STRUCTURAL PROPERTIES OF IDEALS OVER $\mathscr{P}_{\kappa}\lambda$ I

By

Yoshihiro ABE

Abstract. We try to take a first step to a theory of the structural properties of ideals over $\mathscr{P}_{\kappa}\lambda$, that was studied in detail by Baumgartner, Taylor and Wagon [1] for κ . In defining the basic notions, P-points, Q-points, and selective ideals, we put importance on the behavior of the function on $\mathscr{P}_{\kappa}\lambda$ to the bounded ideal and Rudin-Keisler ordering.

Several facts hold similarly as on κ , for instance, the bounded ideal is a nowhere Q-point. However some differences exist such as the bounded ideal is isomorphic to another ideal. We state the sufficient condition for ideals to be Q-points and the weakly normal ideals selective.

1 Introduction

Throughout κ denotes a regular uncountable cardinal and λ a cardinal $\geq \kappa$. Let $\mathscr{P}_{\kappa}\lambda$ denote the set of the subsets of λ with the cardinality less than κ , that is, $\mathscr{P}_{\kappa}\lambda = \{x \subset \lambda : |x| < \kappa\}.$

DEFINITION 1.1. Let $X \subset \mathscr{P}_{\kappa}\lambda$.

We say X is unbounded if for every $x \in \mathscr{P}_{\kappa}\lambda$ there exists $y \in X$ such that $x \subset y$. The set $\{X \subset \mathscr{P}_{\kappa}\lambda : X \text{ is not unbounded}\}$ denoted by $I_{\kappa,\lambda}$ is called the *bounded ideal*. For each $a \in \mathscr{P}_{\kappa}\lambda$ let $\hat{a} = \{x \in \mathscr{P}_{\kappa}\lambda : a \subset x\}$. Thus $X \in I_{\kappa,\lambda}$ if and only if $X \cap \hat{a} = \emptyset$ for some $a \in \mathscr{P}_{\kappa}\lambda$.

²⁰¹⁰ Mathematics Subject Classification: Primary 03E35, 03E55.

Key words and phrases: $\mathcal{P}_{\kappa}\lambda$, bounded ideal, weak normality, structural property.

The author was partially supported by JSPS KAKENHI Grant Number 23540167.

The author is very grateful to the referee for her/his many helpful comments by which several improvements were made.

Received September 9, 2014.

Revised January 13, 2015.

X is said to be *closed* if $\bigcup C \in X$ for every \subset -chain $C \subset X$ with $|C| < \kappa$. *X* is a *club* if it is closed and unbounded. *X* is *stationary* if $X \cap C \neq \emptyset$ for any club *C*. The set $\{X \subset \mathscr{P}_{\kappa}\lambda : X \text{ is not stationary}\}$ denoted by $NS_{\kappa,\lambda}$ is called the *non-stationary ideal*.

DEFINITION 1.2. We say I is an *ideal* over $\mathcal{P}_{\kappa}\lambda$ if the following hold:

- (1) $I \subset \mathscr{P}(\mathscr{P}_{\kappa}\lambda),$
- (2) $\emptyset \in I$ and $\mathscr{P}_{\kappa}\lambda \notin I$,
- (3) if $X \subset Y \in I$, then $X \in I$,
- (4) $\bigcup D \in I$ for every $D \subset I$ with $|D| < \kappa$ (we say I is κ -complete),
- (5) $I_{\kappa,\lambda} \subset I$ (we say *I* is *fine*).

Let $I^+ = \mathscr{P}(\mathscr{P}_{\kappa}\lambda) \setminus I$ and $I^* = \{X \subset \mathscr{P}_{\kappa}\lambda : \mathscr{P}_{\kappa}\lambda \setminus X \in I\}$. For $X \in I^+$ $I \upharpoonright X = \{Y \subset \mathscr{P}_{\kappa}\lambda : Y \cap X \in I\}$, which is an ideal extending I.

A function f is regressive if $f(x) \in x$ for every $x \in \text{dom}(f) \setminus \{\emptyset\}$.

An ideal I over $\mathscr{P}_{\kappa}\lambda$ is *normal* if for any $X \in I^+$ and regressive function f on X there exists $Y \in \mathscr{P}(X) \cap I^+$ such that $f \upharpoonright Y$ is constant.

I is *weakly normal* if for any $X \in I^+$ and regressive function f on X there exists $\gamma < \lambda$ such that $\{x \in X : f(x) \le \gamma\} \in I^+$.

Note that $I_{\kappa,\lambda}$ is the minimal, and $NS_{\kappa,\lambda}$ the minimal normal ideal over $\mathscr{P}_{\kappa}\lambda$.

For a function f and $X \subset \text{dom}(f)$ f[X] denotes the set $\{f(x) : x \in X\}$ together with an abuse $f^{-1}[Y] = \{x : f(x) \in Y\}$ for a set Y.

The structural properties of ideals on κ was almost completely described in Baumgartner-Taylor-Wagon [1]. We state the basic notions.

DEFINITION 1.3. We say $I \subset \mathscr{P}(\kappa)$ is an *ideal* on κ if the following hold:

- (a) $\emptyset \in I$ and $\kappa \notin I$,
- (b) if $X \subset Y \in I$, then $X \in I$,
- (c) I is κ -complete,
- (d) $I_{\kappa} \subset I$ $(I_{\kappa} = \{x \subset \kappa : |x| < \kappa\}$, the bounded ideal on κ).

Suppose that I is an ideal on κ and $f: \kappa \to \kappa$.

(1) *f* is *I*-small if $\forall \alpha < \kappa f^{-1}[\{\alpha\}] \in I$.

(2) *I* is a P-point if for every *I*-small *f* there exists $X \in I^*$ such that $f \upharpoonright X$ is I_{κ} -small.

(3) I is a Q-point if every I_{κ} -small f is injective on a set in I^* .

- (4) I is selective if every I-small f is injetive on a set in I^* .
- (5) $f_*(I) = \{X \subset \kappa : f^{-1}[X] \in I\}.$

Several notions for subsets of κ were first translated into $\mathscr{P}_{\kappa}\lambda$ by Jech [3]. Later Zwicker and some others tried to develop $\mathscr{P}_{\kappa}\lambda$ analogue of the theory for the structural properties unsccessfully [2], [7]. We have several choices and difficulties in defining basic notions in [1]. For instances,

- X ∈ I_κ if and only if |X| < κ. While some X ∈ I_{κ,λ} has the cardinality |𝒫_κλ| for λ > κ. Note that I_κ ≠ I_{κ,κ}.
- (2) For every $f: \kappa \to \kappa$ and $X \in I_{\kappa}$, $f[X] \in I_{\kappa}$. However, for some $f: \mathscr{P}_{\kappa} \lambda \to \mathscr{P}_{\kappa} \lambda$ and $X \in I_{\kappa,\lambda}$, $f[X] \in I^+_{\kappa,\lambda}$.

