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LORENTZIAN STATIONARY SURFACES IN
4-DIMENSIONAL SPACE FORMS OF INDEX 2

By

Makoto SAKAKI

Abstract. We discuss the necessary and sufficient conditions for the
existence of Lorentzian stationary surfaces in 4-dimensional space
forms of index 2, and isometric stationary deformations preserving
normal curvature.

1. Introduction

Let N,(c) denote the n-dimensional semi-Riemannian space form of constant
curvature ¢ and index p. Namely, it is the n-dimensional semi-Euclidean space R}
of index p, the n-dimensional pseudo-sphere S,f(c) of constant curvature ¢ > 0
and index p, or the n-dimensional pseudo-hyperbolic space H[f’(c) of constant
curvature ¢ <0 and index p. We write N"(c) if p=0. A surface in NJ(c) is
called Lorentzian if the induced metric is Lorentzian. We shall say that a
Lorentzian surface in N(c) is stationary if the mean curvature vector is identi-
cally zero.

For a minimal surface in N*(c), the Gaussian curvature K(<c) and the
normal curvature K, satisfy (K —c)2—KV2 > 0, where the equality holds at
isotropic points. In [12] Tribuzy and Guadalupe give the necessary and sufficient
conditions for the existence of minimal surfaces in N4(c) in terms of the metric
and the normal curvature, and discuss isometric minimal deformations preserving
normal curvature. Also, for a spacelike maximal surface in N3(c), K(> ¢) and K,
satisfy (K — 0)2 — K? >0, where the equality holds at isotropic points. In
a previous paper [7], we give the necessary and sufficient conditions for the
existence of spacelike maximal surfaces in N3'(c), and discuss isometric maximal
deformations preserving normal curvature.
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For a Lorentzian stationary surface in Nj(c), the signs of K —c and
(K — c)2 — K? are not fixed, and it seems that there are many different situations
compared with the case of minimal surfaces in N*(c) or spacelike maximal
surfaces in Nj(c). In this paper, we will discuss the necessary and sufficient
conditions for the existence of Lorentzian stationary surfaces in Nj(c), and
isometric stationary deformations preserving normal curvature.

The results are stated as follows:

Tueorem 1.1. (i) Let M be a Lorentzian stationary surface in Ny(c) with
Gaussian curvature K, normal curvature K, and Laplacian A. If (K — c)2 — K2 #0,
then

AloglK — ¢+ K,| =2(2K + K,), (1)
AloglK — ¢ — K,| =2(2K — K,). (2)

(i) Let M be a 2-dimensional simply connected Lorentzian manifold with
Gaussian curvature K and Laplacian A. If K, is a function on M satisfying
(K —¢)* = K? >0 and (1), (2), then there exists an isometric stationary immersion
of M into Ny(c) with normal curvature K,.

THEOREM 1.2. Let f: M — Nj(c) be an isometric stationary immersion of a
2-dimensional simply connected Lorentzian manifold M into N3(c) with Gaussian
curvature K and normal curvature K,.

(i) There exist two one-parameter families of isometric stationary immersions
fo, fo: M — N3(c) (0 € R) with the same normal curvature K.

(il) Assume that (K —c)> —K2>0. If f: M — Ni(c) is an arbitrary iso-
metric stationary immersion with the same normal curvature K,, then there exists
0 € R such that f coincides with fy or f, up to congruence.

REMARK. The theorems and their proof imply that Lorentzian stationary
surfaces in N{(c¢) and Nj(c) with K # ¢ are intrinsically characterized by the
same condition A log|K — ¢| = 4K, and each of them has a one-parameter family
of isometric stationary immersions into N{(c¢) and N;(c), respectively. So,
viewing N7 (c) and N;(c) as subspaces of Nj(c), a Lorentzian stationary surface
in N{(c) or Nj(c) with K # ¢ has two one-parameter families of isometric
stationary immersions with zero normal curvature into N3(c). Theorem 1.2 is a
natural generalization of this situation.

The theorems say that, in the case where (K —c) — K2? >0, Lorentzian
stationary surfaces in Ny (c) have similar properties to minimal surfaces in N*4(c)
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or spacelike maximal surfaces in Ny (c) (cf. [12] and [7]), except for the existence
of two kinds of isometric stationary deformations preserving normal curvature.
But, in the case where (K — ¢)* — K? <0, we do not know how is a Lorentzian
stationary surface in N5 (c) determined by the metric and the normal curvature.
As will be noted in the last section, the crucial different point is that a certain
symmetric linear transformation of the normal bundle can be diagonalized or not.

