
TSUKUBA J. MATH.
Vol. 37 No. 1 (2013), 121–152

DOUBLE POINTS OF THE SLOWNESS SURFACE

OF THE SYSTEM OF CRYSTAL ACOUSTICS

FOR TETRAGONAL CRYSTALS

By

Claudio Melotti

Abstract. The aim of this paper is to study the location and the

geometrical properties of the double points of the slowness surface

associated to the system of linear crystal-elasticity in three space

dimensions for tetragonal crystals. It will turn out that compared

with the case of cubic crystals, the location of these double points is

more involved. Moreover, for some specific choices of the ‘‘so-called’’

sti¤ness constants, a new type of singularities namely ‘‘biplanar’’

ones, will appear.

1. Introduction

The aim of this paper is to study the double points of the slowness surface

associated to the system of linear crystal acoustics for tetragonal crystals in R3.

In particular, the position and the geometrical properties of the double points will

be specified.

The paper provides the greater part of the algebraic results needed to

understand the long time behavior of global solutions of the homogeneous

system of crystal acoustic for tetragonal crystals. The complementary analytical

part of the argument, and applications to nonlinear perturbations of the system

will be given in a forthcoming paper. We recall that the system of crystal

acoustics is a linear 3� 3 hyperbolic system of second order partial di¤er-

ential equations. It is a special case of the time-dependent system of elasticity

in three space variables. Specifically, we will deal here with the following sys-

tem of linear partial di¤erential equations of second order (cf. e.g., [4], [11],
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[8], [12]).

q2t uiðt; xÞ ¼
X3

k; l; j¼1

cijklq
2
ljukðt; xÞ; i ¼ 1; 2; 3; q2t ¼ q2

qt2
; q2lj ¼

q2

qx‘qxj
;ð1:1Þ

where uðt; xÞ A R3 is the displacement vector and cijkl A R are the sti¤ness con-

stants. Our final goal is to obtain decay properties of global solution uðt; xÞ on

R3
x � Rt of the system for t ! þy. By this we mean that we are interested

in estimates of type juiðt; xÞja cð1þ jtjÞ�w, Eðx; tÞ A R3
x � Rt for some constant

w > 0. Apart from their intrinsic interest, such estimates play an essential role

when we want to study the long-time existence of small non-linear perturbations

to the system. For a similar study in the case of isotropic wave type equations see

e.g., [9].

The way by which it is possible to obtain results on the decay for solu-

tions of the system is to represent them as parametric Fourier-type oscillatory

integrals which live on the so called slowness surface (see definition 1.4 later on in

this paper) of the system. The main di‰culties in the study of these integrals

come from the presence of isolated singularities in the characteristic surface

associated to the system and of points where the curvature of the surface

vanishes.

In order to justify the results of this paper, we now state a theorem on decay

estimates for the solutions uðt; xÞ of the system ð1:1Þ

Theorem 1.1. Assume that the sti¤ness constants cij satisfy some prescribed

conditions such that the system ð1:1Þ is hyperbolic and ‘‘near’’ the cubic case (i.e.,

we consider the tetragonal case as a small perturbation of the cubic one). Then,

there are a constant C1 and a natural number kb 2 such that

juðt; xÞjaC1ð1þ jtjÞ�1=2�1=k
X3
j¼1

X
jajak

ðkqa
x fjk1 þ kqa

xgjk1Þ;ð1:2Þ

for all ðt; xÞ A R4, for any solution of the Cauchy problem of the system ð1:1Þ, with
the initial data ujð0; xÞ ¼ fjðxÞ, qtujð0; xÞ ¼ gjðxÞ, j ¼ 1; 2; 3, where fj and gj are

smooth functions on R3 and have compact support.

The details of the argument and specific information on the conditions on the

sti¤ness constants will be given in a forthcoming paper. (Also see [10].) Similar

estimates are valid for the solutions of the system of crystal acoustics for cubic

crystals (see e.g. [8]). The general strategy for proving results of the type of
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theorem 1.1 is well established, see [5], [8]. Starting point is that we will write the

solution of the Cauchy problem in terms of parametric integrals over the slowness

surface of the system. Moreover, it is possible to separate the contributions

coming from di¤erent parts of the slowness surface, depending on their geo-

metrical features. In particular, we will have to use theorems about estimates for

Fourier transform of surface carried densities for surfaces which have singular

points or for which the curvature may degenerate in the smooth part. In the

absence of biplanar singular points, the necessary results have essentially been

established in [1], [7], [6] and [16]. However, when the slowness surface has

biplanar double points, we also need the following theorem (see [10] and a

forthcoming paper).

Theorem 1.2. Assume that S is a surface with a biplanar double point in the

origin, defined by the equation gðx; yÞ ¼ z, and let F : S ! C be a continuous

function which is bounded in a neighborhood of the origin which is such that the

function f ðx; yÞ ¼ Fðx; y; gðx; yÞÞ is C1 on ðx; yÞ0 0 small, and for which there is

a constant c such that

j‘ðx;yÞF ðx; y; gðx; yÞÞja c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx; yÞ

p
for 00 jðx; yÞja e:

If k are small enough, we can find a constant c 0, such that

Iðx; h; tÞ ¼
ð
S

exp½ixxþ ihyþ itz�F ðx; y; zÞ ds;

satisfies the estimate

jIðx; h; tÞja c 0ð1þ jðx; h; tÞjÞ�1=2 lnð1þ jðx; h; tÞjÞ;ð1:3Þ

provided Fðx; y; gðx; yÞÞ vanishes for jðx; yÞjb k.

The geometrical properties and the position of the double points of the

slowness surface are well known in the case of cubic crystals: in the non de-

generate case they are precisely 14 in number (cf. e.g., [7], and [11]). Of these,

6 lie on the coordinate axes, exactly one on each semi-axis, and are of uniplanar

type. The remaining 8 double points lie on the space diagonals (i.e. the lines

jx1j ¼ jx2j ¼ jx3j), in each octant of R3 lying precisely one and are of conical type.

We will see that in the general tetragonal case the double points lie in

di¤erent and in fact more complex configurations. In addition, a new type of

singular points appears for tetragonal crystals in specific cases. They will be called

singular points of biplanar type. The name biplanar comes from the fact that
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the best local second order a‰ne approximation of the slowness surface at the

respective singular points is the union of two transversal planes.

We next observe that if we take into account the symmetries inherent to the

tetragonal crystal class, we can rewrite the system in the following form

q2t u1 ¼ ðc11q211 þ c66q
2
22 þ c44q

2
33Þu1 þ ðc12 þ c66Þq212u2 þ ðc13 þ c44Þq213u3;ð1:4Þ

q2t u2 ¼ ðc12 þ c66Þq212u1 þ ðc66q211 þ c11q
2
22 þ c44q

2
33Þu2 þ ðc13 þ c44Þq223u3;

q2t u3 ¼ ðc13 þ c44Þq213u1 þ ðc13 þ c44Þq223u2 þ ðc44q211 þ c44q
2
22 þ c33q

2
33Þu3;

where we used the two-index notation for the sti¤ness constants (cf. e.g., [11]).

Moreover we assume several restrictions on the constants cij , which come from

physical considerations, and in particular imply that the system (1.1) becomes

hyperbolic. We will not write these conditions down explicitly here, but we will

assume that the following implicit condition on the sti¤ness tensor holds: we

suppose that the matrix

AðxÞ ¼
X3
j; l¼1

cijklxjxl

 !
i;k¼1;2;3

ð1:5Þ

is positive definite for all x A R3 (cf. e.g. [4], [8] and [6]). We recall that the

characteristic polynomial of the system is given by the determinant of Pðt; xÞ,
where t A R, x A R3 and Pðt; xÞ is the following matrix:

t2 � c11x
2
1 � c66x

2
2 � c44x

2
3 �ðc12 þ c66Þx1x2 �ðc13 þ c44Þx1x3

�ðc12 þ c66Þx1x2 t2 � c66x
2
1 � c11x

2
2 � c44x

2
3 �ðc13 þ c44Þx2x3

�ðc13 þ c44Þx1x3 �ðc13 þ c44Þx1x3 t2 � c44x
2
1 � c44x

2
2 � c33x

2
3

0
B@

1
CA:

Thus, the characteristic manifold associated with the system is

fðt; xÞ A R4; det Pðt; xÞ ¼ 0g:

An easy computation shows that the characteristic polynomial pðt; xÞ has the

form

pðt; xÞ ¼ n1ðxÞd2ðt; xÞd3ðt; xÞ þ n2ðxÞd3ðt; xÞd1ðt; xÞ

þ n3ðxÞd1ðt; xÞd2ðt; xÞ � d1ðt; xÞd2ðt; xÞd3ðxÞ;

where

n1ðxÞ ¼ ðc12 þ c66Þx21 ; n2ðxÞ ¼ ðc12 þ c66Þx22 ; n3ðxÞ ¼
ðc13 þ c44Þ2

c12 þ c66
x23 ;
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and

d1ðt; xÞ ¼ t2 � d 0
1ðxÞ; d 0

1ðxÞ ¼ c11x
2
1 þ c66x

2
2 þ c44x

2
3 � ðc12 þ c66Þx21 ;

d2ðt; xÞ ¼ t2 � d 0
2ðxÞ; d 0

2ðxÞ ¼ c66x
2
1 þ c11x

2
2 þ c44x

2
3 � ðc12 þ c66Þx22 ;

d3ðt; xÞ ¼ t2 � d 0
3ðxÞ; d 0

3ðxÞ ¼ c44x
2
1 þ c44x

2
2 þ c33x

2
3 �

ðc13 þ c44Þ2

c12 þ c66
x23 :

With these notations the characteristic surface is given by pðt; xÞ ¼ 0.

