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DOUBLE POINTS OF THE SLOWNESS SURFACE
OF THE SYSTEM OF CRYSTAL ACOUSTICS
FOR TETRAGONAL CRYSTALS

By

Claudio MELOTTI

Abstract. The aim of this paper is to study the location and the
geometrical properties of the double points of the slowness surface
associated to the system of linear crystal-elasticity in three space
dimensions for tetragonal crystals. It will turn out that compared
with the case of cubic crystals, the location of these double points is
more involved. Moreover, for some specific choices of the “so-called”
stiffness constants, a new type of singularities namely “biplanar”
ones, will appear.

1. Introduction

The aim of this paper is to study the double points of the slowness surface
associated to the system of linear crystal acoustics for tetragonal crystals in R
In particular, the position and the geometrical properties of the double points will
be specified.

The paper provides the greater part of the algebraic results needed to
understand the long time behavior of global solutions of the homogeneous
system of crystal acoustic for tetragonal crystals. The complementary analytical
part of the argument, and applications to nonlinear perturbations of the system
will be given in a forthcoming paper. We recall that the system of crystal
acoustics is a linear 3 x 3 hyperbolic system of second order partial differ-
ential equations. It is a special case of the time-dependent system of elasticity
in three space variables. Specifically, we will deal here with the following sys-
tem of linear partial differential equations of second order (cf. e.g., [4], [I1],
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(8], [12]).
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where u(t,x) € R? is the displacement vector and c;; € R are the stiffness con-
stants. Our final goal is to obtain decay properties of global solution u(z,x) on
R} x R, of the system for t— +oco. By this we mean that we are interested
in estimates of type |u;(z,x)| < c(1+t]) 7%, ¥(x,t) e R} x R, for some constant
x> 0. Apart from their intrinsic interest, such estimates play an essential role
when we want to study the long-time existence of small non-linear perturbations
to the system. For a similar study in the case of isotropic wave type equations see
e.g., [9].

The way by which it is possible to obtain results on the decay for solu-
tions of the system is to represent them as parametric Fourier-type oscillatory
integrals which live on the so called slowness surface (see definition 1.4 later on in
this paper) of the system. The main difficulties in the study of these integrals
come from the presence of isolated singularities in the characteristic surface
associated to the system and of points where the curvature of the surface
vanishes.

In order to justify the results of this paper, we now state a theorem on decay
estimates for the solutions u(z,x) of the system (1.1)

THEOREM 1.1.  Assume that the stiffness constants c; satisfy some prescribed
conditions such that the system (1.1) is hyperbolic and “near” the cubic case (i.e.,
we consider the tetragonal case as a small perturbation of the cubic one). Then,
there are a constant C, and a natural number k > 2 such that

3
(1.2) Ju(t, )l < Cr(L+ [d) 72V TS " (l0gfll + 1039501,

Jj=1 |u|<k

for all (1,x) € R*, for any solution of the Cauchy problem of the system (1.1), with
the initial data u;(0,x) = fj(x), 0;u;(0,x) = gj(x), j=1,2,3, where f; and g; are
smooth functions on R® and have compact support.

The details of the argument and specific information on the conditions on the
stiffness constants will be given in a forthcoming paper. (Also see [10].) Similar
estimates are valid for the solutions of the system of crystal acoustics for cubic
crystals (see e.g. [8]). The general strategy for proving results of the type of
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theorem 1.1 is well established, see [5], [8]. Starting point is that we will write the
solution of the Cauchy problem in terms of parametric integrals over the slowness
surface of the system. Moreover, it is possible to separate the contributions
coming from different parts of the slowness surface, depending on their geo-
metrical features. In particular, we will have to use theorems about estimates for
Fourier transform of surface carried densities for surfaces which have singular
points or for which the curvature may degenerate in the smooth part. In the
absence of biplanar singular points, the necessary results have essentially been
established in [1], [7], [6] and [16]. However, when the slowness surface has
biplanar double points, we also need the following theorem (see [10] and a
forthcoming paper).

THEOREM 1.2.  Assume that S is a surface with a biplanar double point in the
origin, defined by the equation g(x,y) =z, and let F:S — C be a continuous
function which is bounded in a neighborhood of the origin which is such that the
function f(x,y) = F(x, y,g(x,y)) is €' on (x,y) # 0 small, and for which there is
a constant ¢ such that

|V(x,y)F(x7 y,g(x, y))l < c/\/ A(x7 y) fOV 0# |(X, y)' e

If k are small enough, we can find a constant ¢, such that
I(&,n,7) = J expliéx + iny + itz] F(x, y, z) do,
s

satisfies the estimate

(1.3) (&, 1) < (1+[(En1)) " In(1+[(&n, 7)),

provided F(x,y,g(x,y)) vanishes for |(x,y)| = «.

The geometrical properties and the position of the double points of the
slowness surface are well known in the case of cubic crystals: in the non de-
generate case they are precisely 14 in number (cf. e.g., [7], and [11]). Of these,
6 lie on the coordinate axes, exactly one on each semi-axis, and are of uniplanar
type. The remaining 8 double points lie on the space diagonals (i.e. the lines
|€1] = |&| = |&3]), in each octant of R? lying precisely one and are of conical type.

We will see that in the general tetragonal case the double points lie in
different and in fact more complex configurations. In addition, a new type of
singular points appears for tetragonal crystals in specific cases. They will be called
singular points of biplanar type. The name biplanar comes from the fact that
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the best local second order affine approximation of the slowness surface at the
respective singular points is the union of two transversal planes.

We next observe that if we take into account the symmetries inherent to the
tetragonal crystal class, we can rewrite the system in the following form

(1.4) 07y = (en105) + o603, + cas033)ur + (c12 + Co6) 0otz + (€13 + caa) D133,
62 _ 62 62 62 62 A2

Ty = (€12 + ¢66)01pu1 + (€6607) + €105, + c4a033)ur + (€13 + ca4) 0353,

afug = (C13 + C44)(3123u1 + (C13 + C44)5§3u2 + (6‘446121 + C44a§2 + C335§3)u3,

where we used the two-index notation for the stiffness constants (cf. e.g., [11]).
Moreover we assume several restrictions on the constants c¢;, which come from
physical considerations, and in particular imply that the system (1.1) becomes
hyperbolic. We will not write these conditions down explicitly here, but we will
assume that the following implicit condition on the stiffness tensor holds: we
suppose that the matrix

3
(1.5) A(¢) = ( > C{fklfjfl)
Jil=1 i k=1,2,3

is positive definite for all &eR> (cf. e.g. [4], [8] and [6]). We recall that the
characteristic polynomial of the system is given by the determinant of P(z,¢),
where 7€ R, £ eR? and P(r,¢) is the following matrix:

w2 — e & — cesls — caals —(c12+ce6)&18> —(c13+ cas)éés
—(c12+¢c66)&162 1% — 661 — 1) — casé3 —(c13+ caa) &2
—(c13+ can)éi&3 —(c13+cas)é & 12 — caaél — culs — ennél

Thus, the characteristic manifold associated with the system is
{(z,6) e R¥; det P(z,&) = 0}.