The follwing motivates our definition.

FACT 1.4. For an ideal I on κ , $f_*(I)$ is an ideal if and only if f is I-small.

DEFINITION 1.5. Let *I* be an ideal over $\mathscr{P}_{\kappa}\lambda$ and $f: \mathscr{P}_{\kappa}\lambda \to \mathscr{P}_{\kappa}\lambda$.

(1) *f* is *I*-fine if $\forall \alpha < \lambda \{ x \in \mathcal{P}_{\kappa} \lambda : \alpha \notin f(x) \} \in I$.

(2) *I* is a *P*-point if for every *I*-fine *f* there exists $X \in I^*$ such that *f* is $I_{\kappa,\lambda} \upharpoonright X$ -fine, that is, $\forall \alpha < \lambda \{x \in X : \alpha \notin f(x)\} \in I_{\kappa,\lambda}$.

- (3) I is a Q-point if every $I_{\kappa,\lambda}$ -fine f is injective on a set in I^* .
- (4) I is selective if every I-fine f is injetive on a set in I^* .
- (5) $f_*(I) = \{ X \subset \mathscr{P}_{\kappa} \lambda : f^{-1}[X] \in I \}.$

By definition we have:

FACT 1.6. (1) $f_*(I)$ is an ideal if and only if f is I-fine.

(2) Every normal ideal is a P-point.

(3) I is selective if it is both a P-point and a Q-point.

(4) Let I be a Q-point and $I \subset J$. Then, J is a Q-point. Furthermore, J is selective if J is a P-point.

(5) The following are equivalent for every $X \in I^+_{\kappa,\lambda}$:

- (a) f is $I_{\kappa,\lambda} \upharpoonright X$ -fine,
- (b) $\mathbf{I}_{\kappa,\lambda} \upharpoonright f[X] \subset f_*(\mathbf{I}_{\kappa,\lambda} \upharpoonright X),$
- (c) $\forall Y \subset \mathscr{P}_{\kappa} \lambda \ (Y \cap f[X] \in I_{\kappa,\lambda} \to f^{-1}[Y] \cap X \in I_{\kappa,\lambda}),$
- (d) $\forall Y \subset \mathscr{P}_{\kappa}\lambda(Y \cap X \in \mathbf{I}^+_{\kappa,\lambda} \to f[Y \cap X] \in \mathbf{I}^+_{\kappa,\lambda}).$

(6) If f is I-fine and f is $I_{\kappa,\lambda} \upharpoonright X$ -fine for some $X \in I^*$, there is an $I_{\kappa,\lambda}$ -fine g such that $f_*(I) = g_*(I)$; for instance, $g = f \upharpoonright X \cup \mathrm{Id} \upharpoonright (\mathscr{P}_{\kappa} \lambda \setminus X)$.

REMARK 1.7. The converse of (3) does not hold.

FACT 1.8 (Usuba). Suppose that $\mathcal{P}_{\kappa}\lambda$ carries a selective ideal and the GCH holds. Then, there is a selective ideal which is not a P-point.

2. The Bounded Ideal

Clearly the bounded ideal $I_{\kappa,\lambda}$ is a P-point. First we give some definitions and present known facts on I_{κ} .

DEFINITION 2.1. Let J and K be ideals on a set S.

(1) J and K are *isomorphic* and denoted by $J \cong K$ if there is a bijection $F: S \to S$ such that $K = F_*(J)$.

(2) We write $J \cong^* K$ if $K = F_*(J)$ and $F \upharpoonright X$ is injective for some $X \in J^*$.

FACT 2.2. (1) I_{κ} has no isomorph except itself. (2) $f_*(I_{\kappa}) = I_{\kappa} \upharpoonright f[\kappa]$ for any I_{κ} -small f. (3) For any $A, B \in I_{\kappa}^+ \setminus I_{\kappa}^*$, $I_{\kappa} \upharpoonright A \cong I_{\kappa} \upharpoonright B$. (4) If $f \upharpoonright X$ is injective and $I \neq I_{\kappa} \upharpoonright X$ for some $X \in I^*$, then $I \cong f_*(I)$. Thus,

(4) If $J \mid X$ is injective and $I \neq I_{\kappa} \mid X$ for some $X \in I$, then $I \equiv J_*(I)$. Thus, for two ideals on κ , \cong and \cong^* are equivalent.

We show some of the above do not hold in $\mathscr{P}_{\kappa}\lambda$. Our first interest is $f_*(\mathbf{I}_{\kappa,\lambda})$. It holds that $\mathbf{I}_{\kappa,\lambda} \upharpoonright f[\mathscr{P}_{\kappa}\lambda] \subset f_*(\mathbf{I}_{\kappa,\lambda})$ for every f. However we have:

THEOREM 2.3. For each $X \in I^+_{\kappa,\lambda} \setminus I^*_{\kappa,\lambda}$ there is an $I_{\kappa,\lambda}$ -fine function f such that $f_*(I_{\kappa,\lambda}) = I_{\kappa,\lambda} \upharpoonright X \neq I_{\kappa,\lambda} \upharpoonright f[\mathscr{P}_{\kappa}\lambda].$

PROOF. Let $Y = \mathscr{P}_{\kappa} \lambda \setminus X \in I^+_{\kappa,\lambda}$ and choose a non-empty $a \in \mathscr{P}_{\kappa} \lambda$. Define f as:

(1) f(x) = x for $x \in X \cap \hat{a}$ (2) $x \subset f(x) \in X$ for $x \in \hat{a} \setminus X$ (3) $x \subset f(x) \in Y \cap \hat{a}$ for $x \in \mathscr{P}_{\kappa} \lambda \setminus \hat{a}$

Since $x \subset f(x)$ for every $x \in \mathscr{P}_{\kappa}\lambda$, f is $I_{\kappa,\lambda}$ -fine.

