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A CHARACTERIZATION OF THE TEMPERED
DISTRIBUTIONS SUPPORTED BY A REGULAR
CLOSED SET IN THE HEISENBERG GROUP

By

Yasuyuki Oka

Abstract. The aim of this paper is to give a characterization of the
tempered distributions supported by a (Whitney’s) regular closed set
in the Euclidean space and the Heisenberg group by means of
the heat kernel method. The heat kernel method, introduced by T.
Matsuzawa, is the method to characterize the generalized functions
on the Euclidean space by the initial value of the solutions of the
heat equation.

1 Introduction

A regular closed set played an important role in the Whitney extension
theorem ([22]) and in the structure theorem of the distributions with support
([18]). The examples of a regular closed set in the Euclidean space are convex
compact sets, an upper half plane and so on.

In this article, we consider the tempered distributions supported by a regular
closed set in the Euclidean space and in the Heisenberg group, respectively.
The Heisenberg group is the most commutative in the non-commutative Lie
group.

Our goals are two characterizations as follows. At first, we will give the
characterization of the tempered distributions supported by a regular closed set
in the Euclidean space by means of the heat kernel method. The heat kernel
method, introduced by T. Matsuzawa in [14], is the method to characterize the
generalized functions on the Euclidean space by the initial value of the solutions
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of the heat equation. Especially, in [15], T. Matsuzawa showed the heat kernel
method for the tempered distributions on “the Euclidean space RY”. By using
Matsuzawa’s result, we will get our first assertion.

Secondly, we will give the characterization of the tempered distributions
supported by a regular closed set in the Heisenberg group by means of the heat
kernel method. To do this, we will give the definition of a regular closed set in
the Heisenberg group. A regular closed set in the Heisenberg group include the
geodetically convex sets. In the Heisenberg group, the heat kernel method for
the tempered distributions was given by J. Kim and M. W. Wong in [12]. By
using their result, we will obtain our second assertion. We also have the structure
theorem of the tempered distributions supported by a regular closed set in the
Heisenberg group (Bros-Epstien-Glaser type theorem) on one’s way.

As an application of the characterizations by means of the heat kernel
method, we will give the Schwartz kernel theorem for the tempered distributions
supported by a regular closed set in the Euclidean space and in the Heisenberg
group, respectively. Recently, the Schwartz kernel theorem is adopted by R.
Ashino, T. Mandai and A. Morimoto (in [1]) in consideration on BIBO
(Bounded-Input Bounded-Output) stability of the continuous linear time shift
invariant system on the Euclidean space. As far as the BIBO stability of the
continuous linear time shift invariant system, we also refer to [17].

The plan of this paper is as follows: In section 2, we will give the char-
acterization of the tempered distributions supported by a regular closed set 4 on
the Euclidean space by the heat kernel. In 2.1, we introduce the properties of
the heat kernel and the heat kernel method for the tempered distributions
(Theorem 1) on the Euclidean space. In 2.2, we recall the definition of a regular
closed set and define the space %(A4). It is shown that the space %(R?) is dense
in the space #(A4). Moreover we introduce the structure theorem for the space
%(A)" (the Bros-Epstein-Glaser type theorem), where the space .#(4)’ is the
set of the tempered distributions supported by 4. In 2.3, we will show the heat
kernel method for the space .#(4)" (Our first assertion). In 2.4, as an application
of this characterization, we will give the Schwartz kernel theorem for the space
F(A).

In section 3, we will give the characterization of the tempered distributions
supported by a regular closed set 4,y in the Heisenberg group by the heat kernel
method. In 3.1, we recall the definition of the Heisenberg group, the form of the
left invariant vector fields in the Heisenberg group, the distance function called
Koranyi norm and the definition of the convolution in the Heisenberg group. In
3.2, we give the definition of the rapidly decreasing functions and the tempered
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distributions in the Heisenberg group. In 3.3, we introduce the properties of the
heat kernel and the heat kernel method in the Heisenberg group. In 3.4, we define
a regular closed set Ay« in the Heisenberg group and the space #(Agy«). Then
we will show that the space .(H") is dense in % (A«). Moreover we will also
give the structure theorem for the space ¥(A4y«)’ (The Bros-Epstein-Glaser type
theorem), where the space ¥ (Ayq)’ is the tempered distributions supported by
Aye in the Heisenberg group. In 3.5, we will show the heat kernel method for
the space % (Ay«)" (our second assertion). In 3.6, as an application of this result,
we will give the Schwartz kernel theorem for the space (4y.)". Finally, as an
appendix, we will show some examples of a regular closed set in the Heisenberg
group H.

