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ON A CLASSIFICATION OF 3-SIMPLE
PREHOMOGENEOUS VECTOR SPACES WITH
TWO IRREDUCIBLE COMPONENTS

By

Yoshiteru KUROSAWA

Abstract. In this paper, we give some results about a classification
of reductive prehomogeneous vector spaces with two irreducible
components. In particular, we give the complete classification of
3-simple prehomogeneous vector spaces with two irreducible
components. We consider everything over the complex number
field C.

Introduction

Let G be a linear algebraic group and p its rational representation on a finite
dimensional vector space V', all defined over the complex number field C. If there
exists a Zariski-dense G-orbit, we call the triplet (G,p, V) a prehomogeneous
vector space (abbrev. PV). For basic properties of PVs, see [K1].

For a classification of PVs, we may assume that G is connected since
(G,p,V)is a PV if and only if (G°,p|s., V) is a PV, where G° is the connected
component of G. Since non-reductive linear algebraic groups are not classified, it
is reasonable to assume that G is reductive.

For any PV (G,p, Vi @ --- @ V), the triplet (GL(1)! x G,p, Vi ®--- @ V) is
also a PV, where p is the composition of p and the independent scalar mul-
tiplications GL(l)l . Hence the first problem is to classify PVs with full scalar
multiplications. Let Gy be a connected semisimple linear algebraic group and let
p; (i=1,...,]) be some irreducible rational representation of Gy on a finite
dimensional vector space V;. Let p be the representation of G = GL(I)I X Gy on
V=V ®---@® V; which is the composition of p; @ --- @ p; and the independent
scalar multiplications GL(1)" on each irreducible component ¥; (i=1,...,/). In
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this paper, we call such a triplet (G, p, V) a reductive PV if the triplet (G, p, V) is
a PV. If the triplet (G,p, V) is a reductive PV, then each irreducible component
(GL(1) X Gy, A1 ® p;, Vi) (i=1,...,1) is also a reductive PV. However the con-
verse does not hold. Since Gy, is semisimple, we may assume that G, is a product
of simple linear algebraic groups (See Definition 2.1). When G, is a product of k
simple linear algebraic groups, such a reductive PV is called a k-simple PV. We
call a reductive PV with /=1 an irreducible PV'.

The classification problem of all reductive PVs is still very difficult and only
the cases for / =1 or k = 1,2 are completely solved (See [SK], [K2], [KKIY] and
[KKTI]). The cases for / =2 or k = 3 are solved only for the case of nontrivial
PVs (See [Kal], [KUY] and Definition 2.2). A classification for / >3 or k >4
is not known at all. In general, a classification related with trivial PVs is very
difficult so far (See Definition 2.2).

In this paper, we give some results for the case / = 2 related with trivial PVs
and as their application, we give the complete classification of the case / = 2 and
k =3 including the case of trivial PVs.

Since any reductive PV is castling equivalent to a reduced reductive PV, the
classification of all reduced reductive PVs implies that of all reductive PVs (See
Definitions 2.7 and 2.8). Hence it is not necessary to consider necessary and
sufficient conditions for the prehomogeneity of non-reduced triplets (See Theo-
rems 3.1 and 6.2). Any 3-simple PV with two irreducible components is castling
equivalent to either a simple P} with two irreducible components or a 2-simple
PV with two irreducible components or a reduced 3-simple PV with two ir-
reducible components. Since all simple PVs and 2-simple PVs are completely
classified (See [K2], [KKIY] and [KKTI]), we can complete the classification of
3-simple PVs with two irreducible components by giving the complete list of
reduced 3-simple PVs with two irreducible components.

In 1988, Shin-ichi Kasai classified all reductive PVs with two irreducible
components, at least one of which is not castling equivalent to a non-regular
trivial PV (See [Kal]). He also showed that the case for /=2 will be com-
pletely solved if we can classify all reductive PVs of the following form
T(H,p,o,n1,j)") (See [Kal, the triplet (9) in Theorem 2.19 and §3] and
Definition 2.1). Especially, if we can classify all 3-simple PVs of the form
T(H,p,o,n,l, j)(*) (see definition below), then we can classify all 3-simple PVs
with two irreducible components. However, in [Kal], there is no result about
a classification of all reductive PVs of the form T(H,p,o,n,l, j)(*>. Furthermore,
3-simple PVs of the form T(H,p,o,n,l, j)(*) are not classified in [KUY]. Now we
give the definition of T(H,p,a,n,l, j)".
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Let H be a connected semisimple linear algebraic group, p an m-dimensional
irreducible rational representation of H and ¢ an r-dimensional irreducible
rational representation of H with m >2 and |ker pNkero| < oo, where
|ker pNker g| denotes the cardinality of ker pNker o. For each m, we define
a sequence {cj};»_; by c.i=-1, ¢g=0 and ¢;=mc;i-; —¢;i» (i>1). Let
n>1,/>1 and j>0 be integers with n > ml/ and c¢jyin— ¢/ >r. We define
a triplet T(H,p,o,n,l,j) (resp. T(H,p,o,n,1,j)") as (H x GL(cjn — ¢;_1l) x
GL(cjsin—cil),p@A @A+ @1 AL, V(m) @ V(cin—c¢j—1l) ® V(¢jp1n — ¢jl)
+ V(r) ® V(cjsin — ¢;l)) (resp. (H x GL(¢jn — ¢j—11) X GL(¢jpin —¢il),p @ A1 ®
Al+0@1IQA, V(Im)®@V(cin—cioil) @ V(ciin—cil) + V(r) @ V(¢iin—¢l)™)).
Here T(H7p7o',n,l,j)(*) stands for T(H,p,o,n,l,j) or T(H,p,o,n,l,j)".

Since H is semisimple and p and ¢ are irreducible rational representa-
tions of H, we may assume that the triplet T(H,p, a,n,l,j)<*> is equal to
(Hi x GL(cjn — ¢j—11) x GL(cjpin —¢jl) x Hy X H3, py @ Af @ A| @ p, ® 1 +
l1®1® A<1*) ® 02 ® a3, V(m) @ V(en—cj—1l) @ V(cjpn—¢l) @ V(my) +
V(cjpin — c/-l)(*> ® V(r2) ® V(r3)), where H; (i=1,2,3) is a connected semi-
simple linear algebraic group with H = H; x Hy x H; and p, (a =1,2) (resp.
op (b=2,3)) is an m,-dimensional (resp. an r,-dimensional) irreducible rational
representation of H, with p=p, ® p, ® 1 (resp. H, with 0 =1® 0, ® 03).

If the triplet (G, p, V') with / > 2 is a reductive PV, then each (GL(1)* x Gi,
ANRLI®p+1RA ®p, Vi® Vi) (1<i# j<l)is also a reductive PV with
two irreducible components. Therefore, by the result of [Kal], the complete
classification of all reductive PVs when each irreducible component is castling
equivalent to a non-trivial reduced irreducible PV (resp. when each irreducible
component is a regular PV) is given in [Ka2] (resp. [Ka3]). Thus a classification
of all reductive PVs with two irreducible components is important to that of all
reductive PVs.

In this paper, we give some results about a classification of all reductive PVs
of the form T(H,p,o,n,l, j)(*>. Especially, we give the complete classification of
all reductive PVs of the form T(H,p,o,n,l, O)<*> and the complete classification
of all 3-simple PVs with two irreducible components.

This paper consists of seven sections.

In Section 1, we give some correction to [Kal].

In Section 2, we give some preliminaries for later use.

In Section 3, we classify all reductive PVs of the form T(H,p,o,n,l, 0)<*).

In Section 4, we calculate generic isotropy subgroups.

In Section 5, we give some results about a classification of all reductive PVs
of the form T(H,p,o,n,l, j)(*) with j > 1 using results of Section 4.



138 Yoshiteru KUurRosawa

In Section 6, we classify all 3-simple PVs of the form T(H,p,o,n,l, j)(*) with
j =1 using results of Section 5.

In Section 7, we give the complete list of indecomposable (See Definition 7.1)
reduced 3-simple PVs with two irreducible components which are neither trivial
PVs nor PVs of trivial type (See Definition 7.2).

In general, we denote by p* the contragredient representation of a rational
representation p. We denote by V(n) an n-dimensional vector space in general. If
V(n) and V(n)" appear at the same time, V'(n)" denotes the dual space of V(n).
We use + instead of @ if ® and @ appear at the same time. For xy,...,x; €
M(n,m), we define {xi,...,x;> (resp. {xy,...,x;>") as {Adixy + -+ Ax | Ar, ...,
41 € C} (resp. {y € M(n,m)|Tr" x;y =0 for 1 <i<1[}). For a rational represen-
tation p, p®*) stands for p or p*. For positive integers n and m, we denote by
_____ € GL(n) and B e GL(m),
\<isni<j<n € GL(nm). For F;e M(m;, 1) (i=1,2,...,

F

'3
n), we define (Fl,Fz,...,Fn)/ as CleMm +my+ -+ my, ).

O, m) the n by m zero matrix. For 4 = (a;)
we define 4 ® B as (a;B)

F,
1. Some Correction to a Paper by S. Kasai

In this section, we shall give some correction to [Kal].

CORRECTION 1.1.  Let G be a reductive linear algebraic group and p; (i = 1,2)
a rational representation of G on a finite dimensional vector space V;. Assume that
a triplet (G,py, V1) is a regular PV. Then the triplet Py := (G,p; @ p,, V1 ® V2) is
a PV if and only if Py := (G,p, ®p;, Vi ®Vy) is a PV. However, in a clas-
stfication of PVs, we consider that these two PVs Py, and P, are different in
general. Hence Theorem 3.25 in [Kal] should be corrected as follows: A triplet
9) with j=0 and N =0 (or m'm" = mL+ N), namely, T :=(GL(1)* x H x
(SL(mmy) x Hy) x H,p ® (A ® p) ® 1 + 1 ® (A; @ ") ® 7/, V(m)) ®
V(imm)™ @ Vimy) + V() @ V(im") @ V(m'))  with mymy >m'm"  and
mymy #m', is a PV if and only if it satisfies one of the following conditions:
(1) b ={1} and (GL(1)xHxH' A ®p®1,V(m)®V(m') with
my > m' is an irreducible PV. In this case, T is a PV of the form (3.52)
in [Kal].
(2) Hy# {1} and (GL(1) x Hx Hy x H',A1 ® p® (0" @ ") @7, V(im)) ®
(V(m)™* ® V(m")) ® V(m')) with mums > m'm" is castling equivalent
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to a regular trivial PV of the form (Hy x G x GL(N), (pé*)* ®1T")®o®
A1, (V(m)™* @ V(im")) ® V(k) ® V(N)) with N = mom"k. In this case,
T is a regular PV with 2 basic relative invariants.

(3) Hy# {1} and (GL() x Hx Hyx H', A, ®p® (p{" @ ") @', V(1) ®
V()" @ V(m")) @ V(m')) with mymy > m'm" is castling equivalent
to a non-regular trivial PV of the form (Hy, x G x GL(N), (p{"* @ ") ®
e @A, (Vi) @ V(m") @ V(k)® V(N)) with N > mym"k. In this
case, T is a non-regular PV with 1 basic relative invariant.

Proor. Note that 7T is isomorphic to 77 := (H x (GL(mymy) x Hy) x H' x
GL),p@ A" ®p)@1@1+1® (A @) Q7 @Ay, V(m) ® V(mmy)™ @
V(my) + V(mmy) ® V(im") ® V(m')) (See Definition 2.1). Since a generic
isotropy subgroup of (H x Hy x GL(minmy),p ® p, ® A<1*>, V(im) ® V(m) ®
V(mimy)™) is {(h,ha, (p ® py)™" (h, h2)) | (h,h2) € H x Hy}, by Proposition 2.4,
we see that 7 is a PV if and only if 7" := (GL(1) x H x Hy x H', A ®pH*®
P @) @1, V(im)* @ (V(my)™* @ V(m")) ® V(m')) is a PV. Since H is
semisimple, 7" is isomorphic to (GL(1) x H x Hy x H' A1 ® p ® (Pé*)* ®1")®
! V(m) @ (V(m)™* @ V(m”)) ® V(m')). By Propositions 3.2 and 3.3, we
obtain our assertion. |

CORRECTION 1.2. Theorem 3.22 in [Kal] should be corrected as follows:
A triplet (9) with N =0, m=m, =2 and my =1, namely, (GL(1)* x SL(2) x
SL((j+ )L) x SL((j + 2)L) x H,A| @ A/ QA ® 1+ 1@ 1@ AY @ 1)
((j+2)L>degt') is a PV if and only if (SL(2)x GL(L)x H',(j+ 1)A1 ®
A1 ®71') with (j+2)L>degt/, is an irreducible PV. Especially, (SL(2) x
GLIL)xH',(j+ DA @ A1 ®7') with (j+2)L >degt’ and j=>=1 is an irre-
ducible PV if and only if it is castling equivalent to one of (GL(2),2A;),
(GL(2),3A1), (Sp(t) x GL(2),A1 ® 2A1) (t=>2) and a trivial PV.

CORRECTION 1.3.  In §4 Table in [Kal], the following PVs were missed.

(1) T1 == (GL(1)*> x H x (SL(mumy) x Hy) x H',p ® (A @ p,) ® 1 + 1 ®
A ® ") ® 7, V(im) ® Vimm)™ @ Vimy) + Vimima) @ V(m") ®
V(m")) with mimy > m'm” and mymy # m' where Hy # {1} and (GL(1) x
HxH,xH A®p® (p\" @) @1, V(im)® (V(im)™ ® V(im") @
V(m")) is castling equivalent to a regular trivial PV of the form (Hy x G x
GL(N), (S ®@ ") @ 6 @ A1, (V(ma)™" @ V(m")) ® V (k) ® V(N)) with
N =mym"k. Ty is a regular PV with 2 basic relative invariants.

