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ASYMPTOTIC BEHAVIORS FOR MULTIDIMENSIONAL
KIRCHHOFF EQUATIONS

By

Kunihiko KAJITANI

1. Introduction

In the previous paper [8] we discussed the Cauchy problem for Kirchhoff
equation in multidimensional spaces and obtained the time global solutions to
the Cauchy problem under the assumption that the initial data satisfy an inte-
grable condition. In this paper under the same integrable conditions we shall
investigate the asymptotic behaviors concerning ¢ — + for the following Kirchhoff
equation

uy(t,x) — (1 — e(Au(t),u(t));2)Au(t,x) =0, teR, xeR", (L.1)

where A4 =3" | f-au(x)z5 and ¢ is a positive constant. We assume that
—A4 and H =+/—A are non negative definite selfadjoint operators in L*(R").
Denote by D(H) = {ue L*>(R"); Hue L>(R")} the definition domain of H.
For (f,g) e D(H*/?) x D(H*?), k>0 and j a non negative integer, we
define

Grj(H, f,g,1) = [("™ H*™f )| + |(e™ H™f <ty g)]
+ (™ HF g, <t)g)| (1.2)

and

0

Il = | Gt fog.0) de

— 0

where (t> =+/1+ 2 and (-,-) stands for an inner product of L?(R"). Denote
by Yi,;(H) the set of functions (f,g)e D(H*+2/2)x D(H*?) satisfying
(/9 y, ) < o0- For simplicity we denote Gio(H, f,g,t) and Yy o(H) by
Gi(H, f,g,t) and Y, (H) respectively.
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We shall investigate the the asymptotic behaviors concerning ¢ — + among
Kirchhoff equation (1.1) and the following linear equation,

w3 (1,%) = () Aut(1,x), uH(0,x) = f*(x),
uf(0,x) =g*(x), teR, xeR" (1.3)
We mention our main result.
THEOREM 1.1. Assume that —A and H =/ —A are non negative de-
finite selfadjoint operators and that the initial data (f~,9~) belong to Y1 (H).

Then there is & >0 such that if 0<e<e, there are ¢f >0 and ue
ﬂjlzo C/(RY; D(H??))) a solution of (1.1) and (f*,g*) e Y1.1(H) satisfying

leer (1) = i (e 7' SO + 1H (u(t) = (e SO 2 = 0, 1 — £, (1.4)

and

(1 + el Hu()[72) "% = ¢ = 0, 1 — +oo, (1.5)

where S(1) = [{(1 + &||Hu(s)|]7.)""* ds and u* ﬂ C/(R; D(H?>7)) de-
note the solutzons of (1.3). Moreover assume GO(H f g ,t) — 0, |f| — oo holds.
Then ¢t = ¢, (denote by c) holds and ¢ solves the following equation

=1+ pYeR =g~ 11>+ 2 IHf ) (1.6)

and (f*,g") satisfies
g 17+ ISP = llg™ 1 + e I Hf 7|2 (1.7)
and llm‘,‘ﬂm G()(H,f+,g+, Z) =0.

In [8] we obtain the time global solutions to the Cauchy problem for (1.1) under
the assumption that the initial data (f,g) belong to D(H?3/*) x D(H'?) and

satisfy [|(/f, )|y, ) < ©-

RemARK 1.1 We note that [|(f,9)l|y, ) < o0, K =0,1 imply the following
condition
Go(H. f,g.1) = [("Hf, )| + (" Hf ,g)| + (" g,9)] — 0, |t = 0. (1.8)

It should be remarked that in the case of 4 = A the asymptotic behavior of
the solutions of (1.1) is showed by Greenberg and Hu in [3] (n = 1), by Ghisi [2]
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(n>1). We note that we can not derive in general
leae(2) — g (D)l] 2 + | H (u(t) — g (D) 2 = 0, 1 — Lo, (1.9)

under the conditions |[(f~, 97|y, < o, Kk =0,1. In oder to get (1.9) we need
a more strong condition. In fact, in the case of 4 = A and Hy = v—A, under the
condition that there is p > 2 such that

Gi(Ho, /~.g731) = [(e"™ HFHS =, fO) + (" Hg ™=, g7) + ("™ Hig™,g7))
= 0(| ™), (1.10)

for |f| — o0, k=0,1, Yamazaki in [13] derived (1.9) (more precisely the decay
order 0(]7|”*") of the right hand side). On the other hand Matsuyama in [9] gave
initial data (f~,¢g~) such that (1.9) does not hold. We remark that (1.4) is
equivalent to

lu(T(2 1)) = w2 @)z + [Hu(T(cEe) — ut @)l 2 — 0, 7 — +on,

where T is the inverse function of S(z fo + &||Hu(s)||3 )2 ds.

Next we shall give an example of A different from A which satisfies the
integrable condition [|(f~, g7 )|y, ) < o0. Before mentioned our theorem in-
troduce notations. Let ue R and 1 <p <o and L? =L?(R") the set of
integrable functions over R" with integrable p th power. We denote by W!f” the
set of functions u(x) defined in R" such that (1 + |x|)“d%u(x) is contained in
L? for |«| < /. For brevity we denote L, = W7, W = WOI !, H=W}? and
H' = w2, Denote H=+v—A4 and Hof\/‘ A=Y I(FY)Z

Assume that A is elliptic and a purturbation of A, that is,

n

a(x,&) = > au(x)&& = lél’, (x,&) eR”, (1.11)
J k=1
and
A(x,D) = A, |x| =Ry >0. (1.12)

We assume also that the coefficients aj(x) of 4 belong to C,(R"). It is well
known that under the assumptions (1.11) and (1.12) 4 is a non negative self
adjoint operator in L?(R") and has no positive eigenvalues. For example see
Mochizuki [11] (p. 46). Besides 4 has not zero eigenvalue and zero resonance.
See Mizohata [10] (p. 386) for A and Kajitani [6] (p. 130-131) for A. Fur-
thermore assume that A4 satisfies the non trapping condition, that is, there exists a
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real valued function ¢ € C* (Rz”) such that with Cup >0, C; >0, ¢, >0
0200q(x, &) < Cp(1+ 1) (A + 5, xR, (1.13)
for all «, B, and
Hyq = Z{ag a(x,&)dyq(x,&) — dya(x, &)dsq(x, &)}
j=1
> C[¢] - Cy, x,¢eR”. (1.14)

Then we can prove the following theorem.

THEOREM 1.2. Let n> 3. Assume that A satisfies (1.11), (1.12), (1.13) and
(1.14) and moreover the initial data (f~,g~) belongs to Hlﬁ xH/i’l, [ > 36

>1if n=3,4,5 and to (D(H*)N W) x (DHY)NWI=LY), 1 >2n+6 if

n > 6. Then there is &y > 0 such that if 0 < ¢ < & are valid, there are ¢, > 0 and
ue ﬂ C/(RY; D(H??))) a unique solution of (1.1) for te R and (f*, g*)e
D(H3/2) x D(H, 12 ) such that

e () = (! SN 2 + [ H (1) = wg (e SN2 = 0, 1 — +o0, (L.15)
and

(1 + el Hu(0)7:)) ' = cp =0, 1 — Fo0, (1.16)

where S(1) = [}(1 + &||Hu(s)||7.)""* ds and u*(t,x) ﬂ C/(R; D(H, 03/27/') denote
the solutzons of the following equation

u,it(l,x) = ciAui(l,x), u*(0,x) = f*(x),

uf(0,x) =g*(x), teR xeR" (1.17)
When n =1 Kajitani proved Theorem 1.2 in [7].

2. Proof of Theorem 1.1

We let Ai(t,x) = u, +ic(t)Hu and By(t,x) = u; — ic(f)Hu where ¢(1)* =
1 + &||Hu(?)||%, and A; (t,x) = u; + ic; Hou~ and Bj (t,x) = u; — ic; Hu". Then
the equation (1.1) and the equation (1.3) yield

Ay — ic(t)HA, :;((?) (A1 — B), Bu+ic()HB, = —; 4= B) @)
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and
Ay, —ic,HA] =0, By, +ic HB; =0, (2.2)
respectively. The initial data is given by
A7 (0,x) = 4y (x); =g~ +ico Hf ~(x),
B (0,%) = By (x); = g™ (x) — i, HF () (2.3)
and (1.4) gives
141(2) = 4™ ((c2) T SO + [1Bi(1) = B~ ()" SO = 0, 1= —o0, (2.4)

where S(7) = [Jc(s) ds. Let T(z) be the inverse function of S(z)=rt. Put

0
A(t,x) = A(T(2),x), B(r,x) = Bi(T(x),x), A" (1,x) = 4y ((¢z,)"'7.x), B~ (1,) =
Bl’((c;)flr, x) and p(t) = ¢(T(7)). Then (2.1) and (2.2) yield
s V(@) 2@ "
A, —iHA = 200 (A—-B), B,+iHB= 20 (A—B), teR,xeR" (2.5)
and
A —iHA= =0, B_ +iHB =0, t€eR,xeR", (2.6)

respectively. Here we pose the condition below to solve (2.5)
[4(z) =A™ ()| + [|1B(x) = B~ ()| = 0, 7 — —oo, (2.7)
which is equivalent to (2.4). y satisfies

awf=1+@%ﬂum—3ww. (2.8)

Then we note that (1.5) with —sign is equivalent to

&

MO - B~ () =0, c— - (29)

§(1) = () =1+

For k>0 and a non negative integer j we introduce
Gij(H, A, B,7) = |(e™ H"4, 2y 4)| + (™ H 4, <{z)/B)|
+ (e H B, ) B) 2.10)
and

1(4, B)|

o0
Vi (H) = J | G j(H,A,B, 1) dr.