For any $x \in \mathscr{P}_{\kappa}\lambda$, $x \setminus a \in \mathscr{P}_{\kappa}\lambda \setminus \hat{a}$ and $f(x \setminus a) \in Y \cap \hat{a}$. Hence $f(x \setminus a) \supset (x \setminus a) \cup a$ = x. Thus $f[\mathscr{P}_{\kappa}\lambda \setminus \hat{a}] \in I^+_{\kappa,\lambda}$ and $f[\mathscr{P}_{\kappa}\lambda \setminus \hat{a}] \notin I_{\kappa,\lambda} \upharpoonright f[\mathscr{P}_{\kappa}\lambda]$.

Since $f[\hat{a}] \subset X$ and $f[\mathscr{P}_{\kappa}\lambda \setminus \hat{a}] \subset Y$, $f^{-1}[f[\mathscr{P}_{\kappa}\lambda \setminus \hat{a}]] = \mathscr{P}_{\kappa}\lambda \setminus \hat{a} \in I_{\kappa,\lambda}$. Hence $f[\mathscr{P}_{\kappa}\lambda \setminus \hat{a}] \in f_*(I_{\kappa,\lambda})$, which says $f_*(I_{\kappa,\lambda}) \neq I_{\kappa,\lambda} \upharpoonright f[\mathscr{P}_{\kappa}\lambda]$.

To show $f_*(\mathbf{I}_{\kappa,\lambda}) = \mathbf{I}_{\kappa,\lambda} \upharpoonright X$, first suppose that $Z \in \mathbf{I}_{\kappa,\lambda} \upharpoonright X$. Since f is $\mathbf{I}_{\kappa,\lambda}$ -fine, $f^{-1}[Z \cap X] \in \mathbf{I}_{\kappa,\lambda}$. $f^{-1}[Z \cap Y] \subset \mathscr{P}_{\kappa}\lambda \setminus \hat{a} \in \mathbf{I}_{\kappa,\lambda}$. So, $f^{-1}[Z] = f^{-1}[Z \cap X] \cup f^{-1}[Z \cap Y] \in \mathbf{I}_{\kappa,\lambda}$ and $Z \in f_*(\mathbf{I}_{\kappa,\lambda})$.

Second let $Z \in f_*(\mathbf{I}_{\kappa,\lambda})$. Since $f \upharpoonright X \cap \hat{a} = \mathrm{Id.}, \ Z \cap X \cap \hat{a} \subset f^{-1}[Z \cap X \cap \hat{a}] \subset f^{-1}[Z] \in \mathbf{I}_{\kappa,\lambda}$. \Box

Remark 2.4. $\forall Y \subset \mathscr{P}_{\kappa}\lambda(f^{-1}[Y] \cap X \in I_{\kappa,\lambda} \to Y \cap f[X] \in I_{\kappa,\lambda}) \Leftrightarrow f_*(I_{\kappa,\lambda} \upharpoonright X) \subset I_{\kappa,\lambda} \upharpoonright f[X].$

So, $f_*(\mathbf{I}_{\kappa,\lambda} \upharpoonright X) = \mathbf{I}_{\kappa,\lambda} \upharpoonright f[X] \Leftrightarrow f$ is $\mathbf{I}_{\kappa,\lambda} \upharpoonright X$ -fine and $\forall Y \subset \mathscr{P}_{\kappa}\lambda(f^{-1}[Y] \cap X \in \mathbf{I}_{\kappa,\lambda}) \to Y \cap f[X] \in \mathbf{I}_{\kappa,\lambda}).$

In particular, $f_*(\mathbf{I}_{\kappa,\lambda}) = \mathbf{I}_{\kappa,\lambda} \Leftrightarrow f$ is $\mathbf{I}_{\kappa,\lambda}$ -fine and $\forall X \subset \mathscr{P}_{\kappa}\lambda(f^{-1}[X] \in \mathbf{I}_{\kappa,\lambda} \to X \in \mathbf{I}_{\kappa,\lambda})$.

For every $X \subset \kappa$ and $f : \kappa \to \kappa$, the following is clear:

- (1) $X \in \mathbf{I}_{\kappa} \to f[X] \in \mathbf{I}_{\kappa}$.
- (2) $f^{-1}[X] \in \mathbf{I}_{\kappa} \to X \in \mathbf{I}_{\kappa}$.

For $X \subset \mathscr{P}_{\kappa}\lambda$ we have the following:

PROPOSITION 2.5. Suppose that f is $I_{\kappa,\lambda}$ -fine and $\forall Y \in I_{\kappa,\lambda}$ $f[Y] \in I_{\kappa,\lambda}$. Then, $f_*(I_{\kappa,\lambda} \upharpoonright X) = I_{\kappa,\lambda} \upharpoonright f[X]$ for every $X \in I^+_{\kappa,\lambda}$.

PROOF. We only have to show $f_*(\mathbf{I}_{\kappa,\lambda} \upharpoonright X) \subset \mathbf{I}_{\kappa,\lambda} \upharpoonright f[X]$. For $Y \in f_*(\mathbf{I}_{\kappa,\lambda} \upharpoonright X)$, $f^{-1}[Y] \cap X \in \mathbf{I}_{\kappa,\lambda}$ and $f[f^{-1}[Y] \cap X] = Y \cap f[X]$. By our assumption, we have $Y \cap f[X] \in \mathbf{I}_{\kappa,\lambda}$.

REMARK 2.6. (1) It may happen that $f^{-1}[Y] \cap X \subsetneq f^{-1}[Y \cap f[X]]$. (2) The assumption that $\forall Y \in I_{\kappa,\lambda} f[Y] \in I_{\kappa,\lambda}$ is stronger than $\forall X(f^{-1}[X] \in I_{\kappa,\lambda} \to X \in I_{\kappa,\lambda})$: choose an $\alpha < \lambda$ and set $f \upharpoonright \{\alpha\} = \operatorname{Id} \upharpoonright \{\alpha\}$ and $f(x) = x \cup \{\alpha\}$ if $\alpha \notin x$.

Now we show that \cong^* is equivalent to \cong . The following is clear.

LEMMA 2.7. Suppose that I is an ideal over $\mathscr{P}_{\kappa}\lambda$, f is I-fine, and $f \upharpoonright A$ is injective with $A \in I^*$. If one of the following holds, then $I \cong f_*(I)$:

- (1) $|\mathcal{P}_{\kappa}\lambda \setminus A| = |\mathcal{P}_{\kappa}\lambda \setminus f[A]|$
- (2) $|\mathscr{P}_{\kappa}\lambda\setminus A| > |\mathscr{P}_{\kappa}\lambda\setminus f[A]|$ and there is $X \in \mathscr{P}(A) \cap I$ such that $|X| = |\mathscr{P}_{\kappa}\lambda\setminus A|$
- (3) $|\mathscr{P}_{\kappa}\lambda\setminus A| < |\mathscr{P}_{\kappa}\lambda\setminus f[A]|$ and there is $X \in \mathscr{P}(A) \cap I$ such that $|X| = |\mathscr{P}_{\kappa}\lambda\setminus f[A]|$.