(2) Tr:=(GL(1)*’x Gx SL2) x G',6 @A ® 1+ 1 ®t® p) where (G, o)
is one of (Sp(n),A1) (n=2) and (Spin(10), a half-spin rep.); and
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(G' x GL(2),p ® ) is an arbitrary non-regular irreducible PV. T, is a
non-regular PV and the number of basic relative invariants of it is 2
(resp. 1) if (G' x GL(2),p ® t) is castling equivalent to (Sp(m) x GL(2),
A1 ®2A1) (m=2) (resp. if otherwise).
(3) Ty := (GL(1)*> x H x (SL(mumy) x Hy) x H',p ® (A @ p,) ® 1 + 1 ®
(A @) ® 7, V(im) ® Vimmy)® @ V(ma) + V(imm) ® V(m") ®
V(m")) with mymy > m'm” and mym, # m' where Hy # {1} and (GL(1) x
HxH,xH A®p® (p\" @) @1, V(im)® (V(im)™ ® V(im") ®
V(m')) is castling equivalent to a non-regular trivial PV of the form
(Hy x G x GL(N), (p\" ® ") @ 6 @ Ay, (V(m)™* @ V(m")) ® V(k) ®
V(N)) with N > maym"k. Ty is a non-regular PV with 1 basic relative
invariant.
(4) Ty :=(GL(1)* x SL(2) x SL(2L) x SLB3L) x G',A| @ A1 @A ® 1 +1®
1@ A ®1') BL > degt’) where (SL(2) x GL(L) x G',2A @ A| ® T')
is castling equivalent to (Sp(n) x GL(2),A1 ® 2A;) (n > 2). Ty is a non-
regular PV with 2 basic relative invariants.
For (1), (3) and (4) (resp. (2)), see Correction 1.1 and Correction 1.2 (resp.
Theorem 3.9 in [Kal]).

CoORRECTION 1.4. 11)-(17) in §4 Table of [Kal] should be corrected as follows:
(GL(1)* x Sp(n) x SL(m) x SL(2),Ai ® Ay @ 1 + 1 ® A\ ® 2A;) (2n > m = 3),
N =2 form=cven, A| QA ® 1+ 1R A ®2A; with m =odd, A\ @ A1 ®1 +
1A ®2A; withm=3; N=1for Ai QA ®1+1®A] ®2A; with m = odd
and m > 5.

2. Preliminaries

DerNITION 2.1. Two triplets (Gi, p;, Vi) (i =1,2) are said to be isomorphic
if there exist an isomorphism o : p,(G1) — p,(Gy) of groups and an isomor-
phism ©: Vi — Vy of vector spaces such that t(p,(g1)(x1)) = a(p,(g91))(z(x1)) for
g1 € Gy, x1 € V1. In this case, we write (Gy,p;, V1) = (G2, py, V2) and we identify
(G1,p1, V1) with (Ga,p,, V2). Note that for any connected linear algebraic group
G and a surjective homomorphism o : G — G, we have (G,p,V) = (G,p oa, V).
Hence we may assume that G is simply connected if necessary.

DerFINITION 2.2.  Let G be a linear algebraic group and let p be a rational
representation of G on a finite dimensional vector space V. For a positive integer
n satisfying n>dim V, the triplet (G x GL(n),p@ A,V ® V(n)) is always
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a PV. We call such a triplet a trivial PV. It is regular if and only if
n=dim V.

LEMMA 2.3.  Assume that an algebraic group G acts on both of two irreducible
algebraic varieties W and W'. Let ¢ : W — W' be a morphism satisfying

(1) plgw) = go(w) (g G,we W),

(1) o(W) = W".

Then the following assertions (1) and (2) are equivalent:

(1) W =G-w for some we W, that is, W is G-prehomogeneous.
(2) (@) W'=G-w’ for some w' e W'
(b) For the above point w'e W' in (a), there exists a point we ¢~ ' (w')
such that o~ '(w') = G,,r - w, where G, = {ge G|gw' =w'} is the iso-
tropy subgroup of G at w'.
Note that a generic isotropy subgroup of (1) is isomorphic to that of (2)(b) since
(Gy),, = Gy

Proor. For the proof, see Proposition 7.6 in [K1]. O

ProposITION 2.4.  The following assertions are equivalent.

() (Gypy, @ py, V1@ V2) is a PV.

(2) (G,p;, V1) is a PV and (H,p,|y, V2) is also a PV, where H denotes the
generic isotropy subgroup of (G,py, V1).

Proor. By Lemma 2.3, we obtain our assertion. O

THEOREM 2.5. Let G be a linear algebraic group and p an m-dimensional
rational representation of G on a finite dimensional vector space V. For a positive
integer n satisfying n < m = dim V, the following assertions are equivalent.

(1) (Gx GL(n),p @A,V ®V(n)) is a PV.

(2) (Gx GL(m —n),p* @A, V*® V(m—n)) is a PV.

Furthermore, the generic isotropy subgroups of (1) and (2) are isomorphic. We say
that two triplets (1) and (2) are castling transforms of each other. In this paper, we
call the triplet (1) (resp. (2)) the castling transform at GL(m — n) (resp. GL(n)) of
the triplet (2) (resp. (1)).

Proor. For the proof, see Theorem 7.3 in [K1]. O

THEOREM 2.6. Let G be a linear algebraic group and let p (resp. @) be an
m-dimensional (resp. an r-dimensional) rational representation of G on a finite
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dimensional vector space V (resp. W). For a positive integer n satisfying n < m =
dim V, the following assertions are equivalent.

() (GXx GL(n),p@A 1+ @1, VR V(n)+ W) is a PV.

2) (GXGLm—n),p* @A +0@ 1, V*®V(m—n)+ W) is a PV.
Furthermore, the generic isotropy subgroups of (1) and (2) are isomorphic. We say
that two triplets (1) and (2) are castling transforms of each other. In this paper, we
call the triplet (1) (resp. (2)) the castling transform at GL(m — n) (resp. GL(n)) of
the triplet (2) (resp. (1)).

Proor. By Proposition 2.4 and Theorem 2.5, we obtain our assertion.
O

DEFINITION 2.7.  Two triplets (G, p, V) and (G',p’, V') are said to be castling
equivalent if one is obtained from the other by a finite number of successive castling
transformations.

DrrFINITION 2.8. A triplet (G,p, V) is said to be reduced if dim V' > dim V
holds for any castling transform (G',p', V') of (G,p, V).

DEFINITION 2.9. Let G be a connected semisimple linear algebraic group and
p:G— GL(V) an irreducible rational representation. If a triplet (G x GL(1),
PRALV®V(1)) is non-reduced, then there exists a unique castling transfor-
mation which makes the dimension of the space smaller. If we use only such castling
transformations, the number of castling transformations to reach a reduced triplet
is uniquely determined. We call this number the reducing number of (G x GL(1),
PROALV®V() (¢f p. 799 in [KTK]). If a triplet (G x GL(1),p ® Ay,
V® V(1)) is reduced, then its reducing number is 0.

RemARK 2.10. The two triplets (H x GL(cjn — c¢j—1l) x GL(cjpin — ¢il),
PN ®ALYV(m)®V(en—cial) @ V(gn—¢l)) and (H x GL(¢n — ¢-11) x
GL(cjyin—c¢il), o0 ®1® A(l*), V(r)® V(cjin— c,l)(*)) are irreducible compo-
nents of the triplet T(H,p,o,n,l, j)(*>. The triplet (H x GL(¢jn — cj—1l)
GL(cjvin —¢il),p @ At @ A1, V(m) ® V(cin — ¢j—11) @ V(cjpin — ¢jl)) is obtained
from the non-regular trivial PV (H x GL(I) x GL(n),p ® A1 ® A1, V(m) ®
V() ® V(n)) (m =2, n>ml) by applying a castling transformation ; times. The
triplet (H x GL(¢jn—¢j—11) X GL(¢jsin—¢;l), 0 ®1 ®A(1*>, V() ® V(cian—cl)™)
(¢jyin — ¢jl > r) is a non-regular trivial PV
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THEOREM 2.11. Let G be a connected linear algebraic group and let p;
(i =1,2) be an m;-dimensional rational representation of G on a finite dimensional
vector space V;. For a positive integer n satisfying n > max{my,my}, the following
assertions are equivalent.

(1) (Gx GL(n),p; @ A1+ p, QA VI Q@ V(n)+ Va® V(n)") is a PV.

(2) (G,py ®py, V1 ®V3) is a PV.
Furthermore, if n > max{my,my}, then a PV (1) is regular if and only if m; = my,
and the number of basic relative invariants of a PV (1) is equal to that of a PV (2).

Proor. For the proof, see [K1, Theorem 7.8] and [KKTI, Propositions 1.18,
1.20 and 1.22]. O

LemmA 2.12. Let K be a connected semisimple linear algebraic group and
7: K — GL(W) an irreducible rational representation with dim W > 3. Assume
that (K x GL(1),T® A;, W ® V(1)) is reduced. Triplets (Gi,p;, Vi) (i >0) are
defined inductively by the following method:

(1) (Go,po, Vo) = (K x GL(1),7® A1, W ® V(1))

(2) (Gi,p;, Vi) is a castling transform of (Gi_1,p,_y, Vi1) with dim V; >

dim V;_y for i > 1.

We put ni:=mi_y —1liy (i=1), where (Gi_1,p;_1,Vie1) = (Gi,l x GL(l;1),
it ® A, V(mi 1) @ V(Ii1)) and (Gi,py, Vi) = (Gt X GL(miy = li1), iy ® A,
V(mi—1) @ V(mi—y — li_1)). Then we have n; < niyy for i > 1.

Proor. We fix an index i > 1. We may assume that a triplet (G;,p;, Vi) is
of the following form: (G x GL(n),p ® A, V(m)® V(n)) with 2n > m >n > 2.
Then we see that (Gi_1,p;_1, Vie1) = (G X GL(m —n),p ® Ay, V(m) ® V(m — n))
and n; = n. For a triplet (Gi11,p;., Vi+1), there exist a triplet (H,o, V' (k)) with
k>2 and a positive integer / such that (G,p, V(m)) = (H x SL(l),0 ® Ay,
V(k)@V(1), (Git1,pip1, Vier1) = (H x GL(kn — 1) x SL(n),c @ A1 @ A1, V (k) ®
V(kn—1)® V(n)) and kn > 2/. Then we see that n; .y = kn — /. Since kn — [ —n
=(k—1n—1>kn/2—1>0, we obtain our assertion. O

LemMa 2.13.  Assume that (Gy x GL(1),p, @ A, V(1) ® V(1)) (¢=3) is a
non-trivial reduced irreducible simple PV, that is, one of 1)-(2), (3), (4), (5), (6), (7),
(14), (15) with m = 1, (16), (19), (22), (23), (24), (25), (27), (29), IIT)-(3), (5) with
2m+1=1, (6) in §7 of [SK]. Then a non-reduced irreducible PV (G,p, V) which
is castling equivalent to (Gyx GL(1),p, @ A1, V(t) ® V(1)) is of the following
form: (GL(1) x Gy x SL(a;) x - x SL(a,), A1 ® p, ® A1 ® - ® A, V(1) ®
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Vi@ Via) ® - ® Viay)) for some r=1, a;<a;y; (1<i<r—1),a >t—1
and ay > t(t—1) — 1.

Proor. Let k be the reducing number of (G, p, V). We shall prove this by
induction on the reducing number k. If k=1, then (G,p, V) =~ (GL(1) x G, X
SLt—1),AMi®@p;, QAL V()@ V()@ V(t—1)). If k=2, then (G,p,V)=
(GL(1) x Gy x SL(t = 1) x SL(t(t — 1) = 1), A1 @ p, @A @ AL, V(1) ® V(1) ®
V(it—1)® V(«(t—1) —1)). Therefore we see that our assertion holds for
k=1,2. Now assume that our assertion holds for k =n (n > 1) and show that
our assertion holds for k =n+ 1. Assume that the reducing number of (G,p, V)
is n+1. Let a triplet (H,0,W) be a castling transform of (G,p, V) with
dim ¥ > dim W. Since the reducing number of (H, o, W) is n, by the assumption
of induction, (H,o, W) is of the following form: (GL(1) x Gy x SL(ay) x -+ x
SL(a,)),Ai ®p, @A ® - AL V() ® V(1) ® V(a)) ® --- ® V(a,)) where
r>1,a <ay; (1<i<r—1), ay>t—1 and a, > t(t—1) — 1. For the above
triplet, the castling transform at GL(a;) (1 <i<r—1) (resp. GL(1)) has larger
dimension since fay---a 141 a4y — a; > ta, — a; > 2a, —a, = a, > a;  (resp.
tay---a,—1>t—1>1). Hence the castling transform at GL(a,) has smaller
dimension. By Lemma 2.12, we see that our assertion holds for k =n + 1. Hence
our assertion holds by induction on k. O

LemMa 2.14. Let (Gsyx GL(8),p, @ A1, V(n)® V(t)) (n=2t>4) be a
reduced irreducible PV which is one of 1)-(8), (9), (10), (11), (13), (15) with m > 2,
(17), (18), (20), (21), (26), (28), II1)-(4), (5) with 2m+1 =3 in §7 of [SK]. Then
a non-reduced irreducible PV which is castling equivalent to (G5 x GL(t),p, ® A,
V(n) @ V(t)) is of the following form: (GL(1)x G5 x SL(a;) X ---x SL(a,),
AM®LB®A®  ®ALV()® V() ® V(a)®: @ V) for some r=1,
ai<a) (1<i<r—1), ag >t and ay >nt— 1. Here, if aj <n, then ay =1t or
a =n-—1.

ProOF. Similarly to the proof of Lemma 2.13, we obtain our assertion.
O

LeEMMA 2.15. A non-reduced irreducible PV which is castling equivalent to
(Sp(n) x GL(2),A1 ®2A1,V(2n) ® V(3)) (n>=2) is of the following form:
(GL(1) x Sp(n) x SL(2) x SL(ay) x --- x SL(a,),A1 ® A1 @2A1 @A ® - ® Ay,
Fri@r2n@V3) @ Via) ®---® Viay)) for some r =1, a; < ayy (1 <i<
r—1) and a; > 6n— 1.
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ProOF. Similarly to the proof of Lemma 2.13, we obtain our assertion.

O

LEmMMA 2.16.  An irreducible PV which is castling equivalent to (SL(2) x
SL(2) x GL(2),A1 @ A1 ® A, V(2) ® V(2) ® V(2)) is one of the following form:
(1) (GL(1) x SL(2) x SL(2) x SL(a1) x -+ x SL(a,), A1 ® A| @ A1 ® Ay
R RALVIH®T2)®V(2)®V(a) ® - ® V(a,)) for some r>1,
a<ay (1<i<r—=1), a1 =2 and a, >17.
(2) (GL(1) x SL(by) x --- x SL(b,), Ai ® A1 ® -+ ® Ay, V(1) ® V(by)
®---®@ V(b)) for some r>4, b;<bi (1<i<r—1)and by =2

Proor. Similarly to the proof of Lemma 2.13, we obtain our assertion.