—o0
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Denote by Y ;(H) the set of (4, B) € D(H*/?) x D(H*/?) satisfying 104, B)ly, ()
< oo. For simplicity we denote by Gyo(H, A, B,t) and Y, o(H) by Gy(H,A, B, 1)
and Y;(H) respectively. Taking account that A~ (1) =™ 4; and B (1) =
e ™ By, we can see easily,

LemMmA 2.1. Let k >0 and assume that (A (x), By (x)) belongs to Yi(H).
Then the solution (A=,B~) of (2.6) with the initial condition (2.3) belongs to
Yi(H) and satisfies

1(4™(s1), B~ (s2))ll 7 () = J (™ H A" (1), 47 (52))| d

—00

+ J% (™ H*A~(s1), B~ (52))| dt

— o0

[N B ). B )] o

=1(4o, By Mg, mry» s1,:2€ R (2.11)
and

|2 A @) + | H2B @) = [H 24 | + |H By |, ce R (212)

We continue to prove Theorem 1.1. First of all we note that the inte-
grable condition [|(f7,97)lly, ;) < o is equivalent to |[(Ay, By)lly, ) < o,
if (A4y,By) = (9~ +ic Hf,9~ —ic Hf) and that there are oy, o;, a3 and
oy such that if [|(f 7,97 )|y, ) < oo, the terms (e*™ Hf~, Hf ~), (e*™™Hf ~,g7),
(™ Hg~, f~) and (e*g=,g~) are convergent to a;, oy, a; and o respec-
tively, tending 7 to —oo. Because, their derivatives with respect to t are in L'(R).
Therefore we can see

(e”HAO_,e_”HBO_) = (¥ (g~ + ic Hf 7),9~ —ic Hf )
is convergent to o +ic oy — ic;oocj(co‘o)zacl‘ (denote by o~), tending t — —oo0.
We begin to determine c_ . It follows from (2.7) that we get
[4(z) £ B(@)|| = [47(x) £ B™(7)]| = 0, 7— —c0.
On the other hand, we have by use of (2.12) with k=0
_ YN 2 2
47 () £ B=(@)I” = [|4g [I” = 1By |

— $2R(4 (1), B (1)) = +2R(e" 4y e H By)
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— IR (g 4 i H ) g — i HS )
— H2R(oy +ic oy —ics oy + () o)

=4+2Ra~, T— —o0. (2.13)

We define ¢, > 0 as a positive root of the following equation which is solved
uniquely by a positive root.

() =1+ —{lg" I + () * I Hf |I?

4(%)
—2R(ay +ic oy —ics oz + (c) )},
which satisfies
() =1+ (l45 I* + | By |I* = 2%Ra7) (2.14)
4(600)
because of |4y ||> + By |I* = llg~|I* + (¢3)*|Hf ~||>. Moreover taking account

that the relation (2.13) holds we get by use of (2.8) and (2.14)

V1+eld@) - BOIP = /1 +e{ll47 1> + 187 |17) — 28}
2

(2)* = (cz)?

IA

& _ _ _
2114(z) - B@I? = 45 12 = 1B | + 2R |
<eR(A (1), B~ (1) — Ra | =0, T o0,

which implies (2.9). Furthermore we assume that (f~,g~) satisfies Go(H, f -
g7;t) =0, t— —oo that is, (e Ay, e ™ By) = (e (g~ +ic,Hf ~), 9~ —
ic,Hf 7) — 0, t — —oo, then we have «_ =0 and consequently ¢ satisfies (1.6)
from (2.14). Now we shall find the solution (4, B) and y satisfying (2.5), (2.7) and
(2.8). Let 6 >0 and M > 0 and introduce

0

Xoom = {y(r) e C'((R);1 <y(1) < M,reR,J ly'(7)| dt 3(5}.

—o0
Denote by [y|y = sup,.z|y(7)| + [7, [7'(r)| dr a norm of Xj ». For ye X5y we
consider the linear equation of (2.5) and (2.7). We change a unkown function
(4,B) of (2.5) to (U,V) as U=A4A— A", V=B— B~ which satisfies
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—iHU = QN 7'(®) W, t xeR"

Ui —iHU = 35 (U=V) 43 SW, teR xeR, (2.15)
o 7(T) ' (0) n

Vet iV == S(U=V) =5 SW, TeRxeR" (2.16)

where W = A~ — B~. Moreover (2.7) gives
@I+ V@I =0, 7— —c0. (2.17)

In stead of (4, B) we shall find (U, V) satisfying (2.15), (2.16) and (2.17). Now
we can prove the following proposition.

PROPOSITION 2.1. Let y be in Xj u, j@ ds=01 <1 and k > 0. Assume
that H is a self adjoint operator.

If (Ay,By) belongs to D(H*) x D(H), then (2.15)—(2.17) has a unique
solution (U, V) satisfying

VM

I U@+ H Y (0] < T
1 -9

(1 Aq || + 1 H By |), (2.18)
for € R and there is (U*,V*) e D(H*) x D(H*) such that
|U) =™ Ut +|[V(t)—e ™V —0, 17— . (2.19)

PROOF. Put o(7,x) = (1) 2™ U(z,x) and B(z,x) = y(1) ™V (1, x).
Then it follows from (2.15)—(2.17) that («,f) satisfies

%(f,x) = —% {e M B(z, x) — e W (1, %)}, (2:20)
%u, X) = —%{eww, x) + Wi (7, x)}, (221

where Wi (z,x) = p(z) "2 W (z,x) = p(r) (e 45 (x) — e ™ By (x)) and
(@) + [IB()| = 0, 7— —o0. (2.22)

Therefore («,f) solves the following integral equation

a(t,x) = — Ji %{e_”ﬁﬂ(s, x) — e 7w (s, x)} ds, (2.23)
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and

Pz, x) = — Jiw g;((?) {e*H o (s, x) + " W (s,x)} ds. (2.24)

We shall show the existence of solutions of the integral equation (2.23)—(2.24).
We seek a solution (o, f)(7,x) as

a(r,x) = Zan(r,x), Pz, x) = Zﬁn(r,x), (2.25)
where

(7, X) = Jim %e’m W (s, x) ds,

T !
Bo(t, ) = —j 75) it gy (s, ) dis, (2.26)
and for n>1

o (7,X) = — wa %em[{ﬂnl(s, X) ds (2.27)

and
p(t,x) = — JT &e’z’wan,l(s, X) ds. (2.28)

We can show easily by induction

[ o (0) | + [|H* B, ()| < 20| H Aq || + |1 H* By )o7 ", (2.29)
forn=0,1,... and consequently (o, f)(z,x) defined by (2.25) converges uniformly
in 7, if 6; < 1. Therefore U(z,x)=y"2e™u(1,x), V(t,x)=y"2e ™ p(z,x)

solves (2.15)—(2.17) and satisfies (2.18).
It follows from (2.23), (2.24) and (2.18)

1 (o(s) = s < €

—0, 5,85 — 0.

|| 1o a

This means that {a(s)}
a* e D(H*) such that

, is a Cauchy sequence in D(H). Therefore there is

|H (a(s) —at)|| =0, 5— o0. (2.30)

Because y'(s) is in L'(R). Since y’ is in L!(R), we have ¢} >1 such that
y(s)—yE =0, s—oo. Put Ut =(y5)"2at. The relation e “7U(s)=



10 Kunihiko KAJITANI

7(s)""%a(s) together with (2.30) implies (2.19). Similarly we can show that V(s)
alos satisfies (2.19). O

LEMMA 2.2. Let y be in Xs p, q(s) = é;ii)), o1 = [<{sY)q(s)| ds, k =0 and

J» P, q non negative integers and ¢; = 2/. Assume that H is a self adjoint operator
and (Ay , By ) belongs to Yy j(H). Let (o,(7), B, () be defined by (2.26), (2.27) and
(2.28). Then (wy,p,) satisfies the following 5 properties.

