known that the following result holds:

Proposition 10 ([2]). Given a point Pðx; y; 0Þ, there is a unique geodesics

between the origin and P. It is a straight line in the plane ft ¼ 0g.

By Proposition 10, we obviously have the following example 1:

Example 1. The line through the origin on the plane ft ¼ 0g in H is a

regular closed set in the Heisenberg group.

In [16], R. Monti and M. Rickly defined the geodetically convex sets in the

Heisenberg group as follows:
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Definition 11 ([16]). We say that a set CJH is geodetically convex if for

all p0; p1 A C and all geodesics c : ½0; l� ! H with l ¼ dðp0; p1Þ, cð0Þ ¼ p0 and

cðlÞ ¼ p1, we have cð½0; l�ÞJC.

Unfortunately, the family of geodetically convex sets is very poor di¤erently

from the Euclidean space as follows:

Proposition 11 ([16]). The only geodetically convex subsets of H are the

empty set, points, arcs of geodesics and H.

By Proposition 11, we have the following example:

Example 2. The arcs of geodesics are a regular closed set in the Heisenberg

group.
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