O

LemMmA 2.17. An irreducible PV which is castling equivalent to (SL(3) x
SL(3) x GL(2),Ai @ A1 ® A1, V(3) ® V(3) ® V(2)) is one of the following form:
(1) (GL(1) x SL(3) x SL(3) x SL(a1) x -+~ x SL(a,), A1 ® A1 @ Ay ® Ay
® - ®ALV()®V(3)®V(3)® Via)®- - ® V(a)) for some r>1,
a<ayy (1<i<r—1), ay =2 and a, > 17.
(2) (GL(1) x SL(by) x -+ x SL(b;), Ai ® A1 ® --- ® Ay, V(1) ® V(b)
®---® V(b)) for some r =3, b;<biy; (1<i<r—1) and b) > 2.

Proor. Similarly to the proof of Lemma 2.13, we obtain our assertion.

O

LemMAa 2.18.  An irreducible PV which is castling equivalent to (SL(n) x

GL(n),A1 ® A1, V(n) ® V(n)) (n>=2) is one of the following form:
(1) (GL(1) x SL(n) x SL(n) x SL(a1) x --- x SL(a,), A1 ® A1 ® A} ® A}
R ALVIH® V() ® V() V(a)® - ® V(a,)) for some r >0,
ai<ay, (1<i<r—1)and a >n*>—1.

(2) (GL(1) x SL(b1) x -+ x SL(b,), i@ A1 ® - QAL V()@ V(b)) ® @
V(b)) for some r>3, bi<byy (1<i<r—1) and by >n.

Proor. Similarly to the proof of Lemma 2.13, we obtain our assertion.

O

LEmMMA 2.19. An irreducible PV which is castling equivalent to (SL(n) x
GL(m),Ay @ A1, V(n) ® V(m)) (n>=2m = 2) is of the following form: (GL(1) x
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SL(a)) x -+ x SL(a,), AN @A ® - QAL V(D)@ V(a1) ®---® V(a,)) for some
r>1and a;<a (1<i<r-—1).

Proor. Similarly to the proof of Lemma 2.13, we obtain our assertion.

O

LeEMMA 2.20. Let Gy be a connected semisimple linear algebraic group and
Py a t-dimensional irreducible rational representation of Gy with (G, pg, V(1)) #
(SL(t), A1,V (1)). An irreducible PV which is castling equivalent to (GL(n) X Gy,
AL ® pg, V(n) @ V(¢8) (n=1t=3) is of the following form: (GL(1) x K x SL(a)
XX SL(a,),A] e QA ® - ALV ®V(k)®V(a1)® - ® V(a,)) for
some r>1, a;<aiyy (1<i<r—1), ag >n Here, for K and o, there exist a
connected semisimple linear algebraic group L and an irreducible rational repre-
sentation t of L such that Gy =K x L and p,=0®@ 7.

PrOOF. Similarly to the proof of Lemma 2.13, we obtain our assertion.

O

LemMMA 2.21. Let n, m and | be positive integers. /
—_——
We put G:= GL(n) x GL(m) x GL(l), V:=Mn,m)® ---@® M(n,m) and
n

W:=MIm@ - ®M(Im).

Let p:G— GL(V) be the representation which is defined by VaX =
(X1,...,X) — p(g)(X) = (AX,'B,...,AX;'B)'C e V for g=(A,B,C)e GL(n) x
GL(m) x GL(I).

Let 0: G — GL(W) be the representation which is defined by W>Y =
(Y1,...,Y,) —a(g)(Y)=(CY'B,...,CY,'B)!A € W for g=(A4,B,C) € GL(n) x
GL(m) x GL(I).

Let ®:V — W be the isomorphism of vector spaces which is defined by
O(X) = (D(X),..., D (X)) e W, where X = (X1,..., X)) eV, Xi=(xi1,...,xn)’,
xjeM(l,m) for 1 <i<I, 1<j<n, ®(X)=(xy,...,x5) e M(I,m) for 1<
j<n

Then we have ®(p(g)(X)) = o(g)(®(X)) for ge G, X e V.

Proor. By direct calculation, we obtain our assertion. O
Lemma 2.22.  Let n, m and | be positive integers with m > 2 and n > ml. For

each m, we define a sequence {c;},» | by c_.1 = —1, ¢co =0 and ¢; = mc;_1 — ¢i—»
(i =1). Then we have cjpin— ¢l > ciin—cj_ol+n for j=1
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PrOOF. Since c¢;y1n — ¢;l = m(cin — ¢;—1l) — (¢i—in — ¢;»l) for i > 1, we have
(ciyin — cil) — (eim — ¢i—1l) = (ein — ¢i—1l) — (ci—in — ¢;—2l) for i > 1. Then we see
that  (cjpin — ¢l) — (ciin — ¢j—2l) = (¢jpin — ¢jl) — (ejn — ¢j—1l) + (¢jn — ¢j—1l) —
(cjmin — cj—al) = 2(c1n — col) — 2(con —c_1l) =2n—21 >n for j=1. Thus we
obtain our assertion. O

3. A Classification of All Reductive PVs of the Form T(H,p,o,n,l, 0)<*)

In this section, we shall classify all reductive PVs of the form T (H,p,o,
nJ,O)(*). First we shall consider the triplet T(H,p,0,n,l,0).

THEOREM 3.1. If n > ml +r, then the triplet T(H,p,o,n,1,0) is a trivial PV.
If n<ml+r, then its castling transform at GL(n) has smaller dimension.

ProoOF. The first assertion is obvious. Since n > m/ and n > r, we obtain the
second assertion. |

Theorem 3.1 means that it is not necessary to consider the triplet 7'(H, p, o,
n,[,0) in classification of reductive PVs with two irreducible components.

Next we shall consider the triplet T(H,p,o,n,1,0)*. By Theorem 2.11, the
triplet T(H, p,o,n,1,0)" is a PV if and only if a triplet (H x GL(I), (p ® 6) ® A,
(V(m) @ V(r)) ® V(I)) = (Hi x Hy x Hy x GL(l), p; ® (p, ® 02) ® 03 @ Ay,
V(im) ® (V(m) ® V() ® V(r;) ® V(1)) is a PV.

ProposiTION 3.2. If Hy = {1}, then the triplet (H x GL(I),(p ® ) ® A,
(Vm) ® V(1) @ V(1)) = (Hy x Hs x GL(I),py @ 53 ® A1, V(1) @ V(r3) @ V(1))
is a PV if and only if it is an irreducible PV. The triplet (H, x Hz x GL(]),
PL®o3 @AV (m)® V(rs) ® V(1)) with mil =ry is an irreducible PV if and
only if it satisfies one of the following conditions:

(1) mil =r3 and (Hs, p3,V(r3)) = (SL(r3), A1, V(r3)).

(2) I=1, my =ry and (Hy,p;, V(m)) = (SL(my), A1, V(my)).

Proor. The first assertion is obvious. Note that the triplet (H; x H3 X
GL(]),p, ® a3 ® A1, V(m) ® V(r3) ® V(1)) (mil = r3) is reduced. By §7 of [SK],
we obtain the second assertion. O

ProposiTION 3.3. If H, # {1}, then the triplet (H x GL(I),(p ® ) ® A,
(V(im) @ V(r)) ® V(I)) = (Hi x Hy x H3 x GL(l), p; ® (p ® 02) ® 03 ® A,
Vim) ® (V(imy) @ V() ® V(rs) @ V(1)) is a PV if and only if it is castling
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equivalent to a trivial PV of the form (Hy x G x GL(N),(p, ® 02) @ T ® Ay,
(V(im) @ V(r)) @ V(k) ® V(N)) (N =mark). If the triplet (H x GL(I),
(p®0o) XA, (V(im)®V(r)® V() with Hy # {1} is a PV, then ml #r.

Proor. We shall prove the first assertion. We put T := (H; X Hy X H3 X
GL(1),py ® (P2 ® 02) ® 33 @ Ay, V(m1) @ (V(m2) ® V(r2)) @ V(r3) ® V(I)) and
T, :=(H x Hyx Hy x Hy x GL(I), p; ® p, ® 02 ® 03 @ Ay, V(m) ® V(mz) ®
V(ry) ® V(r3) ® V(I)). Assume that the triplet 7} is a PV. Then the triplet 7 is
an irreducible PV.

First, by Lemma 2.15 (resp. Lemma 2.19), we see that 7, is not castling
equivalent to (Sp(n) x GL(2),A1 ® 2A1, V(2n) ® V(3)) (n=>2) (resp. (SL(n) x
GL(m), A1 ® A1, V(n) @ V(m)) (n=2m > 2)).

Second we shall consider the case where 7, is castling equivalent to
(Gy x GL(1),p, @ A1, V(1) ® V(1)) (¢=>3) in Lemma 2.13. Since 7, is non-
reduced, by Lemma 2.13, 7> is of the following form: (GL(1) x Gy x SL(a;)
X - X SL(ay),A] ®p, @A @ - ALV ® V() ®V(a)) ® - ® V(a,)) for
some r>1, ¢;<ai; (1<i<r—1), ay>t—1 and a, >#(t—1)—1. Since
t(t—1)—1>1 we have Gy=SL(t—1) and a; =t—1. By §7 of [SK], we
see that (Gs; x GL(1),p, ® A1, V(1) ® V(1)) = (SL(2) x GL(1),2A1 ® A1,V (3) ®
V(1)). Since Th = (GL(1) x SL(2) x SL(2) x SL(ay) x --- x SL(a,), A1 ® 2A1 ®
AMOIANR® - ALV TVB)®V(2)®V(er) ®---® V(a,)), T, is castling
equivalent to (SL(2) x GL(1),2A1 ® A1) ® A1, (V(3) ® V(2)) ® V(1)). Since
dim(SL(2) x GL(1)) =4 <6 =dim((V(3)® V(2))® V(1)), T; is a non PV,
which is a contradiction. Hence we see that 7, is not castling equivalent to
(Gs x GL(1),p, ® A1, V(1) ® V(1)) in Lemma 2.13.

Third we shall consider the case where 7, is castling equivalent to
(G x GL(1),p, @ A1, V(n) @ V(1)) (n=2t>4) in Lemma 2.14. Similarly, by
Lemma 2.14 and [SK, §7], we see that (G, x GL(t),p, ® A1,V (n) ® V(1)) =
(SL(4) x GL(2),A2 ® A1, V(6) ® V(2)) and T is castling equivalent to (SL(4) x
GL(1), (A @A) @ Ay, (V(6) @ V(4)™) ® V(1)). Since dim(SL(4) x GL(1)) =
16 < 24 = dim((V(6) ® V(4))® V'(1)), T) is a non PV, which is a contra-
diction. Hence we see that 75 is not castling equivalent to (G; x GL(?),p, ® Aj,
V(n)® V(t)) in Lemma 2.14.

Fourth we shall consider the case where T is castling equivalent to (SL(2) x
SL(2) x GL(2),Ai @ A1 @ALV2)®V(2)®V(2)) (resp. (SL(3) x SL(3) x
GL2),Ai1 ®A1 ® A1, V(3)®V(3)® V(2))). Similarly, by Lemma 2.16 (resp.
Lemma 2.17), we see that 7} is castling equivalent to (SL(2)x GL(2),
(AI®A)®AL(V2)®V(2)®V(2) (resp. (SL(3) x GL(2),(A1 @A) ®
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AL (V3) @ V(3)Y)® V(2))). Since dim(SL(2) x GL(2)) =7 < 8 = dim((V(2) ®
V(2)® V(2) (resp. dim(SL(3) x GL(2)) =12 < 18 =dim((V(3) @ V(3)*) ®
V(2))), Ty is a non PV, which is a contradiction. Hence we see that 75 is not
castling equivalent to (SL(2) x SL(2) x GL(2),Ai @A ®A,V(2)®TV(2)®
V(2)) (resp. (SL(3) x SL(3) x GL2),Ai @ A1 @A, V(3) ®V(3) ® V(2))).

Fifth we shall consider the case where T is castling equivalent to (SL(n) x
GL(n),A1 ® A1, V(n) ® V(n)) (n = 2). Similarly, by Lemma 2.18, we see that T}
is castling equivalent to P := (SL(n) x GL(1), (A1 ® A(1*>) ® AL, (V(n)® V(n)(*))
® V(1)). By Lemma 1.11 in [KKTI|, P is a non PV, which is a contradiction.
Hence we see that 7, is not castling equivalent to (SL(n) x GL(n),A; ® Ay,
Vn)® V(n)) (n=2).

Sixth we shall consider the case where 7 is castling equivalent to (GL(n) x
Gy, A1 ® pg, V(n) ® V(¢)) (n >t =>3) in Lemma 2.20. By Lemma 2.20, T, is of
the following form: (GL(1) x K x SL(a;) X -+ X SL(a;),Al ®c @ A1 ® --- ® Ay,
VI Vk)@ V(i) ®: - ® V(a,)) for some r>1, a;<a; (1<i<r-—1),
a; = n. Here, for K and ¢, there exist a connected semisimple linear algebraic
group L and an irreducible rational representation 7 of L such that Gy = K x L
and p,, = 0 @ 7. Then we see that H, x H, is a normal subgroup of K. Here, for
H, x H, and p, ® o, there exist a connected semisimple linear algebraic group K
and an irreducible rational representation & of K such that K = H, x H, x K and
0=p,®0, ®6. Then we see that T is castling equivalent to (Hy x K x L X
GL(n), (p2 ®02) @G Q1@ Ay, (V(m2) ® V(r2)) ® V(deg 6) ® V(deg ) ® V(n))
(n >t = myry(deg 6)(deg 7)), which is a trivial PV. Thus we obtain the first
assertion.