An easy computation shows that the characteristic polynomial p(z,&) has the
form

p(7,&) = (&)da(t,E)ds(1, &) + ma(E)dsz (7, &)dy (7, &)
+ n3(&)di(z,&)da (1, &) — di(t,&)da (1, &)d5(E),
where

(c13 + C44)2 2

m (&) = (cio+ce6)E,  m(E) = (c12 + ce6)E3,  n3(E) =— — 3,
C12 + Co6
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and
di(t,&) =7 —d}(&), d](&) = cné] + ce6Ss + canls — (12 + ce6)ET,
d(t,&) =72 —dj(&),  d3(E) = ce6T + 115 + canés — (c12 + ce6)E3,

(c13+ cas)?

ds(1,8) = = dj(&), di(E) = caséi + caal3 + e3¢5 — 3
c12 + ce6

With these notations the characteristic surface is given by p(z,&) =0.
This is often written in the so called “Kelvin’s form™ (see [4], [11], [7]):

m() | m(&) | m(d)

di(t,&) * dr(7,¢) - ds(t,¢) =1

(1.6)

RemMark 1.3. It follows immediately that p(t,¢) is a homogeneous poly-
nomial of degree six. Thus, the condition on hyperbolicity implies that for every
fixed £ e R® the equation p(z,&) = 0 has 6 real roots, if multiplicities are counted,
and it is obvious that for every fixed & # 0 three of them are positive and three
negative.

DrerFINITION 1.4, The surface S, defined by the condition p(¢) =0, where
p(&) = p(1,¢), is called the slowness surface of the crystal.
Moreover, we define:

(&) = di(1,¢), d(S) = dr(1,),  ds(&) = ds(1, Q).

We observe that the slowness surface is essentially the intersection of the
characteristic surface with the plane 7= 1.

As in the case of the characteristic manifold we say that the equation which
defines the slowness surface is written in Kelvin’s form if the equation p(¢&) = 0 is
in the form 1.6 (where the d;(7, &) are replaced by the d;(¢)). The equation of the
slowness surface is thus

m@  m@  m©
4@ (@) T d©

First of all we want to find the double roots of p(£) and we want to give some

= 1.

conditions on the stiffness constant in order to avoid triple roots. If we assume
p(&) =0 in Kelvin’s form, it is easy to see that, if n;(¢) > 0 and d'(¢) > 0 for all
£eR3, then we can have a double root at £ € R® only when

(1.7) di(&) = dy(&) = &i(&),
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or when

(1.8) i (E)na(E)n3(€) = 0.

Note that, with our assumptions on the constants, the condition n;(&)ny(&)ns(&)
=0 means that & lies on a coordinate plane.

Now we observe that the points of intersection between the slowness surface
and the axes are

(1.9) (i@,o,()),
(1.10) (O,imﬁ), (0,i@,0), (0,i cl1’0>’

(1.11) (o,o,i\%ﬂ) <o,o,i\/%), (o,o,i\/%).

Note that this gives a geometrical interpretation of the quantities c;.

Also note that it follows from these expressions that we always have double
roots on the &3-axis. On the other hand, we have double roots on the other two
axes only when we have cgs = ca4, Co6 = C11, OF €11 = Caq.

So, considering this and the condition on hyperbolicity of the system, we
assume the following conditions on the stiffness constants (cf. [7])

(112) Cij > 0, for i = 1,3,4,6, Ce6 > Cl2, Ca4 7 C13,
2
(113) C]]*C‘6676'12>07 C337M>0.
c12 + ¢ce6

Moreover, in order to avoid triple roots on the axes, we assume

(1.14) ¢33 # cq4 and that the ¢y, ce6,cq4 are not all equal.

REmARK 1.5. Here we want to write down explicitly the relation between the
stiffness constants in the cubic case and in the tetragonal case. The cubic case is
when we have

Cl1 = €33, C44 = Co6, C12 = C13.

It follows from conditions (1.7) and (1.8) that S has double points only when
we can write the sixth degree polynomial p(¢) as the product of two homo-
geneous polynomials of degree two and four respectively. Indeed, if n; =0 for
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some i€ {1,2,3}, then

(1.15) p(&) = di(ni1diya + nigadiyy — diy1diga),
whereas if d; = d, = d3, then

(1.16) P(&) = di (ni + niy + nia — dy),

where in the previous two equations the indices are counted modulo three. We
will study the location of the double points of the sextic (1.15) in section 3 and
the location of the double points of the sextic (1.16) in the section 4.

We conclude this introduction with some considerations concerning the
quartics in the plane of the type which appears in the factorization of p(&).

DerFiNITION 1.6. A bi-quadratic quartic in the plane will be called (following
a suggestion of O. Liess) of “slowness type” if each ray starting from the origin
has (when counted with multiplicities) exactly two intersection points with it.

Let
(1.17) G(x, y) = aix* + ayy* + asx*y? + b1 x* + byy? + ¢y,
for some constants a;, b;, ¢; with a; >0, a >0, ¢; #0, and
(1.18) q(x,y) = (2 + 3 +ax®y? + b(x* + y) + ¢,
with @ >0 and ¢ # 0. The following proposition (suggested by O. Liess) is

straightforward (for details see [10]).

ProposITION 1.7.  Let g(x,y) be a quartic of the form (1.17).
< If g(x,y) is of the slowness type then the following conditions must be
satisfied
b1<0, b2<0, c; >0,

blz —4dayc; =0, b% —4arc; > 0.

* g(x,y) has double points if and only if it is the product of two factors of
degree two.

< If g(x, y) is of slowness type, and if it has double points, these must lie on the
axis, or else we have the following conditions

a32 —4ayay > 0,

2b2a1 — b1a3 > 0,
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2byar — byaz > 0,
(azh) — 2b2a1)2 = (b]2 — 4cla1)(a§ —daay),

with (2byay — byaz)(2byas — byaz) # 0. In this case §(x, y) has the following
form:

1 asby — 2a1b
~ 2 2 2, a3b 1b2
q(x,y):[alx —§<—a3y —b1+\/a§—4a2a1<y +7a§—4a1a2 ))}
1 asby — 2a1b
2 2 2 ) | @b 102
—(—asy? = by —Ja2 -4 B B2
[alx 2( asy 1 as ara (y + a32—4a1a2 ))}

In addition, let q(x, y) be of the form (1.18). If q(x, ) is of the slowness type, then
the following conditions must hold:

b<0, ¢>0, b>—4c>0,
a+4>0, b>—(a+4)c=>0.

Moreover q(x,y) =0 has double points if and only if either b> —4c=0 or
b2 — (a+4)c=0.

If b*> —4c = 0, then q(x, y) has one double point on each axis and it is possible
to write it in the following form as the product of two ellipses:

b b
q(x, y) = <x2+y2+5—\/5xy> <x2+y2+§+x/5xy>-

If b>—(a+4)c=0, then q(x,y) has one double point on each semi-diagonal
and it is possible to write it in the following form as the product of two

ellipses:
q(x, ) = (ax® + By* — p)(Bx* + ap® — 9),

where (o+B)> =a+4, y=—b/(u+f) and y* =c.