(1)

supj ‘{|(e"’”Hk“p(Sl)7<f>jC)|dfSCj(cj51)’”1||(A6aBJ)||?k,_f<H>’ (2.31)

81 —0o0

supj (e HB,)(51), <ty C)] dt < ¢i(cio0)" (A, By Iy, s (2:32)
51 —0

where C = Ay or By.
(ii)

supj (™ H ay,) (s1), <2)7o (52))] dT < 3(¢00)" [ (Ag s By Mg, s (2:33)
51,82 J —00

sup | (" 3,)(50). <2y (s} de < 3(600)" 2 (g Bl e (234)

81,82 J—o00

supjw (" HEB,) (1), <TY B (s2)]} dr < 3(ei00)" " ((Ag, By g, - (235)

§1,82 J —0o0
(iii)
J (e H ay(2), <o)/ C)| dt < ¢i(ci00)" " 1(Aq By g, > (236)

-0

| e, @),y 0 de < 0 s Bl (237)

— o0

where C = Ay or By.

()
sup [ (€ Y3, (0), <o 1) de < 3000”25 By e (239
sup [ 1€ HY3,(0). <oy By o) de < 300" 245 By e (239
sup |16 (0, <o) B, ()] de < 3600 (A7 Byl gy (240
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)
. (e™ H¥ o, (1), 1)y (7))| dT < 3(Cj51)p+q+2||(1467Bof)Hifk_,-(H)’ (2.41)
1 H 4y (0), B, ()] d < 300" 2 (g By (242)
B, (2), <Y B, ()] de < 3600 (g By, e (243)

Proor. (i) We shall prove (2.31) and (2.32) by induction of p. For p = 0 we
have from (2.26)

Jw [(e™ H a(s1), <)/ C)| dx

— 0
JDO
— 0

< JL J|61(s)| ds|(e™ H* 45, <2/ C)| + |(e™ H* By , <25+ 1)/ C)| dt

(eifHHkJ q(s)(Ay — e "1 B ds, <T>jC) ’ dt

— 0

< C,251|(A6a35)||?k_,(ﬂ)-

Here we used (2s+ ) < 3{s)<{t), ¢; =2/ and 3/ + 1 <4/ = cjz. Similarly (2.32) is
proved for p = 0. Assume that (2.31) and (2.32) are valid for p — 1. Then we have

|t ttay ). o0 de

— 0

[

< | lawlds| I g, (). vIC) dr

(e[rHHk JSI q(S)€7[SHﬁp71 (s) ds, <T>jC> dt

<o | Kl @ H 0. o) d
<o swp [ € H S, (9. O] do

which implies (2.31) for p together with the assumption of induction. (2.32) is
proved by the same way.
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(i) We shall prove (2.33)—(2.35) by induction of p + ¢q. For p + ¢ = 0 we can
see from (2.26)

r ("™ HYag) (51), <2>7o00(s2))| dz

— o0

-I.

. 1 .
(eerHkJ q(s) (A(; _ 6721A'HBO7) dS,
-0

[ oy - ) )| dr

© 2 poo
= <J <) q(s)] dS> J {4/|(e™ H* 45 (x4
+ 27 (™ H* 4y, <2 By )| + 47 |(e"™ H*By , () By )|} dt
< 3(00)*[1(Aq By s,y (2.44)

where we used <7 —2(s— 1)) <4<t){s)<t) and 2s+ 1) < 3{s){r). Assume
(2.33)—(2.35) for p+q¢—1. We shall prove (2.33)-(2.35) for p+¢. We may
assume p > 1. Then

JOC ("™ H 0y) (51), <070y (52))| dt

—o0
J |
— o0

<q | KsYa)lds sup | IS, (9.0 s2)] d

8,82 J—o0

<effHH" J g)e B, 1(5) ds. <)oy (s2) | e

which implies (2.33) from the assumption of induction. We can show (2.34)
and (2.35) similarly.

(iii) Put o =p(z) 2 (™ Ay —e ™ By) and f_; = —p(x) (e Ay —
e ™ B;). Then we have from (2.26) for p >0

Jm (™ ¥ (2), (25 C)| de

— 00
J~oc
—00

< | lawlds| le g, (). vi0) dr

— o0 — o0

(et [ atorep, ) ds.o/C) i
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o0

<q| " Kawlds| e, (0. 0] dr

— 0

o0

< o) supj (" HE, | (s), <t C)| d,

—0o0
which implies (2.36) for p together with (2.32) with p — 1. We can prove (2.37)
similarly.
(iv) We get

Jm |(enHHk°‘p)(T)a <T>j°‘q(52))| dt

—o0
Jw
—0

<q | Ksalo)ds sup | 1€ H B, 1(5), <2 (5] d,

8,82 J—o0

(6”” H" Ji g(s)e™™ B, (s) ds, <o) ay(s) | dx

which implies (2.38) with (2.34). We can show (2.39)—(2.40) by the same ar-
gument.
(v) For any (p,q), p,q >0 we have

JOC |(eiTHHkocp(r), <1'>jacq(7:))| dt

— o0
J\f)
o0
o0

< cjj|<s>fq<s>| ds sgpj (€ H (2, 2B, 1 (5))] di,

— o0

dr

(ool | a6 )

which yields (2.41) together with (2.39) for (p,qg —1). (2.42) and (2.43) can be

poved by the same way. O
We remark that we can replace ¢™ in the integrands of left hand sides of all
cases in Lemma 2.2 to ¢ and then the constant M in the right hand sides is

changed to -4 (u#0).

-
|

PROPOSITION 2.2. Let y be in X; um, q(t) = ;/8 and k >0, a non negative

integer. Assume that H is a self adjoint operator.
(i) If (Ao, By) belongs to Yy ;(H) and 6, = [{s)’|q(s)| ds <27/ = cj_l, then
for any s,te R, (U(s), V(1)) belongs to Yy ;(H) and satisfies

6(c;01)°M .
sup (U1, Vil iy < <PV s By (249)

S1, ER (1 —Cjél)
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and
© 6(cj01)*M o
| Gt v, v ) de < MHAO Bl oy (246)
. :
for real u+#0. Moreover
* ; 2¢00)*M
| 1t vt ovolas < 2P g Byl 247
—0 (1 - Cj51)

and
r {I(e" " H*U(x), {2y By)| + (e H*V (1), 1747

(e H U (2), 1/ 45 )| + ("™ H*V (v), ()7 By )|} de

oM

< m (4o By )y, ) (2.48)
J

hold for p# 0, where ¢; =2/.

(ii) If (Ao, Bo) belongs to Yi(H) and 61 = [|q(7)| dv < 1, then (U*, V™) given
in Proposition 2.1 belongs to Yi(H) and satisfies
lim J (™ H U(s), U(s))| + (" H U (), V()| + (" H Y (5), V (5))] do

5= ) o

— J : |(eirHHkU+7 U+)‘ + |(eiTHHkU+, V+)| 4 |(eirHHkV+7 V+)| dr (2.49)
— 00
and

tim [ [ U(5), By + (V). 4 )| d

o0
:j (U, By)| + |V, A7) d. (2.50)
—0o0

(ifi) 11 (Ao, Bo) € LX(R")?, [|q(z)| dt < 1 and

Gy(H,A; ,By,1) — 0, 17— 0, (2.51)
then for any si,s2 € R

G()(H, U(Sl), V(Sz),T) — 07 T— 0 (2.52)

Go(H,U(s1),B (s1),7) = 0, 7— 0 (2.53)
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and
Go(H,V(s1),A (s2),7) = 0, 7— o0 (2.54)
hold.

Proor. (i) Taking the summation of p and ¢ in (2.33), we get

sup Jw (e H*u(s), (x)/a(1))] dr < sup Zr (™ H oy, (5), {270y (1))] d
s,teRJ -0 s,;teR "y -0
3(cjo0)?

m“ Ay, By)

Vo (H) (2.55)

if 0 < ¢;01 < 1. Similarly we can estimate from (2.34) and (2.35)

. it i (C5 ) — -
sup | et tats) <o poy ar < e U5 B (2:5)
and
* it c i 3(65 )2 — —
Sup | 0. BN e = 5 B e 2

Taking account of the relations below
Uz, x) = y"e™a(e,x),  V(z,x) =72 ™ p(z,x) (2:58)

and y(t) < M for any t€ R, we obtain (2.78) from (2.55), (2.56) and (2.57).
Similarly we can prove (2.46) from (v) of Lemma 2.1. We have from the relation
(2.58) and from (2.42)

|” it v < m

—0o0

211HHk ),<T>jﬂ(7.')| dr

I
Zj (¥ HY (), <27, (2)] d
Dq

3(¢io)*M
< (45, B)lly, ()
(1—c,-51)2”( o> Bl

which means (2.47). We can prove (2.48) easily from (iii) of Lemma 2.2.
(ii) In order to prove (2.49) it suffices to show that («*,5") belongs to
Y, (H) and satisfies
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B [ (1A a(5),0)) |+ (€ Y20, ) + (€ HAB6) B o

= r {[(e™ H o o) + |(e™ H o™, B(5))| + [ H BT, )]} dr. (2.59)

Because Ut = (y5)"2at, VT = (y5)"?p" and the relation (2.58) imply (2.49)
together with (2.59) and with the fact that y(s) — y*, s — co. We shall show that
for each (p,q) there is (2, f;) such that ||H*(a,(s) — o)) + [H*(B,(s) = B
— 0, s — oo and

| ety 6).04060) — (€57 )

+ | H 0y (s), B, (5)) — ("™ H ot )]
+ (™ H B, (s), B,(5)) — ("™ H B 1)} d

< ng ()] did? (A, By, - (2.60)

A

In fact, we can give from (2.27) (denote by ¢(s) = ;}((;))),

0 = j g B, () dn,

which satisfies

5t — oy (s) = j (B () dy.