The proof of the next proposition is by the referee to whom the author is very grateful. She/He showed that the author's assumptions in Proposition 2.8, 2.9, and 2.10 of the original manuscript are not necessary.

PROPOSITION 2.8. Suppose that I is an ideal over $\mathscr{P}_{\kappa}\lambda$, $f : \mathscr{P}_{\kappa}\lambda \to \mathscr{P}_{\kappa}\lambda$ is I-fine, and $f \upharpoonright A$ is injective for some $A \in I^*$. Then $I \cong f_*(I)$. (Hence $I \cong J$ and $I \cong^* J$ are equivalent.)

PROOF. If $|A| < \lambda^{<\kappa}$, (1) in Lemma 2.7 holds and the assertion follows. So, we assume $|A| = \lambda^{<\kappa}$.

Case 1: There exists $B \in \mathscr{P}(A) \cap I$ with |B| = |A|.

When $|\mathscr{P}_{\kappa}\lambda\backslash A| = |\mathscr{P}_{\kappa}\lambda\backslash f[A]|$, the assertion follows from (1) in Lemma 2.7. If $|\mathscr{P}_{\kappa}\lambda\backslash A| > |\mathscr{P}_{\kappa}\lambda\backslash f[A]|$, we can find $C \in \mathscr{P}(A) \cap I$ with $|C| = |\mathscr{P}_{\kappa}\lambda\backslash A|$ by our assumption and (2) in Lemma 2.7 works. In case that $|\mathscr{P}_{\kappa}\lambda\backslash A| < |\mathscr{P}_{\kappa}\lambda\backslash f[A]|$, we have $D \in \mathscr{P}(A) \cap I$ with $|D| = |\mathscr{P}_{\kappa}\lambda\backslash f[A]|$ and the assertion follows by (3) in Lemma 2.7.

Case 2: There is no $B \in \mathcal{P}(A) \cap I$ with |B| = |A|.

First note that $|\{x \in \mathcal{P}_{\kappa}\lambda : 0 \notin x\}| = \lambda^{<\kappa}$. If $|\mathcal{P}_{\kappa}\lambda \setminus A| < \lambda^{<\kappa}$, we have $|\{x \in \mathcal{P}_{\kappa}\lambda : 0 \notin x\} \setminus A| < \lambda^{<\kappa}$ hence $|\{x \in \mathcal{P}_{\kappa}\lambda : 0 \notin x\} \cap A| = \lambda^{<\kappa} = |A|$. However $\{x \in \mathcal{P}_{\kappa}\lambda : 0 \notin x\} \cap A \in I$, which contradicts our assumption. Hence $|\mathcal{P}_{\kappa}\lambda \setminus A| = \lambda^{<\kappa}$.

Suppose that $|\mathscr{P}_{\kappa}\lambda \setminus f[A]| < \lambda^{<\kappa}$. Since f is *I*-fine, we have that $|\{x \in A : 0 \notin f(x)\}| < \lambda^{<\kappa}$ by our assumption. Hence $|\{x \in f[A] : 0 \notin x\}| < \lambda^{<\kappa}$. Since $|\mathscr{P}_{\kappa}\lambda \setminus f[A]| < \lambda^{<\kappa}$, we know that $|\{x \in \mathscr{P}_{\kappa}\lambda : 0 \notin x\}| < \lambda^{<\kappa}$. This contradiction tells us that $|\mathscr{P}_{\kappa}\lambda \setminus f[A]| = \lambda^{<\kappa}$. Now we have that $|\mathscr{P}_{\kappa}\lambda \setminus A| = |\mathscr{P}_{\kappa}\lambda \setminus f[A]| = \lambda^{<\kappa}$ and the assertion holds by (1) in Lemma 2.7.

It is possible to have an unbounded set of $\mathcal{P}_{\kappa}\lambda$ with the cardinality $< \lambda^{<\kappa}$. An ideal which satisfies the following might exist:

there is $A \in I^*$ with the cardinality $\lambda^{<\kappa}$ such that every $X \in \mathscr{P}(A) \cap I$ has the cardinality $< \lambda^{<\kappa}$.

We show this is not the case.

PROPOSITION 2.9. Suppose $\lambda > \kappa$. Then every $X \subset \mathscr{P}_{\kappa}\lambda$ has a subset $Y \in I_{\kappa,\lambda}$ with |Y| = |X|.

PROOF. We may assume $X \in I^+_{\kappa,\lambda}$. Since $\lambda > \kappa$, we have that $|X| > \kappa$.

Case 1: $cof(|X|) > \kappa$.

For $\alpha < \kappa$, let $B_{\alpha} = \{x \in X : \alpha \notin x\}$. Then $B_{\alpha} \in \mathscr{P}(X) \cap I_{\kappa,\lambda}$ and $X = \bigcup \{B_{\alpha} : \alpha < \kappa\}$. Since $\operatorname{cof}(|X|) > \kappa$, there is $\alpha < \kappa$ with $|B_{\alpha}| = |X|$. Then B_{α} is as desired.

Case 2: $\operatorname{cof}(|X|) \leq \kappa$.

Since $|X| \ge \lambda \ge \kappa^+$, it holds that $|X| > \kappa^+$.

For $\alpha < \kappa^+$, let $C_{\alpha} = \{x \in X : x \cap \kappa^+ \subset \alpha\}$. Then $C_{\alpha} \in \mathscr{P}(X) \cap I_{\kappa,\lambda}$ and $X = \bigcup \{C_{\alpha} : \alpha < \kappa^+\}$. Note that for $\alpha < \beta < \kappa^+$, we have $C_{\alpha} \subset C_{\beta}$. Then for every cardinal $\mu < |X|$, the set $\{\alpha < \kappa^+ : |C_{\alpha}| \le \mu\}$ is bounded in κ^+ ; Otherwise, there is a cardinal $\mu < |X|$ such that $|C_{\alpha}| \le \mu$ for every $\alpha < \kappa^+$. Then $|X| = |\bigcup \{C_{\alpha} : \alpha < \kappa^+\}| \le \kappa^+ \times \mu < |X|$. Contradiction.