2. Remarks on the Hexagonal Case

For completeness we review in this section some results which are related to
the case of hexagonal crystals. Our main reference is [13] although the results in
itself were known much earlier. We are in the hexagonal case if the following
condition on the stiffness constants hold:

(2.1) Cl2 = C11 — 2066'
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The main consequence of this assumption is that the sixth degree polynomial p(&)
factors into the product of two polynomials, one of degree two and one of degree
four. Explicitly we have that (2.1) implies (&) = d;(&) and then

P(&) = di(Q)[ds()(m(S) +ma(S) + di(S)(m3(S) — ds(S))]-

The factor of degree two has an ellipsoid as wave surface and it is very simple
(d1 (&) = 1 = ce6(EF + E3) + caaé3). The fourth degree factor is also easy to study
since the variables &, and &, appear always in the form &7 4 &7 (note that
n1 (&) +m (&) = (c11 — ce6) (&7 + &3)), in accordance with the property of rota-
tional symmetry with respect to an axis of hexagonal crystals. Therefore the wave
surface is known explicitly. Thus it’s sufficient to study the double points on the
coordinate planes & =0 (or & =0) and & =0.
Moreover the singularities have the following form.
(i) If ¢11 = caa the quartic associated to the fourth degree factor has two
double points on each ¢&;-axis, with i = 1,2 (cfr. Proposition 3.2).
(i) If ¢11 = cg6, the quartic associated to the fourth degree factor has two
double points on each &;-axis, with i = 1,2 and four double points one
on each diagonal of the form +¢&, = +¢&,, & = 0 (cfr. Proposition 3.3).
(iii) If ca4 = ces, the quartic associated to the fourth degree factor intersects
the ellipsoid on each ¢&;-semiaxis, with i =1,2.
(iv) The quartic intersects the ellipsoid one time on each ¢&;-semiaxis.
(v) If some particular conditions on the stiffness constants hold (cfr. Prop-
osition 3.4), the quartic intersects the ellipsoid in eight double points, one
on each quadrant of coordinate planes & =0, with i=1,2.

3. Double Points of the Slowness Surface in the Coordinate Planes

In this section we will study the location of the double points on the sextics
which appear when we restrict the slowness surface of a tetragonal crystal to the
coordinate planes. If we now restrict to the coordinate plane {¢ € R*; & = 0} for
some i€ {1,2,3}, then the terms in p(¢) which contain n;(¢) as a factor vanish,
and we obtain the curve

{€eR* & =0,d =0} U{Ee R & = 0,m1di0 + nijadisy — divrdiya = 03,

with indices calculated modulo 3. Our restriction is thus the union of an ellipse
with a bounded quartic. Real double points can appear then in principle in two
ways: if we intersect the ellipse with the quartic, or if the quartic itself has double
points.
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We will investigate this two cases in the next subsection. We will prove that
the quartic has double points if and only if two of the ¢;, i = 1,4,6 assume the
same value, whereas the ellipse can intersect the quartic in zero, two, six or eight
points, according to the values of the stiffness constants. Figures 3.1 and 3.2 show
restrictions of the slowness surface to the coordinate planes for different values of
the stiffness constants.

We observe that p(¢) is symmetric in the variables & and &,. So, we will
only study what happens in the planes & =0 and &; = 0.

Our first concern is to understand for which values of the constants c¢; we
can have double points on the quartic. In fact, as we have already seen, the
quartic can have double points only if it is the union of two ellipses which
intersect.

3.1. Double Points of the Quartic in the Coordinate Planes

Assume at first that £ = 0. Then the restriction of p to & = 0 factors into
the form d)(nyds + n3dy — dads). This means that {(&,&3); p(0,&,,8) =0} is
the union of the two curves C; = {(&,,&3);d1(0,&,,&3) =0} and Cy = {(&,, &);
(nads + nady — dhds)(0,&5,83) =0}, Cp is the ellipse s1(&,,&3) =0, where

(3.1) 51(E9,83) = 1 — ce665 — casls,
whereas C, is the quartic given by ¢;(&;,¢&;) =0, where
(3.2) q1(E2,E3) = ericals + exzculs — (¢ — crieas + 2c13¢40) 563

—caaéF —en&; — enéi — cali + 1.
We can write ¢;(&5,&3) as Xé§+ Y(éz)§32 + Z(&,), where

X = casc33,
Y (&) = (=2ci3¢44 + cric33 — ¢53)E5 — ¢33 — Caa
Z(&) = cricaés — (11 + caa)é3 + 1.

We denote by D(&,) the quantity Y (&)* — 4XZ(&,). We have seen in proposition
1.7 that a necessary condition for the quartic (3.2) to have double points is that
D(&,) have positive double roots and its leading coefficient be positive. After
some calculations, we can write D(&;) as

D(&) = A3+ BE + C
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with
A= (011633 — 2c13C44 — C123)2 - 45&4533(3117
B = —2(c33 + caa)(cr1033 — 2¢13¢a1 — €33) + 4cancss(caa + c11),
C= 624 + C§3 — 2C44C33.

We can therefore have double roots only if D; = B> —4AC = 0. The expression
for Dy is quite long, but it factors conveniently to

Dy = 16¢ascss(crs + caa) (3 + 2c13¢4 + casesy — cxenn + caacn),
and so we have D; =0 if and only if
(3.3) Dy = (cf; + 2¢13¢44 + caacss — cxzeny + caacry) = 0.

Note that cszcas is strictly positive and c¢j3+caa # 0 by conditions (1.12).
Moreover the double root of D(&,) is positive if and only if

(34) B = —2(633 + C44)(C’11€33 — 2¢13C44 — 6123) + 4C44C33(C44 + C]]) <0.
A further condition for the quartic (3.2) to have double points is that 4 > 0, i.e.
(35) (C116’33 — 2C13C44 — 6’123)2 — 4C§4C33011 > 0.

If we denote by &, the double root of D, the last condition for the quartic (3.2) to
have double points is that Y (&) <0, ie.

(3.6) (11 + cag)(cr1c33 — 2¢13¢a0 — €13) — 2(c33 + caa)errcag = 0.
REMARK 3.1. Here and in the following we assume another condition on the
stiffness constants. This condition comes from physics and numerical examples of

stiffness constants for tetragonal crystals agree with it. We assume that ¢, and
c13 are small when compared with ¢;, for i =1,3,4,6.

With the assumptions of remark 3.1 the conditions (3.3), (3.4), (3.5) and

(3.6) reduce to the following

(3.7) caac33 — c33¢11 + caacpp =0,
(3.8) cricas > dcgy,

(3.9) en (e — cas) > 2,
(3.10) ez — caa) > 2034.
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From (3.7) it follows that ¢j; = c33¢aa/(c33 — caa) and, taking into account this
condition, the conditions (3.8), (3.9) and (3.10) yield ¢33 < cas. But if ¢33 < caq,
then ¢;; must be negative and therefore we can conclude that ¢;(&,, &3) can have
double points only on the axes.