We shall prove the second assertion by contradiction. We assume that there
exists a PV T; such that H, # {1} and mymyl = rpr;. Since the triplet 7, is
reduced, by the first assertion, 7> is of the following form: (H, X H, x G %
GL(N),p, ® 2 ® TR A1, V(my) ® V(n) ® V(k) ® V(N)) (N = myrok). Then it
satisfies one of the following conditions: (i) N =/. (ii) SL(N) is a normal sub-
group of Hj. (iii) SL(N) is a normal subgroup of Hj. If it satisfies one of the
conditions (i) and (ii), then m/ > r, which is a contradiction. If it satisfies the
condition (iii), then m/ < r, which is a contradiction. Thus we obtain the second
assertion. |

THEOREM 3.4. The triplet T(H,p,0,n,1,0)" is a PV if and only if it satisfies
one of the following conditions:

(1) H, = {1}, mil =r3 and (H3,03,V(r3)) = (SL(r3), A1, V(r3)). In this case,

the triplet T(H, p,o,n,1,0)" is a regular PV with 1 basic relative invariant.
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(2) Hz = {1}, = 1, my =r3 and (Hl,pl, V(ml)) = (SL(Wll),Al7 V(Wll)). In
this case, the triplet T(H,p,a,n,1,0)" is a regular PV with 1 basic relative
invariant.

(3) Hy, = {1}, myl # ry and the triplet P:= (H, x Hy; x GL(l),p; ® 03 ® Ay,
Vim) ® V(rs) @ V(1)) is an irreducible PV. In this case, the triplet
T(H,p,0,n,1,0)" is a non-reqular PV and the number of basic relative
invariants of it is equal to that of P.

(4) Hy # {1} and the triplet (H; x Hy x H3 x GL(I),p; ® (p; ® 02) ® 03 ®
ALV (im) ® (V(my) @ V() ® V(rs) ® V(1)) is castling equivalent to a
trivial PV of the form (Hy x G X GL(N),(p, ® 02) ® T @ Ay, (V(my) ®
V(r))® V(k)® V(N)) (N = mark). In this case, the triplet T(H,p,o,n,
[,0)" is a non-regular PV, and the number of basic relative invariants of it
is 1 (resp. 0) if N =mark (resp. N > mark).

Proor. By Theorem 2.11 and Propositions 3.2 and 3.3, we obtain our
assertion. 0

4. Generic Isotropy Subgroups

Let H be a connected semisimple linear algebraic group and let p be an
m-dimensional irreducible rational representation of H with m > 2. For each m,
we define a sequence {¢;},o _; by c.1 =—1, ¢ =0, c; =mc;_1 —¢; o (i>1). Let
n and [ be positive integers with n > ml. We define a triplet P(H,p,n,l, j)
with j >0 (resp. Q(H,p,l,j) with j>0, R(H,p,n—ml, j) with j>1) as
(GL(¢j1n — ¢il) x H x GL(¢jin — ¢ji—11), A ® pl @ Ay, V(cjn — ¢l) ® V (m)
® V(en —cj1l))  (resp. (GL(cjsal) x H x GL(cjs11), A1 @ p @ Ay, V(cjal) ®
V(im)"' ® V(cial), (GL(¢jpi(n —ml)) x H x GL(c;(n — ml)), Ay ® pIl ® Ay,
V(eri(n—ml)) @ V(m)" @ V(¢;(n — ml)))), where pl := {Z 8 _ (1) 2203 35

The triplet P(H,p,n,/,0) is a non-regular trivial PV and the triplet P(H, p,
n,l, j) is obtained from the non-regular trivial PV P(H,p,n,l,0) by applying a
castling transformation j times. The triplet Q(H,p,[,0) (resp. R(H,p,n —mli, 1))
is a regular trivial PV and the triplet Q(H,p,/,j) (resp. R(H,p,n—ml,j)) is
obtained from the regular trivial PV Q(H,p,[,0) (resp. R(H,p,n—ml, 1)) by
applying a castling transformation j (resp. j — 1) times.

The purpose of this section is a calculation of generic isotropy subgroups of
three PVs P(H,p,n,l,j), O(H,p,l,j) and R(H,p,n—ml, j).



On a classification of 3-simple PVs with two irreducible components 151

First we calculate a generic isotropy subgroup of P(H,p,n,l,j). For
M(ml,n—ml) = (G,)"™"™ and H x GL(I) x GL(n — ml), we define a homo-
morphism f: H x GL(I) x GL(n — ml) — Aut(M(mil,n —ml)) of groups by
F((h,A,B))(C) = (47" ® 'p(h) " )CB™' for (h,A,B)e H x GL(I) x GL(n — ml),
CeM(ml,n—ml). Let M(ml,n—ml) > (H x GL(l) x GL(n —ml)) be a semi-
direct product of M(ml,n —ml) with H x GL(/) x GL(n — ml) relative to f. We
shall calculate a generic isotropy subgroup of P(H,p,n,[,0). When the re}are—

——
sentation space V(n) ® V(m)® V() is identified with Vy:= M(n,m)@®--- @
M(n,m) for P(H,p,n, /1 0), the representation A; ® p® A, is given by V>
(X1,...,X1) — (DX1'p(h),...,DX;'p(h))'A €V, for (D,h,A) e GL(n) x H x GL(]).

ProposITION 4.1.  We define vy = (Xl(o),...,X,(O)) e Vo by (X1<0)| e |XZ(O>) =

1 —1
(16”) e M(n,mi). Put D(C.h,B) = 4 © P CBB> for (C,(h,4,B))

€ M(ml,n —ml) X (H x GL(I) x GL(n — ml)). Then vy € Vy is a generic point of
P(H,p,n,1,0) and the generic isotropy subgroup at vy is (GL(n) x H x GL(])), =
{(D(C,h,A,B),h,A)|(C,(h,A,B)) e M(ml,n—ml) < (H x GL(I) x GL(n — ml))}.
Furthermore, there exists the isomorphism Y : M(ml,n—ml) > (H x GL(l) x
GL(n —ml)) — (GL(n) x H x GL(])),, of groups such that ¥((C,(h,A4,B))) =
(D(C,h,A,B),h,A) for (C,(h,A,B)) e M(ml,n—ml) < (H x GL(I) x GL(n —ml)).

Proor. By direct calculation, we obtain our assertion.

O

By Theorem 2.5, a generic isotropy subgroup of P(H,p,n,l,j) is isomor-
phic to M(mil,n—ml) > (H x GL(I) x GL(n —ml)). However we need the ex-
plicit form of a generic isotropy subgroup as a subgroup of GL(cj;1n — ¢;jl) x H x
GL(cjn — ¢j—11). We shall calculate the explicit form of a generic isotropy sub-
group of P(H,p,n,l j) with j> 1. First we shall calculate a generic isotropy
subgroup of P(H,p,m+ 1,1, j) with j > 1. Next, by the above result, we shall
calculate a generic isotropy subgroup of P(H,p,n,[, j) with j > 1.

Note that ¢ (m+1)—c¢=ciy2+c¢y1 and ¢(m+1) — o1 = cjp1 + ¢
When the representation space V(cjz + cjy1) ® V(m)[*] ® V(c¢jp1 +¢;) is iden-

G+

. . ,——/\ﬁ
tified with V= M(cjpo +cjip1,m) @ --- @ M(cjo + ¢cjp1,m)  (resp. W=

CipatCip1

—
M(cjs1 +¢;,m) @ -+ @ M(cjv1 + ¢j,m)) for P(H,p,m+1,1,j) with j>1, the
representation A; ® pl! ® A; is given by V3 (X1,... X)) = (SX (), ...,
SX;, 4P ()T € V; (resp. Wis (Yi,..., Yoie,) — (TYi(h), ...,
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TYC;'+2+C/‘+1 ’,D[*] (h))[S € I/V}) for (SJ’I; T) € GL(C]‘+2 + Cj+1) x H x GL(cj-Jrl + C])
h /=0 (mod 2
Here ) = {70 02 o)
p(h)~" (j=1 (mod?2))

PROPOSITION 4.2, There exist generic points v; = (Xl(j)7 . ,Xc(f{)]“f) eV, and
w; = (Y1(1)7..., Y\ )e W; of P(H,p,m+ 1,1, j) with j>1 such that

Cip2+Cjr1
(/) xé(‘j> )]
X\ = 0 € M(cjp2+ ¢jip1,m), xy € M(cjya,m) for 1 <s<c¢jp,
0 ‘
X,(] = <x<") € M(cjt2+ ¢jr1,m), xtm € M(cjy1,m) for cip1+1<t<ci1+¢,
t

) (/) .
YW = (yz) > e M(cjy1 +ci,m),  yY e M(cjiy,m) for 1 <s<cjpa,
0 ()
€ M(cjp1+cj,m), y;7" € M(cj,m) for cipo+1<t<cp+cjt1.
These generic points are defined inductively by the following method.
(1) Let {y{l),...,yc(,}l)} be a linear basis of {I,»" and {ygll,...,yglcz} a
linear basis of M(1,m). We define wi = (Y1<1), ey chlq) e W by

(1)
Y = (yz) >eM(cz+c1,m), vV e M(cy,m) for 1 <s< e,

0
Y,(l) = <y<1)> € M(c + ¢1,m), y,(l) eM(ci,m) for s+1<t<c3+c.
t

Then, for wy € Wy, the point vy = (le, . 7Xc(zl}rq) € V1 is defined by the
isomorphism of vector spaces of Lemma 2.21.
(2) Assume that there exists a generic point v; = (X1<l>,... X YeV; of

) R Cip1FCi
P(H,p,m+1,1,i) with i > 1 such that

4 @ :
AX;(I) = (x(a) ) € M(ci+2 + Ci+17m)7 xél) € M(Ci+27m) fOV 1<s< Cit+1,

i O i
Xz<) = <x(i)> € M(cizo + cip1,m), xz() e M(cip1,m)

t

for cipi+1<t<ci+a
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i+1 (i+1) /)

Let {yY ), A Cfﬂ } be a linear basts of <x1 ... xcf+1 St and
(i+1) (i+1) i

{Versetse s Veurtann @ linear basis of <xc ST (I 1+c > We define

wirr = (YYD e Wi by

Cit3FCiy2

] (i+1) .
Ys(lﬂ) = (yso ) € M(ciyr + ¢iv1,m), ys(hLl) € M(ciy2,m)

fOV 1 <s< Cit3,

A 0 .
vt = (y“ﬂ)) € M(cisa+civr,m), p e M(cir,m)

t

for cii3+ 1 <t<ciyz+ciga.

Then, for w;i € Wi, the point vi = (Xl(i+l),...,X,<i+]), Ye Vi is

Cit2FCiyl

defined by the isomorphism of vector spaces of Lemma 2.21.
Proor. By Lemma 2.21 and Proposition 4.1, we obtain our assertion. []

PrOPOSITION 4.3. Let 7; (i=1) (resp. T; (i = 1)) be the ciii-dimensional
(resp. the c;-dimensional) rational representations of H which are defined induc-
tively by the following method: ©1 = p*, p* @ p=1@® 12, 1o, @ p* = To5_1 ® Tas41
(s=21D)and 12511 ®p =10 @ 1542 (s=1) (resp. 71 =1, Lo =p, T, @ p* =751 @
Tosp1 (52=1) and Toe ) ® p=Tos D Togr2 (s =1)). For Ce M(m,1), we define

u(C) e M(ciyciv1) (i=1) by w(C)=-"'C and (u,»(C)yii), . ,ui(C)ygfiz) =
G s P i () (P2 1),
Put  A;(C,h,o,f) = (a_]THl(h) _tuiH(F)(ﬂ%iH(h))
0 BTiri(h)
(C, (h,o,B)) € M(m,1) < (H x GL(1) x GL(1)).

Then the generic isotropy subgroup at v;€V; of P(H,p,m+1,1,j) with
j=1 is given by GH,p,m~+1,1,)):={(4,(C,h,a,p),h,'d;1(C,h,o, f)") |
(C,(h,o,p)) e M(m,1) X (H x GL(1) x GL(1))}. Furthermore, there exists the
isomorphism ;- M(m, 1) X (H x GL(1) x GL(1)) — G(H,p,m+ 1,1, j) of groups
such that ,((C, (h,a,f))) = (4;(C, h,a, B), h, ’A,'_l(C,h,oc,[)’)fl) for (C,(h,o,p)) €
M(m,1) < (H x GL(1) x GL(1)).

) (i>0) for

Proor. We shall prove this by induction on the index j.
. yf . . .
By Proposition 4.1, we see that vy = < 87) € M(m+ 1,m) is the generic point

of P(H,p,m+ 1,1,0), the generic isotropy subgroup at vy is (GL(m+ 1) x H x
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GL(1)),, = {(D(C,h, 0, ), h,0) | (C, (h,, ) € M(m, 1) > (H x GL(1) x GL(1))}
and there exists the isomorphism W : M(m,1) > (H x GL(1) x GL(1)) —
(GL(m +1) x H x GL(1)),, of groups such that ¥ ((C, (h,o,f))) = (D(C,h,a,f),
h,o) for (C,(h,o,f)) e M(m,1) > (H x GL(1) x GL(1)).

We put G:={g:= (D(C,h,o,f),h)|(C,(h,o,p)) € M(m,1) > (H x GL(1) x

GL(1))}. We see that <vo>:{<xém)eM(m+l,m)xeC} and <yt =

W) emomsrm |2 i )

Then G acts on vy by <vpy3 (x(l)m> =M ®p)<g)(<x(1)m>> -
RPN ‘ -
o p(h) " (xLy) 'p(h) \ _ <°‘ IXIm> e (v for g€ G, and G acts on {vy>* by

0 0

(VY A Y\ _ p(h) Yp(h)”!
{voy 9<Z> (AT ®p )(9)(<Z)> (—’C(ocp(h))Yp(h) 1+ﬂ IZp( ) )e
vt for g e G.

The representation of H on {x[,|xe C} which is defined by xI,—
'(h) "' (xI,)'p(h) = xI,, for he H is a unit representation 1. Since H is semi-
simple, there exists the c3-dimensional rational representation 7, of H such that
pP*®p=1@®1,. Then we see that the representation of H on {Y e M(m)|
Tr Y =0} which is defined by Y — p(h)Yp(h)™' for he H is the representa-
tion ;. U o
We shall calculate the representation matrix ( g T> where U € M(c3),

S e M(ca,c3) and T € M(cy) of the linear transformation (A} ® p*)(g) : {vod™ —

{vod* with respect to a basis {Y1<1>,..., Yéllq}.
1

We see that U = az(h) and T = ' p*(h). Since (—’C(ocp(h))yi >p(h)_l, ey
—T@4mwgmm”> G, y,)S  and (MQUWMM”(W
op(h)y o)y = (Y, i aes(h),  we  have  (—'CniV,... oyl =

G v )S(aes () ™' We put us(C) := S(xz3(h))". Then we have
S = us(C)(a3 ().

