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DENSE CHAOS AND DENSELY CHAOTIC OPERATORS*

By

Xinxing Wu
† and Peiyong Zhu‡

Abstract. The aim of this paper is to study dense chaos and densely

chaotic operators on Banach spaces. First, we prove that a dynamical

system is densely d-chaotic for some d > 0 if and only if it is densely

chaotic and sensitive. Meanwhile, we also show that for general

dynamical systems, Devaney chaos and dense chaos do not imply

each other. Then, by using these results, we have that for a operator

defined on a Banach space, dense chaos, dense d-chaos, generic chaos

and generic d-chaos are equivalent and they are all strictly stronger

than Li-Yorke chaos.

1. Introduction and Basic Definitions

By a topological dynamical system (briefly, dynamical system or system), we

mean a pair ðX ; f Þ, where X is a complete metric space without isolated points

and f : X ! X is continuous. The complexity of a dynamical system is a central

topic of research since the introduction of the term of chaos in 1975 by Li and

Yorke [8], known as Li-Yorke chaos today.

Definition 1.1 ([2, 8]). Let ðX ; f Þ be a dynamical system. If x; y A X and

d > 0, ðx; yÞ is called a Li-Yorke pair of modulus d if

lim inf
n!y

rð f nðxÞ; f nðyÞÞ ¼ 0 and lim sup
n!y

rð f nðxÞ; f nðyÞÞb d:
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(1-1) ðx; yÞ is a Li-Yorke pair if it is a Li-Yorke pair of modulus d for some

d > 0;

(1-2) The subset GHX is called a scrambled set if for all points x; y A G with

x0 y, ðx; yÞ is a Li-Yorke pair;

(1-3) ðX ; f Þ (or f ) is Li-Yorke chaotic if X contains an uncountable

scrambled set.

The set of Li-Yorke pairs of modulus d is denoted by LYð f ; dÞ and the set

of Li-Yorke pairs by LYð f Þ.
For each real number e, we denote

De ¼ fðx; yÞ A X � X : rðx; yÞ < eg

D ¼ fðx; xÞ A X � X : x A Xg

and

PRð f Þ ¼ ðx; yÞ A X � X : lim inf
n!y

rð f nðxÞ; f nðyÞÞ ¼ 0
n o

AReð f Þ ¼ ðx; yÞ A X � X : lim sup
n!y

rð f nðxÞ; f nðyÞÞ < e

� �

Clearly LYð f ; dÞ ¼ PRð f ÞnARdð f Þ and LYð f Þ ¼ 6
e>0

PRð f ÞnAReð f Þ. For any

x A X and any e > 0, set Bðx; eÞ ¼ fy A X : rðx; yÞ < eg.
In 1985, Piórek [12] introduced the concept of generic chaos. Being inspired

by this definition, Snoha [14, 15] defined generic d-chaos, dense chaos and dense

d-chaos in 1990.

Definition 1.2 ([14, 15]). Let ðX ; f Þ be a dynamical system.

(2-1) ðX ; f Þ is sensitive if there exists e > 0 such that for any x A X and any

h > 0, there exist y A Bðx; hÞ and n A N such that rð f nðxÞ; f nðyÞÞ > e. The real

number e is called the constant of sensitivity.

(2-2) ðX ; f Þ is infinitely sensitive if there exists e > 0 such that for any

x A X and any h > 0, there is some y A Bðx; hÞ such that lim supn!y rð f nðxÞ;
f nðyÞÞb e.

(2-3) ðX ; f Þ is densely chaotic if LYð f Þ is dense in X � X .

(2-4) ðX ; f Þ is densely d-chaotic for some d > 0 if LYð f ; dÞ is dense in X � X .

(2-5) ðX ; f Þ is generically chaotic if LYð f Þ is residual in X � X .

(2-6) ðX ; f Þ is generically d-chaotic for some d > 0 if LYð f ; dÞ is residual in

X � X .
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Generic d-chaos obviously implies both generic chaos and dense d-chaos,

which in turn imply dense chaos.

Snoha [14] proved that for an interval map, generic chaos implies generic

d-chaos for some d > 0 and the notions of generic d-chaos and dense d-chaos

coincide, but a densely chaotic interval map may not be generically chaotic.

Snoha [15] gave a characterization of densely chaotic interval maps and proved

that for a piecewise monotone interval map, dense chaos and generic chaos are

consistent. In 2000, Murinová [10] generalized Snoha’s work and showed that

for a complete metric space, generic d-chaos and dense d-chaos are equivalent.

She also exhibited a generically chaotic system which is not generically d-chaotic

for any d > 0.