The study of Lorentzian stationary surfaces in N3(c) may be seen as a special
case of that of real parakahler submanifolds in N;’(c), namely, isometric immer-
sions of parakdhler manifolds into N)(c), in particular, in the case of zero mean
curvature. The results in this paper suggest that the geometry of real parakahler
submanifolds may be quite different from that of real Kéhler submanifolds (cf.
(4], [3], [2] and their references).

2. Preliminaries

In this section, we recall the method of moving frames for Lorentzian sur-
faces in N3 (c). Unless otherwise stated, we use the following convention on the
ranges of indices:

1<A4,B,...<4, 1<ij,...<2, 3<ap...<4

Let {e4} be a local orthonormal frame field in N5 (c), and {®“} be the dual
coframe field, so that the metric of Nj(c) is given by

do® = (0")* = (0*)* + (0°)* — (0*)?.

The connection forms {w#} are defined by
dep = Z a)ge 4.
A
4

Then, wjf = —w% if |4 — B is even, and wj = % if |4 — B| is odd. The structure
equations are given by

dcoA:wag/\wB, (3)
B
1
da)g:—Zwé‘/\wg—f—EZRgCch/\wD, (4)
C C.D
Rigep = ces(0¢08p — dpdsc). (5)

where ¢g = &3 =1 and ¢ = ¢4 = —1.
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Let M be a Lorentzian surface in Ny (c). We choose the frame {e4} so that

{e;} are tangent to M. Then w* =0 on M. In the following our argument will be
restricted to M. By (3),

0=— Z EINOR
i
So there is a symmetric tensor {h}} such that
o} =Y hiw’, (6)
J

where £ are the components of the second fundamental form 7 of M.
The Gaussian curvature K and the normal curvature K, of M are given by

doy = —Ko' Ao, do] = —K,0' Ao’ (7)
Then by (4), (5) and (6), we have
K = c—hih3, + () + hiy iy — ()7, (8)
and
K, = hihy — hiyhiy — hiyha, + hyyhty. 9)

The mean curvature vector H of M is defined by
1
H= 52(”1 —h3)es.

We say that M is stationary if H =0 on M.
In the following we assume that M is stationary. Then by (8) and (9),

K =c—(h))*+ (hy) + (hf)* — (b)), (10)
and
Ky = 2088y — ) (i)
We can see that
(K —¢)® =K} = {=(h{)* + (hr)* + (h}))* = (hy)*}* = 4(h)\ by — Wiy )?
= {(h131)2 + (h132)2 - (hfl)z - (hfz)z}z — 4(hj iy — h?lhfz)z

= {(h131)2 - (h132)2 + (hfl)z - (h?2)2}2 — 4(hj by — h?zh?2)2- (12)
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3. Some Examples
In this section, we give some examples of Lorentzian stationary surfaces in
N3 ().
ExampLE 3.1. Let {x,x2,x3,x4} be the standard coordinate system for R;‘
with metric
do® = dxi — dx3 + dx; — dxj.

Let J be the paracomplex structure on R3 given by

{0 0 - 0 0 - 0 0 -( 0 0
JIN— ==, J— ==, J|— ==, J =—.
<5X1> (3)(2 ’ <6X2> 6)(1 ’ <(7X3> 6)(4 ’ <(7X4) 6X3

Then (J,do?) is a flat parakéhler structure on Rj3.
Let M be a paracomplex surface in Rj, that is, J(T,M) = T,M for each
p e M. Then, by Corollary 3.1 of [1], M is a Lorentzian stationary surface in Rj.

For example, set

O1(u+v)+ Oa(u—v)

Fluv) = O1(u+v) — Or(u—v)
’ O3(u + v) + O4(u —v)
O3(u+0v) — Q4(u—v)

and assume that

Of(u+v) Q) (u — v) + Q3(u + v) Q4 (u — v) > 0,

where Q;(z), Q2(z), 03(z) and Q4(z) are smooth functions. Then it gives a
paracomplex surface in R3. See [9] and [11] for a relation between paracomplex
surfaces and minimal lightlike submanifolds.

ExampLE 3.2. For a constant k >0 and a smooth function Q(u) with
Q'(u) >0, let M be a surface in R} given by

f(u,v) = (Q(u) cosh v, Q(u) sinh v, u, kv),

where R} has the same metric as in Example 3.1. It is a deformation in R3
of a Lorentzian surface of revolution in R; with spacelike axis of revolution
(cf. [14, p. 350], [5, p. 520]). Set

1 1

S iror  Jivor

(Q' cosh v, Q' sinh v, 1,0),
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1 1
e = = sinh v, Q cosh v,0, k),
= T = T )
1
e3 = ————/(cosh v, sinh v, —Q’,0),

T Vis0?