Now we know that for every $\mu < |X|$, the set $\{\alpha < \kappa^+ : |C_{\alpha}| \le \mu\}$ is bounded in κ^+ . Since $\operatorname{cof}(|X|) \le \kappa$, there is $\alpha < \kappa^+$ such that $|C_{\alpha}| > \mu$ for every $\mu < |X|$. Now C_{α} is as reqired.

PROPOSITION 2.10. There is a bijection $f : \mathscr{P}_{\kappa}\lambda \to \mathscr{P}_{\kappa}\lambda$ such that $f_*(\mathbf{I}_{\kappa,\lambda}) \supset \mathbf{I}_{\kappa,\lambda} \upharpoonright A$ for some $A \in \mathbf{I}_{\kappa,\lambda}^+ \setminus \mathbf{I}_{\kappa,\lambda}^*$.

PROOF. Let $\{s_{\alpha} : \alpha < \lambda^{<\kappa}\}$ be an enumeration of $\mathscr{P}_{\kappa}\lambda$. By induction on $\alpha < \lambda^{<\kappa}$ we define $\langle (x_{\alpha}, y_{\alpha}) | \alpha < \lambda^{<\kappa} \rangle$ such that

- (a) $s_{\alpha} \subset x_{\alpha}, y_{\alpha}$
- (b) $x_{\alpha} \neq y_{\alpha}$
- (c) $x_{\alpha}, y_{\alpha} \notin \{x_{\beta}, y_{\beta} : \beta < \alpha\}.$

This is possible since $|\hat{a}| = \lambda^{<\kappa}$ for every $a \in \mathscr{P}_{\kappa}\lambda$; there is an injection from $\mathscr{P}_{\kappa}(\lambda \setminus a)$ into \hat{a} .

Define $f : \mathscr{P}_{\kappa}\lambda \to \mathscr{P}_{\kappa}\lambda$ by $f(s_{\alpha}) = x_{\alpha}$. Since $f(s_{\alpha}) \supset s_{\alpha}$ for every $\alpha < \lambda^{<\kappa}$, f is $I_{\kappa,\lambda}$ -fine. We know that $\{x_{\alpha} : \alpha < \lambda^{<\kappa}\}$ and $\{y_{\alpha} : \alpha < \lambda^{<\kappa}\}$ are two disjoint unbounded sets. Hence $\{x_{\alpha} : \alpha < \lambda^{<\kappa}\} = f[\mathscr{P}_{\kappa}\lambda] \in I^{+}_{\kappa,\lambda} \setminus I^{*}_{\kappa,\lambda}$. Cleary f is injective. Hence $f_{*}(I_{\kappa,\lambda}) \cong I_{\kappa,\lambda}$ by Proposition 2.8, and we have $f_{*}(I_{\kappa,\lambda}) \supset I_{\kappa,\lambda} \upharpoonright f[\mathscr{P}_{\kappa}\lambda]$.

COROLLARY 2.11. $I_{\kappa,\lambda}$ has an isomorph other than itself.

Moreover the referee kindly pointed out the following:

PROPOSITION 2.12. $I_{\kappa,\lambda}$ is isomorphic to $I_{\kappa,\lambda} \upharpoonright A$ for some $A \in I^+_{\kappa,\lambda} \setminus I^*_{\kappa,\lambda}$.

PROOF. Define $f : \mathscr{P}_{\kappa} \lambda \to \mathscr{P}_{\kappa} \lambda$ by

 $f(x) = \begin{cases} x \cup \{ \sup(x \cap \kappa) \} & \text{if } \sup(x \cap \kappa) \notin x \\ x \cup \{ \sup(x \cap \kappa) + 1 \} & \text{otherwise} \end{cases}$

It is easily seen that f is an $I_{\kappa,\lambda}$ -fine injection and $f[\mathscr{P}_{\kappa}\lambda] \in I^+_{\kappa,\lambda} \setminus I^*_{\kappa,\lambda}$. By 2.8 it holds that $f_*(I_{\kappa,\lambda}) \cong I_{\kappa,\lambda}$. We have $f_*(I_{\kappa,\lambda}) = I_{\kappa,\lambda} \upharpoonright f[\mathscr{P}_{\kappa}\lambda]$ if we show $f_*(I_{\kappa,\lambda}) \subset I_{\kappa,\lambda} \upharpoonright f[\mathscr{P}_{\kappa}\lambda]$.

Let $X \in f_*(\mathbf{I}_{\kappa,\lambda})$. Then we have $a \in \mathscr{P}_{\kappa}\lambda$ such that for any $x \in \hat{a}$, $f(x) \notin X$. Let $b = a \cup \{\sup(a \cap \kappa) + 1\}$. We show $X \cap f[\mathscr{P}_{\kappa}\lambda] \cap \hat{b} = \emptyset$. Choose any $x \in \mathscr{P}_{\kappa}\lambda$ such that $b \subset f(x) \in X$. In case that $\sup(x \cap \kappa) \notin x$, we have $a \cup \{\sup(a \cap \kappa) + 1\} \subset x \cup \{\sup(x \cap \kappa)\}\)$ and $\sup(x \cap \kappa)$ is a limit ordinal. Hence $a \subset x \in f^{-1}[X]$, which contradicts to the choice of a. When $\sup(x) \in x$, it holds that $a \cup \{\sup(a \cap \kappa) + 1\} \subset x \cup \{\sup(x \cap \kappa) + 1\}$. Again we have $a \subset x$.

DEFINITION 2.13. An ideal I is a weak Q-point (weakly selective) if for any $I_{\kappa,\lambda}$ -fine (*I*-fine) f and $X \in I^+$ there is $Y \in \mathscr{P}(X) \cap I^+$ such that $f \upharpoonright Y$ is injective. I is said to be a nowhere Q-point if for any $X \in I^+$ $I \upharpoonright X$ is not a Q-point.

THEOREM 2.14. (1) The bounded ideal $I_{\kappa,\lambda}$ is a weak Q-point (hence weakly selective).

(2) $I_{\kappa,\lambda}$ is a nowhere Q-point.

PROOF. Choose any $A \in I^+_{\kappa,\lambda}$ and set $\gamma = \min\{|Y| : Y \in (I_{\kappa,\lambda} \upharpoonright A)^+\}$.