N

Therefore we get by use of (2.34) with j =0

]

jw |<e"f”<a;—ap<s>>,aq<s>>|drssj ()| dns? (A5 B g,

—® K

Similarly we can show that (e (ot —a,(s)),8,), ("™ (B, —p,(s)),B,) and
(™ (B, — B,(5)), %) satisfy the same inequality as above. Thus we get (2.60).
Taking the summation of (2.60) and tending s to co, we obtain (2.59), because
q(t) is in L'(R) and 6; < 1. We can show also (2.50) analogously.

(i) We shall prove by induction of p + ¢
(€™ oy (1), 2t (2)] + (e oy (51), By (2)]

+ |(e™ ,(51),B,(s2)] = 0, 7— o0 (2.61)
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uniformly in s;,s, € R. When p=¢ =0 we have
itH
(e o (s1), %0(s2))

:le sz G($)q() ()9(0) " (S W (s, ), e H W (1, ) disdr

S1 Ayl . .
- J J a(8)g()(p(s)(6) "2 {(e™ A9, Ag) — ("2 47, By)
_ (ei(172s)HB077A07) + (ei(1723+2’)HBa,B()7)} dsdt,
:;j J 4(s)q(0)f (z,5,1) ddr,

which converges to 0, t — co. In fact, since g(s)q(¢) is in L'(R?), f(z,s,1) is
bounded from the assumption (4, ,B;) € L?>(R") x L*>(R") and the assumption
of (iii) implies f(z,s,#) — 0, T — oo, we can apply to the right hand side of
the above terms Lebesgue convergence theorem. Similarly we can show that
(o0, By) and (B, By) satisfy (2.61) for p = g = 0. Next assume (2.61) is valid for
p+q— 1. We shall show (2.61) for p+ ¢ > 1. We may assume p > 1. Then we
see from (2.27)

(€0 (51, g (52)) = _Jil q(s)y(s) 2 (e THR  (s), ay(s2)) dis

= [ a6t ds (2.62)

which tends to zero uniformly in s, 7 — co. Because ¢(s) is in L'(R) and
Jp—1,4(7,5) is bounded and converges to zero,  — co. Similarly we can see that
(e™ oy (1), B,(s2)), and (™, (s1),,(s2)) satisfy the property (2.62). It follows
from (2.29) that for any ¢ > 0 there is an integer N independent of (z,s;,s2) such
that

D ™ oy (s1), o (52)) | + (o (51), By (s2))] + 1™ By (1), B (s2)) |} < e.

p+q=N

Hence we see
(e au(s1), a(s2))] + (™ a(s1), B(s2))| + (€™ B(s1), B(s2))]
<Y I o (s1), g (52))] + [ty (s1), B, (52))] + 1 (€™ B, (51), B, ()]}

Pq
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< > Al (1), g (52))] + (o (51), By (52))]

p+q<N

+ (™ B, (51),B,(s2)]} + &

On the other hand from (2.61)

D (€™ ap(s1), oq(s2))] + (ot (s1), B (52))]

p+Hg<N
1B, (51), By(s2))} = 0, T — o0

Therefore we get

tim sup{|(e™o(s1), a(s2))] + (" (1), B(s2))| + (™ B(s1), B(s2))[} <.

T— 00

Since & > 0 is arbitrary,

tim {|(e™a(s1), a(s2))] + [ a(s1), B(s2))| + |(e™B(s1), B(s2)) ]} = 0

which implies (2.52). Noting that
(eiTHotp(S1), B*(Sz)) = — J q(s)y(s) l/z(ei(172S)Hﬂp71 (S), e*iszHBO*) ds
and
. S] . .
(€™ B,(s1), 47 (s2)) = _J a(s)y(s) 2 (2 a,y (s), e Ag ) dis

we can prove (2.53) and (2.54) analogously to (2.52).

O

The solution (U, V) of (2.15)—(2.17) depends on y € X5 5. So we denote it by

(Uy: V7)-

PropoOSITION 2.3.  Let y,, y, be in X5, k >0 and j a non negative integer.

Assume that H is a selfadjoint operator.

(i) Assume that (Ay,By) belongs to D(H*) x D(H*). Then (U, .V, ) and

(U,,, V,,) satisfy

I (U, (z,7) = Uy, (z. DI+ IHE (W, (1,) = Vi (20))]

< C(|H" 4q || + | H" By )7 = 7aly- (2.63)
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(ii) AAssume that (A, By) belongs to Yy ;(H) and 81 = [{s)’|q(s)| ds < cj_l,
(¢j =27). Then

[}

| et w, - v o). @ v @)+ HE 5 = Y 0) 6 ) e

3e5 M o
< mhﬁ = nalx l(A4g s Bo)lly, ) (2.64)
jO1 N

and
J {I(H (U, = Uy, (2)), <o e ™ By )| + [(HE(V, = Vi, (0), <oy e™ A )|} de
-0
< Cly1 = nalxll(4q, Bo)lly, ) (2.65)
hold, where C = C(M,dy, j).

Proor. (i) Put
OC(’L',X) = Hk(L]}'l - U”/z)(Tvx)v ,B(r,x) - Hk(V;ﬁ - V)’z)(‘[’x)'

Then (o, p) satisfies from (2.15) and (2.16)

a(t,x) = e”HJ. (F,, — F,,)(s,x) ds,

B(t,x) = e ™ Ji (G, — G,,)(s, x) ds, (2.66)

where

7@ ot g (U, 1) (2,3) 4 (04— B (nx)) (26)

Fy(m,x) = gw(f)

and

Gr.3) = = LM HH(U, = B)(e. ) =502~ B )0} (2:68)

Hence we see

(5, = Pt =3 (A0 - B st u, v, 7P~ B))

yé(s) 7iSHHk U _ U _ V V
+ ¢ {( 71 72 71 + Vz)(s7 x)

+ (D) = () ) (A = BT)}(s,x)
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3 ¢ HH U = U= Vi ) (5

— () = pa(9)7)(AT = B} (s, x).
Define
e(2) = sup(|lods)| + IB)I)-

Then the above equations yield

yils)  73(s)
2y1(s)  2p5(s)

X H (U, = ¥y, = 71(5)” (47 = BY))(s))]

e = [ {30l +

20D (5, (9712 — pa(s) )

29 a5 f ds
which implies (2.63) together with Gronwall inequality.
(i) Put
£(s) = 72(s)” 2 (U, (5) = Uy (9)),
' (2.69)
n(s) = 7)™ 2™ (1, (5) = V2 (9)).
Then ({,#) satisfies from (2.15)—(2.17)
(0 == @) + i) ds (2.70)
and
10 == | @) + his) ds e

+ @) (Wi, (s) = W, (9)},
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So(s) = =) 2 {(q1 (5) = q2(9)) (Uy, () = V3, (5) + Wy, (5))
- qz(s)(W/l (S) - W}’z(s))}
and W,(s) = p(s)""/*(e* Ay — e “¥ By). Tt follows from Proposition 2.2 that we

can S€€

J‘* |(H (7). <07 Uy, ()| 4 [(H fun(2), <7V, (0))] T

—o0

< Chyy = nlxl(4g, Bo)lly, )

and
J_ [(H (1), <2/ e™ Ag)| + |(H Sy (1), <z e ™ By)| de

< Clyy = 72lx (4o’ Byl o

for m,/ = 1,2, where C = C(M,d). Therefore we can prove (2.64) and (2.65)
analogously to (2.47) and (2.48). In fact, we seek the solution ({,#) of (2.70) and

(2.71) as £(2) = 270 8p(0), n(1) = S5 o, (7), where

T

6@ =-| @@ wo=-| a6 d

— o0

and for p >1

GO == @ @ ds 0 =] a6, b
Then we can show similarly to the proof of (v) in Lemma 2.2

|7 K4, 00, oy By )+ I (0, <2 (0)

— 0

2 R
< Clga)” Iy = nlx (45, By)lly,

where (2, f,) is defined by (2.27) and (2.28), and

J (™ H L, (2), <o)/ By )| + (e ™ H 7y, (1), <x) 45)| de
< Cleo0)" I = nlxll(Ag s B g, -

Then we can show that ({,,7,) satisfies the above estimates similarly to (iii) and
(v) of Lemma 2.1. O
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We continue again to prove Theorem 1.1. For y € X; 5, we denote by (4,, B,)
the solution of (2.5)—(2.7) and define

O()(x) = 1 +ﬁn/w> - B,(@))

() 1U,(2) = V(@) + W (@)1,

=1+
where (U,,V,) = (4,,B,) — (4~,B~) denotes the solution of (2.15)—(2.17) and
W(t,x) = (A~ — B7)(r,x). We shall prove that ®(y) is a contraction mapping
in Xj . It is trivial that 1 < ®(y)(z)* < 1+ C(d)e < M2, if ¢ and M are chosen
suitablly, because U,, V,, and W are bounded in L?*(R™) from Proposition 2.1.
Next we shall prove that ®(y)’(z) belongs to L'(R). Differentiating ®>(y)(z) with
respect to 7 we have

20()(1)D () (2) = ‘zyﬁ()) 14,(2) - B,(0)]
&

Hence we obtain

20(y)(D)@(y)'(7) = S(HA, (1), By(1))- (2.72)

Moreover taking account that A, =e™A; + U,, B, =e¢ ™ B; +V, we have
from (2.72)

T 2(x)?