This is often written in the so called ‘‘Kelvin’s form’’ (see [4], [11], [7]):

n1ðxÞ
d1ðt; xÞ

þ n2ðxÞ
d2ðt; xÞ

þ n3ðxÞ
d3ðt; xÞ

¼ 1:ð1:6Þ

Remark 1.3. It follows immediately that pðt; xÞ is a homogeneous poly-

nomial of degree six. Thus, the condition on hyperbolicity implies that for every

fixed x A R3 the equation pðt; xÞ ¼ 0 has 6 real roots, if multiplicities are counted,

and it is obvious that for every fixed x0 0 three of them are positive and three

negative.

Definition 1.4. The surface S, defined by the condition pðxÞ ¼ 0, where

pðxÞ ¼ pð1; xÞ, is called the slowness surface of the crystal.

Moreover, we define:

d1ðxÞ ¼ d1ð1; xÞ; d2ðxÞ ¼ d2ð1; xÞ; d3ðxÞ ¼ d3ð1; xÞ:

We observe that the slowness surface is essentially the intersection of the

characteristic surface with the plane t ¼ 1.

As in the case of the characteristic manifold we say that the equation which

defines the slowness surface is written in Kelvin’s form if the equation pðxÞ ¼ 0 is

in the form 1:6 (where the diðt; xÞ are replaced by the diðxÞ). The equation of the

slowness surface is thus

n1ðxÞ
d1ðxÞ

þ n2ðxÞ
d2ðxÞ

þ n3ðxÞ
d3ðxÞ

¼ 1:

First of all we want to find the double roots of pðxÞ and we want to give some

conditions on the sti¤ness constant in order to avoid triple roots. If we assume

pðxÞ ¼ 0 in Kelvin’s form, it is easy to see that, if niðxÞb 0 and d 0ðxÞb 0 for all

x A R3, then we can have a double root at ~xx A R3 only when

d 0
1ð~xxÞ ¼ d 0

2ð~xxÞ ¼ d 0
3ð~xxÞ;ð1:7Þ
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or when

n1ð~xxÞn2ð~xxÞn3ð~xxÞ ¼ 0:ð1:8Þ

Note that, with our assumptions on the constants, the condition n1ð~xxÞn2ð~xxÞn3ð~xxÞ
¼ 0 means that x lies on a coordinate plane.

Now we observe that the points of intersection between the slowness surface

and the axes are

G
1ffiffiffiffiffiffi
c66

p ; 0; 0

� �
; G

1ffiffiffiffiffiffi
c44

p ; 0; 0

� �
; G

1ffiffiffiffiffiffi
c11

p ; 0; 0

� �
;ð1:9Þ

0;G
1ffiffiffiffiffiffi
c66

p ; 0

� �
; 0;G

1ffiffiffiffiffiffi
c44

p ; 0

� �
; 0;G

1ffiffiffiffiffiffi
c11

p ; 0

� �
;ð1:10Þ

0; 0;G
1ffiffiffiffiffiffi
c44

p
� �

; 0; 0;G
1ffiffiffiffiffiffi
c44

p
� �

; 0; 0;G
1ffiffiffiffiffiffi
c33

p
� �

:ð1:11Þ

Note that this gives a geometrical interpretation of the quantities cii.

Also note that it follows from these expressions that we always have double

roots on the x3-axis. On the other hand, we have double roots on the other two

axes only when we have c66 ¼ c44, c66 ¼ c11, or c11 ¼ c44.

So, considering this and the condition on hyperbolicity of the system, we

assume the following conditions on the sti¤ness constants (cf. [7])

cii > 0; for i ¼ 1; 3; 4; 6; c66 > c12; c44 0 c13;ð1:12Þ

c11 � c66 � c12 > 0; c33 �
ðc13 þ c44Þ2

c12 þ c66
> 0:ð1:13Þ

Moreover, in order to avoid triple roots on the axes, we assume

c33 0 c44 and that the c11; c66; c44 are not all equal:ð1:14Þ

Remark 1.5. Here we want to write down explicitly the relation between the

sti¤ness constants in the cubic case and in the tetragonal case. The cubic case is

when we have

c11 ¼ c33; c44 ¼ c66; c12 ¼ c13:

It follows from conditions ð1:7Þ and ð1:8Þ that S has double points only when

we can write the sixth degree polynomial pðxÞ as the product of two homo-

geneous polynomials of degree two and four respectively. Indeed, if ni ¼ 0 for
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some i A f1; 2; 3g, then

pðxÞ ¼ diðniþ1diþ2 þ niþ2diþ1 � diþ1diþ2Þ;ð1:15Þ

whereas if d1 ¼ d2 ¼ d3, then

pðxÞ ¼ d 2
1 ðni þ niþ1 þ niþ2 � d1Þ;ð1:16Þ

where in the previous two equations the indices are counted modulo three. We

will study the location of the double points of the sextic ð1:15Þ in section 3 and

the location of the double points of the sextic (1.16) in the section 4.

We conclude this introduction with some considerations concerning the

quartics in the plane of the type which appears in the factorization of pðxÞ.

Definition 1.6. A bi-quadratic quartic in the plane will be called (following

a suggestion of O. Liess) of ‘‘slowness type’’ if each ray starting from the origin

has (when counted with multiplicities) exactly two intersection points with it.

Let

~qqðx; yÞ ¼ a1x
4 þ a2 y

4 þ a3x
2y2 þ b1x

2 þ b2 y
2 þ c1;ð1:17Þ

for some constants ai, bj , c1 with a1 > 0, a2 > 0, c1 0 0, and

qðx; yÞ ¼ ðx2 þ y2Þ2 þ ax2y2 þ bðx2 þ y2Þ þ c;ð1:18Þ

with a > 0 and c0 0. The following proposition (suggested by O. Liess) is

straightforward (for details see [10]).

Proposition 1.7. Let ~qqðx; yÞ be a quartic of the form ð1:17Þ.
� If ~qqðx; yÞ is of the slowness type then the following conditions must be

satisfied

b1 < 0; b2 < 0; c1 > 0;

b21 � 4a1c1 b 0; b22 � 4a2c1 b 0:

� ~qqðx; yÞ has double points if and only if it is the product of two factors of

degree two.
� If ~qqðx; yÞ is of slowness type, and if it has double points, these must lie on the

axis, or else we have the following conditions

a23 � 4a1a2 > 0;

2b2a1 � b1a3 b 0;
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2b1a2 � b2a3 b 0;

ða3b1 � 2b2a1Þ2 ¼ ðb21 � 4c1a1Þða23 � 4a2a1Þ;

with ð2b2a1 � b1a3Þð2b1a2 � b2a3Þ0 0. In this case ~qqðx; yÞ has the following

form:

~qqðx; yÞ ¼ a1x
2 � 1

2
�a3 y

2 � b1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 � 4a2a1

q
y2 þ a3b1 � 2a1b2

a23 � 4a1a2

� �� �� �

a1x
2 � 1

2
�a3 y

2 � b1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 � 4a2a1

q
y2 þ a3b1 � 2a1b2

a23 � 4a1a2

� �� �� �
:

In addition, let qðx; yÞ be of the form ð1:18Þ. If qðx; yÞ is of the slowness type, then

the following conditions must hold:

ba 0; c > 0; b2 � 4cb 0;

aþ 4 > 0; b2 � ðaþ 4Þcb 0:

Moreover qðx; yÞ ¼ 0 has double points if and only if either b2 � 4c ¼ 0 or

b2 � ðaþ 4Þc ¼ 0.

If b2 � 4c ¼ 0, then qðx; yÞ has one double point on each axis and it is possible

to write it in the following form as the product of two ellipses:

qðx; yÞ ¼ x2 þ y2 þ b

2
�

ffiffiffi
a

p
xy

� �
x2 þ y2 þ b

2
þ

ffiffiffi
a

p
xy

� �
:

If b2 � ðaþ 4Þc ¼ 0, then qðx; yÞ has one double point on each semi-diagonal

and it is possible to write it in the following form as the product of two

ellipses:

qðx; yÞ ¼ ðax2 þ by2 � gÞðbx2 þ ay2 � gÞ;

where ðaþ bÞ2 ¼ aþ 4, g ¼ �b=ðaþ bÞ and g2 ¼ c.