2 A Characterization of the Tempered Distributions Supported
by a Regular Closed Set in the Euclidean Space by
the Heat Kernel Method

2.1 The Heat Kernel Method for the Space ¥'(R?)

d
4

o= (ay,...,0q), where o; € Z and o; > 0. So, for xeR?, x* =x;'---x;" and
0y =03 -~ 0%, where 07 = (0/0x;)”. Moreover A = Zjdzl 0% /ox?.

Xd?

First of all, we fix some notations. We use a multi-index o € Z{, namely,

DeriNITION 1. For any ¢ e C*(RY), we say ¢ e ¥ (R?) if the function ¢
satisfies the following condition: For any N € Z,, we have

N
1lly vt = $UPycre, 15 < v (1 + [x]) V0L0(x)] < oo.

Moreover we denote by .#/(R?) the dual space of the space .#(R“). Thus, we
say T € '(RY) if a continuous and linear functional u from .#(RY) to C satisfies
the following condition: There exist a constant C >0 and a,f € fo such that

KT, 901 < Cllolly, ge

for any ¢ € #(R?). It is called the space of the tempered distributions.

The function E,(x) defined by
Ey() = | )P 1> 0)
0 (r<0)

is called the heat kernel on R?. Then the heat kernel E,(x) on R? has the
following Proposition 1:
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ProposITION 1 ([4]). The following properties hold:

(i) [reE(x)dx=1,1>0,
(i) There are positive constants C and a' such that

0P E,(x)] < CIPIHL =t 2112 p=a'lsP/40 5 0 0 < g/ < 1,

(iii) E,(x) e Z(RY).

ProposiTIoN 2 ([13]). Let ¢ € #(RY), Then we have

(9 E)(x) =0
as t — +0 in S (RY).

In [15], T. Matsuzawa characterized the tempered distributions on the
Euclidean space by the initial value of the solutions of the heat equation as
follows:

TuroreM 1 ([15]). For ue &' (RY), we put
Ui(x) = (ux E;)(x)

for xeR? and t > 0. Then the function U,(x) satisfies the following four con-
ditions:

(i) Ui(x)e C*(R x (0,0)),
(ii) (0/0t—A)U/(x) =0, xeR? and t >0,
(i) for any ¢ € ¥ (RY),

G,y = limeJ U(x)p() dx

a

and
(iv) there exist p,v >0 and a constant C >0 such that

|Ui(x)] < Ct (14 x])", 0<t<1,
for x e R%.

Conversely every U,(x) e C*(R? x (0, 0)) satisfying the conditions (i) and
(iv) can be expressed in the form

Ui(x) = (ux E;)(x)

with the unique element ue &' (R?).
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This characterization is called the heat kernel method.

2.2 The Structure of the Tempered Distributions Supported by
Regular Closed Sets on R?

At first, we recall the definition of a regular closed set.

DErFINITION 2 ([8], [21], [22]). Let 4 be a closed subset of RY. If there exist
d>0,o>0and 0 < g <1 such that any x; and x; € 4 so that |x; — x;| < d are
linked by a curve in 4 whose length / satisfies / < w|x; — x|?, then we call 4 a
regular.

For example, if A4 is a convex closed set, w = ¢ =1 and d = d(A4) and if A4 is
a closure of the upper half-plane, w = ¢ =1 and d = oo. Of course, a closure of
the first quadrant (a proper convex cone) and the light cone are also a regular
closed set.

We define the space #(4) as follows:

DEFINITION 3. Let A4 be a regular closed set on RY. For any ¢ € C* (Rd), we
say ¢ € S (A) if the function ¢ satisfies the following condition: For any N € Z,,
we have

01l x = suPyea < (1 + 1x) ™ [0Pp(x)| < co.
The following relationship between the spaces %(R?) and (4) holds:
PROPOSITION 3. The space & (RY) is dense in the space S(A).

ProoF. It is enough that the space Z(R?) is dense in the space &(4). We
choose y; € Z(R?) as follows:

(x) = L |x[<yj
A= N0, (x =2

for j=1,2,.... Let f be in ¥ (A4). If we set y; = fy;, the function ; is in
Z(R?). On the other hand, we have

i

(1 — y)0"0f
y) (1 =x)o™f

- =3,
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For |x| < j, we can see
(1 —y)=0. (2.1)
If the set A is compact, then by (2.1), we can see that
limy oo | /= Wylly 4 = 0.