We can now understand whether or not the quartic ¢g; = 0 can have double
points on the axes. We recall from (1.11) that the points on the positive &;3-axis
are

1 1 1
0,0,—) and (0,0,——], 0,0,——.
Lozm) = (07m) (07m)

Since the first point here is a point on the ellipse (3.1), it follows that the double
point on the positive &3-axis is the result of the fact that the ellipse and the
quartic touch. The points on the positive &,-axis are

1 1 1
Oai—ao ) Oai—ao ) 07i—a0 .
(27m) (0e7m) (02gm0)
Again, the first point lies on the ellipse (3.1), so it follows that the quartic has

double points on the positive &,-axis when ¢j; = caq.
Thus, we have proved the following proposition.

ProOPOSITION 3.2. Let q1(&, &) =0 be the quartic defined by (3.2). It has
double points if and only if c11 = caa. In this case q1(&5,E3) =0 has two double
points of coordinates (0,+1/,/ca4,0), on the &,-axis.

We now deal with the restriction to &; = 0. Since the restriction of p to
this plane factors into ds(nids + nad) — dyda) =0, we then have to look at the
ellipse

(3-11) S3(fl,fz):d3(51752»0):0

and the quartic ¢3(&;,&,) =0, where

(3.12) @381, &) = cniees(E] + &) + (¢} — ¢}y — 2e1nce6)E1ES
— (en + ce6) (6T + &) + 1.

We have seen in the previous section that such double points can only lie on the
axes or on the diagonals. The double points on the axes are known from the
relations (1.9) and will exist when ¢;; = cg6. The points on the positive principal
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diagonal & =¢&,, & >0 of the quartic are on the other hand

< 1 1 0) ( 1 1 0)
Ven —en en —cn’ )7 \Ver + e+ 2¢e6 Ve + i+ 266 )

It follows from this that the quartic has double points only in the case when
c11 — ¢ = ¢11 + c12 + 2¢66, 1.€., when ¢ + cg¢ = 0. Since we assume that ¢, is
small compared with cg, there will thus be no double points on the quartic and
the double points of p(&y, &, 0) = 0 must come from the intersection of the ellipse
with the quartic which we will now compute. Thus, we have proved the following
proposition.

ProposITION 3.3.  Let q3(&1,&,) =0 be the quartic defined by (3.12).
It has double points if and only if c¢11 = ces. In this case q3(&,&) =0 has
four double points, two on the &y-axis, and two on the &y-axis, of coordinates

(+1/4/¢66,0,0) and (0,+1/./ce6,0) respectively.

Figure 1: Restrictions of S to the plane & =0 with (11, ¢33, caa, Co6, €12, €13) equal to (4,3,1,2,
—1/2,1/5) and (1,3,4,2,—1/2,1/5) respectively.

3.2. On the Intersection of the Ellipses with the Quartics
in the Coordinate Planes

As before, we assume at first that & =0. We have the following
proposition.
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PROPOSITION 3.4. Let 51(&r,E3) and q1(Ey,&3) be the polynomials defined in
(3.1) and (3.2) respectively. We denote

2

o (c13 + ca4)” + (cas — c33) (11 — ¢o6)

2 = )
cr1¢3y + 2c13¢aae6 + €66 — C11C33C66 + C33C%

2 (cas — ce6)(c11 — Co6)
3

- 2 2 2"
C11¢4y + 2¢13Ca4C66 + Ci3Co6 — C11€33C66 + €33C¢,

If the stiffness constants c; are such that & and & are positive and ci; #
Co6 # Caa, then s1(&,E3) =0 intersects q1(&,, &) =0 in six points of coor-

dinates:
I L
(07 0, i _> ) (07 i_é% _’__§3>
Ca4

If the stiffness constants c; are such that & and 53 are not positive, then
51(&5,&3) =0 intersects q1(Er,E3) =0 only in the points (0,0, ++/1/caa).

\ /
0fs - -0 0
&

Figure 2: Restrictions of S on the plane & =0 with (c1, ¢33, caa, Co6, €12, c13) equal to (2,3,1,4,
—1/2,1/5) and (4,3,2,1,—1/2,1/5) respectively.

&

Proor. We denote P=(0,&,&3). P =(&,&3) then corresponds to an
intersection point of s; =0 with ¢; =0 if we have simultaneously

di (P) =0, (I’lzd3 + n3dy — d2d3)(P) =0,
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with the usual notation. The condition d;(P) = 0 means that P’ = (&,,&3) lies on
the ellipse

1 — o663 — canls =0,

which gives

1_ 2
(3.13) 2= g(ey) =L

C44

We have to insert the value of 532 given by (3.13) into the equation
(nads + nsdy — drdy)(P) =0, and to solve the resulting equation for &,. Calcula-
tions are simplified if we make the following preliminary remarks: the values of
dy, ny —do, and ds, for & =0 and &; given by (3.13) are

dy = (—c11 + 2¢66 + €12)E3,

ny —dr = (c11 — ¢66)E3,

C12+¢66  Ci12 + Co6 2, €33 2 C13 + C44 2
dy = - c4al5 +— (1 — cg6& >+71—c6§ .
: C13+C44  C13+ Caa ( M2 C44 ( 2) C44 ( 6<2)

After some calculations, it follows that [n3dy + ds(ny — d»)](0,&5,9(&,)), is di-
visible by &7 and that we have

[n3dy + d3(ny — d1)](0,&5,9(&2))

&
_ (c13 + caa) (1 — €66¢3) (—c11 + 2¢e6 + €12)
Ca4
c2tces 1

2 22 2
cas — (c34E5 4 33(1 — o6&
L0 (g (i + el — caild)

+ (e13 4 caa) (1 = c6683)) (c11 — co6)-

In particular, we see that & =0 is a solution of [n3dy + ds(ny — d»)](0, &5, 9(&,))
= 0 with multiplicity 2. When ¢&; = &, =0, the value of f§ for which we have
intersection is 1/css. Thus, the first part of the proposition is proved.

The other solutions of [n3dh + ds(ny — c2)](0,&,,9(&,)) =0 are also easy to
calculate, since [n3dy + ds(ny — da)](0, &, g(&,)) /&5 is linear in the variable s = &3.
We obtain precisely 55 = 5% Inserting this into s1(&,,&3), we obtain the value
& = & corresponding to & = &. O

We now deal with the restriction to &; = 0.
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PrOPOSITION 3.5.  Let 53(&1,&,) and q3(&1, &) be the polynomials defined in
(3.11) and (3.12) respectively. We denote

C12 + 2¢c4a — c11)(c12 + 2¢66 — 2¢a4 + c11)

R:(
(c12 + ern)(er2 — enr + 2ce6)

If the stiffness constants cy are such that 0 < R <1 and cy1 # ca4 # ces, then
53(&1, &) intersects q3(&1,&,) =0 in eight points of coordinates

() (5259 )
((525) +(525) o)

2c44
Proor. We proceed as in the proof of proposition (3.4). The condition
dy(P) =0 gives & = ¢! — &, Inserting this value of ¢ into the equation
(nldz + nod) — d]dz)(P) =0, we obtain

B+ VD
24

12

1/2

&=
where
A = (c12 + cnn)(cra — ci1 + 2¢e6)cass
B = (ci2+ c11)(er2 — e11 + 2¢e6),
D = (c12 + ci1)(ci2 + 2cas — c11)(c12 — 11 + 2¢66) (€12 + 2¢66 — 244 + €11).