If X is a complete metric space and GHX � X is a dense Gd-set, then using

Kuratowski’s theorem (see, e.g., [11]), one can find an uncountable set S such

that S�S deprived of the diagonal of X �X is included in G (see, e.g., [6, Lemma

3.1]). Therefore a generically chaotic map on a complete metric space is chaotic

in the sense of Li-Yorke. Kuchta and Smı́tal [7] showed that on the interval the

existence of one Li-Yorke pair is enough to imply chaos in the sense of Li-Yorke,

and consequently dense chaos implies Li-Yorke chaos for interval maps. However,

so far, it is not known whether dense chaos implies Li-Yorke chaos in general.

During the last years many researchers paid attention to the chaotic behavior

of orbits governed by linear operators on infinite dimensional spaces (more

especially, on Banach or Fréchet spaces) (see e.g., [1, 3, 4, 5]). One of the most

significant cases being the hypercyclicity, that is, the existence of vectors x A X

such that the orbit orbTðxÞ :¼ fx;TðxÞ;T 2ðxÞ; . . . g under a (continuous and

linear) operator T : X ! X on a topological vector space (usually, Banach or

Fréchet space) X , is dense in X . In our context hypercyclity is equivalent to

transitivity. Recently, we proved that for a bounded operator on a Banach space,

Li-Yorke chaos, distributional chaos in a sequence, spatio-temporal chaos and

Li-Yorke sensitivity are equivalent in [16].

In this paper, we study dense chaos and densely chaotic operators on Banach

spaces. First, we characterize densely d-chaos in terms of sensitivity and dense

chaos and prove that a transitive system with a fixed point must be densely

chaotic. Besides, some examples are given to show that for general dynamical

systems, Devaney chaos and dense chaos do not imply each other. Then, by using

these results, the following conclusion is obtained:

(1) For a operator on a Banach space, dense chaos, dense d-chaos, generic

chaos and generic d-chaos are equivalent and they are all strictly stronger than

Li-Yorke chaos.
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2. Dense Chaos for Topological Dynamical Systems

In this section, we first show that sensitivity and infinite sensitivity are

equivalent. Combining this with Baire category theorem, some characterizations

of dense chaos are obtained.

Theorem 2.1. A dynamical system ðX ; f Þ is infinitely sensitive if and only if

it is sensitive.

Proof. Necessity is obvious.

Su‰ciency. Assume that ðX ; f Þ is sensitive and e is the constant of sensitivity.

Given any N A N, set DN ¼ fðx; yÞ : rð f nðxÞ; f nðyÞÞa e=4; En > Ng. It is clear

that DN is a closed set.

Now we assert that for any N A N, int DN ¼ q.

Indeed, if there exists some N A N such that int DN 0q, there exist non-

empty open sets U ;V HX such that U � V HDN . This implies that for any

pair ðx; yÞ A U � V , rð f nðxÞ; f nðyÞÞa e=4 holds for any n > N. So for all points

x1; x2 A U and any n> N, rð f nðx1Þ; f nðx2ÞÞarð f nðx1Þ; f nðyÞÞ þ rð f nðyÞ; f nðx2ÞÞ
a e=2. Note that there exists a non-empty open set U � HU such that for any

pair x1; x2 A U � and any 0a iaN, rð f iðx1Þ; f iðx2ÞÞa e=2. So for any pair

x1; x2 A U � and any n A N, rð f iðx1Þ; f iðx2ÞÞa e=2 which contradicts the sensi-

tivity of ðX ; f Þ.
It follows that the set D ¼ 6

N AN DN is a first category set in X � X .

This implies that the set X � XnD ¼ fðx; yÞ : EN A N; bn > N such that

rð f nðxÞ; f nðyÞÞ > e=4g is residual in X � X .

Suppose that ðX ; f Þ is not infinitely sensitive, then there exist x0 A X and

h > 0 such that for any y A Bðx0; hÞ, lim supn!y rð f nðx0Þ; f nðyÞÞa e=16. Noting

the fact that X � XnD is residual in X � X , it follows that there exists a pair

ðy1; y2Þ A ½Bðx0; hÞ � Bðx0; hÞ�V ðX � XnDÞ. As for any n A N, rð f nðy1Þ; f nðy2ÞÞ
a rð f nðy1Þ; f nðx0ÞÞ þ rð f nðx0Þ; f nðy2ÞÞ, we have lim supn!y rð f nðy1Þ; f nðy2ÞÞa
e=8 which contradicts to ðy1; y2Þ A X � XnD.

Hence ðX ; f Þ is infinitely sensitive. r

Theorem 2.2. For a dynamical system ðX ; f Þ, the following statements are

equivalent:

(1) ðX ; f Þ is densely d-chaotic for some d > 0.

(2) ðX ; f Þ is generically d-chaotic for some d > 0.