On the other hand, for unbounded sets A, we obtain the following estimate:
For a sufficient large j, we have

If - lP_/HN,A =1 _Xj)fHN,A

sup (1 + D) ™7 (1 = )}
seA\({I+]=/)04), =N

< wp +|x|>N<Z(§)|af5<1 1)

xeA\({|x]<j}nA), Bl <N o<p

IA

|aﬁ—<"f|>. (2.2)

Since f € #(A), we have for 0 < f5,

sup (14 XM f1 =0
xeA\((1x1</}04), 181N

as j— +oo. By (2.2), for any f € %(A4), there exists the sequence {y;};.n <
Z(H?) such that

limj o[/ = ¥illy 4 = 0.
Therefore we can see that the space Z(HY) is dense in the space ¥(A).

O

DEFINITION 4. We denote by #(A4)’ the dual space of the space ¥ (4). Thus,
ue 9(A)" if and only if u is a linear functional from #(A4) to C and satisfies the
following condition: There exist N € Z. and a positive constant C such that

|[<us 93] < Cllglly 4

for any ¢ € ¥(4).

Here we denote by %, the space of the tempered distributions u on RY
satisfying the following condition: For any (oeV(Rd), there exists a constant
C > 0 such that

|[<u, 3] < Cllglly 4 (2.3)
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for some N e€Z.. Thus the space %, means the space of the tempered dis-
tributions with supported by 4 in R?. Then by Proposition 3, (2.3) means that
u has continuous on .#/(R?) with respect to the relative topology from .#(A).
Hence u has a unique linear continuous extension u4 on %(A). This means
that any tempered distributions supported by 4 on R can be identified with an
element of #(4)’. Thus, we identify the space ., with the space ¥ (4)’".

Concerning on the tempered distributions supported by a regular closed set,
the following result is known:

PROPOSITION 4 ([8], [21]). Let A be a regular closed set. If f € S (A), then
there exist the tempered measures supported on A, w; (|f| <N), such that
supp pg <= A and

IBl<N

where the tempered measure u supported by A means that there exists N € Z, so
that

L i)/ (1 + 1) < oo.

2.3 The Heat Kernel Method for the Space of the Tempered Distributions
Supported by a Regular Closed Set on R?

We denote by #(4)" the space of the tempered distributions supported by a
regular closed set 4 in RY. Then we obtain the following characterization:

THEOREM 2. Let A be a regular closed set on RY. For any u in ¥(A), let
Ui(x) =<u, E,(x — ). Then U/(x) satisfies the following conditions:

(i) Ui(x)e C*(RY x (0,0)),

(ii) (8/0t—A)U(x) =0, xeR? and t > 0,

(iti) for any ¢ € Z(RY),

Cu, 0y = 1imzﬂ+oj Ui)p(x) d
R

and
(iv) there exist u,N € Z, and constants C >0 and a’ such that

|Ui(x)] < Ct (1 + |x|)Ne_”/d<x’A)2/8’, 0<r<1,0<d <1

for x e R, where d(x,A) =inf, . 4|x — x'|.
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Conversely every U,(x) e C*(R? x (0, 0)) satisfying the conditions (i) and
(iv) can be expressed in the form
Ui(x) = (ux E;)(x)

/

with the unique element ue ¥(A)

Proor. Let ue % (A) and U,(x) = <{u, E,(x —-)». Then by Proposition 1
and Proposition 4, there are NeZ,, C,C’ >0 and 0 <a’ <1 such that

|Ui(x)] = [<u, Ei(x = )

= (—1)"”J 1+ )YV E(x — y) dy
IBl<N 4

IA

CrUR (1 s S [ (1 by Ve gy
<N -4

< C/t—(d+N)/2(1 T |x|)Nefa’d(x,A)2/8t

for 0 < t < 1. Conversely, if any U,(x) e C*(RY) satisfies the condition (ii) and
(iv), then by Theorem 1, there exists u € %'(R?) such that

Ui(x) = <u, Ef(x — ).