So we find the requested values of &; and consequently &,. O

We conclude this section noting that, if csq = cg6, the quartics ¢;(&,,&3) =0
and ¢3(&;,&) =0 do not have double points, but the ellipses s1(&,,&3) =0 and
53(&1,&) =0 intersect the quartics g;(&,,&3) =0 and ¢3(&;, &) = 0 respectively,
on the &j-axis and on the &;3-axis.

4. Double Points of the Slowness Surface Near the Diagonal

In this section we will study the location of double points of the slowness

surface of a tetragonal crystal, which occur when d)(¢) = db(&) = d3(&). Now,
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suppose that this condition holds and that d;(&) # 0. Then ¢ must be a double
point of (ny +ny +n3 —d;)(€) = 0, but this is absurd because, given our assump-
tions on ¢, (m +ny +n3 — di)(€) = 0 is an ellipse in R?. Conversely, if we know

that

d (&) = d(&) = d(&) = 0,
for some point &, then & is a double point of S. Thus we have the following
lemma.

LEMMA 4.1.  Singular points & of the slowness surface, which do not lie on the
coordinate planes, can occur if and only if di(&) = d»(&) = d3(&) = 0.

Our next remark is that d,(¢&) =dy (&) implies 512 :f%. Inserting this
information into d;(¢) = d5(&) shows that 612 and f% must be related by the
condition

(—c11 4 c12 + 2c44)(c12 + co6)

4.1 2 =
@ Z (c13 + caa)” + (c12 + co6) (cas — €33)

&.

Using &7 = & and (4.1), p(¢) = 0 reduces to a third-degree polynomial in ¢ = &7,
which will have a double root.
Solving this equation we then obtain the following value for 612

(c13 4 c4a)* + (c12 + co6) (cag — €33)

42) & =- 5 —
(€134 c4a)" (€12 — c11) + (12 + c6) (c33¢11 — c12¢33 — 2¢7y)
This gives
Iz (2¢a4 + c12 — c11)(c12 + ce6)
3= .

(c13+ 6‘44)2(012 —c11) + (12 + co6)(€33€11 — 12633 — 2034)
Thus we have the following proposition.

PROPOSITION 4.2. Let S be the slowness surface for the tetragonal crystal
system. We denote

(c13 + caa)® + (c12 + co6)(cas — €33)

(c13 + 6‘44)2(6‘12 —c11) + (12 + co6)(e33¢11 — C12633 — 26’24) ’

&--

(2¢a4 + c12 — c11) (€12 + ce6)

Bem .
(c13 + caa)*(c12 — e11) + (€12 + ce6) (€33¢11 — C1€33 — 2¢3,)
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If the stiffness constants c;; are such that 512 and E% are positive, then S has eight
double points, four on each plane {(&,&,,&3) eR: ¢ = +&}, of coordinates:
(L& +E), (=&, -&, &)
(&1, =&, &), (=&,&, &),

Figure 3: Restriction of S on the plane & =& with (ci1, ¢33, caa, C6, C12, C13) equal to (4,3,1,2,
~1/2,1/5).

REMARK 4.3. In the case of cubic crystals the condition d; = d, = d3 implies
that we must have 512 = éf = é%. So, if we call the eight lines defined by these
conditions the space diagonals, in the cubic case we have eight double points, one
on each space diagonal. Denote F = (—cy1 + ¢12 + 2¢a4)(c12 + ce6) — (€13 + (:44)2
— (c12 + co6)(cag — c33). Then, in the tetragonal case, we have double points on
the space diagonals if F = 0. Further, we can decompose F as

F = (—ci1+cia+ cas + c33)(c12 + 66 — €13 — Ca4)
+ (c13 + caa)(—c13 — ci1 + 12 + ¢33).

It follows in particular that F =0 if ¢jp +ce6 —c13 —caa =0 and —cj3 —cp1 +
c12 + ¢33 = 0 simultaneously. To put the conditions into a symmetric form we can
also write them as

(4.3) Co6 — Ca4 = C13 — C12 = €33 — C[1.

Note however that these conditions are only sufficient to guarantee that the
double points lie on the diagonals. The nice thing about the conditions in (4.3)
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is that the three quantities cgs — c44, €13 — C12, €33 — €11 measure the “distance”
to the cubic case. These conditions therefore say that the three quantities which
determine this distance are equal, but do not necessarily vanish. Thus, if we are
near the cubic case, we can expect the double points of tetragonal crystal on the
planes {(&),&,&) eR3: & = +&) to be near the space diagonal.

5. Tetragonal Crystals When c¢;; = ¢4

Here and in the remainder of this section we will assume that the stiffness
constants c¢;; and cg are equal. In this case not only do we have some
simplifications in the calculations, but also a particular type of double point
appears on the slowness surface. We will call it a “biplanar” double point
(see definition 5.3). It is a type of double point which does not appear in the
cubic case, and it is the main reason why we need a theorem of the type of
theorem 1.2.

We begin the study of tetragonal crystal when we have ¢j; = cg¢ with the
description of where the double points of the slowness surface are located. The
results of the previous two sections yield the following proposition.

PROPOSITION 5.1.  Assume ci11 = ces and let c; be such that the conditions
(1.12), (1.13), (1.14) are satisfied and c;;, with i # j, is small compared with c;.

Moreover, let S be the slowness surface for the tetragonal crystal system. Then S
has six double points, one on each semi-axis, of coordinates (see figure 4, left)

1 1 1
+—a070 ) Oai_—ao ) anai_ .
(_ V€66 ) ( V€66 ) ( \/644)

In addition, if (c12 + 2caa — co6)(c12 + 366 — 2¢a4) > 0, then S has eight double
points on the plane {(&),&,,E3) eR®: & =0} (see figure 4, right), of coor-

dinates
12
1++VR 1-+vR
i b i b O b)
2c44 2¢44

((525) (525 )

2¢44
where all combinations of signs are allowed and
(c12 + 2cas — co6)(C12 + 366 — 2¢44)

(c12 + ce6)”

1/2

1/2

R =
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Finally, ifgl > 0 and 53 > 0, then S has four double points on each of the planes
{(&1,85,&) e R : &2 = &2} of coordinates

(517517i£3)3 (_513_517i£3)7

(517_Elai£3)a (_Elaglaig3)7

where
i (c13 + caa)” + (12 + co6) (cas — €33)
1 — = 9
(c13 + €aa)*(c12 — co6) + (€12 + co6) (€33¢66 — C12¢33 — 2¢2,)
2 (244 + c12 — ¢co6)(c12 + Co6)
2

(c13 + caa) (€12 — co6) + (c12 + co6)(c33¢66 — C1233 — 2¢2,)

Figure 4: Restrictions of S on the plane & =0 and & =0, with (cy1, ¢33, Caa, C6, C12, €13) €qual to
(4,3,1,4,-1/2,1/5) and (1,2,5/7,1,—1/7,1/2) respectively.