1
¢4 = ——(k sinh v, k cosh v,0,—0Q).
VO +k? ( )
Then {e4} is an orthonormal frame field along M with signature (+,—,+,—),
and {e;} are tangent to M. The components of the second fundamental form /
are given by

"
W=l Wy =0, B = 9 ,
(1+07) (0% +Kk2)\/1+ 07
Q'
ht, =0, hi,= h3, =0.

(02 +k2)y/T+ 07
Thus M is stationary if and only if

" 0
1+Q/2_Q2+k2'

Multiplying by 2Q’ and integrating, we may obtain

0'=/30*+ckr—1, (c >0).

If cik =1, then Q(u) = cae/*. If ¢k < 1, then

1 — k2
Ou) = — cosh(ciu + ¢).
1
If ¢;k > 1, then
cik? -1
ou) = B sinh(ciu + ¢2).
1

ExampLE 3.3. Let M be a 2-dimensional simply connected Lorentzian
manifold with Gaussian curvature K and Laplacian A. Suppose that K > ¢ and

Alog(K — ¢) = 6K — 2c.

Then by Theorem 1 of [8], there exists an isometric stationary immersion of M
into Nj(c). This is an isotropic-like example.



Lorentzian stationary surfaces 221

ExampLE 3.4. Let P(u), Q(v) be null curves in R}, and assume that
(P'(u),0'(v)y #0. Set f(u,v) =P(u)+ Q(v). Then it gives a Lorentzian sta-
tionary surface in R3. See [13, Chap. 8] for such a representation in R;. See [10]
for the geometry of null curves in Rj.

4. Proof of Theorem 1.1

Proor oF THEOREM 1.1. (i) As M is a Lorentzian stationary surface in
N3(c), using the notations in Section 2, we may write

0} =so' +10?, 0 =t +50% o =uw' 40’ of =o' +uw?.  (13)

By (10) and (11),
K=c—s+2+u>—v* K, =2(s0—tu). (14)
Using (3), (4), (5) and (13), we have

doi} = dsro' — 503 A@* +dit A 0* — to] Ao

B A 3, 4
= —w; AW — Wy AW

= —(to' +s0*) Aot — 0] A (uo' + v0?).
Using the notation like
ds = si0' + 0%, dt = ho' + Ho?,

wy = (0)),0" + (0)),0%, ] = ()0 + ()07,
we get
2s5(y), = 21(@y), — v(@3); + u(@}); = 11 — 5. (15)

Similarly, from the exterior derivatives of w3, o} and w3,

2s(w21)2—21(a)21)1 _U(a’i)z"'”(wi)l = b — 1, (16)
2u(wy); — 20(wy), — Hwy); + s(w3), = v1 — ua, (17)
2u(,), = 20(wy), — t(@y); + 5(@3); = v2 — 1. (18)

Using (14) we can see that
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So the simultaneous linear equations (15)—(18) for 2(w)),, 2(w}),, (®}), and
(w3), can be solved uniquely. From (15)-(18) we have

2501 = 2t(xw)) — vw] + u(xw}) = dt — (xds), (19)

—2tw) + 2s(x1) + uw; — v(xw}) = (xdt) — ds, (20)

2ucy — 20(xw3) — tw; + s(xw}) = dv — (xdu), (21)

—2v0) + 2u(*,) + sw; — t(xw}) = (xdv) — du. (22)

Here * is the Lorentzian Hodge star operator on M given by *»' = w? and
*w? = .

By (19) x (—s) +(20) x (=) + (21) x u+ (22) x v and (19) x v+ (20) x u+
(21) x (=1) + (22) x (—s), together with (14), we can get

1
2(K — ¢)os + K, = —5(*61([( —¢)+tds—sdt—vdu+ud, (23)
and
1
2K,0) + (K — ¢)w; = —5(*511(1,) —uds+odt+sdu—tadv. (24)

Set
X=5+0—u’—0v> Y =2(st—u),
Z=s>—14+u* -0’ W =20su—nmw).
By (12) we have
(K—¢)-K>=Xx>-Yy>=272- W2 (25)
Using (14) we can compute that

(K—c)(tds—sdt —vdu+udv)— K,(—uds+vdt+sdu—tdv)