Let p € Z(R?) and K = supp ¢ = R\ 4. Then there are a constant Cx , > 0
and x>0 such that

< J |U0)] [p(x)] dx
K

JK U,(x)p(x) dx

< Cx vt—ye—a’d(K.A)z/St

— 0,

as t — +0, where d(K,A) = infycx d(x,A4). Hence we obtain

lim,_,+oj U (x)p(x) dx = 0.
K

On the other hand, by Theorem 1, we have
limf*)+() U[(x) - u(x) in {y/(Rd).

Therefore we can see supp u < A. O
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2.4 The Schwartz Kernel Theorem for the Space ¥ (4)’
As an application of Theorem 2, we show the Schwartz kernel theorem for

the space #(A)" as follows:

THEOREM 3. Let the sets A and A> be regular closed sets in R" and R®,
respectively and k be a continuous linear operator from ¥ (A;) to S (A;y)'. Then
there exists T in S (A; x Ay)" such that

$kp, ) =<T,p @),
where ¢ is in S (Ay) and  is in F(4;).

PrROOF. Since k is continuous, the bilinear form B on ¥(4;) x ¥(4,),

B((ﬂ, lp) = <klpa (0>> (7AS ey(AlL lp € Ey(A2)

is separately continuous. Since ¥(4;) and ¥(A4,) are the Fréchet space respec-
tively, B is continuous. Hence we can see that there exist a positive constant C
and N;,N, € Z, such that

Kk, 00| < Cllollyy, a W llny ay- - (B)
We define R,(x;,x2) by
Rt(x17x2) = <kEl(x2 - ')7Et(x1 - )>

for (x1,x;) e R" x R% and ¢ > 0.
Now we will show R, converges in (A4, x A;)" as t — 4+0. By (4) and
Proposition 1, there exist a positive constant C and u, Ny, N, € Z, such that

‘Rt(X1,X2)| < Ct—ﬂ(l + ‘X1|>Nl<1 + ‘xz|)Nze—a/d(x].Al)z/gte—g/d(xz.Az)z/gt’

for x; eRd‘, x2eR% and 0 << 1.
Moreover we obtain

(0/0t — A)Ry(x1,x2) =0

for x; eRd‘, xeR® and 0 <1< 1.
Therefore, by Theorem 2, there exists Rye.%'(R™ x R%), supp Ry
Ay X Ay, such that

Ry =1lim; 4o R,

in /(R x R%).
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Since the Riemann sum of an integral converges in Sﬁ(Rdf'), j=1,2, by
Theorem 1, we have

Riyp@Y) = JJ R (x1,x2)p(x1)¥(x2) dxidxy

Rdl ><R’12

= <k Jszz E/(x2 — )ip(x2) dxzaj

R%

i~ Jolom) d )

= kY« Ei, 9 % E)

for p € Z(R") and Y € 2(R®).
By Proposition 2 and Proposition 3, we obtain

as t — +0 for pe ¥ (A1) and € ¥ (4,). I

3 A Characterization of the Tempered Distributions Supported
by a Regular Closed Set in the Heisenberg Group by
the Heat Kernel Method

3.1 The Heisenberg Group H?

We recall the definition and the properties of the Heisenberg group. We refer
to [3], [5], [9], [19], [20], [23] and [24].

Let g = (x,y,7) and ¢’ = (x/,",¢') e RY x RY x R = R**!. Then we define
the group law of R?**! by

(3, 0)(xX )y =(x+x,y+y e+t +2(x" - y—x-y)), (3.1)

where x- y = Z;il x;y;. The group R with respect to the group law defined
by (3.1) is called the Heisenberg group and denoted by HY. Its identity element is
(0,0,0) and the inverse of the element (x,y,?) is (x, y,7)"" = (—x, —y,—1). The
Heisenberg group H? is a locally compact Hausdorff group and its Haar measure
is the Lebesgue measure dxdydt.

The left-invariant vector fields in the Heisenberg group HY as R***! are
represented by

Xf = 6/6x, + 2y_,»5/(’3t, Xd+j = 5/6)// - 2x,6/6t and Xy = 5/6l

for j=1,2,...,d and these make a basis for the Lie algebra of H.
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The sub-Laplacian Ay on H is defined by Aye = Z/z_d] X/2 We consider the
heat operator

5/&9 - AHd
on H? x (0, 0).
Let 2> 0. Then we define the dilations ¢, by
Si(x, 1) = (Ax, 29, 271)

for (x,y,t) e H".
The homogeneous dimension Q of H? is given by

0=2d+2.