REMARK 5.2. We observe that there exist admissible values of the stiffness
constants such that the conditions f,— >0, with i=1,3, and R>0 of the
proposition 5.1 can be either both satisfied or both not satisfied or one satisfied
and the other not satisfied.

Now we want to classify the double points of S into three different types,
depending on their geometrical properties. To do so, we need the following
definitions.

DEFINITION 5.3. Let S be a surface in R® on which the coordinates are
denoted by ¢ = (&1,&,,&3). We assume that Pe S and that in a neighborhood
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w of P, S is defined by an equation of form f(&) =0, with & e %, for some
function f € C*(%). We assume that Vf (&) = 0 precisely when & = P and denote
by Jif(&) =22,k (1/0)05f (P)C* the homogeneous part of degree k in the
Taylor expansion of f at P.
+ We say that P is a conical singularity if for some suitable choice of linear
coordinates J,f has the form J,f (&) = 512 - 55 - f%.
+ We say that P is a uniplanar singularity if it is possible to find linear
coordinates for which J,f (&) = & and if f =0 is locally equivalent to

E 4 A(E,E)E+ B(E,E) =0

with A(Py,Py) =0, B(P;,P;)=0, VA(P;,P;) =0, for some smooth
function A4, B.
Moreover, we assume that if we denote by A the quantity A = 4> — 4B,
then we have A(¢),&) = 0(|¢1, &%) for (£1,&) — (P1, Pa).
+ We say that P is a biplanar singularity if the following happens: for some
suitable choice of linear coordinates J,f(&) = & — &7 (see fig. 5).

In the next three subsections, we will prove the following proposition about
the nature of the singular points of the slowness surface for the tetragonal crystal
system, when we have c|; = cgs.

Figure 5: The biplanar double point at the origin of the surface defined by the equation
22 — (1/2)x? + 2yz% — 2z + x* + 2x2p2 + (1/2)y* = 0.

PrROPOSITION 5.4. Let S be the slowness surface for the tetragonal crystal
system.

The double points of S on the &z-axis are uniplanar singularities.

The double points of S on the &i-axis and &y-axis are biplanar singularities.
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If S has double points on the plane {(&1,&,,E) e R ¢ =0}, then they
are conical singularities. If S has double points on the planes {(&1,&,,&3) € R?:
512 = f%}, and cge — c44 = €13 — C12 = C33 — €11, then they are conical singularities.

5.1. Hessians at the Singular Points on the Axes

In this subsections we suppose that the assumptions on the stiffness constants
made in the proposition 5.1 hold. We begin with the proof of the fact that the
points (0,0,+1/,/ca4) € S are uniplanar singularities.

We denote P = (0,0, 1/,/caz). We will prove that Vp(P) = 0, (3/¢;)°p(P) #
0, (62/65,66j)2p(P) =0if ie{1,2}, je{1,2,3}, (8/0¢)*p(P) =0 if |o| =3 and
the order of derivations in (&;,&,) is odd.

The gradient of p at P vanishes since P is a double point of the slowness
surface.

The following remarks help us simplify the calculations of second order
derivatives:

« The factors n;, n, vanish twice at P.

+ The expressions d; vanish at P for i = 1,2 (but not necessarily for i = 3).

* When we derivate one of the d;, i = 1,2,3, in one of the variables &;, j =1

or 2, then we obtain a factor ¢;, and therefore this derivative will vanish
at P.

- (0/0&)ny =0, (0%/0,0¢))ny =0 for i= 1,2, whatever j is.

We conclude from these remarks, that the terms nydrds, nrdsd; vanish of
order 3 at P. Therefore, they will not contribute to the Hessian of p at P.
Moreover, when we calculate second order derivatives of type (3%/0&0&,) of
(n3 — d3)did,, then, in order to have a nontrivial contribution, we must derivate
each one of the factors d; and d», since these factors vanish at P. However, first
order derivatives of dj,d, again vanish at P, so we do not have enough deri-
vations to obtain a nontrivial contribution. In a similar way we conclude that
derivatives of form (0/0&;)(3/0&3) p(P) vanish when ie {1,2}, k > 2.

We next calculate (8/0&;)%p(P). Again, only (n3 — ds)d\d> can give a non-
trivial contribution. We must of course derivate each of the factors d; and d»
once, to get a nontrivial contribution. Therefore

(0/0&3)°p(P) = (ny — d3)(P)(0/0¢))di (P)(8/0&,)da(P).
After some calculations we obtain

5_2p(P) _ 8(e33 — caa)(c12 + co6)
6532 C13 + C44 '
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By assumption on the stiffness constants this is non vanishing.

We still have to say something about third order derivatives. If we derivate
once in &3 and the remaining derivatives are in the variables &;, &,, then the result
may be non vanishing.

We now turn to the case of the &;-axis and of the &,-axis. The two cases are
of course symmetric. We will prove that the points (+1/,/ces,0,0) € S and
(0,+1//¢66,0) € S are biplanar singularities.

Now, we denote P = (1//¢e5,0,0). As before we can simplify the calcula-
tions with some preliminary remarks. We now have:

* np, ny vanish of order 2 at P.

* d» vanishes at P.

+ The first order derivatives of the d;, i = 1,2, 3, in the variables &,, &3 vanish

at P.
* n; —d, vanishes at P.
We first prove that

*p(P)  8(c12 + ces)(cas — cos)

6612 C13 + C44
&*p(P) _ 2(c12 4 co6)” (Cas — Cos)
o0& cgelc13 + ca)
Zp(P) _
0&3

It follows, by the assumptions on the stiffness constants, that (3/0¢,)*p(P) and
(8/0,)*p(P) have opposite signs.

To calculate the second derivatives in &;, we notice that the terms containing
ny, np will not give any contribution: they contain factors of type ég, §§ and these
factors are like constants if we derivate them in &;. Since d» and n; — d; vanish
at P, we have

0’ 0

0
6—51217(1’) = é_éle(P)a_él(md3 —did3)(P).

After some calculations, we obtain the desired result referring to (3/0,)°p(P).

When we calculate (0/0&,)°p(P), the term n3d,dy gives no contribution due
to the factor n3, which behaves like a constant under derivations in &. We may
thus write that

62 82 62
0_§§p(P) = @ [(m1 — d1)dads](P) + dy (P)d5(P) a_f§n2(P)'
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Since (n —d;) and d> both vanish at P, we have

o? 0 d
@[("1 — d1)chd3](P) = ds(P) = (m1 — d)(P) 52 (P).

0%, 0%,
However, (0/0&,)dy(P) = 0. Therefore,

Py Py
—5 P(P) = d\(P)d3(P) 5 m(P).
&3 03
It follows after some calculations that (0/0&)°p(P) is as stated in the
lemma.

To calculate (d/ 663)2p(P) we note that the term containing n, will give no
contribution. The same is true for the term n3d;d>: here we use the fact that n3d,
vanishes of order 3 at P. We are left with

82

e [(m — d1)d2d5)(P).