Therefore the generic isotropy subgroup at w; = (Yl(l),..., YCz +cz) e Wy of
(GL(c2+¢1) x HX GL(¢c3+ ¢2), A ®p* Q A1, V(ca+¢1) @ V(m)" ® V(es +¢2))
is (GL(c2+c¢1) x H x GL(¢3+ c2)),,, = {(D(C, h, o, ), h, A1(C, b, 2, B)) | (C, (B, 01, B))
€ M(m,1) < (H x GL(1) x GL(1))} and there exists the isomorphism
01: (GL(m+1) x H x GL(1)), — (GL(c2 + 1) x H x GL(¢c3 + ¢2)),, of groups
such that ,((D(C,h,o,p),h oc)) = (D(C,h,o,p),h, A (C, h,o,p)) for (C,(h,a,p))

M(m,1) > (H x GL(1) x GL(1)). Thus we see that our assertion holds for
=1.
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Assume that the generic isotropy subgroup at vy € Vi of P(H,p,m+1,1,k)
with k > 1 is given by G(H, p,m+ 1,1,k) = {(Ac(C, h,a, f), h, ‘A1 (C, hy o, ) ) |
(C,(h,o,p)) e M(m,1) X (H x GL(1) x GL(1))} and there exists the isomor-
phism , : M(m,1) < (H x GL(1) x GL(1)) — G(H,p,m+ 1,1,k) of groups
such that v, ((C, (h,a,))) = (Ax(C, h 0, B), h, A1 (C, h, e, ) ") for (C, (h,a, )
e M(m,1) < (H x GL(1) x GL(1)).

We put G := {g := (Ar(C,h,o, ), h) | (C, (h,o, f)) € M(m, 1) < (H x GL(1) x

X
GL(1))}. We see that <Xl(k>,...,Xc(:€)]+ck>= ( )GM(Ck+2+Ck+1,m)‘
(k) (k) * Y
X€<x1 7"'7xCA»+1>7

}and B xB sy EY Ly s

(k) (k) Cleg11+C Cle3+Clet2
Ye <x0k+1+17 ce ’xé'k+1+¢‘k (k+1) ' k:l ’ ‘
{ z € M(cki2 + Cry1,m) Z€< m’yLM >7 }
+2 +15 k .
w W € <ycf-::*1’ o yﬂ(’A'j;L’)Ck+2> X
Then G acts on <X1 See, CHHk> by <Xl(k>, e ,X(,(:?IMA,} 3 ( Y) —
(A1 ® pl)(g )((X )> _ (dlml(h)X Prih) — ’um(C)(/fka(h))Yfp[*l(h)) e
¥ B >Yp[*1<h>
<X1(k),.. C(Z?IMQ for g€ G, and G acts on <X (’/c+l+f‘k> by
k k 4 . o i 4
x a1 - et ><g>(( "))
t -1 [%] -1
_ a'tit () Zp (h)
w1 (O) (' eyt () ZpH ()™ + B~ esa ()~ Wl () ™!

exM, . x® St

Cl1t+Ck

p(h) (k=0 (mod2))
) (k= (mod 2))
Since  (t 1 (W)xF PR, . me (W)X pH () = W xE e (n) for
heH  (resp. (fk“(h)xfglﬂ’p[*] (h),.. .,Tk+1(h) Sfilm P (h)) = (xffjwrl’ s
x((fjlﬂ%)%k(h) for he H), the representation of H on <x§k),...,x£,]f+>l> (resp.

S 0 ) which is defined by X +— 11,1 (h) X pl*l(h) for he H (resp.

Crp1+1? ) MOkl HCk

Yt (B) Y'll(h) for he H) is t; (resp. 7). Since H is semisimple,

for g e G. Here pll(h) :{

there exists the ¢, 3;-dimensional rational representation 74, (resp. the ciio-
dimensional rational representation 7j,,) of H such that 7, ® pl = 14 ® 1442
(resp. Tri1 @ pl! =% @ 7142). Then we see that the representation of

k k (k+1) k+1 k
H on <x§ ),...,x£k+)]> =< (et ,...,yﬁk:g)> (resp. <x(k+l+l,...,xc(,u>l+6k>i:
<y(f:1+1, . .,yﬁfj}i)%)) which is defined by Z — 15y (h) "' Zptl(h)™" for he H

(resp. W — "%y (h) " Wpll(h)™" for h e H) is the representation Tp,o (resp. ;).
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U o0
We shall calculate the representation matrix ( g T) where U € M(cx3),

S e M(cpia,cri3) and T € M(ciy2) of the linear transformation (A; ® pl*)(g) :

<X](k>, . ,X(,(Ai)l +L,k>i — <X](k) Xfli)mk) with respect to a basis {Yl(k+1), e
Y(k+1) }
Chy3teria S
We see that U = arj,,(h) and T :ﬁ’lf,j+2(h).
Since (11 (€)' () )1 ()i () ‘>ycizt1 :
% -1 2 1 1) 1«
P = S i s and i)
't () peUpt ()7 = (Y P Y (h), we have

(e (O +1<c>y£ff:;”> = (et i, DS (a5 (). We put
up2(C) = S(ocrkﬂ(h)) . Then we have S = u2(C)(at],,(h)).

Therefore the generic isotropy subgroup at wii; = (Yl(k+1),..., Yéﬁ&kﬁ)
Wier1 of (GL(cksa+ chr1) X H x GL(Cri3 + cis2), A @ pP* @ A, V(ckia + i)
® V(m)™" @ V(cxss + cri2)) s (GL(crsa + ci) X H x GL(Cky3 + ci2))y,
{(4k(C Ry, ), by Areir (Co by o, B) [(C (B e, B)) € M (m, 1) >0 (H x GL(1) x GL(1))}
and there exists the isomorphism Jx; : G(H,p,m+ 1,1,k) — (GL(cr42 + cky1) ¥
H x GL(ck43 +Ck+2))wk+l of groups such that Opyi((Ax(C,h,a,p),h, 'Ar_1(C,h,
0, f))) = (4(C, h,a, B), h, Ak (C, by o, ) for  (C, (h,a, ) € M(m,1) X (H x
GL(1) x GL(1)). Thus we see that our assertion holds for j =k + 1. Hence our
assertion holds by induction on j. O

* M

When the representation space V(ci1n— ¢;l) @ V(m)™ @ V(en — ¢j11) s

cin—cj_11

——
identified with V;:= M(cjyin—c;il,m) @ --- @ M(cjpin —c;l,m) (resp. W;:=

cj+1n cjl

——
M(cin—cialm)@--- @ M(cin— c¢j—1l,m)) for P(H,p,nl, j) with j>1, the
representation A ® pl*! @ Ay is given by V; 3 (X1,..., Xgu_c1) — (SX1 P (h), ...,
SXn—c 1PV (h)' T eV;  (resp. Wis (Y1,..., Yy me) — (TY1pM(R), ...,
TY -1 (h)'S € W)) for (S,h,T)e GL(¢cisin — ¢jl) x H x GL(¢jn — ¢j11).

h =0 (mod 2

Here p[*] (h) — {;0( )71 (j ( ))
()" (j=1 (mod2))
¢ir1(n—ml) and ¢n — ¢j1l = ¢j1l + ¢j(n — ml).

Note that c¢in— ¢l = ¢l +

PrOPOSITION 4.4. We  define X )1a+ﬁ eM(cjpol,m) (j=1, 0<a<l-—1,
(/)

L<B<ci1) as (0 mm: xl(; ),0( sa(l—a—1),m ))', where  xg (1 <p<cpy) are

7V
the matrices which are defined in Proposition 4.2. We define Xealteyts €

M(ci(n—ml),m) (j=1, 0<y<n-ml—1, 1<d<¢) as (0¢,,,m

/ ()
Oy (n-mi—y-1),m)) s where X" 5

J
X140
(1 <0 < ¢j) are the matrices which are defined in
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Proposition 4.2. We define j/f‘i)zwﬁ eM(cilm) (j=1, 0<a</-1,1<p<
Cjy2) as (O(c’mmm)vy/(;])v0(cj+1(l—c<—1),rn))/a where yé'/) (1 < B <c¢jy2) are the matrices
which are defined in Proposition 4.2. We define )757/'_/221“7‘”%5 € M(cj(n—ml), m)

(] > 1, (Q)S y<n-— ml—1, 1<0< Cj+1) as (O(t’/‘}’,m)y yf}:i)2+(37O(C/<n*m17“/171)’n1))/’
J

where y (1 <6 <c¢jy1) are the matrices which are defined in Proposition

i+ +0
o 0 T : o _ (=
42. We define v, = (X ,...,chn_(,/ill)er (j=1) by X = E) e
; 0
M(cipin—¢l,m)  for 1 <s< ¢l X\ = L)€ M(cjin —¢il,m)  for
t
crl+1<t<cn—ci_l. We defined w; = (Ylm,..., YC(/_'{)]”?C/,) eW; (j=1) by

Yy = 8 e M(cin—ci—1l,m) for 1<s<cal, Y7 = ( ~(,)) € M(cjn —
: : : e :
cji—1l,m) for cjal+1<t<cin—cjl. Then v; corresponds to w; by the iso-

morphism of vector spaces of Lemma 2.21.

Proor. By Lemma 2.21 and Proposition 4.2, we obtain our assertion.

O

ProposiTioN  4.5. For  C=(Cpy)i<pei1<g<nm € M(ml,n—ml)  where
CyeM(m,1l) (1<p<l, 1<qg<n—ml), we define U(C) (i>1) as
(i(Cog))1<g<n-mi,1<p=<i € M(ci(n —ml), cisl).

-1 @ 7 1. 7
Put A,(C.h A, B) = < A7 @ i1 (h) U,+1(C)(~B®r,+1(h))
0 B® TH,I(/’I)
(C,(h,A,B)) e M(ml,n —ml) < (H x GL(I) x GL(n — ml)).
Then v; € V; is a generic point of P(H,p,n,l,j) with j =1 and the generic

) (i>0) for

isotropy subgroup at v;€V; of P(H,p,n,l, j) with j=>1 is given by G(H,p,
1, j) == {(A4;(C,h, 4, B),h,'4; (C,h,4,B)"") | (C, (h, A, B)) € M(ml,n — ml) x
(H x GL(I) x GL(n —ml))}.  Furthermore, there exists the isomorphism
W : M(ml,n —ml) X (H x GL(I) x GL(n —ml)) — G(H,p,n,l, ) of groups such
that W;((C, (h, A, B))) = (4;(C,h, A, B), h,'d;_1(C,h, A, B)"") for (C,(h,A,B))e
M(mi,n—ml) < (H x GL(I) x GL(n — ml)).

Proor. Similarly to the proof of Proposition 4.3, we obtain our assertion.

O

Second we calculate the explicit form of a generic isotropy subgroup of
O(H,p,l,j) as a subgroup of GL(cj;2l) x H x GL(¢j41l). When the represen-
tation space V(cj2l) ® Vim @ V(cjipal) is identified with V;:= M(cjy2l, m)



158 Yoshiteru KUurosawa

¢l Gl

—— ——

@ ® M(cjsal,m) (resp. Wj:= M(ci1l,m) @ --- @ M(cjp1l,m)) for Q(H,p,
I,j), the representation A;®pl@A; is given by V> (Xi,..., X,
(SX1pM(h), ..., SXe, /'pH (h))'T e V; (resp. W;3 (Yi,..., Ye0) — (TY 'l (h)
v TY o i p(h) 'S e W) for  (S,h,T) € GL(¢j12l) x H x GL(¢js1l).  Here
iy = [P 0=0 med2)

P~ (j=1 (mod2))

)

PROPOSITION 4.6. We define vo = (X\*,.... X"y e vy by (X\V]--1x) =
L. Then vyeVy is a generic point of Q(H,p,l,0) and the generic isotropy
subgroup at vy is {('A7 @ p(h)~",h,A)|he H,A € GL(I)} ~ H x GL(l).

Proor. By direct calculation, we obtain our assertion. O
ProposITION 4.7. We put v;:= (Scij), . ,Scé_’fl,) eV, (j=1) and wj:=
(j}i”,...,jéfz,) eW,; (j=1), where ) e M(cjpal,m) (1 <s<c¢jp1l) and ) e

M(cjy1l,m) (1 <t < cjyol) are the matrices which are defined in Proposition 4.4.
Then v; corresponds to w; by the isomorphism of vector spaces of Lemma 2.21,
vy eV, is a generic point of Q(H,p,l,j) with j>1 and the generic isotropy
subgroup at v; € V; of Q(H,p,l,j) with j >1is {({A7' @ t;51(h),h, A ® ’Tj(h)fl) |
heH,Ae GL(I)} = H x GL(!).

Proor. Similarly to the proof of Proposition 4.3, we obtain our assertion.

O

Third we calculate the explicit form of a generic isotropy subgroup of R(H, p,
n—ml,j) as a subgroup of GL(c¢j+1(n —ml)) x H x GL(cj(n —ml)). When the
representation space V(c,+1((n " ml)) ® V(m)[*] ® V(cj(n—ml)) is identified with

. ; ;

¢j(n—m

—
Vii=M(cis1(n—ml),m)@ --- @ M(cjr1(n—ml),m) (resp. W;:= M(cj(n—ml),m)

cjy1(n—ml)

@@ M(cj(n—ml),m)) for R(H,p,n—ml,j), the representation A; ® pl"! ®

Ay is given by Vi3 (Xi,..., Xomomp) — (SXi (), ..., SX, (nmi) PH(R)'T e

Vi (resp. W;a (Y1,..., Y, (o—mi)) — (TY] PR, ..., TYC,-H(anz) PH(h)'S e W)

for (S,h,T) e GL(ch(»n —ml)) x H x GL(cj(n — ml)) Here pll(h) =
p(h)  (j=0 (mod2))

{ P (j=1 (mod2))

ProposiTION 4.8.  We put v; := (SCE,-]EI/H’ . ,)”cf,j_’,;)#l,) eV, (j=1) and w; =
() () '

()76/42,“, . .75)@;;1”4],1) e W; (j=1), where ) e M(cipi(n—ml),m) (¢l +1<
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s < ¢n—c¢i-1l) and e M(cj(n—ml),m) (cj2l +1 <t <cjpn—¢jl) are the
matrices which are defined in Proposition 4.4. Then v; corresponds to w; by the
isomorphism of vector spaces of Lemma 2.21, v; € V; is a generic point of R(H, p,
n—ml,j) and the generic isotropy subgroup at v;e V; of R(H,p,n—ml,j) is
{(B®7%j1(h),h,' B'® ff,(h)_l) |he H Be GL(n—ml)} =~ H x GL(n — ml).