Moreover, a function u from H to C is called the Heisenberg-homogeneous
of degree k € Z if uod, = A*u for 4 > 0. Especially the Heisenberg-homogeneous
of degree of the distance function p defined by

plo) = (% + )7 + )N
for g e H? is one, that is,
p(Ix, 2y, 22t) = Jp(x, y, 1).
The distance between two points ¢ and ¢’ in HY is given by
dx(g,9") = p(g"'9)
and the following estimate holds:
p(g"'9) < pg9) + p(g")- (32)

This distance function p is called Koranyi norm.
Let / and & be suitable functions on H?. Then we define the convolution
f=h of f with h as follows:

(f *h)(g) = j £(g)h(g" ) dg'

Hd
for g,¢g’ e H?. The convolution on H? is non-commutative, in general.
3.2 The Space ¥ (H") and Its Dual Space &'(HY)
Let o e Zi‘l. Then the functions (X,¢)(g) are defined by

(Xa0)(9) = (X7 X% -+ X57'0)(9)

for a function ¢ e C*(HY).
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We define the Schwartz class V(Hd) on the Heisenberg group as follows:

DErINITION 5. For any ¢ e C*(HY), we say ¢ € ¥(H?) if the function ¢
satisfies the following condition: For any N € Z., we have

Il e = supyeps (1 +p(9) " Y [ Xap(g)] < 0.

It is clear from the definition that the space % (HY) is topologically iso-
morphic of the space .%(R**!). Moreover, it is known that the Schwartz class
Z(H?) is a Fréchet space in [3].

DEFINITION 6. We denote by .#/(H?) the dual space of the space .(HY)
and call it the space of the tempered distributions in the Heisenberg group. Thus,
ue . (H?) if and only if u is a linear functional from .%(H?) to C and satisfies
the following condition: There exist N € Z, and a positive constant C such that

[<u, 03| < Cllglly pe
for any ¢ € ¥ (HY).

By the definition, we can see that the space &’ (Hd) is topologically iso-
morphic of the space ./(R%*/*1).

Let f(g9) = f(g7") for ge HY. Then we define the convolution u% ¢ of
ue %' (HY) with p e #(H?) as follows:

Sus g,y = u, ¥ ¢y
for any ¢ € & (HY).
3.3 The Heat Kernel Method for the Space .7'(H?)

In [7] and [10], we can find the explicit form of the heat kernel (the fun-
damental solutions) P(g) of the heat operator

0/0s — Ay

on H? as follows:

Ps(g) = PS(X7 Y Z)

(47zs)7<d+1) J
0, s<0O.

(2‘[/Sil’lh 2_[) deirt/2sf2(\x|2+|y\2)r/(4s tanh 27) dr, s>0,

o0

— 0
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The following properties of the heat kernel Ps(g) hold:

PRrROPOSITION 5 ([6]). Let P be the heat kernel associated to the sub-Laplacian
Aya. Then the following properties hold:

(1) Py(g ) > O

(i) [yo Ps(g) dg =1,

(iii) Py(g ) ( b,

(iv) (0/0s — Aya)Ps(g) =0,

(v) limy_ o Py=0 in &'(HY),

(Vi) Poag(rx,ry,r’t) = r 2Py(x, y,t), r >0, (x,y,1) € HY.

Moreover the heat kernel Py(g) has the following estimate:

ProposITION 6 ([11]). Let Ps(g) be the heat kernel associated to the sub-
Laplacian Aya. Then for any o e Zid and m € 7., there exist positive constants a
and Cy, o such that

|(6/6S) nggPS(g)‘ < Cm"aS—m—‘o{VZ—Q/Ze—a/)(g)z/s‘
The following result is known:

ProposITION 7 ([12], [17]). The heat kernel P(g) is in the space &(H?) for
s> 0. Moreover for any ¢ € (H?), the following property holds:
px Py — pe S (HY)
as s converges to +0.

J. Kim and M. W. Wong obtained the following characterization of the space
Z'(H?). We call this characterization “the heat kernel method for &' (H?):

TurorReM 4 ([12]). For ue &'(HY), we put

Us(g) = (u* Py)(g)

for ge H? and s> 0. Then the function Us(g) satisfies the following four con-
ditions:

(i) Uslg) e C*(H! x (0, 0)),
(ii) (8/0s — Aya)Us(g) =0, ge H? and s > 0,
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(iti) for any ¢ € ¥(HY),

gy = lim | Uita)oto) dg

s——+0

and
(iv) there exist pu,v >0 and a constant C >0 such that

|Us(g)] < Cs™*(1+p(9)", 0<s<]l,
for g e HY.