2. Remarks on the Hexagonal Case

For completeness we review in this section some results which are related to

the case of hexagonal crystals. Our main reference is [13] although the results in

itself were known much earlier. We are in the hexagonal case if the following

condition on the sti¤ness constants hold:

c12 ¼ c11 � 2c66:ð2:1Þ
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The main consequence of this assumption is that the sixth degree polynomial pðxÞ
factors into the product of two polynomials, one of degree two and one of degree

four. Explicitly we have that ð2:1Þ implies d2ðxÞ ¼ d1ðxÞ and then

pðxÞ ¼ d1ðxÞ½d3ðxÞðn1ðxÞ þ n2ðxÞÞ þ d1ðxÞðn3ðxÞ � d3ðxÞÞ�:

The factor of degree two has an ellipsoid as wave surface and it is very simple

(d1ðxÞ ¼ 1� c66ðx21 þ x22Þ þ c44x
2
3). The fourth degree factor is also easy to study

since the variables x1 and x2 appear always in the form x21 þ x22 (note that

n1ðxÞ þ n2ðxÞ ¼ ðc11 � c66Þðx21 þ x22Þ), in accordance with the property of rota-

tional symmetry with respect to an axis of hexagonal crystals. Therefore the wave

surface is known explicitly. Thus it’s su‰cient to study the double points on the

coordinate planes x1 ¼ 0 (or x2 ¼ 0) and x3 ¼ 0.

Moreover the singularities have the following form.

(i) If c11 ¼ c44 the quartic associated to the fourth degree factor has two

double points on each xi-axis, with i ¼ 1; 2 (cfr. Proposition 3:2).

(ii) If c11 ¼ c66, the quartic associated to the fourth degree factor has two

double points on each xi-axis, with i ¼ 1; 2 and four double points one

on each diagonal of the form Gx1 ¼Gx2, x3 ¼ 0 (cfr. Proposition 3:3).

(iii) If c44 ¼ c66, the quartic associated to the fourth degree factor intersects

the ellipsoid on each xi-semiaxis, with i ¼ 1; 2.

(iv) The quartic intersects the ellipsoid one time on each x3-semiaxis.

(v) If some particular conditions on the sti¤ness constants hold (cfr. Prop-

osition 3:4), the quartic intersects the ellipsoid in eight double points, one

on each quadrant of coordinate planes xi ¼ 0, with i ¼ 1; 2.

3. Double Points of the Slowness Surface in the Coordinate Planes

In this section we will study the location of the double points on the sextics

which appear when we restrict the slowness surface of a tetragonal crystal to the

coordinate planes. If we now restrict to the coordinate plane fx A R3; xi ¼ 0g for

some i A f1; 2; 3g, then the terms in pðxÞ which contain niðxÞ as a factor vanish,

and we obtain the curve

fx A R3; xi ¼ 0; di ¼ 0gU fx A R3; xi ¼ 0; niþ1diþ2 þ niþ2diþ1 � diþ1diþ2 ¼ 0g;

with indices calculated modulo 3. Our restriction is thus the union of an ellipse

with a bounded quartic. Real double points can appear then in principle in two

ways: if we intersect the ellipse with the quartic, or if the quartic itself has double

points.
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We will investigate this two cases in the next subsection. We will prove that

the quartic has double points if and only if two of the cii, i ¼ 1; 4; 6 assume the

same value, whereas the ellipse can intersect the quartic in zero, two, six or eight

points, according to the values of the sti¤ness constants. Figures 3.1 and 3.2 show

restrictions of the slowness surface to the coordinate planes for di¤erent values of

the sti¤ness constants.

We observe that pðxÞ is symmetric in the variables x1 and x2. So, we will

only study what happens in the planes x1 ¼ 0 and x3 ¼ 0.

Our first concern is to understand for which values of the constants cij we

can have double points on the quartic. In fact, as we have already seen, the

quartic can have double points only if it is the union of two ellipses which

intersect.

3.1. Double Points of the Quartic in the Coordinate Planes

Assume at first that x1 ¼ 0. Then the restriction of p to x1 ¼ 0 factors into

the form d1ðn2d3 þ n3d2 � d2d3Þ. This means that fðx2; x3Þ; pð0; x2; x3Þ ¼ 0g is

the union of the two curves C1 ¼ fðx2; x3Þ; d1ð0; x2; x3Þ ¼ 0g and C2 ¼ fðx2; x3Þ;
ðn2d3 þ n3d2 � d2d3Þð0; x2; x3Þ ¼ 0g. C1 is the ellipse s1ðx2; x3Þ ¼ 0, where

s1ðx2; x3Þ ¼ 1� c66x
2
2 � c44x

2
3 ;ð3:1Þ

whereas C2 is the quartic given by q1ðx2; x3Þ ¼ 0, where

q1ðx2; x3Þ ¼ c11c44x
4
2 þ c33c44x

4
3 � ðc213 � c11c33 þ 2c13c44Þx22x

2
3ð3:2Þ

� c44x
2
2 � c11x

2
2 � c33x

2
3 � c44x

2
3 þ 1:

We can write q1ðx2; x3Þ as Xx43 þ Yðx2Þx23 þ Zðx2Þ, where

X ¼ c44c33;

Y ðx2Þ ¼ ð�2c13c44 þ c11c33 � c213Þx
2
2 � c33 � c44;

Zðx2Þ ¼ c11c44x
4
2 � ðc11 þ c44Þx22 þ 1:

We denote by Dðx2Þ the quantity Yðx2Þ2 � 4XZðx2Þ. We have seen in proposition

1:7 that a necessary condition for the quartic ð3:2Þ to have double points is that

Dðx2Þ have positive double roots and its leading coe‰cient be positive. After

some calculations, we can write Dðx2Þ as

Dðx2Þ ¼ Ax42 þ Bx22 þ C
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with

A ¼ ðc11c33 � 2c13c44 � c213Þ
2 � 4c244c33c11;

B ¼ �2ðc33 þ c44Þðc11c33 � 2c13c44 � c213Þ þ 4c44c33ðc44 þ c11Þ;

C ¼ c244 þ c233 � 2c44c33:

We can therefore have double roots only if D1 ¼ B2 � 4AC ¼ 0. The expression

for D1 is quite long, but it factors conveniently to

D1 ¼ 16c44c33ðc13 þ c44Þ2ðc213 þ 2c13c44 þ c44c33 � c33c11 þ c44c11Þ;

and so we have D1 ¼ 0 if and only if

D1 ¼ ðc213 þ 2c13c44 þ c44c33 � c33c11 þ c44c11Þ ¼ 0:ð3:3Þ

Note that c33c44 is strictly positive and c13 þ c44 0 0 by conditions ð1:12Þ.
Moreover the double root of Dðx2Þ is positive if and only if

B ¼ �2ðc33 þ c44Þðc11c33 � 2c13c44 � c213Þ þ 4c44c33ðc44 þ c11Þa 0:ð3:4Þ

A further condition for the quartic ð3:2Þ to have double points is that A > 0, i.e.

ðc11c33 � 2c13c44 � c213Þ
2 � 4c244c33c11 > 0:ð3:5Þ

If we denote by x2 the double root of D, the last condition for the quartic ð3:2Þ to
have double points is that Y ðx2Þa 0, i.e.

ðc11 þ c44Þðc11c33 � 2c13c44 � c213Þ � 2ðc33 þ c44Þc11c44 b 0:ð3:6Þ

Remark 3.1. Here and in the following we assume another condition on the

sti¤ness constants. This condition comes from physics and numerical examples of

sti¤ness constants for tetragonal crystals agree with it. We assume that c12 and

c13 are small when compared with cii, for i ¼ 1; 3; 4; 6.

With the assumptions of remark 3:1 the conditions ð3:3Þ, ð3:4Þ, ð3:5Þ and

ð3:6Þ reduce to the following

c44c33 � c33c11 þ c44c11 ¼ 0;ð3:7Þ

c11c33 > 4c244;ð3:8Þ

c11ðc33 � c44Þ > 2c244;ð3:9Þ

c33ðc11 � c44Þ > 2c244:ð3:10Þ
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From ð3:7Þ it follows that c11 ¼ c33c44=ðc33 � c44Þ and, taking into account this

condition, the conditions ð3:8Þ, ð3:9Þ and ð3:10Þ yield c33 < c44. But if c33 < c44,

then c11 must be negative and therefore we can conclude that q1ðx2; x3Þ can have

double points only on the axes.