(1) Let $f : \mathscr{P}_{\kappa} \lambda \to \mathscr{P}_{\kappa} \lambda$ be $I_{\kappa,\lambda}$ -fine. We will find a $B \in \mathscr{P}(A) \cap I^+_{\kappa,\lambda}$ such that $f \upharpoonright B$ is injective.

Let $X \in \mathscr{P}(A) \cap I^+_{\kappa,\lambda}$ with $|X| = \gamma$ and $\{x_{\alpha} : \alpha < \gamma\}$ be an enumeration of X. By induction we define $\langle s_{\alpha} | \alpha < \gamma \rangle$ such that

- (a) $x_{\alpha} \subset s_{\alpha} \in X$
- (b) $f(s_{\alpha}) \neq f(s_{\beta})$ for any $\beta < \alpha$.

Suppose $\langle s_{\beta} | \beta < \alpha \rangle$ is defined. There is $a \in \mathscr{P}_{\kappa} \lambda$ such that $\{f(s_{\beta}) : \beta < \alpha\} \cap \hat{a} = \emptyset$. Since f is $I_{\kappa,\lambda}$ -fine, $\{x \in \mathscr{P}_{\kappa} \lambda : a \subset f(x)\} \in I^*_{\kappa,\lambda}$. Choose s_{α} from $\hat{x}_{\alpha} \cap X \cap \{x \in \mathscr{P}_{\kappa} \lambda : a \subset f(x)\} \neq \emptyset$.

Now $\{s_{\alpha} : \alpha < \gamma\}$ is a desired set.

(2) We define an $I_{\kappa,\lambda}$ -fine $f : \mathscr{P}_{\kappa}\lambda \to \mathscr{P}_{\kappa}\lambda$ such that for any $X \in (I_{\kappa,\lambda} \upharpoonright A)^*$ $f \upharpoonright X$ is not injective. Pick a $B = \{b_{\xi} : \xi < \gamma\} \in I^+_{\kappa,\lambda} \cap \mathscr{P}(A)$.

90

By induction on $\xi < \gamma$ we define $\langle (x_{\xi}, y_{\xi}) | \xi < \gamma \rangle$ such that

- (a) $x_{\xi} \neq y_{\xi} \in \widehat{b_{\xi}} \cap A$
- (b) $x_{\xi}, y_{\xi} \notin \{x_{\zeta} : \zeta < \xi\} \cup \{y_{\zeta} : \zeta < \xi\}$

Suppose $\langle (x_{\zeta}, y_{\zeta}) | \zeta < \xi \rangle$ is defined. Since $\{x_{\zeta} : \zeta < \xi\} \cup \{y_{\zeta} : \zeta < \xi\} \in I_{\kappa,\lambda}$ and $\widehat{b_{\xi}} \cap A \in I^+_{\kappa,\lambda}$, we can find $x_{\xi} \neq y_{\xi} \in \widehat{b_{\xi}} \cap A \setminus \{x_{\zeta} : \zeta < \xi\} \cup \{y_{\zeta} : \zeta < \xi\}$. Set $C = \{x_{\xi} : \xi < \gamma\} \cup \{y_{\xi} : \xi < \gamma\}$. Then $C \in \mathscr{P}(A) \cap I^+_{\kappa,\lambda}$. Let $f \upharpoonright (\mathscr{P}_{\kappa}\lambda \setminus C) = \mathrm{Id} \upharpoonright (\mathscr{P}_{\kappa}\lambda \setminus C)$ and for each $\xi < \gamma$ $f(x_{\xi}) = f(y_{\xi}) \supset x_{\xi} \cup y_{\xi}$. f is $I_{\kappa,\lambda}$ -fine since $f(x) \supset x$ for every $x \in \mathscr{P}_{\kappa}\lambda$. Suppose that $X \in (I_{\kappa,\lambda} \upharpoonright A)^*$. Since $\mathscr{P}_{\kappa}\lambda \setminus X \in I_{\kappa,\lambda} \upharpoonright A$, we have an $a \in \mathscr{P}_{\kappa}\lambda$ such

that $A \cap \hat{a} \cap (\mathscr{P}_{\kappa}\lambda \setminus X) = \emptyset$. For some $\xi < \gamma$, $a \subset b_{\xi}$. $\hat{b}_{\xi} \cap A \cap (\mathscr{P}_{\kappa}\lambda \setminus X) = \emptyset$ hence $\hat{b}_{\xi} \cap A \subset X$. Now $x_{\xi}, y_{\xi} \in X$ and $f(x_{\xi}) = f(y_{\xi})$.

REMARK 2.15. Usuba proved more general fact that I is a nowhere Q-point if non(I) = cof(I), where $non(I) = min\{|X| : X \in I^+\}$ and $cof(I) = min\{|W| : W \subset I \land \forall X \in I \exists Y \in W \ X \subset Y\}$. It is easily seen that $non(I_{\kappa,\lambda}) = cof(I_{\kappa,\lambda})$.

3. Weakly Normal Ideals and Selectivity

For an ideal I on κ the weak normality coincides with the normality, and the sup-function is injective on κ . This implies the selectivity of normal ideals and the fact an ideal extending the non-stationary ideal is a Q-point.

In the following we state a $\mathscr{P}_{\kappa}\lambda$ version. The proof is essentially by Menas' [4] for fine ultrafilters over $\mathscr{P}_{\kappa}\lambda$.

DEFINITION 3.1. Let $J_w = \{X \subset \mathscr{P}_{\kappa}\lambda : \exists f : X \to \lambda, \text{ regressive, } \forall \gamma < \lambda \{x \in X : f(x) \leq \gamma\} \in I_{\kappa,\lambda}\}.$

Shioya [6] proved (3) and (4) in the following.

FACT 3.2. (1) J_w is an ideal and $\{x : \sup(x) \in x\} \in J_w$.

(2) $J_w = I_{\kappa,\lambda}$ if and only if $cof(\lambda) < \kappa$.

(3) J_w is the minimal weakly normal ideal over $\mathscr{P}_{\kappa}\lambda$ if $\operatorname{cof}(\lambda) = \kappa$.

(4) The minimal weakly normal ideal over $\mathcal{P}_{\kappa}\lambda$ is a proper extension of J_w if $\operatorname{cof}(\lambda) > \kappa$.

LEMMA 3.3. Let $\operatorname{cof}(\lambda) \geq \kappa$, $J_w \subset I$ be an ideal over $\mathscr{P}_{\kappa}\lambda$, $f \ \mathbf{I}_{\kappa,\lambda}$ -fine, and $f[\mathscr{P}_{\kappa}\gamma] \in \mathbf{I}_{\kappa,\lambda}$ for all $\gamma < \lambda$. Then there is $S \in I^*$ such that $\sup(x) = \sup(y)$ whenever f(x) = f(y) and $\{x, y\} \subset S$.