Conversely every Uy(g) € C*(H" x (0, 0)) satisfying the conditions (i) and
(iv) can be expressed in the form

Us(g) = (ux* Ps)(g)

with the unique element ue &' (H?).

3.4 The Structure of the Tempered Distributions Supported by
Regular Closed Sets in the Heisenberg Group

At first, we give the definition of a regular closed set on HY.

DEFINITION 7. Let Ay« be a closed subset of the set HY = R**! If
there exist ¥ >0, w >0 and 0 < ¢ <1 such that any g; and g, € Ay« so that
p(g5'g1) <x are linked by a curve in Ay whose length / satisfies /<
wp(gy'g1)?, then we call Aya a regular in the Heisenberg group H.

We define the space (Agya) as follows:

DEFINITION 8. Let Ay« be a regular closed set on H?. For any ¢ € C* (HY),
we say ¢ € S (Aya) if the function ¢ satisfies the following condition: For any
N e Z., we have

N
12lly, 4 = SUPgea, (12D D 1Xa(g)] < 0.

The following relationship between the spaces &(H“) and ¥ (4y) holds:

PROPOSITION 8. The space (HY) is dense in the space & (Aya).
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PrOOF. It is enough that the space Z(H") is dense in the space ¥(Ayq). We
choose ®; € Z(H?) as follows:

<
©i(6) = {07 plg) =2

for j=1,2,.... Let f be in S (Aya). If we set Y; = f©;, the function y; is in
Z(HY). On the other hand, we have

f}—Z[K ( )Xﬁ 1 —0))X,4f.
For p(g) < j, we can see
Xp(1 —0;) =0. (3.3)
If the set Ay« is compact, then by (3.3), we can see that
lim; o[/ — ‘/{/HN.AH,, =0.

On the other hand, for unbounded sets Ay«, we obtain the following
estimate: For a sufficient large j, we have

=
11 =) f
< wp (1p(e)" Y Id(1-0)7)
geAya\({p(9) <j}NAya) o] <N
o
< sup (14 p(g)" ( ( )mu—@»)uxa_m). (3.4)
ge A\ (1p0) </} Aga) \ang:zv /; B '

Since f € S(Aye), we have for f <o (Ja| < N),

(14 p(9) " [ Xupf| = 0

as j — +oo. By (3.4), for any f € &(Ay), there exists the sequence {y;}; N =
Z(HY) such that

lim;_ o || f — l//jHN,AHJ =0.

Therefore we can see that the space Z(HY) is dense in the space (Ayu).
|
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DEFINITION 9. We denote by % (Ay«)" the dual space of the space ¥ (Ayq).
Thus, u € ¥ (Aya)" if and only if u is a linear functional from ¥ (A4y) to C and
satisfies the following condition: There exist N € Z, and a positive constant C
such that

[<u, p>| < C”q)”N,AHl,

for any ¢ e S (Aya).

Here we denote by YA’M the space of the tempered distributions u on HY
satisfying the following condition: For any ¢ € V(Hd), there exists a constant
C > 0 such that

[<u, 93] < Cllglly 4 (3-3)

ud
for some N e€Z,. We call the space 5’;{}{[{ as the space of the tempered dis-
tributions supported by Aye in H?. Then by Proposition 8, (3.5) means that u
has continuous on /(H“) with respect to the relative topology from & (Aya).
Hence u has a unique linear continuous extension u,,, on ¥ (Ay«). This means
that any tempered distributions with supported by Ay« in H? can be identified
with an element of & (AHJ)'. Thus, we identify the space %{HJ with the space
S (Aya)'.

Concerning on the element of #(A4;.)’, we obtain the following structure
theorem (Bros-Epstein-Glaser type theorem).