We can now understand whether or not the quartic q1 ¼ 0 can have double

points on the axes. We recall from (1.11) that the points on the positive x3-axis

are

0; 0;
1ffiffiffiffiffiffi
c44

p
� �

and 0; 0;
1ffiffiffiffiffiffi
c44

p
� �

; 0; 0;
1ffiffiffiffiffiffi
c33

p
� �

:

Since the first point here is a point on the ellipse (3.1), it follows that the double

point on the positive x3-axis is the result of the fact that the ellipse and the

quartic touch. The points on the positive x2-axis are

0;G
1ffiffiffiffiffiffi
c66

p ; 0

� �
; 0;G

1ffiffiffiffiffiffi
c44

p ; 0

� �
; 0;G

1ffiffiffiffiffiffi
c11

p ; 0

� �
:

Again, the first point lies on the ellipse ð3:1Þ, so it follows that the quartic has

double points on the positive x2-axis when c11 ¼ c44.

Thus, we have proved the following proposition.

Proposition 3.2. Let q1ðx2; x3Þ ¼ 0 be the quartic defined by ð3:2Þ. It has

double points if and only if c11 ¼ c44. In this case q1ðx2; x3Þ ¼ 0 has two double

points of coordinates ð0;G1=
ffiffiffiffiffiffi
c44

p
; 0Þ, on the x2-axis.

We now deal with the restriction to x3 ¼ 0. Since the restriction of p to

this plane factors into d3ðn1d2 þ n2d1 � d1d2Þ ¼ 0, we then have to look at the

ellipse

s3ðx1; x2Þ ¼ d3ðx1; x2; 0Þ ¼ 0ð3:11Þ

and the quartic q3ðx1; x2Þ ¼ 0, where

q3ðx1; x2Þ ¼ c11c66ðx41 þ x42Þ þ ðc211 � c212 � 2c12c66Þx21x
2
2ð3:12Þ

� ðc11 þ c66Þðx21 þ x22Þ þ 1:

We have seen in the previous section that such double points can only lie on the

axes or on the diagonals. The double points on the axes are known from the

relations ð1:9Þ and will exist when c11 ¼ c66. The points on the positive principal
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diagonal x1 ¼ x2, x1 b 0 of the quartic are on the other hand

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11 � c12

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c11 � c12
p ; 0

� �
;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11 þ c12 þ 2c66

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c11 þ c12 þ 2c66
p ; 0

� �
:

It follows from this that the quartic has double points only in the case when

c11 � c12 ¼ c11 þ c12 þ 2c66, i.e., when c12 þ c66 ¼ 0. Since we assume that c12 is

small compared with c66, there will thus be no double points on the quartic and

the double points of pðx1; x2; 0Þ ¼ 0 must come from the intersection of the ellipse

with the quartic which we will now compute. Thus, we have proved the following

proposition.

Proposition 3.3. Let q3ðx1; x2Þ ¼ 0 be the quartic defined by ð3:12Þ.
It has double points if and only if c11 ¼ c66. In this case q3ðx1; x2Þ ¼ 0 has

four double points, two on the x1-axis, and two on the x2-axis, of coordinates

ðG1=
ffiffiffiffiffiffi
c66

p
; 0; 0Þ and ð0;G1=

ffiffiffiffiffiffi
c66

p
; 0Þ respectively.

3.2. On the Intersection of the Ellipses with the Quartics

in the Coordinate Planes

As before, we assume at first that x1 ¼ 0. We have the following

proposition.

Figure 1: Restrictions of S to the plane x1 ¼ 0 with ðc11; c33; c44; c66; c12; c13Þ equal to ð4; 3; 1; 2;
�1=2; 1=5Þ and ð1; 3; 4; 2;�1=2; 1=5Þ respectively.

133Double points for tetragonal crystals



Proposition 3.4. Let s1ðx2; x3Þ and q1ðx2; x3Þ be the polynomials defined in

ð3:1Þ and ð3:2Þ respectively. We denote

~xx22 ¼ ðc13 þ c44Þ2 þ ðc44 � c33Þðc11 � c66Þ
c11c

2
44 þ 2c13c44c66 þ c213c66 � c11c33c66 þ c33c

2
66

;

~xx23 ¼ ðc44 � c66Þðc11 � c66Þ
c11c

2
44 þ 2c13c44c66 þ c213c66 � c11c33c66 þ c33c

2
66

:

If the sti¤ness constants cij are such that ~xx2 and ~xx3 are positive and c11 0

c66 0 c44, then s1ðx2; x3Þ ¼ 0 intersects q1ðx2; x3Þ ¼ 0 in six points of coor-

dinates:

0; 0;G

ffiffiffiffiffiffi
1

c44

s !
; ð0;G~xx2;G~xx3Þ:

If the sti¤ness constants cij are such that ~xx2 and ~xx3 are not positive, then

s1ðx2; x3Þ ¼ 0 intersects q1ðx2; x3Þ ¼ 0 only in the points ð0; 0;G
ffiffiffiffiffiffiffiffiffiffiffi
1=c44

p
Þ.

Proof. We denote P ¼ ð0; x2; x3Þ. P 0 ¼ ðx2; x3Þ then corresponds to an

intersection point of s1 ¼ 0 with q1 ¼ 0 if we have simultaneously

d1ðPÞ ¼ 0; ðn2d3 þ n3d2 � d2d3ÞðPÞ ¼ 0;

Figure 2: Restrictions of S on the plane x3 ¼ 0 with ðc11; c33; c44; c66; c12; c13Þ equal to ð2; 3; 1; 4;
�1=2; 1=5Þ and ð4; 3; 2; 1;�1=2; 1=5Þ respectively.
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with the usual notation. The condition d1ðPÞ ¼ 0 means that P 0 ¼ ðx2; x3Þ lies on

the ellipse

1� c66x
2
2 � c44x

2
3 ¼ 0;

which gives

x23 ¼ gðx2Þ ¼
1� c66x

2
2

c44
:ð3:13Þ

We have to insert the value of x23 given by ð3:13Þ into the equation

ðn2d3 þ n3d2 � d2d3ÞðPÞ ¼ 0, and to solve the resulting equation for x2. Calcula-

tions are simplified if we make the following preliminary remarks: the values of

d2, n2 � d2, and d3, for x1 ¼ 0 and x3 given by (3.13) are

d2 ¼ ð�c11 þ 2c66 þ c12Þx22 ;

n2 � d2 ¼ ðc11 � c66Þx22 ;

d3 ¼
c12 þ c66

c13 þ c44
� c12 þ c66

c13 þ c44
c44x

2
2 þ

c33

c44
1� c66x

2
2

� �� �
þ c13 þ c44

c44
ð1� c66x

2
2Þ:

After some calculations, it follows that ½n3d2 þ d3ðn2 � d2Þ�ð0; x2; gðx2ÞÞ, is di-

visible by x22 and that we have

½n3d2 þ d3ðn2 � d2Þ�ð0; x2; gðx2ÞÞ
x22

¼ ðc13 þ c44Þð1� c66x
2
2Þð�c11 þ 2c66 þ c12Þ
c44

þ c12 þ c66

c13 þ c44

1

c44
ðc44 � ðc244x

2
2 þ c33ð1� c66x

2
2ÞÞ

þ ðc13 þ c44Þð1� c66x
2
2ÞÞðc11 � c66Þ:

In particular, we see that x2 ¼ 0 is a solution of ½n3d2 þ d3ðn2 � d2Þ�ð0; x2; gðx2ÞÞ
¼ 0 with multiplicity 2. When x1 ¼ x2 ¼ 0, the value of x23 for which we have

intersection is 1=c44. Thus, the first part of the proposition is proved.

The other solutions of ½n3d2 þ d3ðn2 � d2Þ�ð0; x2; gðx2ÞÞ ¼ 0 are also easy to

calculate, since ½n3d2 þ d3ðn2 � d2Þ�ð0; x2; gðx2ÞÞ=x22 is linear in the variable s ¼ x22 .

We obtain precisely x22 ¼ ~xx22 : Inserting this into s1ðx2; x3Þ, we obtain the value

x3 ¼ ~xx3 corresponding to x2 ¼ ~x2x2. r

We now deal with the restriction to x3 ¼ 0.
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Proposition 3.5. Let s3ðx1; x2Þ and q3ðx1; x2Þ be the polynomials defined in

ð3:11Þ and ð3:12Þ respectively. We denote

R ¼ ðc12 þ 2c44 � c11Þðc12 þ 2c66 � 2c44 þ c11Þ
ðc12 þ c11Þðc12 � c11 þ 2c66Þ

:

If the sti¤ness constants cij are such that 0 < R < 1 and c11 0 c44 0 c66, then

s3ðx1; x2Þ intersects q3ðx1; x2Þ ¼ 0 in eight points of coordinates

G
1þ

ffiffiffiffi
R

p

2c44

� �� �1=2
;G

1�
ffiffiffiffi
R

p

2c44

� �1=2
; 0

�
;

G
1�

ffiffiffiffi
R

p

2c44

� �� �1=2
;G

1þ
ffiffiffiffi
R

p

2c44

� �1=2
; 0

�
:

Proof. We proceed as in the proof of proposition ð3:4Þ. The condition

d3ðPÞ ¼ 0 gives x22 ¼ c�1
44 � x21 . Inserting this value of x22 into the equation

ðn1d2 þ n2d1 � d1d2ÞðPÞ ¼ 0, we obtain

x21 ¼ BG
ffiffiffiffi
D

p

2A
;

where

A ¼ ðc12 þ c11Þðc12 � c11 þ 2c66Þc44;

B ¼ ðc12 þ c11Þðc12 � c11 þ 2c66Þ;

D ¼ ðc12 þ c11Þðc12 þ 2c44 � c11Þðc12 � c11 þ 2c66Þðc12 þ 2c66 � 2c44 þ c11Þ:

So we find the requested values of x1 and consequently x2. r

We conclude this section noting that, if c44 ¼ c66, the quartics q1ðx2; x3Þ ¼ 0

and q3ðx1; x2Þ ¼ 0 do not have double points, but the ellipses s1ðx2; x3Þ ¼ 0 and

s3ðx1; x2Þ ¼ 0 intersect the quartics q1ðx2; x3Þ ¼ 0 and q3ðx1; x2Þ ¼ 0 respectively,

on the x1-axis and on the x3-axis.