20(y)())@(»)'(7) S{(HU,(v), V(1)) + (" HU, (1), By)

+ (™ HAG, Vy(1) + (™ HAG, By)},  (2.73)

which belongs to L'(R) from (i) of Proposition 2.2 with k =1, j = 0. Now we
can show that @ is a contraction mapping in Xs 5. It follows from Proposition



Asymptotic behaviors for Multidimensional Kirchhoff Equations 23

2.1 and Proposition 2.3 that we can show

|D(71) = P(12)|x < Celyr = malxl (Ao s B )l ) (2.74)

for any y;,y, € X5,m, which implies that ® is a contraction mapping in Xy y, if
&> 0 is small. In fact we have from (2.73) and from (i) of Proposition 2.2 with
k=1,j=0

« 1 €
— 20(7)(7) 29(7)?

+ (™ HAy, V(7)) + (™ HAy , By)}| dt

r |D(y) (7)| dt < J IS{(HU,(7), V,(z)) + ("™ HU, (), By)

— 0

< Ce|(4g -By)lly, i) <0

if ¢ >0 is small. Besides from (i) of Proposition 2.3 we have

()’ — D)2 = |——— | H(4,, — B,)(D)||* — ——— || H(A,, — B,)(7)|
[ (71) (72)°] 4%(1)2” (4;, = B,) (D)l (D) 1H(4;, = B,,) ()|
< Cely; = nly
and it follows from (2.72) that we see
, , 1 1 N
O'(y)O(yy) =P ()P() = | ——5 — — | S(HAL, B)
()" 4n(r)

&
4y, (7)?

where 4; = e™ 45 + U, (¢) and B; = ¢ "By + V, (1), j = 1,2. Besides

+ S{(H(A4; — 4,),B)) + (HA2,B) — By)}.

A —A=U, =U,, Bi—-B=V, -V,

1 1

hold. Hence we can get applying Proposition 2.2 and Proposition 2.3
o0
| @000y - @00 dr < iy, - sl
—o0

Moreover taking account of the following relation,

D' (y)@(y1) — @' (32)P(7,) n D' (7,)(P(y1) — D(12))
@(y;) @(y,)

we can obtain (2.74). Therefore ® is a contraction mapping in Xj; 5 and we have

@'(yy) — @'(1,) =

the fixed point y € X5 5y of ®. Consequently we obtain (A(7), B(t),y(7)) a solution
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of (2.5) and (2.7) satisfying (2.8). Next we shall investigate the behavior of
(A(z), B(t)) when t — oo.

PROPOSITION 2.4.  Assume that (A, By) satisfies ||(Aq, By )|y, ) < © and
let (A(7),B(z),y(t)) be the solution of (2.5), (2.7) and (2.8). Then there is
(A5, By) € D(H'?) x D(H'?) satisfying ||(Ay, B{)|ly, ) < o0 and

le™A(x) — AJ || + le™B(z) = By | = 0, ©— oo. (2.75)
and there is ¢ >0 such that
(1) —ck =0, 7T— oo, (2.76)

and ¢, solves the following equation

=1 +m{llf1+ll + 1By |1* = 2R}, (2.77)

where o =lim,_,o, (e*™ Al Bf). Furthermore if (Ay,By) satisfies
G(H,Ay,By,t) —0, ©— +0o0, (2.78)

we have o = 1lim, 1., (e™ AF, BE) =0, ¢t = ¢ and |AS|)* + ||BS|)* = 145 |I” +
By ||?, and (A, Bf) also satisfies (2.78).

Moreover assume that (Ay,By) satisfies ||(Ag, By )lly, (1) < 0. Then
(A*, BY) also belongs to Y\ (H) and there is C(t) e C°(R'; D(H)) such that

A7) — B(t) = HC(7) (2.79)
and
Af — Bf = H{ C(0) + J: yyl((;)) (€7 + 77 (s) ds}. (2.80)
ProoF. It follows from (2.5)
(€™ A(r) = é’firHy—,(A - B)(7), (¢™B(x)) = —e™ Y (4-B)(r). (2.81)

2y 2y

Therefore e~ A(7) and e’ B(z) are Cauchy sequeneces in L? tending t — oo of
which limit (4, ,By) satisfies (2.75), because, y'(z) € L'(R) and (A(z), B(r)) is
bounded in L? from Proposition 2.1. We can prove that ¢ satisfies (2.76) and
(2.77) by the similar way as in the proof of the fact that ¢ satisfies (2.9). Assume
that (4~,B~) belongs to Yy (H), Since e 7 A(s) = e *H U(s) + 4y, " B(s) =
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eV (s)+ By, we get AT =U"+ A4y, B" =V +B;. 1t follows from (i) of
Proposition 2.2 that (U, V™), (4,,B;) and (UT, V1) + (4,,B;) belong to
Y, 1(H), that is, (47, By) is in Y11 (H). Assume (A;, By) satisfies (2.78) with —.
Then evidently o~ =0 holds, because U(s), V(s) =0, t— —oo in L2 1If
(4y , By ) satisfies (2.78) with +, then it follows from (iii) of Proposition 2.2 that
lim,_, (e™ A, Bf) =at =0 also holds. In fact, it follows from (2.75) that
(e’ 4(s), B(s)) — ("™ A", B*) uniformly in 7, tending s — oo. Therefore for
any &> 0 there is s; such that for any 7€ R

|(ei(17251)HA(S1)7B(sl)) N (eiTHA+,B+)| <e.

On the other hand it follows from (i) of Proposition 2.2 that (e/"=20H 4(s;),
B(s1)) = ("™ 20H(U(s1) + A7 (s1)), V(s1) + B (s1)) = 0, 7— co. Hence we
get limsup,_ |(e™ A", BT)| <& Since ¢ >0 is arbitrary, we obtain o = 0.
Next we shall prove ¢! =c¢, . In fact, we get from (2.7) and (2.75) by use of
at =0

lim [|4(c) + B(0)|* = lim _[|le™ AT + ¢ By )®

T—100

2 2 : iT —it
= AP+ 18512 + Tim 2R(eH A, e B

= 4517 + 185 11°
and similarly
2 2 2
TG G R
- +2 )
Toteo »(7) Coo
Moreover we get from (2.8)
e(l145 1% + 1 B511%)
et =1 4 20 = LA (2.82)
0

Introduce

R e (e

2
) >}
which is a constant Ey, where F(n) = [(1 + es) ds. Because di(f) = 0 holds from
(2.5) and (2.8). Therefore tending 7 to +oo we obtain

1 AEN? -+ 1BE?
§{||Ag||2+||sg|2+F<—“ L Y

ct?
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Since it follows from (2.82) that ||A§||2+||B§||2:M, we obtain the

&
following equation

+2 +2 +2
=)

which implies ¢! =c¢; and consequently |4y + By |I> = 14511 + 1B 11
follows from (2.82), because the equation “SUF(:1)=2E, has a unique
positive solution.

Next we shall prove (2.79). It follows from (2.5)

!