PROPOSITION 9. Let Aya be a regular closed set on H If fe V(Aﬂd)/, then
there exist the tempered measures supported on Aya, p, (|[y] <N,y € Zi), such
that supp u, = Aya and

/= Z|7\§NX/’MV’

where the tempered measure w, means that there exists N € Z; so that
N
|l +ptan® < .
nd

ProOF. Let f € ¥ (Aya)'. Thus, f is in &'(H?) with supp f < Ayya, where
Ay is a regular closed set in HY. Then we can see that for any ¢ € & (H‘l), there
exists a constant C > 0 such that

[Kfs 001 < Cliolly, 4,
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On the other hand, let ®y 4 , be the set spanned by all finite linear
combinations of the bounded continuous functions on Ay, {g,,[7] < N}, and we
define the norm as follows:

{9, Hlue = supPge.u, . py<nl9;(9)]-

Let the space ¥ be spanned by all finite linear combinations of

{0.00) = 1 +p@)"Y _, Xwl9).0e 7 (H)}

as a subspace of ®y 4 ,. If we define the bounded linear functional f on¥
by

Loy =L o), (3.6)

then by Hahn-Banach theorem, we can extend f on Oy Ay and there exists a
constant C > 0 such that

|<f7 ¢y>| = CH{(p;f}HHd'
Therefore there exists the measure v, on Ay« such that

| il <
d

H

and we can express {f, ®,> by

Sooy= J ,(g) dv,(g)-
Aya
Hence by (3.6), we have

S =3 | Era) Xol) dnto), pe 7).

AHd

If we put #,(H?) = v, (44« NH?) and w, = (1+ p(g))"¥,, then the measure A,
extended on H? is the tempered measure supported by Aya. Finally, we obtain

f:Z\“/\gNXV'uV' .

3.5 The Heat Kernel Method for the Space of the Tempered Distributions
Supported by a Regular Closed Set on HY

Our main result is as follows:
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THEOREM 5. Let A be a regular closed set on HY. For any u in S (Aya)', let
Us(g) = <u, P(-'g)>. Then Ui(g) satisfies the following conditions:

() Uslg) e C*(H x (0, 0)),
(ii) (8/0s — Aya)Us(g) =0, ge H? and s > 0,
(i) for any ¢ € 2(H?),

gy =t | Udo)oto) do

and
(iv) there exist u,v >0 and constants C >0 and a such that

|Us(g)] < Cs7(1 4 plg)) e "0/, 0 <s <1,
for ge HY, where p(g, Aya) = infyeq p(g""9).

Conversely every Us(g) € C*(H" x (0,0)) satisfying the conditions (i) and
(iv) can be expressed in the form

Us(g) = (ux* Ps)(g)
with the unique element ue ¥ (Aya)'.
PrROOF. Let ue % (Aya)'. If we set

Us(g) = <u, Ps(- '),

then by Proposition 6, Proposition 9 and (3.2), there exist positive constants «
and C such that

|Uv(g)| = |<u,PS(‘71g)>|

- L (1+p(@) " X,Pi(g1'9) di,(91)

[yI<N

IA

3 J 1+ p(g) ™ 1X, Prlg )| i) (g1)

[yI<N

IA

C}ysf\))|/27Q/2J (1 +p(gl))Nefaﬂ(g(‘wz/qdﬂ?|(g1)

Aya

- 2
< Gys LR (1 4 p(g))™ J (1+p(gy'9) e 9 Pldu,|(g1)

AHd

< C, ys 127021 4 p(g))Ne (9 Aua)/25
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Conversely, for any Uy(g) € C*(H? x (0, 0)) satisfying the assumption (ii)
and (iv) in Theorem 5, by Theorem 4, there exists u € .#’(H?) such that

Us(g) = <u, Ps(-""9)>.

Let pe 2(HY) and K =supp 9 « H*\Ays. Then there are a constant
Ck,y>0 and x>0 such that

L Us(9)0(9) dg‘ < JK \Uy(9)|l0(9)| dg

2
< CKY‘,S_‘ue_ap(K’AH”) /2s
— 0,

as s — 40, where p(K, Ay«) = inf ek p(g, Aye). Hence we obtain

limso | Udadola) dy =0,

On the other hand, by Theorem 4, we have
lim_ o Uy(g) = u(g) in &'(HY).

Therefore we can see that supp u = Aya. O

3.6 Schwartz Kernel Theorem for the Space ¥ (Ayq)’
As an application of the characterization of the space % (Ay)’, we show the

Schwartz kernel theorem for the space ¥ (A4yq)" as follows:

THEOREM 6. Let the sets Agya, and Ays be regular closed sets on H"' and
H® respectively and k be a continuous linear operator from & (Agga) to S (Aga)'.
Then there exists T in & (Aya X Ayas,)' such that

ko) =T, 0 @),
where ¢ is in S (Aya) and  is in S (Aya).