PrOOF. Similarly to the proof of Proposition 4.3, we obtain our assertion.

O

5. Some Results about a Classification of all Reductive PVs of the Form
T(H,p,o.n,1,j)") with j>1

For the triplet T(H, p,o,n,1, j)* with j>1 (resp. T(H,p,o,n,1, j) with j > 1),
we define a triplet A(H,p,0,1,j) (resp. B(H,p,o,n—ml, j)) as (H x GL(cj11l) x
GL(¢j12D), p @ A1 @ A1 + 0 ®@ 1 @ A}, V(m) ® V(cjuil) ® V(cjyal) + V(r) ®
V(cjsal)™) (resp. (H x GL(¢cj(n —ml)) x GL(¢jp1(n—ml)),p @A @A+ Q1 ®
A1 V(m) ® V(¢,(n — ml)) @ V(cjor (n = ml)) + V(1) ® V(cjor(n — mi)))).

Necessary and sufficient conditions for the prehomogeneity of two triplets
A(H,p,0,l,j), B(H,p,o,n—ml, j) are given in [Kal]. Especially for the triplet
B(H,p,o,n—ml, 1), we give a necessary and sufficient condition for its pre-
homogeneity which is different from that of [Kal].

THeorReM 5.1 (Kasai). The triplet A(H,p,o,l,j) with (m,my) = (2,1)
(resp. B(H,p,o,n—ml,j) with j>2 and (mi,my) = (2,1)), namely, (S (2) X
VG+DD@V((j+2))+V((j+2))" ® V(rs)) (resp. (SL(2) x GL( (n - ml))
X GL((]+1)(n—ml)) XH3, AT QA A R®T+1TR®1®A ® o;, ( >®
V(jn—mD)) @ V((j+ 1)1 — mD) + V((j + )n — ml) @ V(rs))) is a PV if and
only if Ty = (GL(I) x SL(2) x H3, A1 ® (j+ A1 @ 3, V() ® V(j +2) ® V(13))
(resp. Th:=(GL(n—ml) x SL(2) x H3,A\1 ® jAi ® a3, Vin—m) @ V(j+1)®
V(r3))) is an irreducible PV. Assume that Ty (resp. T3) is an irreducible PV. We
denote by Ny (resp. N,) the number of basic relative invariants of T\ (resp. T).
Then A(H,p,a,l,j) with (my,my) = (2,1) (resp. B(H,p,o,n—ml,j) with j>2
and (my,my) = (2,1)) is regular if and only if T\ (resp. T,) is regular, and the
number of basic relative invariants of A(H,p,o,l,j) with (m1,my) = (2,1) (resp.
B(H,p,o,n—ml,j) with j>2 and (my,my) = (2,1)) is Ny + 1 (resp. N2+ 1).

Proor. For the proof, see [Kal, Theorem 3.22] and Correction 1.2. []



160 Yoshiteru KUurRosawa

THEOREM 5.2 (Kasai). The triplet A(H,p,0,l,j) with (my,my) # (2,1) (resp.
B(H,p,a,n—ml,j) with j>2 and (m;,my) # (2,1)) is a PV if and only if the
triplet  (Hy x GL(c¢j41) x GL(¢j32) X Hy x SL(I) x H3,p; @ A1 Q@A ®p, ®1®
I+1®1®A®n®AI ®as, V(m) ® V(ci) ® V(c2) ® Vim) + V(cj2)" ®
V(r) @ V(I)® V(r3)) (resp. (Hy x GL(cj) x GL(¢jy1) x Hy x SL(n —ml) x Hj,
PLOAMROAR,ARIRTI+TIRIRA ®a @A ®a3, V(im) ® V() ®
V(civ1) @ V(my) + V(cip1) @ V() @ V(n—ml) ® V(r3))) is castling equivalent
to a PV of the form (Hi x GL(c¢j41) %X GL(cj12) x Hy x SL(N) X K, p; @ A1 ®
A®mEIOI+IRIOAY ®d @A ®t, Vim)® Vie) ® Vig:) ®
V(m) + V(ci2)™ @ V()™ ® V(N) ® V(k)) with N > c¢jark (resp. a PV of
the form (Hi x GL(c;) x GL(cj41) X Hy x SLIN") x K, py @ Ai @A ®p, ®1®
1+1@10AY ®a @A @, V(im)® V() ® V(cj1) ® V(m) + V(e)™ ®
V()" @ VIN)® V(K') with N' > Cip1k’). Assume that A(H,p,o,l, ) with
(my,my) # (2,1) (resp. B(H,p,o,n—ml, j) with j >2 and (m;,my) # (2,1)) is a
PV. If N =cjork (resp. N' =cjnk’), then A(H,p,o,l,j) with (my,my) #
(2,1) (resp. B(H,p,0,n—ml, j) with j >2 and (my,my) # (2,1)) is a regular PV
with 2 basic relative invariants, and i N > cjamk (resp. N' > c¢jirk’), then
A(H,p,0,l,j) with (my,my) # (2,1) (resp. B(H,p,a,n—ml,j) with j>2 and
(my,my) # (2,1)) is a non-regular PV with 1 basic relative invariant.

Proor. For the proof, see Theorem 3.23 in [Kal]. O

THEOREM 5.3. The triplet B(H,p,o,n—ml 1) is a PV if and only if it

satisfies one of the following conditions:

(1) Hy = {1} and the triplet (H, x Hy x GL(n —ml),p; ® a3 @ A1, V(m)" ®
V(r3) ® V(n—ml)) is a regular irreducible PV. In this case, B(H,p,o,
n—ml 1) is a regular PV with 2 basic relative invariants.

(2) Hy # {1} and the triplet (Hy x Hy x Hy x GL(n —ml),p; ® (p; ® 02) ®
G @ALV(im) @ (V(im) @ V(rn))® V() ®V(n—ml) is castling
equivalent to a regular trivial PV of the form (H> x G x GL(N), (p; ® 03)
RTR AL, (V(m) @ V(r))® V(k)® V(N)) with N = maryk. In this
case, B(H,p,a,n—ml 1) is a regular PV with 2 basic relative invari-
ants.

(3) Hy={1} and the triplet T :=(H, x H3 x GL(n—ml),p} ® 03 @ Ay,
V(im)* ®V(r;) ® V(n—ml)) is a non-regular irreducible PV. In this
case, B(H,p,o,n—ml 1) is a non-reqgular PV and the number of basic
relative invariants of it is N + 1, where N stands for the number of basic
relative invariants of T.
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(4) Hy # {1} and the triplet (H; x Hy x H3 x GL(n —ml), p; ® (p3; ® 02) ®
G QAL V(im) @ (V(m) @V (rn)®V(rs)®V(n—ml) is castling
equivalent to a non-regular trivial PV of the form (H x G x GL(N),
(P ®0)®TR AL, (V(m) @ V(r))®V(k)® V(N)) with N > mark.
In this case, B(H,p,o,n —ml 1) is a non-regular PV with 1 basic relative
invariant.

Proor. Since a generic isotropy subgroup of (H x GL(n —ml) x GL(m(n —
m)),p @A QAL V(m)@V(n—ml) @ V(mn—ml))) is {(h,A4,p*(h)® A7)
he H,Ae GL(n—ml)}, by Proposition 2.4, we see that B(H,p,a,n—ml 1) is a
PV if and only if (H x GL(n—ml), (p* ®a) @ A1, (V(m)* @ V(r)) ® V(n—ml))
is a PV. By Propositions 3.2 and 3.3, we obtain our assertion. O

THEOREM 5.4. (1) If the triplet T(H,p,a,n,l, j)* with j > 1 is a PV, then the
triplet A(H,p,0,l,j) is a PV. Furthermore, if the triplet A(H,p,o,l,j) is
a PV, then the triplet T(H,p,o,n,l,j)* with j > 1 and n > ml + ¢j.1r is a
PV.

(2) If the triplet T(H,p,o,n,l,j) with j > 1 is a PV, then the triplet B(H,p,
a,n—ml, j) is a PV. Furthermore, if the triplet B(H,p,o,n —ml, j) is a
PV, then the triplet T(H,p,o,n,l,j) with j>1 and | > cjor is a PV.

(3) The triplet T(H,p,0,n,l,j)" with j > 1 and | > cjior is a non-regular PV
and the number of basic relative invariants of it is 1 (resp. 0) if | = cjjor
(resp. > cjor).

(4) The triplet T(H,p,0,n,l, j) with j > 1 and n > ml + c¢j.1r is a non-regular
PV and the number of basic relative invariants of it is 1 (resp. 0) if
n=ml+ cjr (resp. n>ml+ cjir).

Proor. (1) Since H is semisimple, T(H,p,o,n,l, j)* with j>1 is isomor-
(p.0)  (j=0 (mod2))
(p.0") (j=1 (mod2)y

By Proposition 4.5, the (GL(cj1n—cjl) x H)-part of a generic isotropy
subgroup of (GL(cjin—¢;l) x H x GL(¢cjn — ¢j—11), Ay ® pH @ Ay, V(cjipin—¢il)
® V()" ® V(ejn—¢; 1)) is given by Gj:={g; := (4;(C,h, A, B),h) | (C, (h, 4,
B)) e M(mil,n —ml) < (H x GL(I) x GL(n — ml))}.

By Proposition 2.4, T(H,p, 6" n 1 j)* is a PV if and only if
(Gj,(A;‘®a[*])|@,M(cj+1n—cjl,r)) is a PV. The action (A ®G[*])|G,- is given
by

phic to T(H,pi, ot n,1, j)* where (p), o) ;_{
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Mican -t s (5 ) - ar e ((y))

(4® "1 () )X oM (h)
Upt(C)(A ® 31 () )X 'GH () + (B ® %1 (h) ) ¥k ()

€ M(cjpin —cjl,r) for X € M(cjyal,r), Y € M(cjp1(n—ml),r).

Here we put K;:={('A'®7j1(h),h)|he H Ae GL()}, L;:={(B®
Zi1(h),h)|he H,Be GL(n—ml)} and define a map ¢: M(cjpin—cl,r) —

X
M (cjzal,r) by (p(( Y)) =X for X e M(cjal,r), Y € M(cjyi1(n—ml),r).

If (G, (A} ® a[*])|G/_,M(cj+1n —¢jl,r)) is a PV, then by applying Lemma 2.3
to ¢: M(cjsin —¢jl,r) — M(cjsal,r), we see that (K;, (A} ® a[*])|Kj, M(cjzal,r))
is a PV. By Proposition 4.7, we see that A(H,p,o,l,j) is a PV if and only if
(Kj, (A} @ 0|, M(¢j1al,7)) is @ PV.

Note that if n>ml+ ¢ r, then (L;, (A} ®a[*])|Lf,M(cj+1(n —ml),r)) is
a trivial PV. If (K;, (A] ® a[*])|K],,M(cj+zl, r)) is a PV, then by applying
Lemma 2.3 to ¢ : M(c¢jin — ¢;l,r) — M(cj2l,r), we see that (Gj, (A ®o[*])\Gj,
M(cjyin —¢jl,r)) with n>ml +c¢;r is a PV. Thus we obtain our assertion.

(2) By Proposition 4.8 and an argument similar to that in (1), we obtain our
assertion.

(3) If j=1 and /= cjypr, then by Lenlqnma 4.10 in [KKTI], a triplet
(GL(¢;n — ¢;11) x GL(ci1n — 1), Al @A T T A @A +H1 @A T T 1®

m

—
AL, Vign — ¢al) ® V(egan — ¢l) 4---+ Viegn — ¢;1l) ® V(egan — ¢l) +

V(cin —¢l)” i V(cjsin —¢;l)*) is a non-regular PV and the number of
basic relative invariants of it is 1 (resp. 0) if /= ¢jor (resp. [ > ¢jor). By
Proposition 4.5, we obtain our assertion.

(4) Assume that j > 1 and n > ml + ¢, r. First we shall consider the case
where j=1. We obtain P:= (H X GL(n) X GL(r+1),p QA1 QA1+ ® 1 ® Ay,
Vim)@ V)@ V(r+1)+V(r)® V(r+1)) by applying a castling transforma-
tion to T(H,p,o,n,l,1). Since n > ml +mr and r+/ > r, P is a non-regular PV
and the number of basic relative invariants of P is 1 (resp. 0) if n=ml+ mr
(resp. n > ml + mr). Thus we see that our assertion holds for j=1.

Second we shall consider the case where j=2. We obtain P;:= (H X
GL(nm—1) X GL(n+1),p@A I QA +0R1QAL,V(m)Q@V(inm—1) @ V(n+r)+
V(r)® V(n+r)) by applying a castling transformation to T(H,p,o,n,l,2).



On a classification of 3-simple PVs with two irreducible components 163

Furthermore, we obtain Py := (H x GL(mr +1) X GL(n+1),p* @ A1 @ A} + 0 ®
1AL VM) @ V(mr+1)@V(n+r)"+V(r)® V(n+r)) by applying a cas-
tling transformation to P;. Note that n+r > m(mr+1[). By Proposition 2.4
and Theorem 2.11, we see that P, is a non-regular PV and the number of
basic relative invariants of P, is 1 (resp. 0) if n+r=m(mr+1) (resp. n+r >
m(mr +1)). Thus we see that our assertion holds for j=2.

Third we shall consider the case where j>3. We obtain P;:= (H x
GL(¢cin — ¢j—1l) x GL(¢cj-in — ¢j 2l + 1), p @A @ Al + 0 @ 1 ® Ay, V(m) ®
V(cin —c¢j-1l) @ V(cjin — cj—al +1) + V(r) ® V(cj—1n — ¢j—»l +r)) by applying a
castling transformation to T(H,p,o,n,l, j). Furthermore, we obtain P, := (H X
GL(cj—an—cj—3l+mr) x GL(¢j_in—¢j—2l+71),p* QAT @A +0 @ 1 ® Ay, V(m)" ®
V(cj-an = ¢l +mr) @ V(cjoin = ¢ial +1)" + V(r) @ V(¢in — ¢al + 1)) by
applying a castling transformation to P3. Since n > ml + ¢;11r, we have n+ ¢j_ir
> m(l + ¢;r). We put ii:=n+¢;r and [:=1+¢jr. Then we see that 7i > mil.