(4- B), J;(A — B)=iH(A+ B),
that is, (y~'(4 — B)' = iy"'H(A + B). Hence we obtain

7(1) "~ (A(2) = B(x)) = 7(0) ' (4(0) — B(0)) = iL 7(s)" H(A(s) + B(s)) ds. (2.83)

Moreover since A4 =20+ A~, B=y'?f+ B~ we have
A(0) = B(0) = 7(0)"/*(a(0) — B(0)) + 2ico, Hf . (2.84)

We shall prove that «(0) — £(0) is contained in the image of H. It follows from
(2.22), (2.23) and (2.24)

T

()= B0 = | L e als) - 1) ds

T Vl S) .
+ Lm 20 {i sin(2sH )a(s)

+ e®Hy=V2(2) sin(sH)g ™ + ic.. H cos(sH) f )} ds
— F(1) + G(z), (2.85)
where we use e*7 =cos(sH)+isin(sH). Then noting that F'(z)=

;—;e*Z”H(a(z) — B(z)) we can see that F satisfies (e"2F)'(r) = e*Q“)%e*z”HG,

where Q = J’fm%e’z”f’ ds. Hence we get from (2.85)

_ ‘ TS VI(S) —2isH
F() —J_meQ( e G d. (2.86)

On the other hand, we can see
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G(1) = L gy((ss)) {i sin(2sH)a(s)

+ 2¢1y=V2(2i sin(sH) g~ + 2ic, H cos(sH) f7)} ds

_ HJi ‘V/(S)S{i(sH)*l sin(2sH )o(s)

+ My 122i(sH) ™! sin(sH)g ™~ + icy, cos(sH)f ™)} ds

is in the image of H. In fact, (sH) 'sin(sH) = OOC% dE(2) is a bounded
operator in L?(R"), where E(A) is the spectral family of H, and it follows from
the assumption (4;,By) € Y1.1(H) that 5y'(s) € L'(R). Because from (2.73) and

Proposition 2.2 we can see

T 2(r)

7' (7) = 1@(7) (1) S{(HU,(1),7¥,(1)) + (" HU,(7), 1By )}

which belongs to L'(R). Therefore we get from (2.83)-(2.86),

) = 1 {Joy (09 1) 2w Gy gy G(O)}

»(0)1/? 2y(s)
2iy(t)ew [T 7(D)
w2y +J_wm(A(s)+B(s))ds, (2.87)

which satisfies (2.79).
Finally we shall prove (2.80). Integrating (2.81) from 0 to oo we get by use of
(2.79)

which means (2.80). O

Now we can prove Theorem 1.1. Define T'(r) = [; »(s)"' ds and denote
by S(#) the inverse of T(r) =t Put c(f) =yp(S(¢)) and (4;(¢,x),Bi(t,x)) =
(A(S(1), x), B(S(2), X)), (A7 (1,x), B (1,x)) = (A (¢;;1,x), B~ (c;1,x)) which solve
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(2.1)-(2.4). Moreover we can define by use of (2.79)

C(S@)

u(tvx): 2iC(l‘) )

which belongs to D(H) and satisfies Hu(t) = A(;Tg' and u,(1) = w, and

consequently u solves ( 1) from ( 1). On the other hand, define (f*,g%) =
(H‘l % = ﬁ ( )+ Io y 5 eBH 1 e=HY(C(s) ds),w) which belongs
to Y;(H) because of (4], B;) € Yl(H) and let u™(¢) be a solution of (1.3) with +
and put A (1) = A(ctt), B (1) = B*(ctt). Then it follows from (2.7), (2.9) and
(2.75), (2.76) that u(¢) and u*(r) satisfy (1.3), (1.4), (1.5) and (1.7). Besides (1.6)
and lim, ., Go(H, f*,g",t) =0 follow from Proposition 2.4. Thus we completed

the proof of Theorem 1.1.

3. Sufficient Conditions for ||(f, g)Hyk.,(H) <

In this section we shall investigate the condition ||(f, g)||YA )y < oo and
prove Theorem 1.2. To do so we use the wave operator among A4 and A defined
by

W, =s— lim e™e A
t—+o0

which exists in L?(R") if we assume that A4 is a perturbation of A, that is, 4 is
elliptic and there is R > 0 such that

ajk(x) :5jka (31)

for |x| > R. The wave operators W, are unitary in L?>(R") and satisfies AW, =
WA, so we can see easily that if (fo,g0) = (W, f, W}g), where W} is the ajoint

operator of W., then (f,g) satisfies [(f.g)lly,z) < oo if and only if (fo,9go)
satisfies

[1(fo, 90)l

0
Yei(Ho) = J (L+ (137241 H ™o, fo)] (€™ H{ go, o)

+ [(e"™ Hy o, 90)|} di < oo, (3.2)
where Hy = v —A and H = v —A. Because that ||(fo,90)lly, ) = I(/5 9y,

holds, if (fo,g90) = (W} f, W}:g). The following proposition is well known. For
example see Mochizuki [11].

ProPOSITION 3.1.  Assume that A is elliptic and the coefficients of A satisfies
(3.1). Then there is the wave operator W which is unitary in L*(R"), has the



Asymptotic behaviors for Multidimensional Kirchhoff Equations 29

relation H = W HoW, and satisfies

M N < Wl < Cill ANl (3-3)
for any 1eR" and feH'.
We continue to explain what functions (f,g) satisfy the condition

1/, iy < 0. We need the following lemma which is proved by Greenberg
and Hu [3], D’Ancona and Spagnolo [1] and Yamazaki [13].

LemMma 3.1.  Let u, and p, nonnegative numbers and put p = p, + u,. When
n>2 we take Hy=+/—A and k be a nonnegative number such that k <n+ u
and when n =1 we take Hy =i % and k, u arbitrary non negative integers. Then
there is a positive constant C, , such that the following inequality holds for every

fieH, (j=12),

(1 + \l|)k|(€”H°Hélﬂaf2)L2| < Cn,k‘qulHH;‘I Hf2HHZ'2' (3-4)

Here we shall give an outline of the proof of this lemma in a simple case fol-
lowing D’Ancona and Spagnolo [1]. When n > 2, 4 =1 and an integer k = n, we

can see easily (3.4) holds. In fact, taking account of > fl/é\ 0z el = el we see

e )= | (300 ) @Al de

- [ (o 2) Gieorerian ac

which implies

e i )l < | ’(Z”fw ) (SRASAG >>\dés€|f1

where u; + 4, =1 and we used the inequalities

5<,f

= IRxif |2 < Cll Sl .2

and

Sy I O T =Wl

here R; are Riez operator of which symbol is When k is not an integer, we

\é\
can derive (3.4) by use of the interpolation theorem. See Lemma 2.1 in Yamazaki

[13] for detalil.
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It follows from Lemma 3.1 that we can see that if (fo,g0) = (W}f, W/9g)
belongs to H*™/? x Hy? for pu> 1, then (f,g) satisfies |[(f, )y, ) < o
We investigate the conditions under that (fo,g0) = (W}f, Wig) bélongs to
H!EHW 2% H/f"/z. In Proposition 3.1 we indicated the boundedness in Sobolev
space H' of the wave operators Wi, W. To use Lemma 3.1 we need the
boundedness of the wave operators in weighted Sobolev space WJ,Z. To get such
boundedness, we need moreover some condition. Namely we assume that there is
a real valued function ¢ € C*(R?") satisfying (1.13) and (1.14). This condition is
equivalent to the non trapping condition. See [4] and [5]. Then the following

theorem holds, of which proof is given partially in Kajitani [6].

THEOREM 3.1. Assume that n>2 and the coefficients of A satisfy (1.11)
and (3.1). Moreover we assume that there is a function g€ C*(R*") satisfying
(1.13) and (1.14). Let l,ue R and m an integer. Then there is Cj >0 such
that

[ Wi(PHH,leO < C/n”(”HH’”?”v (35)
m+ly
for 0 <m <™y >3 1y >4 and for g e H" 2 and
*
W0, < Colll (3.6

Jor O<mp <2, 0<u<l, uy>%, loy>%+5 and ye w07 .
The proof of Theorem 3.1 will be given in the section 4.
We can get the following proposition by applying (3.6).

PROPOSITION 3.2. Let n>2, k>0 and j > 0 an integer. Assume that (1.11)
and (3.1) are valid and that there is a function q € C*(R*) satisfying (1.13) and
24k) /2+1 k/2+1
(L14). If (f.g) € D(H¥02) x D(HY2) belongs to H 0 s g 20 "y >
M43, wy >4 and j <4, then 19y, o) < o0 holds.

Proor.  We put (fo,90) = (WS f, Wig). By use of Lemma 3.1 and Theorem
3.1 we can estimate

1)y = 10 90) 1y, o

:D . . . . .
j (14 11272 {| ("™ HE fo, fo)] + |(e" HE go, o)
— 00

+ |(eitH0H01+kf0’g0)|} dt
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<C [ AT dlilyen + lonliye) d

— o0

112 2
< C{IWirl pon T Wil Hf/z}

=< C{Hf” "*2)/’”0 + HgH k/2+ly }’ < 0,
l]

/4]+1 +Ho

where we take x>0 such that j —u < —1, u<™2 [y =j+1 and Iy >3+ 3,
|

Next we mention a sufficient condition for (3.2) without decay weight with
respect to the space variables. We need the following proposition of which proof
is given for example in [8].

Lemma 3.2. Let k a non negative integer. Then there is C > 0 such that if
n>2 we take Hy= v —A and we have

IﬁmmﬁuﬂsCLjU+VW” (L (o)™ (1 4 = ] o)

+ (L= =) "N =AY P ) v, (37)

for fe W'Y and for | >k +n.
Using the above Lemma 3.2 we can prove the following proposition.