4. Double Points of the Slowness Surface Near the Diagonal

In this section we will study the location of double points of the slowness

surface of a tetragonal crystal, which occur when d1ð~xxÞ ¼ d2ð~xxÞ ¼ d3ð~xxÞ. Now,
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suppose that this condition holds and that dið~xxÞ0 0. Then ~xx must be a double

point of ðn1 þ n2 þ n3 � d1Þð~xxÞ ¼ 0, but this is absurd because, given our assump-

tions on cij, ðn1 þ n2 þ n3 � d1Þð~xxÞ ¼ 0 is an ellipse in R3. Conversely, if we know

that

d1ð~xxÞ ¼ d2ð~xxÞ ¼ d3ð~xxÞ ¼ 0;

for some point ~xx, then ~xx is a double point of S. Thus we have the following

lemma.

Lemma 4.1. Singular points ~xx of the slowness surface, which do not lie on the

coordinate planes, can occur if and only if d1ð~xxÞ ¼ d2ð~xxÞ ¼ d3ð~xxÞ ¼ 0:

Our next remark is that d1ðxÞ ¼ d2ðxÞ implies x21 ¼ x22 . Inserting this

information into d1ðxÞ ¼ d3ðxÞ shows that x21 and x23 must be related by the

condition

x23 ¼ ð�c11 þ c12 þ 2c44Þðc12 þ c66Þ
ðc13 þ c44Þ2 þ ðc12 þ c66Þðc44 � c33Þ

x21 :ð4:1Þ

Using x21 ¼ x22 and (4.1), pðxÞ ¼ 0 reduces to a third-degree polynomial in t ¼ x21 ,

which will have a double root.

Solving this equation we then obtain the following value for x21

x21 ¼ � ðc13 þ c44Þ2 þ ðc12 þ c66Þðc44 � c33Þ
ðc13 þ c44Þ2ðc12 � c11Þ þ ðc12 þ c66Þðc33c11 � c12c33 � 2c244Þ

:ð4:2Þ

This gives

x23 ¼ � ð2c44 þ c12 � c11Þðc12 þ c66Þ
ðc13 þ c44Þ2ðc12 � c11Þ þ ðc12 þ c66Þðc33c11 � c12c33 � 2c244Þ

:

Thus we have the following proposition.

Proposition 4.2. Let S be the slowness surface for the tetragonal crystal

system. We denote

~xx21 ¼ � ðc13 þ c44Þ2 þ ðc12 þ c66Þðc44 � c33Þ
ðc13 þ c44Þ2ðc12 � c11Þ þ ðc12 þ c66Þðc33c11 � c12c33 � 2c244Þ

;

~xx23 ¼ � ð2c44 þ c12 � c11Þðc12 þ c66Þ
ðc13 þ c44Þ2ðc12 � c11Þ þ ðc12 þ c66Þðc33c11 � c12c33 � 2c244Þ

:
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If the sti¤ness constants cij are such that ~xx21 and ~xx23 are positive, then S has eight

double points, four on each plane fðx1; x2; x3Þ A R3 : x1 ¼Gx2g, of coordinates:

ð~xx1; ~xx1;G~xx3Þ; ð�~xx1;�~xx1;G~xx3Þ:

ð~xx1;�~xx1;G~xx3Þ; ð�~xx1; ~xx1;G~xx3Þ:

Remark 4.3. In the case of cubic crystals the condition d1 ¼ d2 ¼ d3 implies

that we must have x21 ¼ x22 ¼ x23 . So, if we call the eight lines defined by these

conditions the space diagonals, in the cubic case we have eight double points, one

on each space diagonal. Denote F ¼ ð�c11 þ c12 þ 2c44Þðc12 þ c66Þ � ðc13 þ c44Þ2

� ðc12 þ c66Þðc44 � c33Þ. Then, in the tetragonal case, we have double points on

the space diagonals if F ¼ 0. Further, we can decompose F as

F ¼ ð�c11 þ c12 þ c44 þ c33Þðc12 þ c66 � c13 � c44Þ

þ ðc13 þ c44Þð�c13 � c11 þ c12 þ c33Þ:

It follows in particular that F ¼ 0 if c12 þ c66 � c13 � c44 ¼ 0 and �c13 � c11 þ
c12 þ c33 ¼ 0 simultaneously. To put the conditions into a symmetric form we can

also write them as

c66 � c44 ¼ c13 � c12 ¼ c33 � c11:ð4:3Þ

Note however that these conditions are only su‰cient to guarantee that the

double points lie on the diagonals. The nice thing about the conditions in ð4:3Þ

Figure 3: Restriction of S on the plane x1 ¼ x2 with ðc11; c33; c44; c66; c12; c13Þ equal to ð4; 3; 1; 2;
�1=2; 1=5Þ.

138 Claudio Melotti



is that the three quantities c66 � c44, c13 � c12, c33 � c11 measure the ‘‘distance’’

to the cubic case. These conditions therefore say that the three quantities which

determine this distance are equal, but do not necessarily vanish. Thus, if we are

near the cubic case, we can expect the double points of tetragonal crystal on the

planes fðx1; x2; x3Þ A R3 : x1 ¼Gx2g to be near the space diagonal.

5. Tetragonal Crystals When c11 ¼ c66

Here and in the remainder of this section we will assume that the sti¤ness

constants c11 and c66 are equal. In this case not only do we have some

simplifications in the calculations, but also a particular type of double point

appears on the slowness surface. We will call it a ‘‘biplanar’’ double point

(see definition 5:3). It is a type of double point which does not appear in the

cubic case, and it is the main reason why we need a theorem of the type of

theorem 1.2.

We begin the study of tetragonal crystal when we have c11 ¼ c66 with the

description of where the double points of the slowness surface are located. The

results of the previous two sections yield the following proposition.

Proposition 5.1. Assume c11 ¼ c66 and let cij be such that the conditions

ð1:12Þ, ð1:13Þ, ð1:14Þ are satisfied and cij , with i0 j, is small compared with cii.

Moreover, let S be the slowness surface for the tetragonal crystal system. Then S

has six double points, one on each semi-axis, of coordinates (see figure 4, left)

G
1ffiffiffiffiffiffi
c66

p ; 0; 0

� �
; 0;G

1ffiffiffiffiffiffi
c66

p ; 0

� �
; 0; 0;G

1ffiffiffiffiffiffi
c44

p
� �

:

In addition, if ðc12 þ 2c44 � c66Þðc12 þ 3c66 � 2c44Þ > 0, then S has eight double

points on the plane fðx1; x2; x3Þ A R3 : x3 ¼ 0g (see figure 4, right), of coor-

dinates

G
1þ

ffiffiffiffi
R

p

2c44

� �� �1=2
;G

1�
ffiffiffiffi
R

p

2c44

� �1=2
; 0

�
;

G
1�

ffiffiffiffi
R

p

2c44

� �� �1=2
;G

1þ
ffiffiffiffi
R

p

2c44

� �1=2
; 0

�
;

where all combinations of signs are allowed and

R ¼ ðc12 þ 2c44 � c66Þðc12 þ 3c66 � 2c44Þ
ðc12 þ c66Þ2

:
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Finally, if ~xx1 > 0 and ~xx3 > 0, then S has four double points on each of the planes

fðx1; x2; x3Þ A R3 : x21 ¼ x22g of coordinates

ð~xx1; ~xx1;G~xx3Þ; ð�~xx1;�~xx1;G~xx3Þ;

ð~xx1;�~xx1;G~xx3Þ; ð�~xx1; ~xx1;G~xx3Þ;

where

~xx21 ¼ � ðc13 þ c44Þ2 þ ðc12 þ c66Þðc44 � c33Þ
ðc13 þ c44Þ2ðc12 � c66Þ þ ðc12 þ c66Þðc33c66 � c12c33 � 2c244Þ

;

~xx23 ¼ � ð2c44 þ c12 � c66Þðc12 þ c66Þ
ðc13 þ c44Þ2ðc12 � c66Þ þ ðc12 þ c66Þðc33c66 � c12c33 � 2c244Þ

:

Remark 5.2. We observe that there exist admissible values of the sti¤ness

constants such that the conditions ~xxi > 0, with i ¼ 1; 3, and R > 0 of the

proposition 5:1 can be either both satisfied or both not satisfied or one satisfied

and the other not satisfied.