(3) ðX ; f Þ is generically chaotic and sensitive.
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(4) ðX ; f Þ is generically chaotic and infinitely sensitive.

(5) ðX ; f Þ is densely chaotic and sensitive.

(6) ðX ; f Þ is densely chaotic and infinitely sensitive.

(7) PRð f Þ ¼ X � X and ðX ; f Þ is sensitive.

(8) PRð f Þ ¼ X � X and ðX ; f Þ is infinitely sensitive.

Proof. According to [10, Theorem A], ð1Þ , ð2Þ holds. Applying Theorem

2.1, ð2Þ ) ð3Þ , ð4Þ ) ð5Þ , ð6Þ ) ð7Þ , ð8Þ holds trivially.

ð8Þ ) ð1Þ It is easy to see that

PRð f Þ ¼ 7
y

n¼1

6
y

m¼1

ðð f � f Þ�mðD1=nÞÞ ð1Þ

Then PRð f Þ is a dense Gd-subset of X � X since PRð f Þ ¼ X � X .

Since f is infinitely sensitive, there exists e > 0 such that for all x A X and all

d > 0, there exists some y A Bðx; dÞ satisfying lim supn!y rð f nðxÞ; f nðyÞÞ > e.

Claim: intð7y
k¼1

ð f � f Þ�ðmþkÞðDe=2�1=nÞÞ ¼ q for any pair m; n A N.

Proof of Claim. If there exist m; n A N such that 7y
k¼1

ð f � f Þ�ðmþkÞ �
ðDe=2�1=nÞ has non-empty interior, then there exist some x; y A X and r > 0 such

that Bðx; rÞ � Bðy; rÞH7y
k¼1

ð f � f Þ�ðmþkÞðDe=2�1=nÞ. So for any pair z1; z2 A

Bðx; rÞ and any k AN, rð f mþkðz1Þ; f mþkðz2ÞÞarð f mþkðz1Þ; f mþkðyÞÞ þ rð f mþkðyÞ;
f mþkðz2ÞÞa 2ðe=2� 1=nÞ ¼ e� 2=n.

This implies that lim supk!y rð f kðz1Þ; f kðz2ÞÞa e� 2=n < e for any pair

z1; z2 A Bðx; rÞ which is a contradiction.

Meanwhile, we have

ARe=2ð f Þ ¼ ðx; yÞ A X � X : lim sup
n!y

rð f nðxÞ; f nðyÞÞ < e

2

� �

¼ 6
y

n¼1

6
y

m¼1

7
y

k¼1

ðx; yÞ A X � X : rð f mþkðxÞ; f mþkðyÞÞa e

2
� 1

n

� �

¼ 6
y

n¼1

6
y

m¼1

7
y

k¼1

ð f � f Þ�ðmþkÞðDe=2�1=nÞ
 !

Combining this with the Claim, it follows that ARe=2ð f Þ is of first category in

X � X . This leads with (1) to that PRð f ÞnARe=2ð f Þ is dense in X � X by the

Baire category theorem. Thus ðX ; f Þ is densely e=2-chaotic. r
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The following proposition is a direct corollary of [9, Theorem 3.5].

Proposition 2.3. If ðX ; f Þ is a topological transitive system with a fixed

point, then it is densely chaotic.

Proposition 2.4. Assume that f : X ! X is uniformly continuous. If f is

densely chaotic, then f n is too for any n A N.

Proof. It holds trivially since LYð f Þ ¼ LYð f nÞ holds for any n A N. r

Example 2.5. Take X ¼ ½0; 1�U ½2; 3� and define the map f : X ! X by

f ðxÞ ¼ LðxÞ þ 2; x A ½0; 1�;
Lðx� 2Þ; x A ½2; 3�;

�

where LðxÞ ¼ 1� j1� 2xj, x A ½0; 1�. By simple calculation, we know

f 2ðxÞ ¼ L2ðxÞ; x A ½0; 1�;
L2ðx� 2Þ þ 2; x A ½2; 3�;

�

It is not di‰cult to check that f is Devaney chaotic. For any pair ðx; yÞ A
½0; 1� � ½2; 3�, we have inffj f 2nðxÞ � f 2nðyÞj : n A Ngb 1, so ½0; 1� � ½2; 3�V
LYð f 2Þ ¼ q. This implies that f 2 is not densely chaotic. Applying Proposition

2.4, it follows that f is not densely chaotic.

Combining this Example with [13, Example 6.3.16], we have that for general

dynamical systems, Devaney chaos and dense chaos do not imply each other.

3. Dense Chaos for Bounded Operators

In this section, X denotes a Banach space over C (or R) and T : X ! X a

bounded operator. In this case, the associated metric is rðx; yÞ ¼ kx� yk for any

pair x; y A X , where k � k is the norm of X . A vector x A X is said to be irregular

for T if lim infn!ykT nðxÞk ¼ 0 and lim supn!ykT nðxÞk ¼ y. In [2], Bermúdez

et al. proved the following conclusion, which is important for our discussion.