PROPOSITION 3.3.  Let (fo,go) be in (D(H™?) 0w +240/2.1) 5 (D(HS*) N
w R0 s g, k>0 j non negative integer. Assume that j—ﬂ <0 and
k+"5L > 1 or that j — "5} < —1 hold. Then (fo, o) satisfies (/05 90y, a1y < -
Moreover Gy(Hy, f, g, ) — 0, |t| = oo for n>2.

ProOF. Applying Lemma 3.2 we can see that (fo,go)e(D(HéHk)/z)ﬂ

W H2H/21) o (D(HEP) A w21 >y satiasfies (3.2), that is, we cal-
culate

(o, g0)l Y, ;(Ho)
o0 ) . o . . A
B J (L+ 11?2 { ("™ H ™ o, o)l + (e Hy go, g0)|
— 0

+ (" Hy o, g0)|} dt
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< [ ] R (- ) 0l - 4) ()
R”

— o0

+le ™ HE(1 = A) " go()] (1 — A)go()|
+| llHOHl+k( ) llfo )||(1 _A)I‘go(x)“L dxdt

< o0,

if n+k > j+ 2. Because for example the second term in the right hand side can
be estimated

|| iy e (1 = 4) ool 11 - )" g dvt

XA+ )™+ (U )2+ e =yl J
(L [ =yl = 1 )72 = A) g0 (5)| dy

X (1 — A) ' go(x)| dxd
= CJ J " (1 Ay)l/%l'go(y” (1= Ay) " go(x)| dydx

< (1= A) "ol 11 = AY) " goll 1 < Cligoll s,

if we choose /j =%, I >n—+k. Here we used

mmj U e () (U e ) B

X,y
F (] —y =) VPN dr <

if ]—— <0 and k+” >1 orif j—"5 L < —1. We can estimate the other
terms by the same way. Thus we get ||(f07gO)HYkA,(H0) < oo, if j—251 <0 and
k+”T’1>1 or if j—%< —1. Moweover we get by Lebesgue’s convergence
theorem (efogy go) — 0, || — oo for n > 2 which implies Go(Ho, fo,go,1) — 0,
|t| — oo for n>2. N

Proposition 3.3 with k£ = j =1 implies the following theorem.
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THEOREM 3.2. Let n > 3. Assume that A = A and the initial data (f~,9")
belongs to (D(H*?)NWU+3)/21) 5 (D(H'2)N W20 [ > n. Then the con-
clusion of Theorem 1.1 is valid.

PROPOSITION 3.4.  Assume that n > 2 and the coefficients of A satisfy (1.11)
and (3.1). Moreover we assume that there is a function g€ C*(R>") satisfying
(1.13) and (1.14). Let (f,g) be in D(HCO2)nwhl x D(HF*) N W=t | >
2n+6. Then if "33 > j, k>0, ||(f,9)]

Yi ;(H) < o0 hOldS.

Proor. It follows from Theorem 1.2 in Kajitani [6] that the uniform decay
estimates of solutions of the wave equation associated to A holds, that is, the
solution w of the equation w, = Aw satisfies

IOl + 1w < CC+ )2 w0 e + (w2 (0) 1 p11)
for I > 2n+ 6. Using the above decay estimates we get
e EH fl . < CO+ 1) "2 fllyprr, k=01

for n>2, I >2n+6. In fact, let w(¢) be satisfied with w, = Aw, w(0) =0,
w,(0) = H*f and put A(t) = (0, + iH)w(¢). Then A(¢) satisfies (9, — iH)A(f) = 0,
A(0) = H*f. Hence we can write A(t) = e H*f which satisfies a desired es-
timate evidently. When n > 6 the above estimate implies that (f,g)e W'! x
WL 1> 2n+ 6 satisfies the condition ||(f, )y, ) < - O

Proor oF THeOREm 1.2. It follows from Proposition 3.2 with j=1 for
n=3,4,5 and Proposition 3.4 with k= j =1 for n > 6 that Theorem 1.1 with
k = j =1 holds for a perturbed operator 4. Furthermore we can obtain Theorem
1.2 using Theorem 1.1 for an perturbed operator A4 and the scattering operator
among A and A which existence is assured in Proposition 3.1.

4. Estimates of Wave Operators

In this section we shall prove Theoren 3.1. First we mention a well known
result which can be found for example in the textbook (p. 75, Theorem 15.3 and
its proof) of Mochizuki [11].

PrROPOSITION 4.1. Let n > 2. Assume that A satisfies (1.11) and A = A for
|x| = Ro. Then the wave operators W, has a following integral representation

Wep(x) = (21)™" Jng, 6() de, (1)
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where
we(x, &) = €™ +wi(x, &) (4.2)

and

wi(x,&) = (=4 — (|&* + i0)) e Z{ ap(x) = ) Sl + Oxam(x)S}.  (4.3)

1 k=1

Denote the resolvent of —4 by R(z)=(—A4—2z)"' and put u(i) = R(\3)f.
Modifying the proofs of Theorem 4.8 and of Theorem 4.10 in Kajitani [6] we can
prove the following proposition.

PROPOSITION 4.2. Let n > 2. Assume that A satisfies (1.11) and A=A for
|x| > Ro and that there is a function q(x,¢) € C*(R*) satisfying (1.13) and (1.14).
Let . =+c>+ie, 6eR, >0, 1> [4]+1 and f e Cy(R") with supp f = K(K
a compact set in R"), u > % and u be a solution of the equation (—A — }vz)u =f.
Denote u* = 6i‘u. Then there are Jy >0, Cy(K) >0 and Cy > 0 such that for

I @l = 1 (44

and for |1 = Ay
I Dllyra, < Crla™ 1 e (4.5)

for k=0,1,....
Let decompose wo(x,&) = RAHV(-,Ep(E) and wo(x,E) = RV (-, &) -

(1=p(&), where A% =[&> +i0, V(x,&)=e™ 3] {(an(x) —w)&ce +
Ovan(x)é} and pe C°) =1 for |&] <4y and p =0 for |&] = /o + 1. Denote

Wof (x) = ij<x, O7(&) de. Waf(x) = wa<x, OF(&) de

Then we have W, f(x) = Wyf(x) + W, f(x). We shall estimate the terms Wyf(x)
and W, f(x). It follows from Proposition 4.2 that we can see for any e N"
l0Ewo(e, )z, < CGulel"™, (o > ), (4.6)

and

102w (x, Mez, | <G+, (1 >3). (4.7)

=18l
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LemMa 4.1. Let w be satisfied with (—4 —z)w =V € C{°(R"), where z =
g+1i0, e R and o,f € N". Then w satisfies

|Bl+1
ﬁD"w = Z R(z {baﬂkR z) + dupi } V, (4.8)

where byg is a differential operator of order |o|+k with compact support
coefficients and d,g. is a differential operator of order |au| + k — 1.

Proor. We shall prove (4.8) by induction of f. For =0 we have
(—A —z)Dw = [-A4,D%|w + DXV,

which gives b,01 = [-4,D?] and d,o = D?. Assume that (4.8) is valid for || =
I —1 and for any xeZ’. We have

(=4 —z2)(x!D*w) = XD*V + [xD*, — 4 + Ajw — [x* D% A}w (4.9)

On the other hand, the assumption of induction yields

[xﬂDa W* Z{ﬂ _ 1 B— 2L,Dz+2ﬁ xﬁ e/DaJre,}W
n |pl-1 .
= =D BB 1) Y RE) (byp2eiR() + dop20g)V
J=1 k=1

4
+28 > R() (bup- ok R(2) + dopok) V}j
k=1

here we denote e¢; = (0,...,1,0,...,0) of which jth component equals to 1.
Hence taking account that the support of the coefficients of [x/D* 4 — A] are
compact, we obtain from (4.9) by use of the assumption of induction,

xfD*w = R(z){xﬁD;‘V + [x*D*, —A 4+ AJR(z)V

8]

+ Z R(z)k(bzﬁfeij(z) + da/)’fejk) V}y
k=1

which implies (4.8). O
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N
Noting that it follows from Racke [12] that R(2?)* = (,cll)! (?f) R(2%) for
k>1if 22 =|¢ +i0 we get from Lemma 4.1

Bl ey fe=1
xPDIwl (x, &) = Z( |,52§> RO {bpROP) + dypi } V. (4.10)
k=1

Proor oF THEOREM 3.1.  First we shall prove (3.5). Since Wy =1 — W/ and

Wil = Wy + W,, it suffices to prove that (3.5) ia valid for W, and W,,. From
(4.3) we have

W (x) = sz) V(. OpEFE) de,

where f means the Fourier transform of f and denote A= 1/|¢|* + i0. Hence
taking account of V' = 0(|¢|), |¢] — 0 we get by use of (4.10) and by integration
by part

xﬁD;/,Wof(x)
jﬁmR( WO (E) de

= S RO RGP + V(. 7(0)

k—1
- ﬁ (%) ROP){byuR(G2) + dp} V(- p(E)f (&) dé

! £V, *(k—1) )
- [ ( 2eF ) bR + g}V, (S (@) de

(4.11)