Since (m —d), d» both vanish at P, we must have that

0 0
P) =ds(P)|— (n; — dy)(P)| |=——dr(P)].
(P) = (7)o = ()] | ()|
We use again that (0/0&3)d»(P) =0 and, in the end, we obtain 0.
Now we prove that

62
—(ny — dy)drd
|f3é§<n1 1) 203

o o’ o
05" =0 gt =0 e =0
To calculate (9%/8¢,0&,)p(P), we note that the terms with n, and n3 give no
contribution. Thus,
i i

MP(P) - 08,08, [(n1 — dy)dad5](P).

We can now argue as above. The evaluation of (8%/0 05)p(P),
(0 )0E3085) p(P) is done in exactly the same way.

REMARK 5.5. The localization polynomial of S at P = (1/,/cs,0,0) is
thus

8(c12 + co6) (cas — Co6) .o 2(c12 + ces)” (cas — Co) .o
C13 + Ca4 036(013 + caa) -

1
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The tangent set at S in P is then given by

1
C13 + Ca4 Cé6(013 + caa)

3
{v cR’; 8(c12 + ce6)(caa — Co6) 52 2(c12 + ¢c66)” (caa — Co6) W2 = 0,0y R}.

We have two planes and this is the reason to call them “biplanar”.

5.2. Hessians at the Singular Points in the Coordinate Planes, but not
on the Axes

We have to consider the singular points on the plane &; = 0. Let P be one of
. <<1+\/ﬁ))l/2 (1—\/ﬁ 2
these points, e.g., ,

> ,0). Here we want to calculate
2c44
the determinant of the Hessian of p(&) in P. Recall that P satisfies simultaneously

2c44

(5.1) d3(P) =0, f3(P)=0,

where we denote f3 = njdy + nad) — dids. Relation (5.1) can be used to simplify
the calculation of the Hessians. Indeed, (0°/3¢7)p(P) is very easy to calculate.
This is based on the following remarks:

+ in view of (5.1)

o? 0 d
% [d3(l’l1d2 + nod) — dldz)](P) = 267636{3(13)6753(711612 + nod) — dldz)(P).

« If we derivate ds, n3 or mydy + md; — dydy just once in &;, then the ex-
pression which we obtain will be a multiple of &; and will therefore vanish
on our coordinate plane.

It follows that

62
e [d3(P)(n1d> + nady — dyd)(P)] = 0.
3
It 1s then clear that
0? 0’n3
52 —p(P) =——=(P)d;(P)d,(P

(c13 + €44)*(cas — co6)(c12 + 2¢44 — o)

=2
2, (c12 + cep)

REMARK 5.6. Mixed derivatives of p which contain just one derivation in &;
will vanish. This is proved with an argument similar to the one just used for the
calculation of (0/0&;)*p(P).
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We are now left with derivatives of form (62/65,-6@) where i, j € {1,2}. Tt is
obvious that (02/ 08,0¢;)(n3didy)(P) = 0. Now, we can again argue as above and
conclude that

K Ky L0
The situation is further simplified by noting that (0/0¢;)ds is divisible by &; and

(0/0&;)(md 4 nody — didy) is divisible by &;. In (5.3) we can therefore divide out
a factor ¢;¢;. If we also take into account that

(5.3) d3(P) = fs( )-

lods 1ady
éi afz éj Oéj

—2c4

then we obtain that

0? 1ofs 1 0fs
61éaé](a’g;fg,)( ) = —2044{fifj<é—ia—éi+é—ja—éj>](13)-

An elementary calculation gives

1 0

& @ﬁ(f) = —dcgelt + 2(cty — g + 2c12¢66)E5 — 40666446? +4ces,
1 1

1 0

5 a_ézﬁ(g) = —4ck &5 +2(chy — & + 2c1266)ET — Ace6caals + dces.

It also follows from this that the determinant of the Hessian in the variables

&, & s

1 ofs 1 ofs (1@f3 15f3>2
54 Yl Ye aE g e &G &
(5.4) éfz 44( E| 0F| & 0&, & 662+§1 o0&
A
—4&3E¢ 44(55525165)'

From (5.4), (5.2) and remark 5.6, it follows that the Hessian of p =0 in P has
the form

A 0
R= 62p ,
0 —(P)
0&;

where the determinant of A4 is negative. Thus, P is a conical singularity. For the
other singular points on the plane {3 =0 we can argue as above.
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5.3. Hessians at the Singular Points in the Planes ¢ = &3

In principle it is not difficult to calculate the Hessian of p at these points.
For explicit numerical constants ¢; this is a simple arithmetic calculation, but for
general constants the expressions which one obtains are not as easy to under-
stand. We now begin our discussion recalling that, if P is a double point on the
planes 512 = éf, then d;(P) =0 for i =1,2,3. Then, the part didrd; of p will
vanish of third order at P, and will not contribute to the Hessian at P. It is also
clear that we have

0*(njd;1d;12)(P)
0&,0¢,

0 0 0 0
=mn(P) (afid’“ (P) a?ldﬁz(l’) + a?,d"(P) aéide(P)) ;

where the indices are calculated modulo 3, since dj,id;;» vanishes of order two
at P. Calculations are quite complex and we will only discuss what happens
under the additional assumption cgs — caa = €13 — 12 = ¢33 — ¢11 (see remark 4.3).
In this case, if we set c¢i3 + cqq = ¢12 + ¢ and ¢33 = 2c¢6 — ca4, then the double
points lie on the space diagonal. In particular they have the following coordinates

(£ (cas + co6 — c12) 72+ (caa + o — c12) 7, £ cas + co5 — e12) ).
Moreover the n;(P) have the same values and
di (&) =1 — ce6] — ca6l3 — canls + (c12 + co6)ET,
(&) =1 — 667 — ca683 — canls + (c12 + ce6)E3,
d3(&) = 1 — casl] — caa&3 — (266 — caa) &3 + (c1a + co6)E3.
Denoting g = d\d, + dbds + dsdy, it follows that

1 &p(P)_Pq(P)
nl(P)fifj aéiaéf B aéiaéj 7

The Hessian of p at P is then proportional to the matrix

i=1,2,3.

P Pq o Fq
08 0508, 08,08
?q 5_261 q
0608, 053 06,08
A
06308, 05508, 0E2
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We can easily obtain

1 odi(P) 1 ody(P) 1 ody(P)
Z o, C12, Z 0%, €12, AT C44 + 2c12 C66,
and

1 édy(P) 1 6dy(P) 1 odo(P)

= - _zc 5 - - _2C , —_— = = —2c s
& & g g ¥oE e o

1 éds(P) 1 éds(P) I éds(P)

_ — Dew, — — Dey, — S

& & “h Ty g T o

Finally, explicit calculations give
g .
(caa + co6 — Clz)a—fz(P) = 8(—c12¢66 + Casco6 — cascrn), i=1,2,
°q
(caa + co6 — c12) = (P) = 8caq(2c6 — 2¢12 — ca4),
&
3
52‘1 2
(cans + co6 — €12) == (P) = 4((c12 + c66)” + 2(—c12¢66 + CaaC66 — CaaC12)),
08,08,
526] 2 2 .
(644 + Ce6 — Clz)m(lg) = 4((6‘12 — 666) + 2644), i=1,2.