Now we want to classify the double points of S into three di¤erent types,

depending on their geometrical properties. To do so, we need the following

definitions.

Definition 5.3. Let S be a surface in R3 on which the coordinates are

denoted by x ¼ ðx1; x2; x3Þ. We assume that P A S and that in a neighborhood

Figure 4: Restrictions of S on the plane x1 ¼ 0 and x3 ¼ 0, with ðc11; c33; c44; c66; c12; c13Þ equal to

ð4; 3; 1; 4;�1=2; 1=5Þ and ð1; 2; 5=7; 1;�1=7; 1=2Þ respectively.
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U of P, S is defined by an equation of form f ðxÞ ¼ 0, with x A U, for some

function f A CyðUÞ. We assume that ‘f ðxÞ ¼ 0 precisely when x ¼ P and denote

by Jk f ðxÞ ¼
P

jaj¼kð1=a!Þq
a
x f ðPÞx

a the homogeneous part of degree k in the

Taylor expansion of f at P.
� We say that P is a conical singularity if for some suitable choice of linear

coordinates J2 f has the form J2 f ðxÞ ¼ x21 � x22 � x23 .
� We say that P is a uniplanar singularity if it is possible to find linear

coordinates for which J2 f ðxÞ ¼ x23 and if f ¼ 0 is locally equivalent to

x23 þ Aðx1; x2Þx3 þ Bðx1; x2Þ ¼ 0

with AðP1;P2Þ ¼ 0, BðP1;P2Þ ¼ 0, ‘AðP1;P2Þ ¼ 0, for some smooth

function A, B.

Moreover, we assume that if we denote by D the quantity D ¼ A2 � 4B,

then we have Dðx1; x2Þ ¼ Oðjx1; x2j4Þ for ðx1; x2Þ ! ðP1;P2Þ.
� We say that P is a biplanar singularity if the following happens: for some

suitable choice of linear coordinates J2 f ðxÞ ¼ x21 � x22 (see fig. 5).

In the next three subsections, we will prove the following proposition about

the nature of the singular points of the slowness surface for the tetragonal crystal

system, when we have c11 ¼ c66.

Proposition 5.4. Let S be the slowness surface for the tetragonal crystal

system.

The double points of S on the x3-axis are uniplanar singularities.

The double points of S on the x1-axis and x2-axis are biplanar singularities.

Figure 5: The biplanar double point at the origin of the surface defined by the equation

z2 � ð1=2Þx2 þ 2yz2 � 2zx2 þ x4 þ 2x2y2 þ ð1=2Þy4 ¼ 0.
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If S has double points on the plane fðx1; x2; x3Þ A R3 : x3 ¼ 0g, then they

are conical singularities. If S has double points on the planes fðx1; x2; x3Þ A R3 :

x21 ¼ x22g, and c66 � c44 ¼ c13 � c12 ¼ c33 � c11, then they are conical singularities.

5.1. Hessians at the Singular Points on the Axes

In this subsections we suppose that the assumptions on the sti¤ness constants

made in the proposition 5:1 hold. We begin with the proof of the fact that the

points ð0; 0;G1=
ffiffiffiffiffiffi
c44

p Þ A S are uniplanar singularities.

We denote P ¼ ð0; 0; 1= ffiffiffiffiffiffi
c44

p Þ. We will prove that ‘pðPÞ ¼ 0, ðq=qx3Þ2pðPÞ0
0, ðq2=qxiqxjÞ2pðPÞ ¼ 0 if i A f1; 2g, j A f1; 2; 3g, ðq=qxÞapðPÞ ¼ 0 if jaj ¼ 3 and

the order of derivations in ðx1; x2Þ is odd.

The gradient of p at P vanishes since P is a double point of the slowness

surface.

The following remarks help us simplify the calculations of second order

derivatives:
� The factors n1, n2 vanish twice at P.
� The expressions di vanish at P for i ¼ 1; 2 (but not necessarily for i ¼ 3).
� When we derivate one of the di, i ¼ 1; 2; 3, in one of the variables xj, j ¼ 1

or 2, then we obtain a factor xj, and therefore this derivative will vanish

at P.
� ðq=qxiÞn3 ¼ 0, ðq2=qxiqxjÞn3 ¼ 0 for i ¼ 1; 2, whatever j is.

We conclude from these remarks, that the terms n1d2d3, n2d3d1 vanish of

order 3 at P. Therefore, they will not contribute to the Hessian of p at P.

Moreover, when we calculate second order derivatives of type ðq2=qxiqxjÞ of

ðn3 � d3Þd1d2, then, in order to have a nontrivial contribution, we must derivate

each one of the factors d1 and d2, since these factors vanish at P. However, first

order derivatives of d1; d2 again vanish at P, so we do not have enough deri-

vations to obtain a nontrivial contribution. In a similar way we conclude that

derivatives of form ðq=qxiÞðq=qx3ÞkpðPÞ vanish when i A f1; 2g, kb 2.

We next calculate ðq=qx3Þ2pðPÞ. Again, only ðn3 � d3Þd1d2 can give a non-

trivial contribution. We must of course derivate each of the factors d1 and d2

once, to get a nontrivial contribution. Therefore

ðq=qx3Þ2pðPÞ ¼ ðn3 � d3ÞðPÞðq=qx1Þd1ðPÞðq=qx1Þd2ðPÞ:

After some calculations we obtain

q2

qx23
pðPÞ ¼ 8ðc33 � c44Þðc12 þ c66Þ

c13 þ c44
:
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By assumption on the sti¤ness constants this is non vanishing.

We still have to say something about third order derivatives. If we derivate

once in x3 and the remaining derivatives are in the variables x1, x2, then the result

may be non vanishing.

We now turn to the case of the x1-axis and of the x2-axis. The two cases are

of course symmetric. We will prove that the points ðG1=
ffiffiffiffiffiffi
c66

p
; 0; 0Þ A S and

ð0;G1=
ffiffiffiffiffiffi
c66

p
; 0Þ A S are biplanar singularities.

Now, we denote P ¼ ð1= ffiffiffiffiffiffi
c66

p
; 0; 0Þ. As before we can simplify the calcula-

tions with some preliminary remarks. We now have:
� n2, n3 vanish of order 2 at P.
� d2 vanishes at P.
� The first order derivatives of the di, i ¼ 1; 2; 3, in the variables x2; x3 vanish

at P.
� n1 � d1 vanishes at P.

We first prove that

q2pðPÞ
qx21

¼ 8ðc12 þ c66Þðc44 � c66Þ
c13 þ c44

;

q2pðPÞ
qx22

¼ � 2ðc12 þ c66Þ3ðc44 � c66Þ
c266ðc13 þ c44Þ

;

q2pðPÞ
qx23

¼ 0:

It follows, by the assumptions on the sti¤ness constants, that ðq=qx1Þ2pðPÞ and

ðq=qx2Þ2pðPÞ have opposite signs.

To calculate the second derivatives in x1, we notice that the terms containing

n1, n2 will not give any contribution: they contain factors of type x22 , x
2
3 and these

factors are like constants if we derivate them in x1. Since d2 and n1 � d1 vanish

at P, we have

q2

qx21
pðPÞ ¼ q

qx1
d2ðPÞ

q

qx1
ðn1d3 � d1d3ÞðPÞ:

After some calculations, we obtain the desired result referring to ðq=qx1Þ2pðPÞ.
When we calculate ðq=qx2Þ2pðPÞ, the term n3d1d2 gives no contribution due

to the factor n3, which behaves like a constant under derivations in x2. We may

thus write that

q2

qx22
pðPÞ ¼ q2

qx22
½ðn1 � d1Þd2d3�ðPÞ þ d1ðPÞd3ðPÞ

q2

qx22
n2ðPÞ:
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Since ðn1 � d1Þ and d2 both vanish at P, we have

q2

qx22
½ðn1 � d1Þd2d3�ðPÞ ¼ d3ðPÞ

q

qx2
ðn1 � d1ÞðPÞ

q

qx2
d2ðPÞ:

However, ðq=qx2Þd2ðPÞ ¼ 0. Therefore,

q2

qx22
pðPÞ ¼ d1ðPÞd3ðPÞ

q2

qx22
n2ðPÞ:

It follows after some calculations that ðq=qx2Þ2pðPÞ is as stated in the

lemma.