(X dY — Y dX), (26)

l\Jl'—‘

and

—K,(tds—sdt —vdu+udv)+ (K—c)(—uds+vdt+sdu—tdv)

—%(z AW — W dZ). (27)
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By (23), (24), (25), (26) and (27), we can get
1 XdY-YdX

1
1_ 2 2
2w2——1*dlog\(K—c) —Kv|—|—§-7X2_Y2 , (28)
and
1 K —c—K, 1 Zdw — W dZ
3_ 1 1 vw__.--- - 2
@4 4*dog‘K—c+Kv 2 T 22— wne (29)

The Laplacian A on M is given by
dxdf = (Af)o' A w?

for a smooth function f on M. By the exterior derivative of (28) and (29),
together with (7), we may obtain

Alog|(K — ¢)* — K2| = 8K, (30)
and
K—c—K,
Alog|———— | = —4K,. 1
Bk _crK, (31)

By (30)+(31), we have the equations (1) and (2).

(ii) As (K —c)* — K2 >0, we have K # c. By the anti-isometry from N}(c)
to N3 (—c) (cf. [6, p. 110]), M remains Lorentzian, the Gaussian curvature, the
normal curvature and the Laplacian turn to —K, —K, and —A, respectively. So it
suffices to consider only the case where K > c.

We may assume that M is a small neighborhood. Let do? be the induced
metric on M. By (1)+(2) we have

Alog{(K —¢)* — K?} = 8K,
which implies that the metric
dé® = {(K — ¢)* — K2}'* do?
is flat. So there exists a coordinate system {x!,x?} such that
do® = {(K — ¢)* — K2} *{(dx")* - (ax?)*}.
Set

o' ={(K—¢)* =K} B dx, (32)
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so that {w’} is an orthonormal coframe field dual to {e;}. By

do' = —w) A@?,  do* = —of Ao,

we can find that the connection form wl = w? is given by
1 2 1 2 2
a)z:a)l:—g*dlog{(K—c) - K}

As (K —¢)? — K2 >0 and K > ¢, there exist smooth functions 7 and u so
that

1
?+ut=K—c¢, tu:—sz.

In fact, letting

_VK—-—c—-K,+VK—-c+K,

; (33)

q

and

VK—-c—K,—/K—-c+XK,
r =

. , (34

we have (t,u) = +(q,r), or (t,u) = +(r,q).
Let E be a 2-plane bundle over M with metric {, » and orthonormal sections
{es3,e4} of signature (+,—). Let & be a symmetric section of Hom(7TM x TM,E)

such that
) — 0 ¢ phy (¢ 0
=, o) wh=(y )
and set
cof = —w% = tw?, wg = w§ = tw', a)i1 = wj =uo', wg = —wf = uw?

We define a compatible connection *V of E so that
LVe; = wies, *Ves = wjes,

where

1 K—c—K,
o =oi=gedios( )
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Now, almost reversing the argument in (i) for s =v =0, we can see that
{wy} satisfy the structure equations:

do) = —0) A@3 — 0) A0F — co' A,
do} = —03 Ao} — 0] Aof, do; = —0] Aoy — ) Ao3,
do! = —0f Ao} — 0 A}, do) = —of Aoy — o Ao,
dw; = —0; Ao} — o3 A©F,

which are the integrability conditions. Hence, by the fundamental theorem, there
exists an isometric immersion of M into N3(c), which is stationary and has
normal curvature K. O

5. Proof of Theorem 1.2

PrOOF OF THEOREM 1.2. (i) For f: M — Nj(c), let s, ¢, u, v and wj be as
in the proof of Throem 1.1 (i). For each 0 € R, let #(0) be a symmetric section of
Hom(TM x TM,T+M) such that

(13(0)) = s cosh 20 + ¢ sinh 20 s sinh 20 + ¢ cosh 20
i “ \ssinh 20+ ¢ cosh 20 s cosh 20 + ¢ sinh 20 )’

(4(0)) = u cosh 20 + v sinh 20 u sinh 26 + v cosh 20
U777\ w sinh 20 + v cosh 20 u cosh 20 + v sinh 26 )’

and correspondingly, set
w3 (0) = —wj(0) = w; cosh 20 + 3 sinh 20,
w3(0) = 3 (0) = w; sinh 20 + w3 cosh 20,
o}(0) = w}(0) = wf cosh 20 + w3 sinh 20,
03(0) = —w3(0) = o} sinh 20 4 w3 cosh 20.