Theorem 3.1 ([2, Theorem 5]). Let T : X ! X be a bounded operator. The

following assertions are equivalent:

(1) ðX ;TÞ is Li-Yorke chaotic.

(2) ðX ;TÞ admits a Li-Yorke pair.

(3) ðX ;TÞ admits an irregular vector.
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Applying this theorem, it is obvious that every densely chaotic operator is Li-

Yorke chaotic. In comparison with the result in section 2, we have the following

results on bounded operators.

Proposition 3.2. If a bounded operator T : X ! X is transitive, then it is

densely chaotic. In particular, every Devaney chaotic operator is densely chaotic.

Proof. It is clear that 0 is a fixed point of T . This leads with Proposition

2.3 to that T is densely chaotic. r

Theorem 3.3. Assume that T is a bounded operator defined on a Banach

space X. Then T is densely d-chaotic for some d > 0 if and only if it is densely

chaotic.

Proof. Necessity is obvious.

Su‰ciency. By Theorem 2.2, it is su‰cient to show that T is infinitely

sensitive.

According to Theorem 3.1, it follows that T admits an irregular vector v. For

any x A X and any d > 0, let us take y ¼ xþ v=kvk � d=2. Clearly, y A Bðx; dÞ.
Furthermore, we have

lim sup
n!y

rðT nðxÞ;T nðyÞÞ ¼ lim sup
n!y

kT nðxÞ � T nðyÞk ¼ lim sup
n!y

T n v

kvk �
d

2

� �����
���� ¼ y

Thus T is infinitely sensitive. r

Being the end of this section, we shall construct a bounded operator which is

not densely chaotic but Li-Yorke chaotic.

Example 3.4. Let H be an infinite dimensional separable Hilbert space

and x0 A H (x0 0 0). Take V1 ¼ spanfx0g and V2 ¼ V?
1 :¼ fx A H : x ? V1g.

According to [2, Theorem 35], there exists a bounded operator T2 : V2 ! V2 such

that T2 is chaotic in the sense of Li-Yorke. Define the operator T1 : V1 ! V1

by T1ðxÞ ¼ 2x for each x A V1. According to projection theorem, we know that

every x A H can be uniquely written as x ¼ x1 þ x2 with xi A Vi; i ¼ 1; 2. Let

T : H ! H be a operator given by

TðxÞ ¼ Tðx1 þ x2Þ ¼ T1ðx1Þ þ T2ðx2Þ:

Clearly, T is continuous. Now we assert that T is Li-Yorke chaotic but not

densely chaotic.
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Indeed, as T jV2
¼ T2 is Li-Yorke chaotic, it is clear that T is Li-Yorke

chaotic. It remains to show that T is not densely chaotic. Let us choose W1 ¼
Bð0; 1Þ and W2 ¼ Bð4ðx0=kx0kÞ; 1Þ. Clearly, W ¼ W2 �W1 :¼ fx� y : x A W2;

y A W1gHBð4ðx0=kx0kÞ; 2Þ. For any pair ðx; yÞ A W2 �W1, there exist x1; y1 A V1

and x2; y2 A V2 such that x1 þ x2 ¼ x� 4ðx0=kx0kÞ and y1 þ y2 ¼ y. Then x� y

¼ ð4ðx0=kx0kÞ þ x1 � y1Þ þ ðx2 � y2Þ A W HBð4ðx0=kx0kÞ; 2Þ. So kx1 � y1k < 2.

This implies that k4ðx0=kx0kÞ þ x1 � y1k > 2. Thus for any n A N,

kT nðxÞ � T nðyÞk ¼ kT nðx� yÞk ¼ T n
1 4

x0

kx0k
þ x1 � y1

� �
þ T n

2 ðx2 � y2Þ
����

����
b T n

1 4
x0

kx0k
þ x1 � y1

� �����
���� ¼ 2n � 4

x0

kx0k
þ x1 � y1

� �����
����

b 2nþ1 ! y ðn ! yÞ

as T n
1 ð4ðx0=kx0kÞ þ x1 � y1Þ ? T n

2 ðx2 � y2Þ. Therefore, lim supn!ykT nðxÞ�
T nðyÞk ¼ y.

Hence, W2 �W1 VLYðTÞ ¼ q, i.e., T is not densely chaotic.

We deduce from Theorem 3.3, Example 3.4 and [10, Theorem A] that for a

bounded operator, dense chaos, generic chaos, dense d-chaos and generic d-chaos

are equivalent and they are all strictly stronger than Li-Yorke chaos.
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