To calculate ðq=qx3Þ2pðPÞ we note that the term containing n2 will give no

contribution. The same is true for the term n3d1d2: here we use the fact that n3d2

vanishes of order 3 at P. We are left with

q2

qx23
½ðn1 � d1Þd2d3�ðPÞ:

Since ðn1 � d1Þ, d2 both vanish at P, we must have that

q2

qx23
ðn1 � d1Þd2d3

" #
ðPÞ ¼ d3ðPÞ

q

qx3
ðn1 � d1ÞðPÞ

� �
q

qx3
d2ðPÞ

� �
:

We use again that ðq=qx3Þd2ðPÞ ¼ 0 and, in the end, we obtain 0.

Now we prove that

q2

qx1qx2
pðPÞ ¼ 0;

q2

qx1qx3
pðPÞ ¼ 0;

q2

qx2qx3
pðPÞ ¼ 0:

To calculate ðq2=qx1qx2ÞpðPÞ, we note that the terms with n2 and n3 give no

contribution. Thus,

q2

qx1qx2
pðPÞ ¼ q2

qx1qx2
½ðn1 � d1Þd2d3�ðPÞ:

We can now argue as above. The evaluation of ðq2=qx1qx3ÞpðPÞ,
ðq2=qx3qx3ÞpðPÞ is done in exactly the same way.

Remark 5.5. The localization polynomial of S at P ¼ ð1= ffiffiffiffiffiffi
c66

p
; 0; 0Þ is

thus

8ðc12 þ c66Þðc44 � c66Þ
c13 þ c44

x21 �
2ðc12 þ c66Þ3ðc44 � c66Þ

c266ðc13 þ c44Þ
x22 :
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The tangent set at S in P is then given by

v A R3;
8ðc12 þ c66Þðc44 � c66Þ

c13 þ c44
v21 �

2ðc12 þ c66Þ3ðc44 � c66Þ
c266ðc13 þ c44Þ

v22 ¼ 0; v3 A R

( )
:

We have two planes and this is the reason to call them ‘‘biplanar’’.

5.2. Hessians at the Singular Points in the Coordinate Planes, but not

on the Axes

We have to consider the singular points on the plane x3 ¼ 0. Let P be one of

these points, e.g.,
1þ

ffiffiffiffi
R

p

2c44

� �� �1=2
;

1�
ffiffiffiffi
R

p

2c44

� �1=2
; 0

�
. Here we want to calculate

the determinant of the Hessian of pðxÞ in P. Recall that P satisfies simultaneously

d3ðPÞ ¼ 0; f3ðPÞ ¼ 0;ð5:1Þ

where we denote f3 ¼ n1d2 þ n2d1 � d1d2. Relation ð5:1Þ can be used to simplify

the calculation of the Hessians. Indeed, ðq2=qx23ÞpðPÞ is very easy to calculate.

This is based on the following remarks:
� in view of ð5:1Þ

q2

qx23
½d3ðn1d2 þ n2d1 � d1d2Þ�ðPÞ ¼ 2

q

qx3
d3ðPÞ

q

qx3
ðn1d2 þ n2d1 � d1d2ÞðPÞ:

� If we derivate d3, n3 or n1d2 þ n2d1 � d1d2 just once in x3, then the ex-

pression which we obtain will be a multiple of x3 and will therefore vanish

on our coordinate plane.

It follows that

q2

qx23
½d3ðPÞðn1d2 þ n2d1 � d1d2ÞðPÞ� ¼ 0:

It is then clear that

q2

qx23
pðPÞ ¼ q2n3

qx23
ðPÞd1ðPÞd2ðPÞð5:2Þ

¼ 2
ðc13 þ c44Þ2ðc44 � c66Þðc12 þ 2c44 � c66Þ

c244ðc12 þ c66Þ
:

Remark 5.6. Mixed derivatives of p which contain just one derivation in x3

will vanish. This is proved with an argument similar to the one just used for the

calculation of ðq=qx3Þ2pðPÞ.
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We are now left with derivatives of form ðq2=qxiqxjÞ where i; j A f1; 2g. It is
obvious that ðq2=qxiqxjÞðn3d1d2ÞðPÞ ¼ 0. Now, we can again argue as above and

conclude that

q2

qxiqxj
ðd3 f3ÞðPÞ ¼

q

qxi
d3ðPÞ

q

qxj
f3ðPÞ þ

q

qxj
d3ðPÞ

q

qxi
f3ðPÞ:ð5:3Þ

The situation is further simplified by noting that ðq=qxiÞd3 is divisible by xi and

ðq=qxjÞðn1d2 þ n2d1 � d1d2Þ is divisible by xj. In ð5:3Þ we can therefore divide out

a factor xixj. If we also take into account that

1

xi

qd3

qxi
¼ 1

xj

qd3

qxj
¼ �2c44

then we obtain that

q2

qxiqxj
ðd3 f3ÞðPÞ ¼ �2c44 xixj

1

xi

qf3

qxi
þ 1

xj

qf3

qxj

� �� �
ðPÞ:

An elementary calculation gives

1

x1

q

qx1
f3ðxÞ ¼ �4c266x

2
1 þ 2ðc212 � c266 þ 2c12c66Þx22 � 4c66c44x

2
3 þ 4c66;

1

x2

q

qx2
f3ðxÞ ¼ �4c266x

2
2 þ 2ðc212 � c266 þ 2c12c66Þx21 � 4c66c44x

2
3 þ 4c66:

It also follows from this that the determinant of the Hessian in the variables

x1, x2 is

4x21x
2
2c

2
44 4

1

x1

qf3

qx1

1

x2

qf3

qx2
� 1

x2

qf3

qx2
þ 1

x1

qf3

qx1

� �2 !
ð5:4Þ

¼ �4x21x
2
2c

2
44

1

x2

qf3

qx2
� 1

x1

qf3

qx1

� �2
:

From ð5:4Þ, ð5:2Þ and remark 5:6, it follows that the Hessian of p ¼ 0 in P has

the form

R ¼
A 0

0
q2p

qx23
ðPÞ

0
B@

1
CA;

where the determinant of A is negative. Thus, P is a conical singularity. For the

other singular points on the plane x3 ¼ 0 we can argue as above.
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5.3. Hessians at the Singular Points in the Planes x21 ¼ x22

In principle it is not di‰cult to calculate the Hessian of p at these points.

For explicit numerical constants cij this is a simple arithmetic calculation, but for

general constants the expressions which one obtains are not as easy to under-

stand. We now begin our discussion recalling that, if P is a double point on the

planes x21 ¼ x22 , then diðPÞ ¼ 0 for i ¼ 1; 2; 3. Then, the part d1d2d3 of p will

vanish of third order at P, and will not contribute to the Hessian at P. It is also

clear that we have

q2ðnjdjþ1djþ2ÞðPÞ
qxiqxl

¼ njðPÞ
q

qxi
djþ1ðPÞ

q

qxl
djþ2ðPÞ þ

q

qxl
djðPÞ

q

qxi
djþ2ðPÞ

� �
;

where the indices are calculated modulo 3, since djþ1djþ2 vanishes of order two

at P. Calculations are quite complex and we will only discuss what happens

under the additional assumption c66 � c44 ¼ c13 � c12 ¼ c33 � c11 (see remark 4:3).

In this case, if we set c13 þ c44 ¼ c12 þ c66 and c33 ¼ 2c66 � c44, then the double

points lie on the space diagonal. In particular they have the following coordinates

ðGðc44 þ c66 � c12Þ�1=2;Gðc44 þ c66 � c12Þ�1=2;Gðc44 þ c66 � c12Þ�1=2Þ:

Moreover the niðPÞ have the same values and

d1ðxÞ ¼ 1� c66x
2
1 � c66x

2
2 � c44x

2
3 þ ðc12 þ c66Þx21 ;

d2ðxÞ ¼ 1� c66x
2
1 � c66x

2
2 � c44x

2
3 þ ðc12 þ c66Þx22 ;

d3ðxÞ ¼ 1� c44x
2
1 � c44x

2
2 � ð2c66 � c44Þx23 þ ðc12 þ c66Þx23 :

Denoting q ¼ d1d2 þ d2d3 þ d3d1, it follows that

1

n1ðPÞxixj
q2pðPÞ
qxiqxj

¼ q2qðPÞ
qxiqxj

; i ¼ 1; 2; 3:

The Hessian of p at P is then proportional to the matrix

A ¼

q2q

qx21

q2q

qx1qx2

q2q

qx1qx3

q2q

qx2qx1

q2q

qx22

q2q

qx2qx3

q2q

qx3qx1

q2q

qx3qx2

q2q

qx23

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:
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We can easily obtain

1

x1

qd1ðPÞ
qx1

¼ 2c12;
1

x2

qd2ðPÞ
qx2

¼ 2c12;
1

x3

qd3ðPÞ
qx3

¼ 2c44 þ 2c12 � 2c66;

and

1

x2

qd1ðPÞ
qx2

¼ �2c66;
1

x3

qd1ðPÞ
qx3

¼ �2c44;
1

x1

qd2ðPÞ
qx1

¼ �2c66;

1

x3

qd2ðPÞ
qx3

¼ �2c44;
1

x1

qd3ðPÞ
qx1

¼ �2c44;
1

x2

qd3ðPÞ
qx2

¼ �2c44;