. ¢ ¢ 0 1 ¢ c.1 ¢
Since < a ’+3> = < ) < ' ’+2> (i>—1) and det( : 1) =—m,
Cit2  Cir4 =1 m/\ciy1 ciy3 o

. . Citl  Cit2 0 1
we have ¢z —civ1cipo=—m (i > —1). Since ( ! ! = .
Civ2  Ciy3 -1 m

Ci Ci . S C

( H) (i>-1) and det(é ! 0>:—1, we have cic,-+2—(ci+1)2:—l
Civl Ciy2 c ~

(i>-1). Ther~1 we see that ¢;_on — ¢j_3/ + mr = c¢j_on — ¢;_3/ and Cjoin — cjal+r

= ¢j_17i — ¢j_pl. P4 is isomorphic to Ps:= (H x GL(¢j_2fi — ¢j_3l) X GL(cj_17i —

G-20),p" @M @A+ @ TQAL, V(m)" @ V(cjaft — ¢j3l) ® V(¢j1i — ¢al) +
V(r)® V(ci-1n— c,_zi)*). First we shall consider the case where n = ml + cjir.
Since 7= ml~, we have c¢j_»ni1 — cj,3l~: cj/,ll~ and ¢ — Q/,zi: cjl~. Note that
I> ¢jr. By Theorems 5.1 and 5.2, Ps is a non-regular PV with 1 basic relative
invariant. Next we shall consider the case where n > ml + ¢j,r. Since 2 > ml and
¢j17i— ¢; ol > 1> ¢;r > 1, by (3) of Theorem 5.4, Ps is a non-regular PV and the
number of basic relative invariants of Ps is 0. Thus we see that our assertion
holds for j > 3. |

6. A Classification of all 3-Simple PVs of the Form T(H,p,o,n,l, j)(*>
with j > 1
In this section, we shall classify all reductive PVs of the form
T(H,p,o,n,l, j)(*) with j > 1 where H is a simple linear algebraic group.

THEOREM 6.1.  Assume that H is a simple linear algebraic group and | < c;jior.
Then the triplet T(H,p,o,n,l, j)* with j > 1 is a PV if and only if it is one of the
following PVs. Here we denote by N the number of basic relative invariants.
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(I) Regular PVs
(1) (SL(2) x GL(n) x GL2n—1),A1 @ A1 @ A1 + 1 ® 1 ® A,V (2) ®
Vin)@ V(2n— 1)+ V(2n—1)") with n>3. N =1.
(2) (SL(2) x GL(5) x GL(T),A1 @ A1 QA1+ 1@ 1A, V(2)®V(5) ®
V(T)+V(T)"). N=2.
(IT) Non-regular PVs
(1) (SL(2) x GL(n) x GL2n —2),A1 @ A1 @ A1 + 1 @ 1 @A,V (2) ®
V(in)®V(2n—2)+V(2n—2)") with n>5 N=1.
(2) (SL(2) x GL(2n—1) x GL(3n—2),A{ ® A{ ® A + 1 ® 1 ® AL,
V)@ V(2n—1)®@ V(3n—2)+V(3n—2)") with n>4. N =1.
(3) (SL(2) x GL(2n —3) x GL3n — 6), A1 ® A ® A1 + 1 ® | ® A],
V)@ V(2n—-3)®@ V(3Bn—6)+V(3n—6)") with n>7 N =1.

Proor. We assume that H is a simple linear algebraic group, / < ¢jy,r and
the triplet T(H,p,o,n,1,j)* with j > 11is a PV. By Correction 1.2 and Theorems
5.1, 5.2 and 5.4, we see that (m;,my) = (2,1); and (j,/) is one of (1,1), (1,2),
(2,1) and (2,3). Then the triplet T(H,p,o,n,[,j)* with j > 1 is of the following
form: T :=(SL2)xGL(jn—(j— 1)) x GL((j+ 1)n—j),A1 @A @A +1®
1AL, V2)@V(jn—(j—DD)@V((j+Dn—jl)+ V((j+1)n—jI)") with n>2I
where (j,/) is one of (1,1), (1,2), (2,1) and (2,3). By (1) of Theorem 5.4, we see
that the triplet 7 with n > 2/+ j+ 1 is a PV. By Propositions 2.4, 4.3 and 4.5,
we see that the triplet 7 where (n,j,[) is one of (3,1,1), (5,1,2), (3,2,1),
(4,2,1), (7,2,3) and (8,2,3) is a PV. Thus we obtain our assertion. O

THEOREM 6.2. Assume that H = H| is a simple linear algebraic group. Then,
Sor the triplet T(H,p,o,n,l, j) with j > 1, the castling transform at GL(cj41n — ¢;l)
has smaller dimension.

Proor. Note that m(cin —c¢i1l)+ 1 — (¢jpin —¢jl) = ¢i_in — ¢jal + 1 > 0.
By Lemma 2.22, we see that c¢j.\n— ¢l — (cioin—c¢j—2l+1) >n—1>0. Thus
we obtain our assertion. 0

Theorem 6.2 means that in the classification of reductive PVs with two
irreducible components, it is not necessary to consider the triplet T(H, p,a,n,!, j)
with j > 1 where H = H; is a simple linear algebraic group.

THEOREM 6.3.  Assume that H = H; is a simple linear algebraic group. Then
the triplet T(H,p,o,n,l,j) with j =1 is a PV if and only if n = ml + c;.r.
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Proor. By Theorems 5.2, 5.3 and 5.4, we obtain our assertion. O

THEOREM 6.4. Assume that H = H, is a simple linear algebraic group and the
triplet T(H,p,o,n,l,j) with j > 1 is a PV. Then, for T(H,p,o,n,l,j) with j > 1,
the castling transform at GL(cj\n — ¢;l) has smaller dimension.

Proor. Note that m(cn —c¢j_1l) +r— (¢jpin —¢;l) = ¢;i_yn — ¢j2l + 1 > 0.
By Lemma 2.22 and Theorem 6.3, we see that c¢; . 1n — ¢;l — (¢j1n— ¢j—al +71) >
n—r>0. Thus we obtain our assertion. |

7. List

Any 3-simple PV with two irreducible components is castling equivalent to
either a simple PV with two irreducible components or a 2-simple PV with two
irreducible components or a reduced 3-simple PV with two irreducible com-
ponents. Since all simple PVs and 2-simple PVs are completely classified (See
[K2], [KKIY] and [KKTI]), we can complete the classification of 3-simple PVs
with two irreducible components by giving the complete list of reduced 3-simple
PVs with two irreducible components.

DrrFINITION 7.1, For two triplets T;:= (Gi,p;, Vi) (i=1,2), we define the
direct sum Ty @ Ty of Ty and T as (G1 X Go,p; ® 1+ 1@ py, V1 @ V). A triplet
is said to be indecomposable if it is not the direct sum of some pair of triplets
(¢f. Definition 1.5 in [Kal]).

DEFINITION 7.2.  Assume that a triplet (G,p, V) is a PV. Let 6 : G — GL(W)
be a rational representation. For a positive integer n satisfying n > dim W, the
triplet (G x GL(n),p®@1+0 @A,V + W ® V(n)) is always a PV. We call such
a triplet a PV of trivial type (cf. Definition 1.6 in [Kal]).

Let G, be a connected semisimple linear algebraic group and let p; (i = 1,2)
be its irreducible rational representation on the finite dimensional vector space
Vi. We simply write (GL(I)2 X Gy, p1 + P2, Vi + V2) instead of a triplet
(GL(1)* X Gy, A| @ 1 @ p; + 1 @ A ® py, V1 ® V2).

In this section, we shall give the complete list of indecomposable reduced
3-simple PVs with two irreducible components which are neither trivial PVs
nor PVs of trivial type. Here we denote by N the number of basic relative
invariants.
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(I) Regular PVs

(1) (GL(1)* x SL(4) x SL(2) x SL(2), A2 QA QRI+A ®1® A,
V)@ V(2)+V(4)®@V(2). N=
2) (GL (1)2><SL()><SL(3)><SL() T RAR1I+A ®1® A,
V)@ V(3)+V(4)®@V(2). N=
(3) (GL(1)* x SL(5) x SL(2) x SL(2), A2®A1®1+A]®1®A1,
V1)@ V(2)+ V(5)®V(2)). N=1.
(4)< GL(1)* x SL(5) x SL(9) x SL(z)A®A1®1+1®Ar®A1,
10)@V(9)+V(9) ®@V(2). N=
(5) ( L(1)% x SL(6) x SL(2) x SL(3), ®A1®1+A(l*)®1®A1,
V(15 ® V() V(6" ®r3). N=2.
(6) (GL(1)* x SL(7) x SL(2) x SL(2), A, @ A ® 1 + A{ ® 1 ® A,
y2an e V() V()" ®V(2). N=2.
(7) (GL(1)* x SL(2) x SL(3) x SL(3),A ®A1®A1+1®1®A({‘),
Q)@ re)erE)+re)). N=2.
(8) (GL(1)? x Sp(n) x SL(2m) x SL(2), A1 ® A1 @ 1 + 1 ® A| ® Ay,

V2n) @ V(2m)+ V(2m)® V(21)) with n>m>2/>2 and
n—2m+[>0. N=2.
9) (GL(1)* x Sp(n) x SL(2m) x SL2I),Ai ® A, @ 1 + 1 ® A} ®
AL V(2n) @ V(2m) + V(2m)* ® V(2)) with n>m > 2] > 2.
N =2.
(10) (GL(1)* x SO(n) x SL(m) x SL(I),A1 @ A1 @ 1 + 1 ® A| ® Ay,
Vin)@ V(im)+ V(m)® V() with n>m>2/>4 and n—2m+

(11) (GL(1)* x SO(n) x SL(m) x SL(I),Aj @ Aj ® 1 + 1 ® A} ® Ay,
V(in)@V(m)+V(m) @ V() with n>m>21>4. N=2.
(7) x SL(2), the spin rep. @A @1 +1®

(12) (GL(1)* x Spin(7) x SL
AT @ALVE®)QV(T)+V(T)"®V(2). N=2.

(13) (GL(1)* x Spin(10) x SL(15) x SL(2), a half-spin rep. @ A| @ 1 +
I1®A] ®ALV(16)® V(15) + V(15)"® V(2)). N =2.

(14) (GL(1)* x Hy x SL2) x Hy,p, @ A1 @1+ 1 Q@1 ®@p,y, V1 ® V(2) +
V® V,) where H; (i =1,2) are simple linear algebraic groups,
piHi— GL(V;) (i=1,2) and 7:SL(2) — GL(V) are nontrivial
irreducible rational representations, (Hp,p;, V1) is one of (Sp(n),
A1, V(2n)) (n=2) and (Spin(10), a half-spin rep.,V(16)); and
(GL(1) x Hy x SL(2),A1 ® p, ® 7, V2 ® V) is a regular non-trivial
2-simple irreducible PV with (Ha,p,,7) # (SL(2), A1,2A1), (SL(3),
A1,3A1). N =2.
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(15) (GL(1)*> x H; x Hy x SL(n),p, ® p, QA + 1 Q1 @A, VI ® V2 ®
V(n)+ V(n)*) where H; (i=1,2) are simple linear algebraic
groups, p;: H; — GL(V;) (i=1,2) are nontrivial irreducible ra-
tional representations, n =deg(p; ® p,) and (GL(l) x H; x H>,
A ®p ®py, V1 ®V,) is a regular 2-simple irreducible PV
N=2.

(16) (GL(1)* x Hy x SL(n) x Hy,p, @ A @ 1 + 1@ A} ® py, V1 ® V(1) +
V(n)* ® V,) where H; (i = 1,2) are simple linear algebraic groups,
pi - Hi— GL(V;) (i=1,2) are nontrivial irreducible rational rep-
resentations with n = deg p, > deg p, and (GL(1) x H; x H),A| ®
P1®py, V1 ® V) is a regular non-trivial reduced 2-simple irre-
ducible PV. N =2.

(17) (GL(1)* x SL(2) x SL((j + 1)L) x SL((j + 2)L), A1 @ A| ® A +
1@ 1® AL V) ® V((j+ 1)L) ® V((j+2)L) + V((j + 2)L)°)
where j and L are positive integers and (SL(2) x GL(L), (j + 1)A;
®ALV(j+2)®V(L)) is a regular irreducible PV. N = 2.

(18) (GL(1)* x H x SL(¢;s1L) x SL(cjiaLl),p @ A ® A1 + 1 ® 1 ® A],
V(m)® V(ci1L) ® V(cjsaLl) + V(cjs2L)™) where H is a simple
linear algebraic group, p is its m-dimensional irreducible rational
representation with m >3, j is a positive integer and L = cj;».
Here, for each m, a sequence {¢;};»_, is defined by c¢_; = —1,
co=0and ¢;=mci1 — ¢y (i=1). N=2.

(19) (GL(1)> x H x SL(¢js1L) x SL(cjaL),p@ A1 @ Aj + 0 @ 1 ® A],
V(m)® V(ciu1L) @ V(cjsal) + V(r) ® V(cj2L)") where H is a
simple linear algebraic group, p (resp. o) is its m-dimensional (resp.
r-dimensional) irreducible rational representation with m > 2 (resp.
r>2), jis a positive integer and L = ¢j,r. Here, for each m, a
sequence {c;},» _; is defined by c_; = —1, ¢ =0 and ¢; = mc;_; —
Ci—2 (iZ 1) N =2.

(20) (GL(1)* x SL(my) x SL(mimy) x G,Al @ A; @ p+1 @ A ® 1,
V(im) @ V(mimy)™ ® V(my) + V(mimy) ® V(m)) with m = mym
where G is a simple linear algebraic group, p: G — GL(V(m,)) is a
nontrivial irreducible rational representation and 7 : G — GL(V (m))
is a nontrivial irreducible rational representation. N = 2.