Proor. Since k is continuous, the bilinear form B on ¥ (44 ) X S (Aya),

B((ﬂ, l//) = <kl7b7 (p>a (P € y(AH‘Il )a lp € y(AH"Z)

is separately continuous. Since ¥(Ay«) and ¥ (Ays) are the Fréchet space
respectively, B is continuous. Hence we can see that there exist a positive constant
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C and N;,N, € Z, such that

<k 93] < Cliglly, (t)

We define Ry(g1,g2) by

Wllns, 4

%

Ri(g1,92) = <sz(g271-),Ps(gf1-)>

for (g1,92) e H" x H% and s > 0.

Now we will show R; converges in % (Aya X Ays)' as s — +0. By (#f)
and Proposition 6, there exist positive constants a, C and M, N;, N, € Z, such
that

2 s _—dap(g» 2 A
IR,(g1,92)| < CS_M(I +p(gl))N](1 _,_p(gz))Nze*aﬂ(guAHd,) /25 g=ap(92, Ay y)" /2 ’

for g e HY, g e H® and 0 < s < I.
Moreover we obtain

(6/6s — AH111+/12 )R&(gl ) gz) =0

for ¢ eH", Iy eH® and 0 <s< 1.
Therefore, by Theorem 5, there exists Ry € V(Hdl X Hdz)', supp Ry =
Aya X Aya, such that

Ry = limg_ o R

in ' (H" x H®).
Since the Riemann sum of an integral converges in %(H%), j=1,2, by
Proposition 5, we have

(Rp @Y = ” R(g1,92)0(91)¥(92) dgrdaa

H% xH®
=<kj Py W) dos, | Ps<gr‘->w<gl>dgl>
Hdz H(Il

= <kl = Pl * Py

for p € Z(H") and € Z2(H®).
Therefore by the argument of the density and Proposition 8, we obtain

<R0, @ ® !//> = <klpa (p>a

as s — 40 for pe S(Ayq) and Y € S (Aya). N
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4 Appendix: Some Example of a Regular Closed Set in
the Heisenberg Group H

We recall the definition and the properties of geodesics and Geodetically
convex sets in the Heisenberg group H. We refer to [2] and [16]. A curve ¢ =
(x,y,t) e H= R? is said to be horizontal if

¢espan{X,Y}, ¢=xX+yY.

Any two points P and Q in H can be joined by horizontal (smooth) curve,
that is, there exists a horizontal curve ¢ such that ¢(0) = P, ¢(1) = Q. The length
of a horizontal curve ¢ is

1
10) = || Valels) &) s
where ¢ is the subRiemannian metric. Moreover the Carnot-Carathéodory dis-
tance d¢ is defined by
dc(P, Q) = inf{l(c),c are horizontal curves such that ¢(0) = P,¢(1) = Q}.

The Carnot-Carathéodory distance d¢ is a metric on H is bi-Lipschitz
equivalent to Koranyi distance dg, that is, there a constant C > 1 such that

Cldx < dc < Cdy.

DeriNiTION 10 ([16]). A geodesic connecting two points P,Q € H is a length
minimizing horizontal curve c, that is, a curve ¢ such that ¢(0) = P, ¢(T) = Q and

I(c) =dc(P, Q).
Concerning on a geodesic, it is known that the following result holds:

ProrosiTiON 10 ([2]). Given a point P(x, y,0), there is a unique geodesics
between the origin and P. It is a straight line in the plane {t = 0}.

By Proposition 10, we obviously have the following example 1:

ExaMpLE 1. The line through the origin on the plane {r=0} in H is a
regular closed set in the Heisenberg group.

In [16], R. Monti and M. Rickly defined the geodetically convex sets in the
Heisenberg group as follows:
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DeriNITION 11 ([16]).  We say that a set C = H is geodetically convex if for
all po,p1 € C and all geodesics c¢:[0,1) = H with 1 =d(po,p1), ¢(0) = po and
c(l) = p1, we have ¢([0,1]) = C.

Unfortunately, the family of geodetically convex sets is very poor differently
from the Euclidean space as follows:

PrOPOSITION 11 ([16]). The only geodetically convex subsets of H are the
empty set, points, arcs of geodesics and H.

By Proposition 11, we have the following example:

ExampLE 2. The arcs of geodesics are a regular closed set in the Heisenberg
group.
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