Thus, the eigenvalues of the Hessian of p at P are

(5.5) 4(cn + 666)2, —8(caq + co6 — clz)z, 4(2ca4 — co6 + 012)2.
Moreover, the determinant of the Hessian is equal to

(5.6) 128(c12 + ce6)(cas + cos — €12)” (2cas — ce6 + €12)°

Thus, if we assume 2cq4q — cg6 + 12 # 0, using the symmetries between &; and &,,
we have proved that the double points of the slowness surface on the planes
{(&1,65,83) eR3: 512 :ég} lie on the space diagonals and are conical singu-
larities.

6. Hessians of Singular Points When c¢;; # cg6

In the previous section we studied the nature of the singular points which
appear on the slowness surface, in the case when we have ¢} = cg¢. Using exactly
the same arguments it is possible to study the nature of the singular points in the
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case when c¢q; # cg6. We observe that the main difference between these two cases
is that, if ¢;; = c¢s, then the slowness surface has four biplanar singular points,
one on each &;-semi-axis, with i € {1,2}, whereas if c;; # cg, then the slowness
surface does not have biplanar singular points, but it may have eight more
singular points on the planes & =0, with i e {1,2}, as proposition 3.4 shows.
Thus, with similar calculations, even though a little bit more involved, it is
possible to prove the following proposition.

PrROPOSITION 6.1.  Let S be the slowness surface associated with the tetragonal
crystal system. Assume that the stiffness constants cj satisfy the assumptions we
made and, in addition, suppose ci| # ces. Then:

+ The double points of S on the &3-axes are uniplanar singularities.

« The double points of S on the plane &3 =0, which do not lie on the co-

ordinate axes are conical singularities.

« If, in addition, we assume that cy1 — ¢33 = C1p — €13 = C44 — Ce6, then the

double points of S on the planes ff = ég are conical singularities.

REMARK 6.2. We observe that the proposition 6.1 holds for generic tet-
ragonal stiffness constants c;. It is not difficult to show that, if we consider the
tetragonal system in the nearly cubic case, i.e. if we assume c¢;; — ¢33 = 12 — €13
= ca4 — co6 = e, with |e| sufficiently small, then the proposition still remains valid.

Now, we want to investigate the case when ¢ # cg6, but caq = cg6. We have
seen that, in this case, the slowness surface has four double points, one on each
semi-axis of the coordinate plane &3 = 0. We have the following results about the
nature of these double points.

PROPOSITION 6.3.  Let S be the slowness surface associated with the tetragonal
crystal system. Assume that the stiffness constants cy satisfy the assumption made
in the previous sections and, in addition, suppose ci| # cg, but caq = ces. Then the
Sfour double points of coordinate (+1/./c44,0,0) and (0,+1/,/cas,0) are uniplanar
singularities.

Proor. We denote P = (1/,/cs,0,0). We will prove that Vp(P)=0,
(6/0¢1)’p(P) # 0, (67/0&0)°p(P) = 0 if i € {2,3}, j e {1,2,3}, (8/6¢)"p(P) =0
if |o| =3 and the order of derivations in (&,&;) is odd.

The gradient of p at P vanishes since P is a double point of the slowness
surface.
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The following remarks help us simplify the calculations of second order
derivatives:
« The factors n,, n3 vanish twice at P.
+ The expressions d; vanish at P for i=2,3 (but not necessarily for
i=1).
* When we derivate one of the d;, i = 1,2,3, in one of the variables &;, j =2
or 3, then we obtain a factor ¢;, and therefore this derivative will vanish
at P.
< (0/0&)m =0, (62/05[65,«)111 =0 for i =2,3, whatever j is.
We can argue precisely as in the section (5.1) and conclude that derivatives of
form (0/0&,0¢)p(P), and (8/0¢&)(8/0&,)*p(P) vanish when i, e {2,3}, k > 2.
Moreover, after some calculations we obtain

62

(’)_flzp(P) = 8(c11 — caa).

By assumption on the stiffness constants this is non vanishing.

We still have to say something about third order derivatives. If we derivate
once in &3 and the remaining derivatives are in the variables &;, &,, then the result
may be non vanishing. O

We conclude this section with a proposition about the nature of the singular
points on the plane 612 = 55 in the case when they are near the diagonal. Indeed,
as we have observed, it seems difficult to calculate the Hessian of p at these
points in the general situation, whereas if c¢;; — ¢33 = ¢12 — €13 = 44 — Cg6, the
singular points lie on the space diagonals and it is easy to establish the conical
nature of these singularities. Now, we will prove that, if these singular points
remain near the space diagonals, then they still remain of conical type. In par-
ticular we will assume caq = ce5, €33 —c11 =e; and c¢j;3 —c1p = e3, with e,
i=1,3 small. The choice of this assumption will become easy to understand
when we will discuss the curvature properties of the slowness surface (cf. [7] and

(10]).

PROPOSITION 6.4. Let S be the slowness surface associated with the tetragonal
crystal system. Assume that the stiffness constants c; satisfy the assumptions made
in the previous sections and, in addition, suppose ci| # ces, either cjp —cj3 =
Caq4 — Co6 — 0 and Cl] —C33 =€, 0O C44 = Cop, C33 —C11 — €] and C13 — C1p = é3.
Then, if |ei|, i=1,3 and |e| are sufficiently small, the double points of S on the
planes & = & are conical singularities.
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PrOOF. We prove the proposition with the assumption ¢y — ¢j3 = c44 — Co6
=0 and ¢;; — ¢33 = e. The proof in the case when c4q = cg6, ¢33 — c11 = €1 and
c13 — c;p = e3 1s exactly the same, with the expressions of f; and f; a little bit
more involved.

We recall that, if ¢ — ¢13 = ca4 — c66 = 11 — ¢33, then the double pOiIltS have
the following coordinates

(+(cas + c11 — c12) ™ F(eas +enn — e2) 2 H(eaa + eny — enn) ).

Now, if we assume cjp — ¢13 = c44 — c¢6 = 0 and ¢y — ¢33 = e, it is not difficult to
see that the double points have coordinates

(6.1) (&, +&, if~3)
where

1 = 1
+ efr(c;; 62 -
2 ”) 3 C44 +C11 —C12

&= + ef3(cyy)

C44 +C11 —C12
and

cas + 2c11 — 2e12

(caa + 11 — e2)((e11 — e2)® — (€11 — e12)(cag — €) — 2¢2,)

Filer) = e —ci2
i) = .
(caa + 11 — ) (11 — en2)® — (en — e12)(caa — €) — 2¢%,)

Saley) =

Thus, as above, it is possible to write the quantities (0°¢/0&0E)(P), with
i=1,2,3, in terms of the same quantities used in the case when ci; —¢j3 =
C44 — Co6 = €11 — ¢33 plus e times a rational function of the stiffness constants c;;
(here and in the remainder of the proof, P will be one of the singular points in
(6.1)). So, we can argue as above and prove that, if e is small enough, the signs
of the eigenvalues of the Hessian of p at P and of the determinant of the
Hessians when we assume c¢jp — ¢13 = ¢4 — C¢6 = €11 — €33, do not change if we
only have cjp — ¢j3 = caq4 — c6 = 0 and ¢;; — ¢33 = e. This concludes the proof.
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