(21) (GL(1)* x SL(m) x SL(n) x G,A| @ A1 @1+ 1 QA @1, V(m) ®
V(n)+ V(n)* ® V(m)) with n > 2m > 4 where G is a simple linear
algebraic group and 7: G — GL(V(m)) is a nontrivial irreducible
rational representation. N = 1.
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(22) (GL(1)* x SL(2) x SL(n) x SL2n—1),A; ® A| @A+ 1 Q1 ® A,
V)@ V()@ V(2n—1)+V(2n—1)") with n>3. N = 1.

GL(1)* x SL(2) x SL(5) x SL(7),A]l @ A @ A| + 1 @ 1 ® A},
V)@ V(GB)® V(1) + V(7)*). N=2.

(23) (6L

(IT) Non-regular PVs

(1) (GL(1)* x SL(2n+1) x SL(2) x SL(2),A, @ 1 @ 1 + A ® A| ® Ay,
Vin2n+ 1)+ V(2n+ 1) ® V(2)® V(2)) with n>2. N =2.

(2) (GL(1)* x SL(5) x SL(2) x SL2),A, @ A ® 1 + A] ® 1 ® Ay,
V(10)@ V(2)+ V(5)"® V(2)). N=1.

(3) (GL(1)* x SL2n + 1) x SL2) x HLAA®A Q1 +1® 1 ® p,
Vin2n+1)® V(2)+ V® W) with n >2 where H is a simple
linear algebraic group, p: H — GL(W) and 7 : SL(2) — GL(V) are
nontrivial irreducible rational representations and (GL(1) x H X
SL(2),A1 ® p®t, W ® V) is a non-trivial 2-simple irreducible PV’
with (H,p,7) # (SL(2),A1,2A1), (SL(3),A1,3A1). N is equal to
the number of basic relative invariants of (GL(1) x H x SL(2),
ANR®pRT,WRV).

4) (GL(1)* x Sp(n) x SL(m) x SL(2),A] ® A1 @ 1 + 1 ® A| ® 2A,,
V2n) @ V(im)+ V(m) ® V(3)) with n+1>m>3. N=2.

(5) (GL(1)* x Sp(n) x SL(m) x SL2),Ai ® A; @ 1 + 1 @ A} ® 2A,,
V(2n) @ V(m) +V(m)*® V(3)) with 2n>m>3. N =1 (resp.
N=2)if m>5is odd (resp. m =3 or m is even).

(6) (GL(1)* x Sp(n) x SL(2m) x SL2I +1),A/ @ A1 Q1 + 1 ® A @ Ay,
V2n) @ V_2m)+ V(2m)® V(2I+1)) with n>m>2/+1>3
and 2n—4m+2/+1>0. N=1.

(7)  (GL(1)* x Sp(n) x SL(2m) x SL2I+1),A; ® A @1 + 1 @A ® A,
V(2n) @ V(2m)+ V(2m)* @ V(2I+ 1)) with n>m>21+1>3.
N =1.

(8) (GL(1)* x Sp(n) x SL2m+1) x SL(),A; ® A1 @ 1 + 1 @ A| @ A,
V2n) @ V(2m+ 1)+ V(2m+1)® V(I)) with n>m>1>2 and
2n—4m+1-2>0. N=1 (resp. N=0) if / is odd (resp. / is
even).

9) (GL(1)* x Sp(n) x SL(2m+1) x SL(I), Ay @ A; ® 1 + 1 @ A} @ Ay,
V)@ V2em+1)+V_2m+1)"®@ V(I)) with n>m>1>2.
N =1 (resp. N=0) if / is even (resp. / is odd).

(10) (GL(1)* x Sp(n) x SL2m+1) x Sp(), Ay @ A1 @ 1 + 1 @ A; @ A,
V)@ V2m+ 1)+ V(2m+1)® V(2])) with n>m>2 and
2l>2m+1. N=0.
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(11) (GL(1)* x Sp(n) x SL2m +1) x Sp(1),A; ® A1 @ 1 + 1 @ A| @ A,
V2n) @ V(2m+1)+V(2m+1)® V(2[))  where n>m =2,
2m+1>2l>4 and n—2m+171-1>0. N=0.

(12) (GL(1)* x Sp(n) x SL(3) x SL(5), A @ A @ 1 + 1 ® A} ® A,
V(2n) @ V(3)+ V(3 @ V(10)) with n>2. N =2.

(13) (GL(1)* x Sp(n) x SL(3) x Sp(m), A @ A1 @1 +1® A ® Ay,
V2n)®@ V(3)+ V(3) ® V(2m)) with n>2 and m>2. N =0.

(14) (GL(1)* x Sp(n) x SL(3) x Sp(m), Aj ® Ay ® 1 + 1 ® A} ® Ay,
V2n) @ V(3)+ V(3)"® V(2m)) with n>2 and m>2. N = 1.

(15) (GL(1)* x Sp(n) x SL(3) x SO(m), Ay ® Ai @ 1 +1 @ Al @ A,
Ven @ VE3)+ V()Y @ V(m)) with n>2 and m>5. N =2.

(16) (GL(1)* x Sp(n) x SL(3) x Spin(7),A1 ® Ay ® 1 + 1 @ A\ ® the
spin rep., V(2n) @ V(3) + V(3)") @ ¥(8)) with n>2. N =2.

(17) (GL(1)* x Sp(n) x SL(3) x Spin(10), A} ® A1 @ 1 + 1 @ AV ® a
half-spin  rep., V(2n) ® V(3) + V(3)™ ® V(16)) with n > 2.
N=2.

(18) (GL(1)* x Sp(n) x SL(2m) x SL2I+1),A; @ A1 ® 1+ A @ 1 ® A,
V2n) @ V(2m)+ V(2n) @ V(2[+ 1)) with n>2m>2 and n>
2l+1=3. N=1.

(19) (GL(1)*> x H; x Hy x SL(n),p, ® p, QA + 1 Q1 @A, VI @ V2 ®
V(n)+ V(n)") where H; (i=1,2) are simple linear algebraic
groups, p;: H; — GL(V;) (i =1,2) are nontrivial irreducible ra-
tional representations, n = deg(p, ® p,) and (GL(1) x H, x H>,
Al ®p; ®py, V1 ® V3) is a non-regular 2-simple irreducible PV.
N —1 is equal to the number of basic relative invariants of
(GL(I) x Hy x Hy, A1 ® py ® pr, V1 ® V7).

(20) (GL(1)*> x Hy x SL(n) x Hy,p, @ A @ 1 + 1@ A} @ py, V1 ® V(n) +
V(n)* ® V) where H; (i = 1,2) are simple linear algebraic groups,
pi Hi— GL(V;) (i=1,2) are nontrivial irreducible rational rep-
resentations with n = deg p; > deg p, and (GL(1) x H; x H,,A1 ®
P1 ® py, V1 ® V3) is a non-regular non-trivial reduced 2-simple ir-
reducible PV. N —1 is equal to the number of basic relative
invariants of (GL(1) x Hy X Hy, A1 ® p; ® p», V1 ® V2).

(21) (GL(1)* x H x SL(¢js1L) x SL(cjal),p @ A1 @ Aj + 0 @ 1 ® A},
V(m) @ V(ci1L) @ V(cjsal) + V(r) ® V(cii2L)") where H is a
simple linear algebraic group, p is its m-dimensional irreducible
rational representation with m > 2, ¢ is its r-dimensional irreducible
rational representation and j and L are positive integers with L >
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cj42r. Here, for each m, a sequence {¢;};. _; is defined by c_; = —1,
co=0and ¢;=mci1 —c¢i (i=1). N=1.

(22) (GL(1)* x H x SL(2) x Sp(m),p @ A1 ® 1+ 1Q@2A1 Q A1,V ® V(2)
+ 7V (3) ® V(2m)) with m > 2 where H is a simple linear algebraic
groups, p: H — GL(V) is a nontrivial irreducible rational repre-
sentation and (H,p,V) is one of (Sp(n),A;,V(2n)) (n>2) and
(Spin(10), a half-spin rep., V(16)). N =2.

(23) (GL(1)* x SL(my) x SL(mimy) x G,Al @ A; @ p+1 @ A ® 1,
V(m) @ V(mimy)™ @ V(my) + V(mymy) @ V(m)) with my > mom
where G is a simple linear algebraic group, p: G — GL(V(m,)) is a
nontrivial irreducible rational representation and 7 : G — GL(V(m))
is a nontrivial irreducible rational representation. N = 1.

(24) (GL(1)* x Gy x SL(n) X G2, 11 @ A @ 1 + 1 @ A} @ 12, V (k1) @ V()
+V(n)" ® V(ky)) with n>k; >k, >2 where G; (i=1,2) are
simple linear algebraic groups, p,: G; — GL(V(k;)) (i=1,2) are
nontrivial irreducible rational representations and (GL(1) x G| x G»,
Al ®11®712,V(k) ® V(ky)) is a 2-simple irreducible PV. Here, if
(Gy, 71, V(ki)) = (SL(k1), A1, V (k1)) (resp. (G2, 72, V(k2)) = (SL(k2),
A1, V(ky))), then n > 2k; (resp. n = 2k,). N is equal to the number
of basic relative invariants of (GL(1) x G} X G, A1 ® 11 ® 12,
Vi) ® V(k2)).

(25) (GL(1)* x Gy x G2 x SL(n), 11 ® b @ A + 1 @ l @ A}, V(k) ®
V(ky) @ V(n) + V(n)") with n > kiky where G; (i = 1,2) are simple
linear algebraic groups, p; : G; — GL(V (k;)) (i = 1,2) are nontrivial
irreducible rational representations and (GL(1) X G| X G2, A| ®
71 ® 12, V(k1) ® V(ky)) is a 2-simple irreducible PV. N is equal to
the number of basic relative invariants of (GL(1) x G} x G2, A1 ®
1 ® 2, V(kl) ® V(kz))

(26) (GL(1)* x H x SL(I) x SL(n),p @ Af @ A + 6 @ 1 @ A}, V(m) ®
V() ®V(n)+ V(r)® V(n)*) where H is a simple linear algebraic
group, p (resp. o) is its m-dimensional (resp. r-dimensional) irre-
ducible rational representation with m > 2 (resp. r > 2) and / and n
are positive integers with n > m/ and / > mr. N =1 (resp. N = 0) if
[ =mr (resp. | > mr).

(27) (GL(1)* x H x SL(cin — cj—1l) x SL(cipin—¢il),p @ A1 @ A1 + 6 ®
LA, V(m) @ V(ein — ¢ji—1l) @ V(cjpin —¢il) + V(r) ® V(cjpin —
¢l)") where H is a simple linear algebraic group, p is its
m-dimensional irreducible representation with m > 2, ¢ is its
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r-dimensional irreducible representation and [, n and j are posi-
tive integers with n > ml/ and [ > c¢j;or. Here, for each m, a se-
quence {¢;};-_; is defined by c_; = —1, ¢ =0 and ¢; =mc,_1 — ;>
(i=1). N=1 (resp. N =0) if / = cjor (resp. [ > cjior).

(28) (GL(1)* x SL(2) x SL(n) x SL(2n —2),Ai ® A| @ A1 + 1 @ 1 ® AT,
V)@ Vn) @ V(2en—2)+V(2n—2)") with n>5. N =1.

(29) (GL(1)* x SL(2) x SL2n —1) x SLB3n —2),A| @ A @ A| + 1 ®
1AL, V2)®V(2n—1)®@V(3n—2)+V(3n—2)") with n>4.
N=1

(30) (GL(1)* x SL(2) x SL(2n —3) x SL(3n— 6),Ai @ Ai @ A} + 1 ®
IOAL,V2)®V(2n—3)®@V(3n—6)+ V(3n—6)") with n>7.
N =1.

REMARK 7.3. For example, (GL(1)* x SL(5) x SL(9) x SL(2),A2 @ A| ®
1+1QA ®ALV(10)® V(9 + V(9 ®V(2) (See (I)-(13) in §4 of [Kal]) is
not reduced.

ReMark 7.4. For (I)-(1)~(19) and (II)-(1)~(21), see [Kal, §4] and Cor-
rection 1.4. For (I)-(20), (II)-(22), (23), see Correction 1.3. For (I)-(21)~(23) and
(I1)-(24)~(30), see Theorems 3.4, 5.4 and 6.1.

Acknowledgment

The author would like to express his thanks to Professor Tatsuo Kimura for
his helpful advices. The author also thanks all members of Professor Kimura’s
seminar for valuable discussions and comments.

References

[Kal] S. Kasai, A classification of reductive prehomogeneous vector spaces with two irreducible
components, I, Japan. J. Math. 14 (1988), 385-418.

[Ka2] S. Kasai, A classification of a certain class of reductive prehomogeneous vector spaces,
Comm. Algebra 17 (1989), 1425-1447.

[Ka3] S. Kasai, A classification of a certain class of reductive prehomogeneous vector spaces, II, J.
Algebra 129 (1990), 127-135.

[SK] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and
their relative invariants, Nagoya Math. J. 65 (1977), 1-155.

[K1] T. Kimura, Introduction to prehomogeneous vector spaces, Translations of Mathematical
Monographs, 215, Amer. Math. Soc. Providence, RI, 2003.

[K2] T. Kimura, A classification of prehomogeneous vector spaces of simple algebraic groups

with scalar multiplications, J. Algebra 83 (1983), 72-100.
[KKIY] T. Kimura, S. Kasai, M. Inuzuka and O. Yasukura, A classification of 2-simple pre-
homogeneous vector spaces of type I, J. Algebra 114 (1988), 369-400.



172 Yoshiteru KUurRosawa

(KKTI] T. Kimura, S. Kasai, M. Taguchi and M. Inuzuka, Some P.V.-equivalences and a clas-
sification of 2-simple prehomogeneous vector spaces of type II, Trans. Amer. Math. Soc.
308 (1988), 433-494.

[KUY] T. Kimura, K. Ueda and T. Yoshigaki, A classification of 3-simple prehomogeneous vector
spaces of nontrivial type, Japan. J. Math. 22 (1996), 159-198.

[KTK] T. Kimura, D. Takeda and T. Kamiyoshi, A classification of irreducible weakly spherical
homogeneous spaces, J. Algebra 302 (2006), 793-816.

Institute of Mathematics

University of Tsukuba

Tsukuba, Ibaraki, 305-8571, Japan

E-mail address: xyz123@math.tsukuba.ac.jp