Yoshihiro ABE

PROOF. Otherwise, $X = \{x \in \mathscr{P}_{\kappa}\lambda : \exists y_x(\sup(y_x) < \sup(x) \land f(x) = f(y_x))\} \in I^+$. Since $X \notin J_w$, we have a $\gamma < \lambda$ such that $Y = \{x \in X : \sup(y_x) < \gamma\} \in I^+_{\kappa,\lambda}$. Let $Z = \{y_x : x \in Y\}$. Since f is $I_{\kappa,\lambda}$ -fine, $f[Y] \in I^+_{\kappa,\lambda}$. However $f[Y] = f[Z] \subset f[\mathscr{P}_{\kappa}\gamma] \in I_{\kappa,\lambda}$. Contradiction.

It might be better to assume $f[X] \in I_{\kappa,\lambda}$ for all $X \in I_{\kappa,\lambda}$, which implies $f[\mathscr{P}_{\kappa}\gamma] \in I_{\kappa,\lambda}$ for all $\gamma < \lambda$. Other choices are $\gamma^{<\kappa} < \lambda$ or the sup function is $\leq \eta$ to one for some $\eta < \lambda$.

By the same argument we have the following theorem, which seems the most natural $\mathcal{P}_{\kappa}\lambda$ version of the fact that an ideal extension of NS_{κ} is a Q-point:

THEOREM 3.4. Let $cof(\lambda) \ge \kappa$.

(1) Suppose that $J_w \subset I$ and $\sup \upharpoonright X$ is injective for some $X \in I^*$. Then I is a *Q*-point.

(2) If I is a weakly normal ideal over $\mathscr{P}_{\kappa}\lambda$ and $\sup \upharpoonright X$ is injective for some $X \in I^*$, then I is selective.

REMARK 3.5. Usuba proved several facts for weak normality and selectivity. For instances:

(1) Suppose that λ is regular. Then, weakly normal prime ideal I is selective if and only if $\sup \upharpoonright X$ is injective for some $X \in I^*$.

(2) For $n \in \omega$, $\mathscr{P}_{\kappa} \kappa^{+n}$ carries a normal selective ideal I such that $\sup \upharpoonright X$ is not injective for any $X \in I^*$.

(3) $NS_{\kappa,\kappa^{+n}}$ is not a Q-point for any $n \in \omega$.

DEFINITION 3.6. Two ideals I and J are *coherent* if there is an ideal K such that $I \cup J \subset K$. This is equivalent to $I^* \cap J = \emptyset$.

In [1] the coherence with the non-stationary ideal NS_{κ} is mentioned. We investigate that with J_{w} .

DEFINITION 3.7. For an ideal I, let $R(I) = \{f : X \to \mathscr{P}_{\kappa}\lambda : f \text{ is } I\text{-fine and } X \in I^*\}$. For $f, g \in R(I), f < g$ if $\{x : \sup(f(x)) < \sup(g(x))\}\} \in I^*$.

Clearly \lt is well-founded.

LEMMA 3.8. Suppose that $cof(\lambda) \ge \kappa$, f is \lt -minimal in R(I), and $sup(f(x)) \notin f(x)$ for any $x \in dom(f)$. For every $A \in f_*(I)^*$ and regressive function g on A, there is a $\gamma < \lambda$ such that $\{x \in A : g(x) \le \gamma\} \in f_*(I)^+$.

PROOF. Let $A \in f_*(I)^*$, g be regressive on A, and $X = f^{-1}[A]$. Since $\sup(y) \notin y$ for any $y \in f[X]$, $g(y) < \sup(y)$ for every $y \in f[X]$. Define $h: X \to \mathscr{P}_{\kappa}\lambda$ by $h(x) = f(x) \cap g(f(x))$. Then $\sup(h(x)) < \sup(f(x))$ for all $x \in X$. Hence h is not I-fine, and we have a $\gamma < \lambda$ such that $Y = \{x \in X : \gamma \notin h(x)\} \in I^+$. Since f is I-fine, we may assume $\gamma \in f(x)$ for all $x \in Y$. Thus, $g(f(x)) \le \gamma$ for every $x \in Y$. Now $\{x : g(x) \le \gamma\} \in f_*(I)^+$.

DEFINITION 3.9. A function $f : \mathscr{P}_{\kappa} \lambda \to \mathscr{P}_{\kappa} \lambda$ is said to be *incompressible* for I if $f \in R(I)$ and \ll -minimal in $R(I \upharpoonright A)$ for all $A \in I^+$.

PROPOSITION 3.10. If $f : \mathcal{P}_{\kappa}\lambda \to \mathcal{P}_{\kappa}\lambda$ is incompressible for I and $\sup(f(x)) \notin f(x)$ for any $x \in \mathcal{P}_{\kappa}\lambda$, then $f_*(I \upharpoonright A)$ is weakly normal for every $A \in I^+$.

PROOF. Suppose that $A \in I^+$ and h is regressive on $X \in f_*(I \upharpoonright A)^+$. Set $Y = f^{-1}[X] \cap A$. Then $Y \in I^+$ and $X \in f_*(I \upharpoonright Y)^*$. Since f is \lt -minimal in $R(I \upharpoonright Y)$, $\{x \in X : h(x) \le \gamma\} \in f_*(I \upharpoonright Y)^+$ for some $\gamma < \lambda$ by the previous lemma. Clearly $f_*(I \upharpoonright Y)^+ \subset f_*(I \upharpoonright A)^+$.

DEFINITION 3.11. For an ideal I over $\mathscr{P}_{\kappa}\lambda$, let $R'(I) = \{f \in R(I) : \forall \gamma < \lambda(\{x : \sup(f(x)) \le \gamma\} \in I_{\kappa,\lambda})\}.$

FACT 3.12. If f is $I_{\kappa,\lambda}$ -fine, then $f \in R'(I)$.

FACT 3.13. For every ideal I over $\mathcal{P}_{\kappa}\lambda$, the following are equivalent.

(1) I and J_w are coherent.

(2) For every $A \in I^*$ and regressive h on A, there is $\gamma < \lambda$ such that $\{x \in A : h(x) \le \gamma\} \in I^+_{\kappa,\lambda}$.