Let wl(0) = wi(0) = o) and o] (0) = w3(0) = w; for convenience. Then by the
computation, we can see that {w7(0)} satisfy the structure equations. Thus, for
each 0 € R, there exists an isometric immersion fj: M — Nj(c), which is sta-
tionary and has the same normal curvature K,.

Next, let 4 be a symmetric section of Hom(TM x TM,T+M) such that

=00 w=(17),
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and correspondingly, set
=0y =0, @ =-0;=o0;.
Let @) = &} = w} and @; = @7 = w] for convenience. By the computation, we
can see that {@j} satisfy the structure equations. So there exists an isometric
immersion f: M — N3(c), which is stationary and has the same normal cur-
vature K,.

Combining the above two methods, we get two one-parameter families of
isometric stationary immersions fj, fy : M — N5 (c) (0 € R) with the same normal
curvature K,. [l

Before proving the part (ii), we shall prepare a lemma. Let M be a Lor-
entzian stationary surface in N3(c) satisfying (K — o)’ — K2 > 0. As in the proof
of Theorem 1.1 (i), we may assume that K > ¢. As (K — ¢)* — K2 >0, by (12),
we may choose a smooth function ¢ so that

{<h131)2 - (h132)2 + (hﬁ)z - (hfz)z} sinh 2¢ + 2(hj Aif; — hiyh) cosh 29 = 0.
Set
é3 = e3 cosh ¢ + ¢4 sinh ¢, &4 = e3 sinh ¢ 4 e4 cosh ¢,
and let {E;} be the components of / with respect to {e;, é,}. Then we may have
5131};?1 - 5132};?2 =0, (35)

which is independent of the choice of {e;}.
Set

é1 =ey cosh @+ e, sinh f, ¢é = e sinh 0+ e, cosh 6

for a smooth function 6, and let {iz;} be the components of /& with respect to the
frame {é;,é,}. Then we have

B3, = i3, cosh 20 + ki, sinh 20, k3, = k3, sinh 26 + /3, cosh 20,
h}, = ki, cosh 20 + b}, sinh 20,  h}, = i}, sinh 20 + i}, cosh 20.  (36)
As we assume that K > ¢, we have by (10),

(hf)? = (hh)* > (h))? — (ki)
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So ()” — (£)° > 0, or ()" — (Fy)* < 0. When (54" — ()" > 0, we may
choose the smooth function @ so that 4, = 0. Then %, # 0, and by (35), h}, = 0.
Similarly, when (/3,)* — (h3,)*> < 0, we may choose the smooth function @ so that
B} =0. Then h}, #0, and by (35), ht, = 0.

Thus, with respect to the frame {é;¢é,}, we have

and

Let ¢ and r be defined as in (33) and (34). Then we have (f,u) = +(q,r), or

(t,u) = +(r, q).
Hence we get the following:

LEMMA 5.1. Let M be a Lorentzian stationary surface in Nj(c) satisfying
(K —¢)? —K2?>0 and K > c¢. Then we may choose the frame {e4} so that

or

PRrROOF OF THEOREM 1.2. (ii) We may assume that K > ¢. For the Lorentzian
stationary immersion f, we choose the frame {e4} as in Lemma 5.1. Let
f:M— N3(c) be an arbitrary isometric stationary immersion with the same
normal curvature K,. By Lemma 5.1, we may choose the frame {é,} so that

=ra', @3 =rd?

or

Then, as in (28) and (29), we have @) = 0} and @] = w].

Also as in (32), there exist coordinate systems {x!, x?} and {x!, %} such that
o' ={(K—c)? - K2} dx,
and

o' ={(K—-¢)*— K2}V az'.
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We may write

0 0 . 0 0 . 0 0
praie cosh Hw — sinh 0@’ Frohe —sinh 0@ + cosh 0@

for a smooth function 0. As [0/0%',0/0%*] =0, we find that @ is constant. We
note that

e; = (cosh 0)é; + (sinh 0)é;, e, = (sinh 0)é; + (cosh 0)é,.

Using (36) in this situation, we can see that the components of the second

fundamental form of f with respect to the frame {e;,é,} are the same as those of

fo or f, with respect to {e;,e,}. Also, with respect to those frames, @; = w; =

w3(0) = @;(0), that is, £, fy and f, have the same normal connection. Therefore,

f coincides with f; or f, up to congruence. OJ

REMARK. In the case where (K —c¢)> — K2 <0, we may not choose the
frame so that the equation (35) is satisfied. That is, (T*%) given by

‘ . B
T = hiylhlﬂl - ixzhfz

may not be diagonalized. It should be a crucial different point compared with the
case where (K —c¢)* — K2 > 0.
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