Finally, explicit calculations give

ðc44 þ c66 � c12Þ
q2q

qx2i
ðPÞ ¼ 8ð�c12c66 þ c44c66 � c44c12Þ; i ¼ 1; 2;

ðc44 þ c66 � c12Þ
q2q

qx23
ðPÞ ¼ 8c44ð2c66 � 2c12 � c44Þ;

ðc44 þ c66 � c12Þ
q2q

qx1qx2
ðPÞ ¼ 4ððc12 þ c66Þ2 þ 2ð�c12c66 þ c44c66 � c44c12ÞÞ;

ðc44 þ c66 � c12Þ
q2q

qxiqx3
ðPÞ ¼ 4ððc12 � c266Þ þ 2c244Þ; i ¼ 1; 2:

Thus, the eigenvalues of the Hessian of p at P are

4ðc12 þ c66Þ2; �8ðc44 þ c66 � c12Þ2; 4ð2c44 � c66 þ c12Þ2:ð5:5Þ

Moreover, the determinant of the Hessian is equal to

128ðc12 þ c66Þ2ðc44 þ c66 � c12Þ2ð2c44 � c66 þ c12Þ2:ð5:6Þ

Thus, if we assume 2c44 � c66 þ c12 0 0, using the symmetries between x1 and x2,

we have proved that the double points of the slowness surface on the planes

fðx1; x2; x3Þ A R3 : x21 ¼ x22g lie on the space diagonals and are conical singu-

larities.

6. Hessians of Singular Points When c11 0 c66

In the previous section we studied the nature of the singular points which

appear on the slowness surface, in the case when we have c11 ¼ c66. Using exactly

the same arguments it is possible to study the nature of the singular points in the
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case when c11 0 c66. We observe that the main di¤erence between these two cases

is that, if c11 ¼ c66, then the slowness surface has four biplanar singular points,

one on each xi-semi-axis, with i A f1; 2g, whereas if c11 0 c66, then the slowness

surface does not have biplanar singular points, but it may have eight more

singular points on the planes xi ¼ 0, with i A f1; 2g, as proposition 3:4 shows.

Thus, with similar calculations, even though a little bit more involved, it is

possible to prove the following proposition.

Proposition 6.1. Let S be the slowness surface associated with the tetragonal

crystal system. Assume that the sti¤ness constants cij satisfy the assumptions we

made and, in addition, suppose c11 0 c66. Then:
� The double points of S on the x3-axes are uniplanar singularities.
� The double points of S on the plane x3 ¼ 0, which do not lie on the co-

ordinate axes are conical singularities.
� If, in addition, we assume that c11 � c33 ¼ c12 � c13 ¼ c44 � c66, then the

double points of S on the planes x21 ¼ x22 are conical singularities.

Remark 6.2. We observe that the proposition 6:1 holds for generic tet-

ragonal sti¤ness constants cij . It is not di‰cult to show that, if we consider the

tetragonal system in the nearly cubic case, i.e. if we assume c11 � c33 ¼ c12 � c13

¼ c44 � c66 ¼ e, with jej su‰ciently small, then the proposition still remains valid.

Now, we want to investigate the case when c11 0 c66, but c44 ¼ c66. We have

seen that, in this case, the slowness surface has four double points, one on each

semi-axis of the coordinate plane x3 ¼ 0. We have the following results about the

nature of these double points.

Proposition 6.3. Let S be the slowness surface associated with the tetragonal

crystal system. Assume that the sti¤ness constants cij satisfy the assumption made

in the previous sections and, in addition, suppose c11 0 c66, but c44 ¼ c66. Then the

four double points of coordinate ðG1=
ffiffiffiffiffiffi
c44

p
; 0; 0Þ and ð0;G1=

ffiffiffiffiffiffi
c44

p
; 0Þ are uniplanar

singularities.

Proof. We denote P ¼ ð1= ffiffiffiffiffiffi
c44

p
; 0; 0Þ. We will prove that ‘pðPÞ ¼ 0,

ðq=qx1Þ2pðPÞ0 0, ðq2=qxiqxjÞ2pðPÞ ¼ 0 if i A f2; 3g, j A f1; 2; 3g, ðq=qxÞapðPÞ ¼ 0

if jaj ¼ 3 and the order of derivations in ðx2; x3Þ is odd.

The gradient of p at P vanishes since P is a double point of the slowness

surface.
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The following remarks help us simplify the calculations of second order

derivatives:
� The factors n2, n3 vanish twice at P.
� The expressions di vanish at P for i ¼ 2; 3 (but not necessarily for

i ¼ 1).
� When we derivate one of the di, i ¼ 1; 2; 3, in one of the variables xj, j ¼ 2

or 3, then we obtain a factor xj, and therefore this derivative will vanish

at P.
� ðq=qxiÞn1 ¼ 0, ðq2=qxiqxjÞn1 ¼ 0 for i ¼ 2; 3, whatever j is.

We can argue precisely as in the section ð5:1Þ and conclude that derivatives of

form ðq=qxiqxjÞ2pðPÞ, and ðq=qxiÞðq=qx1ÞkpðPÞ vanish when i; j A f2; 3g, kb 2.

Moreover, after some calculations we obtain

q2

qx21
pðPÞ ¼ 8ðc11 � c44Þ:

By assumption on the sti¤ness constants this is non vanishing.

We still have to say something about third order derivatives. If we derivate

once in x3 and the remaining derivatives are in the variables x1, x2, then the result

may be non vanishing. r

We conclude this section with a proposition about the nature of the singular

points on the plane x21 ¼ x22 in the case when they are near the diagonal. Indeed,

as we have observed, it seems di‰cult to calculate the Hessian of p at these

points in the general situation, whereas if c11 � c33 ¼ c12 � c13 ¼ c44 � c66, the

singular points lie on the space diagonals and it is easy to establish the conical

nature of these singularities. Now, we will prove that, if these singular points

remain near the space diagonals, then they still remain of conical type. In par-

ticular we will assume c44 ¼ c66, c33 � c11 ¼ e1 and c13 � c12 ¼ e3, with jeij,
i ¼ 1; 3 small. The choice of this assumption will become easy to understand

when we will discuss the curvature properties of the slowness surface (cf. [7] and

[10]).

Proposition 6.4. Let S be the slowness surface associated with the tetragonal

crystal system. Assume that the sti¤ness constants cij satisfy the assumptions made

in the previous sections and, in addition, suppose c11 0 c66, either c12 � c13 ¼
c44 � c66 ¼ 0 and c11 � c33 ¼ e, or c44 ¼ c66, c33 � c11 ¼ e1 and c13 � c12 ¼ e3.

Then, if jeij, i ¼ 1; 3 and jej are su‰ciently small, the double points of S on the

planes x21 ¼ x22 are conical singularities.
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Proof. We prove the proposition with the assumption c12 � c13 ¼ c44 � c66

¼ 0 and c11 � c33 ¼ e. The proof in the case when c44 ¼ c66, c33 � c11 ¼ e1 and

c13 � c12 ¼ e3 is exactly the same, with the expressions of f2 and f3 a little bit

more involved.

We recall that, if c12 � c13 ¼ c44 � c66 ¼ c11 � c33, then the double points have

the following coordinates

ðGðc44 þ c11 � c12Þ�1=2;Gðc44 þ c11 � c12Þ�1=2;Gðc44 þ c11 � c12Þ�1=2Þ:

Now, if we assume c12 � c13 ¼ c44 � c66 ¼ 0 and c11 � c33 ¼ e, it is not di‰cult to

see that the double points have coordinates

ðG~xx2;G~xx2;G~xx3Þð6:1Þ

where

~xx22 ¼ 1

c44 þ c11 � c12
þ ef2ðcijÞ ~xx23 ¼ 1

c44 þ c11 � c12
þ ef3ðcijÞ

and

f2ðcijÞ ¼
c44 þ 2c11 � 2c12

ðc44 þ c11 � c12Þððc11 � c12Þ2 � ðc11 � c12Þðc44 � eÞ � 2c244Þ

f3ðcijÞ ¼
c11 � c12

ðc44 þ c11 � c12Þððc11 � c12Þ2 � ðc11 � c12Þðc44 � eÞ � 2c244Þ
:

Thus, as above, it is possible to write the quantities ðq2q=qxiqxjÞðPÞ, with

i ¼ 1; 2; 3, in terms of the same quantities used in the case when c12 � c13 ¼
c44 � c66 ¼ c11 � c33 plus e times a rational function of the sti¤ness constants cij

(here and in the remainder of the proof, P will be one of the singular points in

ð6:1Þ). So, we can argue as above and prove that, if e is small enough, the signs

of the eigenvalues of the Hessian of p at P and of the determinant of the

Hessians when we assume c12 � c13 ¼ c44 � c66 ¼ c11 � c33, do not change if we

only have c12 � c13 ¼ c44 � c66 ¼ 0 and c11 � c33 ¼ e. This concludes the proof.
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