. £V ¢
if || <n, where (ﬁélf) means an ajoint operator of (\QI ) We can see

xk
(n—1)! <z|5|2> @““ ()0
(k)

where a, ' (£) is a homogeous function of & of order —2k + |a|. Therefore we can

calculate
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1 é V. *(k—1)
=T (ﬁ) (b RU2) + dg) V(- Op(OF(©))

Y { g S Cowd? (RODE)IE™ V() ()
o <k—1

Jo'] <]
+dypkag(V(nf)P(f)f(f))}

where C, o = m It follows from (4.11) that using (4.4) of Proposition 4.2
and noting that the supports of the coefficients of b,z and V(x,¢) are compact
with respect to x, we get for /€ R and for g, >%

I DIWof (32,
HZk qu 1 a) Dby Z\a’|£|a\ C“ﬁ“’ag,(R(iz))

< O (VL OPOFE) + dyﬁkagwc,f)p(é)f(s»} dz

L2, (RY)
= Jfls/loﬂ RMZ){Zk D na g Dy Cow B (RUZ))
X B (VL OpEF(E) + dyﬁkag(V('»f)ﬂ(f)f(f))} B
< c[Sow e fog (RGN (VAT @l
GV PENS Dy }dé
< CZkg\[)’Hl ‘[flél(;+1 <l A=+ g SuP\f\<Ao+1|Vg 7(6))2
= CL”IS).()H |f|’2‘ﬁ‘“ déHf”Lﬁf\ o = HfHL\’/iH/ (4.12)

if |p| <=5 and Iy > 2.
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Next we shall esticmate W, f. Similarly using (4.11) we get

AEDIWf (x) = jxﬁDjz.Ruz) V(&)1 = p(@)f (&) de

*(k—1)
_ oy L [&-Ve
-3 [R5y ( T )

X (bype R(ZZ) + dopr) V (-, E)(1 = p(E) (&) dE (4.13)

for any 8,7 e N". Taking account of D}0;V = O(\f|2+‘7|), |£| — oo, similarly to
(4.12) we get from (4.5) for ¢ >4 and any f

I DI f ()12,

< O3 [Je VPR RED V(1 = pEF Ol

—Ho—Ipl

+ 102V ()1 = pENSEDMee1 oy} 4

= CJ,l ATEVE©F e < Cllf e (4.14)
<=4

Bl+1o

if j >5+4 and |y| < /. Thus we get (3.5) for 0 < |f| <% from (4.11), (4.12) and
(4.14).

Next we shall estimate W = Wiy + W3y, that is, Wiy and W y. Since
we can write Wjy as

Wow(x) = jjefx<wg<y, () dyde,

the derivative of Fourier image of Wy is given by

—

L) = [0 (D0 @.15)

where wi(p,&) = wi(p, &)p(¢) which satisfies (4.6). Hence we have for |y| = m by
use of (4.15) and (4.6),

18 Wi g2 = €50 ()1 = Hfﬁagjwsw, W(y) dv

L2

<

\/ J [y~ W) Ty, &) dyj [y Wy () dy

L2

< o[l e < i, (4.16)
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if we choose m <52 and py >1. Let m >0 be an integer and 1 > x> 0 such
that m+ u < % We shall use the following well known estimate

(R IR C{ sup BTN (E+R) = F(E)lle + |f||L2}’ (4.17)

0<|h|<1,heRn

for any f € Lﬁ and f means the Fourier transform of f. Applying the inequalty
(4.17) to xPo! Wiy we can see for |B| = m,

H<x>ﬂxﬁ6>yc WO*WHLZ

< cr( sup |h|-”v/[[wa§a;ws<y,f4-h>—-afa;mﬁ<}né>>w<y>awrzdz

0<|h|<1,heR"

+ Ixﬂ@féWflﬁlle>

) C<s“p 'h'_’v |11 @bapus v e+-) - elopui . NP dvelvl

<1
+ IX'Bﬁ,iWo*lﬁlle)-
By use of (4.6) we can calculate

Jw 20 J [y 10 @E 0w (y, & + ) = 0Lawi (3, €)I” dydE
C| <

= 2J|é 20 [y 0l (3, &+ )P 4 [y~ 0007w (v, €| dydé
<

IA

CJ (|é+h|_2(m_l) + ‘é|—2(m—l)) df < C|h|—2(m—l)+n,
&l<2]A]
if |[pl=m<4+1 and g, >1. On the other hand, using (4.6) again

J' ﬁ@YW*M%@wu¢+m—%%WU¢m%mm
Jo+1>E|=>2h|

1
= CJ |h|2J |&+ 9h|72m dodé < C|h|*2(’”*1)+”.
Jo+1>|E|>2|h] 0

Thus we get
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[P wy||* < c< sup || Iy

2
0<VI|£1 ‘m+14

- ||xﬂa£W0*w||Lz)

<Clly (4.18)

m+14pg

if m+pu< ™2 and |y| </ Next we shall estimate W) . Since we can write

oL WE0)(E) = [ ohenws, (. W) dy

= J(’?(y,D)_NﬁféfV1V§o(y,é))(ﬂ(y,D)*Nl//(y)) dy, (4.19)
for any integer N, where #(x,D) = (—A4 +ih)"?, h> 1. Hence we get

OEE W) < lln(, D)V OEEWL (L Oiz,  ln(r DY WD)l - (4:20)

Denote ¥V (x,&) =e™V(x,&). Since #5(x,D)=(—A+ ih)1/2 commutes with
R(?) = (-4 =277,

(n(y, D) Nolerw? (y,8)) = n(y, D) N oLE RN eV (,E)(1 — p(&))

= LER( n(y, D) eV (3,8)(1 - p(&))

holds. On the other hand, taking account that V'(y,¢) has a compact support in
y and |D§6§I7(y, O =p@) <+ )* ", by use of (4.5) we can estimate

12 RG2 (D) Y V(.1 = pEDliz, o
< C(1 + |&])r =N, (4.21)
for any integer N > 0. In fact, since
SLLET R (-, D) Ve V(- E)(1 = p(9))}
=" Gy p (@ RUD)(. D) Nl e V(- E)(1 - p(8)}
holds, we can see from (4.5)

16E{&7RG2 (-, D) VeV (-, &)(1 = p(E)}H 2

)

< Z Cppr(1+ |f|)_l_|m

x (-, D)) NP eV (€)1 — p(E))llp

1o+lAl

(4.22)
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Put

AL (e (x,E)(1 = pl(&)) = Uy p(x.£).

Since V has a compact support in x and satisfies |626§f V(x, &) < Cop(1+ &)
we have

2—o]
3

|‘320; Up_p(x,&)] < Cop(1 + &) 20,

Hence the Fourier image of e~ ¢ Ug_p(x,¢) is given by

F(e™™ Uy p(x,6))() = je*"“*@y Up_p(,€) dy
which satisfies
0F(F(e™™ Uy p (x,ENO))] < Care (1 + ED A+ [E+2)™  (423)

for any non negative integer M. Denote the symbol of 5(x, D)™ by ny(x,(),
which satisfies

00l (6, 0)] < Cop(1 4 I, (4.24)
if we choose 4 > 0 sufficiently large. Since we have for any o

x*07n(x, D)fNe"xé 17(x7 &)

=3 CowCyp je“(fao“*“’(icy’*/”{aﬁ’nzv(x, 0)F F(e™™ Uy_p(x,8))(0)} dC
o, p’

= Z Co o Jemv Z Cﬂﬁp’(l‘aé)x”(iﬁf)piﬂ/
al,p’

x {0y (x,0) (100) 0L F e ™ Uy (x, O)(O)}
we get by use of (4.23) and (4.24)

00n(x, D) e Uy_p(x,€)]
< Coc/)NM(l + |X|)7|1‘(1 =+ |é|)2+‘/| J(l —+ |C|)7N+|/"(l + |C+ él)fM dC
< Copwar (1 + |x]) P11 4 &)=Y J (1 + [N+l g

< Cynvm (1 + |x|)*|“‘(1 + |f|)4+\”/|*N+an\

if we choose —N + M + |p| < —(n+ 1), that is, M = N —n—2 — |p|, where we
used (14]E+¢) 7" < (1421 + &))", Therefore if we take |of > 4 gy +
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IBl, |pl =1 and |y| <! we obtain

In(x, D) Ne ™ Uy g (x,€) < Cy(1 4 [&)> N, (4.25)

HH/‘loH/f\
which implies (4.21) together with (4.22). On the other hand, if we take N >
34 7+5 we get from (4.20) and (4.25)

Wil = D NOEE Wb oy < CIW Iy 2,
mp

Bl<m,|y| <l

for Iy >3 +5, uy >3 and for any integer m, which implies (3.6) together with
(4.18). Thus we have completed the proof of Theorem 3.1.
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