LEMMA 3.14. Let $cof(\lambda) \ge \kappa$ and $f \in R'(I)$.

(1) If f is $I_{\kappa,\lambda}$ -fine, \ll -minimal in R'(I), and $\{x : \sup(f(x)) \notin f(x)\} \in I^*$, then $f_*(I)$ and J_w are coherent.

(2) If $f_*(I)$ and J_w are coherent and $f[X] \in I_{\kappa,\lambda}$ for all $X \in I_{\kappa,\lambda}$, then f is \leq -minimal in R'(I).

PROOF. (1) Suppose that $X \in f_*(I)^*$ and g is regressive on X. For $x \in f^{-1}[X]$, let $h(x) = f(x) \cap g(f(x))$. We may assume $\sup(f(x)) \notin f(x)$ for any $x \in f^{-1}[X]$. Hence $\{x : \sup(h(x)) < \sup(f(x))\} \in I^*$. Thus, for some $\gamma < \lambda$, $Y = \{x : \sup(h(x)) \le \gamma\} \in I^+_{\kappa,\lambda}$. For any $x \in Y$, $\gamma + 1 \notin f(x) \cap g(f(x))$. Since f is $I_{\kappa,\lambda}$ -

fine, $\{x : \gamma + 1 \notin f(x)\} \in I_{\kappa,\lambda}$. So, $Z = \{x \in Y : g(f(x)) \le \gamma\} \in I^+_{\kappa,\lambda}$. Now $f[Z] \in I^+_{\kappa,\lambda}$ since f is $I_{\kappa,\lambda}$ -fine. For every $x \in f[Z]$, $g(x) \le \gamma$.

(2) Suppose that $A \in I^*$, $g \in R(I)$, and $\sup(g(x)) < \sup(f(x))$ for all $x \in A$. For each $y \in f[A]$, choose $x_y \in A$ such that $y = f(x_y)$ and set $h(y) = \sup(g(x_y))$. Then $h(y) < \sup(y)$ for all $y \in f[A]$. Since $f_*(I)$ is coherent with J_w and $f[A] \in f_*(I)^*$, $\{y \in f[A] : h(y) \le \gamma\} \in I^+_{\kappa,\lambda}$ for some $\gamma < \lambda$. By our assumption, we have $\{x_y : \sup(g(x_y)) \le \gamma\} \in I^+_{\kappa,\lambda}$. Hence $g \notin R'(I)$.

REMARK 3.15. (1) If J_w and $f_*(I)$ are coherent, then $\{x : \sup(f(x)) \notin f(x)\} \in I^+$.

(2) If $J_w \subset f_*(I)$, then $\{x : \sup(f(x)) \notin f(x)\} \in I^*$.

DEFINITION 3.16. A function $f : \mathscr{P}_{\kappa} \lambda \to \mathscr{P}_{\kappa} \lambda$ is said to be *weakly incompressible* for I if $f \in R'(I)$ and \ll -minimal in $R'(I \upharpoonright A)$ for all $A \in I^+$.

We get a result analogous to the previous lemma.

PROPOSITION 3.17. Let $cof(\lambda) \ge \kappa$ and $f \in R'(I)$.

(1) If f is $I_{\kappa,\lambda}$ -fine, weakly incompressible, and $\{x : \sup(f(x)) \notin f(x)\} \in I^*$, then $J_w \subset f_*(I)$.

(2) If $J_w \subset f_*(I)$ and $f[X] \in I_{\kappa,\lambda}$ for all $X \in I_{\kappa,\lambda}$, then f is weakly incompressible for I.

PROOF. (1) Let $X \in f_*(I)^+$. Then, $f^{-1}[X] \in I^+$ and f is \lt -minimal in $R'(I \upharpoonright f^{-1}[X])$. Since $X \in f_*(I \upharpoonright f^{-1}[X])^*$, $X \notin J_w$ by the above lemma.

(2) Clear by the above lemma.

DEFINITION 3.18. An ideal I over $\mathscr{P}_{\kappa}\lambda$ is a *weak P-point* if for every $X \in I^+$ and $I \upharpoonright X$ -fine f there is $Y \in \mathscr{P}(X) \cap I^+$ such that f is $I_{\kappa,\lambda} \upharpoonright Y$ -fine.

PROPOSITION 3.19. Suppose that $cof(\lambda) \ge \kappa$, I is a weak P-point, $f[X] \in I_{\kappa,\lambda}$ for every $X \in I_{\kappa,\lambda}$, and $\{x : sup(f(x)) \notin f(x)\} \in I^*$. Then the following are equivalent.

- (1) f is incompressible for I.
- (2) $f_*(I)$ is weakly normal.
- (3) $J_w \subset f_*(I)$.
- (4) f is weakly incompressible for I.

94

PROOF. By the previous argument we only have to show $(4) \to (1)$. Let $A \in I^+$, $g \in R(I \upharpoonright A)$, and $\sup(g(x)) < \sup(f(x))$ for all $x \in A$. Since I is a weak P-point, we can find a $B \in \mathscr{P}(A) \cap I^+$ such that for every $\gamma < \lambda$, $\{x \in B : \gamma \notin g(x)\} \in I_{\kappa,\lambda}$. Now $g \in R'(I \upharpoonright B)$ and g < f in $R'(I \upharpoonright B)$, which contradicts to f is weakly incompressible.

References

- J. E. Baumgartner, A. D. Taylor, and S. Wagon, Structural properties of ideals, Dissertationes Math. 197 (1982).
- [2] D. M. Carr and D. H. Pelletier, Towards a structure theory of ideals on $\mathscr{P}_{\kappa}\lambda$, Set Theory and its aplications, Lecture Notes in Math. **1401** (1989), Springer, 41–54.
- [3] T. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165–198.
- T. K. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974/75), 327–359.
- [5] R. Mignone, A direct weakening of normality for filters, Rocky Mountain J. Math. 22 (1992), 1447–1458.
- [6] M. Shioya, Weakly normal closures of filters on $\mathcal{P}_{\kappa}\lambda$, J. Symbolic Logic 58 (1993), 55–63.
- [7] W. S. Zwicker, $\mathscr{P}_{\kappa}\lambda$ combinatorics I, Axiomatic Set Theory, Baumgartner, Martin, and Shelah eds., Contemporary Math. 31 (1984), American Mathematical Society, 243–259.

Department of Mathematics Kanagawa University Hiratsuka 259-1293, Japan E-mail: abey0001@kanagawa-u.ac.jp